

City, University of London Institutional Repository

Citation: Deihim, A., Apostolopoulou, D. & Alonso, E. (2024). Initial estimate of AC optimal

power flow with graph neural networks. Electric Power Systems Research, 234, 110782.
doi: 10.1016/j.epsr.2024.110782

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/33205/

Link to published version: https://doi.org/10.1016/j.epsr.2024.110782

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Electric Power Systems Research 234 (2024) 110782

A
0

Contents lists available at ScienceDirect

Electric Power Systems Research

journal homepage: www.elsevier.com/locate/epsr

Initial estimate of AC optimal power flow with graph neural networks
Azad Deihim a,∗, Dimitra Apostolopoulou a, Eduardo Alonso b

a Department of Engineering, City, University of London, London EC1V 0HB, UK
b Department of Computer Science, City, University of London, London EC1V 0HB, UK

A R T I C L E I N F O

Keywords:
AC optimal power flow
Graph neural networks
Initial estimate
Proximal policy approximation

A B S T R A C T

Optimal power flow (OPF) is a crucial task in power system management and control; accurate and time-
efficient solutions for OPF are necessary to ensure cost-efficient and reliable power system operation. We
introduce a novel solution to solving alternating current OPF (ACOPF), a nonlinear and nonconvex optimization
problem, by combining the speed of a trained deep learning model with the accuracy of iterative solvers. The
proposed framework uses a graph neural network (GNN) to exploit the graph structure of a power system in
conjunction with proximal policy optimization, a deep reinforcement learning algorithm, to compute initial
guesses for an interior point solver (IPS), providing a warm start, allowing the solver to converge in fewer
iterations. Existing literature that explores warm start ACOPF solutions using machine learning choose to
compute initial guesses that are trained to be feasible and cost-minimizing. Our approach trains the GNN-
based reinforcement learning agent to produce an output that minimizes IPS convergence time by designing a
reward function that is a function of the IPS convergence time. We evaluate the proposed framework using IEEE
test case environments, using PyPower’s IPS-based ACOPF solver and a GNN-based framework that computes
ACOPF solutions directly as baselines, demonstrating significantly improved convergence times.
1. Introduction

Optimal power flow (OPF) is a fundamental task in power system
management that aims to minimize power generation costs under the
physical constraints of the power system. OPF is an NP-Hard problem
in its original form due to the nonlinear and nonconvex properties
of alternating current OPF (ACOPF). In the last two decades, finding
direct solutions for ACOPF has become a popular area of research [1].
Proposed solutions often fall short because they cannot consistently
produce feasible solutions, achieve global optimum, or address space–
time complexity1 issues related to solving a nonconvex optimization
problem. The alternative to solving ACOPF is to apply a direct current
(DC) approximation using a relaxation that negates the reactive compo-
nent(s) of the power system — thus making the optimization problem
linear and convex. DCOPF is a common approach for solving OPF due
to the lack of computational complexity associated with solving it.
Nonetheless, the approximation of OPF’s true form will incur significant
monetary losses due to suboptimal solutions obtained using DCOPF [2].

Deep learning approaches to solving ACOPF have been well ex-
plored (see, e.g., [3–6]). While deep learning has been shown to
compute feasible solutions quickly, they are consistently far from global
optimum relative to other methods, such as iterative solving methods.
Iterative solvers, such as gradient descent, Newton–Raphson’s method,

∗ Corresponding author.
E-mail addresses: azad.deihim@city.ac.uk (A. Deihim), dimitra.apostolopoulou@city.ac.uk (D. Apostolopoulou), e.alonso@city.ac.uk (E. Alonso).

1 Space–time complexity refers to an algorithm’s efficiency in computation time and required memory.

or quasi-Newton methods, are numerical methods that use an initial
value to generate a sequence of increasingly accurate approximate
solutions for a specific class of problems. In these methods, the 𝑛th
approximation is derived from the previous approximations, gradually
refining the solution until it reaches a global optimum. Due to neural
networks’ inherent functionality for generalization, it would be nearly
impossible to generate a truly optimal output. The only means of con-
sistently producing optimal solutions would be to create an architecture
designed to overfit and then train it on every possible combination
of inputs, which is infeasible for a continuous, thus infinitely large,
input space. Alternatively, while global optimality is not necessarily
guaranteed every time, iterative solvers alone are generally capable
of consistently producing optimal ACOPF solutions that are better
solutions than other researched methods, such as deep learning, but
this comes at the cost of computation time; convergence to the optimum
can often not be done in real-time, especially in larger power systems.
This problem can be mitigated if the iterative solvers are informed
with an accurate initial guess or warm-start. Providing a warm-start
can significantly improve the convergence rate and reduce the number
of iterations required to converge [7].

This paper proposes a novel time-efficient solution to ACOPF us-
ing deep reinforcement learning in conjunction with iterative solving
vailable online 25 June 2024
378-7796/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.epsr.2024.110782
Received 1 October 2023; Received in revised form 15 March 2024; Accepted 17 J
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

une 2024

https://www.elsevier.com/locate/epsr
https://www.elsevier.com/locate/epsr
mailto:azad.deihim@city.ac.uk
mailto:dimitra.apostolopoulou@city.ac.uk
mailto:e.alonso@city.ac.uk
https://doi.org/10.1016/j.epsr.2024.110782
https://doi.org/10.1016/j.epsr.2024.110782
http://creativecommons.org/licenses/by/4.0/

Electric Power Systems Research 234 (2024) 110782A. Deihim et al.

s
t
o
m

𝑖

S

𝑃

𝑄

𝑉

w
a

e
l
(

2

e
o
c
r
o
o
n
p
t
a
d
t
i

methods, specifically, the interior point solver (IPS). We do not train the
deep reinforcement learning agent to produce a solution to ACOPF that
is feasible or cost-minimizing; instead, we train the agent to compute
an initial guess that minimizes the time it would take for the IPS to find
a solution. Due to the nonconvex properties of ACOPF, an initial guess
that is nearer to the global optimum in terms of costs and feasibility
may be very far in proximity to the global optimum. As a result, training
an agent to generate initial guesses that prioritize feasibility and cost
minimization may actually lead to longer IPS convergence times.

Training the agent to make initial guesses that minimize IPS compu-
tation time requires a feedback loop to inform the loss function of the
quality of the initial guess based on the amount of time it takes for the
IPS to solve the ACOPF. This approach should employ reinforcement
learning, as it would not be a practical way to generate a predefined
dataset for traditional machine learning approaches.

Our proposed framework uses proximal policy optimization (PPO),
a type of deep reinforcement learning algorithm, to train a neural
network to compute an initial guess of the ACOPF solution, allowing
IPS to solve it in significantly fewer iterations, thus decreasing the
computation time. Reinforcement learning agents learn via trial and
error as they interact with their environment, take actions, and observe
the rewards earned from making particular actions. PPO is a simple
actor–critic reinforcement learning algorithm that seeks to find an op-
timal policy (a function that maps observations to actions) rather than
assigning values to state–action pairs [8]. We couple this with a graph
neural network (GNN) to act as the agent’s learning mechanism —
exploiting the graph structure of the power grid. GNNs are a specialized
type of neural networks that are well-suited to process graph-structured
data. By analyzing and utilizing the patterns and relationships within
the graph, GNNs can provide more accurate predictions about the
entities involved compared to models that only consider individual
entities in isolation, such as a standard multi-layer perceptron (MLP).
Using a GNN also allows adaptation to changes in topology with only
minor adjustments. In contrast, an MLP, the standard in deep learning-
based ACOPF literature, would require a complete retrain. Topology
adaptability is essential in real-world scenarios where line and gener-
ator outages or other unexpected changes to topology can occur. Only
one study we know of has used GNN for ACOPF, [9], which focused on
computing ACOPF solutions directly with the GNN. Although warm-
start solutions for iterative solvers using machine learning and deep
learning have been explored in [7,10–13] these methods do not use re-
inforcement learning to factor in the convergence time of the employed
iterative solver into the loss function of the learning algorithm and also
do not use GNN to take advantage of the graph structure of the power
system.

With the proposed framework, we aim to demonstrate a middle-
ground solution to ACOPF that combines the speed of a trained neural
network with the accuracy of iterative solvers. This framework is eval-
uated on the feasibility of solutions and the computation time required
to compute solutions. We conduct experiments using standard IEEE test
environments.

The contributions of our work are as follows:

(1) We create a novel framework for solving ACOPF utilizing GNN
and PPO as learning mechanisms.

(2) We introduce a novel deep reinforcement learning reward func-
tion for ACOPF that considers the iterative solver’s convergence
time, which has not yet been explored in ACOPF literature.

(3) We demonstrate state-of-the-art results that do not compromise
accuracy or computation time.

By showcasing this novel solution to ACOPF, we aim to provide a new
direction for future ACOPF research to compute accurate solutions in
real-time.

The structure of this paper is as follows: Section 2 presents the
background material necessary for understanding the details of the
2

proposed framework; Section 3 outlines the methodology, including the t
characteristics of the agent, the GNN architectures, and the structure of
the training algorithm; Section 4 provides an overview and discussion
of the results obtained from each experiment; and Section 5 provides a
brief conclusion of the paper and description of future work.

2. Background

In this section, we review background material that supports the
framework presented in this paper. This includes a brief outline and
formulation of ACOPF, graph convolutional networks, reinforcement
learning, and PPO.

2.1. AC optimal power flow

Given a power system where N denotes the set of all buses, G the
et of all generators, and L set of all transmission lines, we formulate
he ACOPF as a set of equality and inequality constraints and an
bjective function to be minimized. Formally,
inimize:

∑

∈G

(𝐶2𝑖𝑃
2
𝑔𝑖 + 𝐶1𝑖𝑃𝑔𝑖) (1)

ubject to:
𝑚𝑖𝑛
𝑔𝑖 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑚𝑎𝑥

𝑔𝑖 , ∀𝑖 ∈ G , (2)

𝑚𝑖𝑛
𝑔𝑖 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑚𝑎𝑥

𝑔𝑖 , ∀𝑖 ∈ G , (3)

𝑚𝑖𝑛
𝑖 ≤ 𝑉𝑖 ≤ 𝑉 𝑚𝑎𝑥

𝑖 , ∀𝑖 ∈ N , (4)

|𝑆𝑓𝑙𝑜𝑤,𝑖𝑗 | ≤ |𝑆𝑚𝑎𝑥
𝑓𝑙𝑜𝑤,𝑖𝑗 |, ∀(𝑖, 𝑗) ∈ L , (5)

𝑃𝑖 =
∑

∀𝑗∈N

𝑉𝑖𝑉𝑗 (𝑔𝑖𝑗𝑐𝑜𝑠(𝜃𝑗 − 𝜃𝑖) + 𝑏𝑖𝑗𝑠𝑖𝑛(𝜃𝑗 − 𝜃𝑖)), ∀𝑖 ∈ N , (6)

𝑄𝑖 =
∑

∀𝑗∈N

𝑉𝑖𝑉𝑗 (𝑔𝑖𝑗𝑠𝑖𝑛(𝜃𝑗 − 𝜃𝑖) − 𝑏𝑖𝑗𝑐𝑜𝑠(𝜃𝑗 − 𝜃𝑖)), ∀𝑖 ∈ N , (7)

here 𝐶1⋅ and 𝐶2⋅ are coefficients related to the costs of power gener-
tion, 𝑃𝑖 and 𝑄𝑖 are the total real and reactive power at bus 𝑖 ∈ N ,

respectively, 𝑃𝑔𝑖 and 𝑄𝑔𝑖 are the total real and reactive generation
at generator 𝑖 ∈ G , 𝑆𝑓𝑙𝑜𝑤,𝑖𝑗 is the apparent power of line (𝑖, 𝑗) ∈
L , 𝑉𝑖 and 𝜃𝑖 are the voltage magnitude and the phase angle at bus
𝑖 ∈ N , respectively, 𝑔𝑖𝑗 and 𝑏𝑖𝑗 are the conductance and susceptance,
respectively, of the line (𝑖, 𝑗) ∈ L that connects buses 𝑖 and 𝑗.

(1) is the objective function to be minimized, relating to power gen-
ration costs. (2)–(5) are inequality constraints of the ACOPF related to
imits on power generation, voltage limits, and line flow limits. (6) and
7) are equality constraints related to power balance.

.2. Graph convolutional networks

Given a graph with a set of nodes or vertices 𝑉 and a set of
dges that denote connections between nodes 𝐸, GNNs use optimizable
perations, such as aggregation [14], pooling [15], attention [16], or
onvolution [17], that consider entities of a graph as interconnected
ather than independent, taking into account their relationships with
ne another. The identity of a node or edge can be represented by
ne or more values; for example, in the context of power systems,
odes can denote buses and be represented by values such as real
ower, reactive power, voltage, etc. In contrast, edges can represent
he lines that connect two buses and be represented by values such
s resistance, conductance, susceptance, current, etc. Graph-structured
ata exists in various domains, from street traffic to molecular biology
o social networks. Prediction tasks for graph-structured data can fall
nto three categories: graph-level, node-level, or edge-level. Graph-level
asks involve computing all properties of an entire graph; node-level

Electric Power Systems Research 234 (2024) 110782A. Deihim et al.

w
o
v
a
m
o
a
d
f
a

𝐿

w
𝐴

𝐴

w

𝛿

a

𝑅

T
𝜀
b
c
l

tasks are concerned with predicting values that represent the identity
of a node; and edge-level tasks can involve predicting where edges in
a graph should be or determining the values that represent that edge’s
identity. The ACOPF problem outlined in this paper will be a node-level
task.

Graph convolutional networks, a popular type of GNN, utilize an
operation known as graph convolution, which is similar to the convo-
lution operation used in a convolutional neural network for images;
the new representation of a node in a graph becomes an amalgamation
of itself and its neighbors. We compute a transformation of each node
using feature information from all its neighbors and itself, allowing the
network to consider nodes as interconnected rather than independent
entities. The convolution operation translates well between images and
graphs simply because images are graphs, too, where each pixel is
nodally connected to adjacent pixels. While the idea of graph convo-
lution is similar to the convolution operation used in a convolutional
neural network for images, their mathematical formulations differ; also,
graphs require an order-invariant operation, whereas the convolution
operation used for images is not order-invariant. In this study, we adopt
the graph convolution formulation in [18], shown below:

𝐱′𝑖 = 𝐖1𝐱𝑖 +𝐖2
∑

𝑗∈ (𝑖)
𝑒𝑗,𝑖 ⋅ 𝐱𝑗 , (8)

where 𝑥(⋅) is the value(s) of a node, 𝑒 ∈ R‖N ‖×‖N ‖ is the adjacency
matrix, where ‖(⋅)‖ denotes cardinality of the set, and 𝑊(⋅) are learned
weight matrices.

2.3. Reinforcement learning

Reinforcement learning is a collection of optimization algorithms
where an agent aims to learn the optimal strategy for interacting with
its environment based on trial-and-error learning [19]; the environment
describes the world with which the agent interacts. Reinforcement
learning algorithms can be categorized into model-based or model-free
algorithms; in model-based approaches, the agent uses a predictive
model of the environment to determine the possible outcomes of its
actions. Model-free approaches, which do not use predictive models
of the environment to guide the agent’s decision-making process, rely
more on the expected returns of their actions to understand their en-
vironment. Model-free reinforcement learning can be divided into two
main categories: value-based and policy-based. Value-based approaches
aim to learn or estimate the value or expected return of state–action
pairs. In policy-based approaches, the agent devises a policy such that
the action performed in every state helps the agent gain maximum
future reward.

At each time step 𝑡, the agent receives observations from the envi-
ronment and takes actions based on those observations. The environ-
ment then responds with a new state and a reward signal, which the
agent uses to update its policy or value function. This loop continues
until the agent reaches its goal or the environment ends. Using a neural
network, the agent can progressively learn a model of the optimal
policy or value function and eventually be capable of taking actions
that would earn the largest long-term return.

A Markov decision process can be used to model reinforcement
learning problems. This consists of four elements: the state space of
the environment 𝑠, the action space of the environment 𝑎, the reward
function 𝑟, and the transition probability 𝑝. The state space encompasses
any information from the agent’s environment that can and should be
used to make decisions. The actions space includes the agent’s decision
variables — the set of all possible actions. The reward function defines
the reward given to the agent after an action is executed and the results
of the action are realized. Rewards can also have zero or negative
values, often denoting punishment. Lastly, the transition probability
delineates the stochasticity of the environment: the probability of a
specific state 𝑠𝑡+1 being observed when action 𝑎𝑡 is taken at a specific
3

state 𝑠𝑡. If the probability is 1, the environment would be deterministic. t
2.4. Proximal policy optimization

As a derivative of policy gradient and trust region methods, PPO is
a policy-based reinforcement learning algorithm that employs elements
from each to reach a balance between ease of implementation, sample
complexity, and ease of tuning to compute an update that minimizes
the cost function while ensuring the deviation from the previous policy
is relatively small [8]. We use PPO because policy-based methods gen-
erally work better in environments with infinitely large state and action
spaces, as value-based cannot reasonably obtain accurate mappings of
optimal state–action pairs without significant training.

Algorithm 1 outlines PPO’s structure. In each episode of training,
for 𝑇 time steps (where 𝑇 is a much smaller value than the length of
an episode2), the agent will use the same policy; once the number of
time steps reaches 𝑇 , the agent will undergo a policy update. PPO uses
an actor–critic structure: the actor learns the optimal policy, whereas
the critic estimates the value function, which computes the potential
long-term return. The actor and the critic are both modeled by a neural
network.

Algorithm 1 PPO
for iteration = 1, 2,… do

Run policy 𝜋𝜃old in environment for 𝑇 timesteps
Compute advantage estimates �̂�1,… , �̂�𝑇
Optimize surrogate 𝐿 wrt 𝜃, with 𝐾 epochs and
minibatch size 𝑀 ≤ 𝑁𝑇

𝜃old ← 𝜃
end for

The objective function to be minimized by the agent is defined as:

𝐿𝑡(𝜃) = 𝐿𝑐𝑙𝑖𝑝
𝑡 (𝜃) − 𝑐1𝐿

𝑉 𝐹
𝑡 (𝜃) + 𝑐2𝑆

[

𝜋𝜃
] (

𝑠𝑡
)

, (9)

here 𝑐1 and 𝑐2 are user-defined coefficients to determine the weight
f each component in the objective function, 𝐿𝑉 𝐹

𝑡 (𝜃) is the loss of
alue function (the critic network), 𝐿𝑐𝑙𝑖𝑝 is the clipped surrogate loss,
nd 𝑆 is the entropy of the policy. The policy, 𝜋𝜃 , is defined by a
ultivariate Gaussian distribution 𝜋𝜃 ∼ 𝑁𝑜𝑟𝑚

(

𝝁𝜃(𝑠𝑡),𝜮𝜋𝜃
)

. The mean
f the distribution, 𝝁𝜃(𝑠𝑡), is the output produced by the actor network,
nd 𝜮𝜋𝜃 is the diagonal matrix of the covariance matrix with a user-
efined standard deviation; the standard deviation is set relatively high
or earlier episodes and decays as the episodes progress, adding small
mounts of random noise to the action and aiding in exploration.

The clipped surrogate loss is defined as
𝑐𝑙𝑖𝑝(𝜃) = min(𝑅𝑡(𝜃)�̂�

𝜋𝜃, old
𝑡 ,

clip
(

𝑅𝑡(𝜃), 1 − 𝜀, 1 + 𝜀
)

�̂�𝜋𝜃, old
𝑡), (10)

here 𝜃old refers to the policy parameter before the actor is updated,
̂𝑡 is the advantage estimate, which is defined as:

̂𝑡 = 𝛿𝑡 + (𝛾𝜆)𝛿𝑡+1 +⋯ +⋯ + (𝛾𝜆)𝑇−𝑡+1𝛿𝑇−1, (11)

here

𝑡 = 𝑅𝑡 + 𝛾𝑉
(

𝑠𝑡+1
)

− 𝑉
(

𝑠𝑡
)

, (12)

nd 𝑅𝑡(𝜃) is the ratio between the new and old policies, defined as:

𝑡(𝜃) = 𝜋𝜃
(

𝑎𝑡 ∣ 𝑠𝑡
)

∕𝜋𝜃old

(

𝑎𝑡 ∣ 𝑠𝑡
)

. (13)

he clip function ensures that 𝑅𝑡(𝜃) is between 1 − 𝜀 and 1 + 𝜀, where
is a user-defined parameter to determine the tightness of the clip

oundaries. In (11), variables 𝛾 and 𝜆 are user-defined variables that
ontrol the reward discount; larger values allow the agent to consider
ong-term rewards, while smaller values enable the agent to consider

2 An episode refers to a series of agent-environment interactions between
he initial state and the terminal state.

Electric Power Systems Research 234 (2024) 110782A. Deihim et al.
shorter-term rewards, and 𝑉 (⋅) is the value function modeled by the
critic network.

The agent’s training generally concludes when the objective func-
tion (9) reaches a point of convergence, and the loss is no longer
decreasing.

3. Methodology

Firstly, we will define the reinforcement learning problem by outlin-
ing the state space, reward function, and action space. The state of the
environment 𝑠, the agent’s input, includes all active and reactive load
variables for all buses in the network that belong in N = {1,… , 𝑁}:

𝑠 = [𝑃𝑙1,… , 𝑃𝑙𝑁 , 𝑄𝑙1,… , 𝑄𝑙𝑁], (14)

where 𝑃𝑙𝑖 is the real power demand at bus 𝑖 and 𝑄𝑙𝑖 is the reactive
power demand at bus 𝑖. The agent will then execute an action using this
state information to inform its decision. The action space is comprised
of variables related to power generation (for all generators that belong
in G = {1,… , 𝐺}), voltage magnitude, and voltage angles:

𝑎 = [𝑃𝑔1,… , 𝑃𝑔𝐺 , 𝑄𝑔1,… , 𝑄𝑔𝐺 , 𝑉𝑖,… , 𝑉𝑁 , 𝜃𝑖,… , 𝜃𝑁]. (15)

Note that the agent’s goal is not necessarily to produce a set of
actions that result in a feasible and cost-minimizing solution to the
ACOPF, so the reward function must reflect the agent’s true goal to
compute a set of actions that minimizes the amount of time required
for the IPS to converge to a solution. Thus, we designed the following
reward function:

𝑟 =

{

−𝑟𝑛𝑐 , IPS could not converge given 𝑎𝑡
−𝑟𝑐 , IPS converges given 𝑎𝑡 ,

(16)

where 𝑟𝑛𝑐 is a fixed value denoting the value given to a non-
convergence, and 𝑟𝑐 is the amount of time, in seconds, it takes for
the IPS solver to converge given 𝑎. While non-convergence can often
result from a truly unsolvable state, they are very likely to result from
a poor initial guess as IPS can be very sensitive to the given initial
guess. Thus, we must give the agent a punishment if the IPS does not
converge given 𝑎. This punishment is not arbitrarily selected; it must
be determined carefully as it should not overpower the convergence
rewards; otherwise, the agent may not learn to minimize IPS time and
too heavily prioritize minimizing non-convergence. Also, it cannot be
too small since some more difficult states may take up to a few seconds
to solve, and the punishment for non-convergence should always be a
lesser value than a convergence reward.

3.1. Environmental set-up

The environment is constructed using PyPower, the official Python
port of MATPOWER. Experiments are conducted using Python 3.7.
computations are conducted on an NVIDIA A100 40 GB GPU.

The proposed framework is trained and evaluated on the IEEE 14-
bus, IEEE 118-bus, and IEEE 300-bus systems. As a baseline, we will
compare results to PyPower’s ACOPF solver, which computes initial
guesses as an average of the minimum and maximum values of each
variable in the action space. PyPower’s IPS is used for all experiments.
We also compare two deep learning methods to compute initial guesses:
a GNN trained to produce feasible and cost-minimizing ACOPF solu-
tions and a multi-layer perceptron in conjunction with PPO trained to
produce solutions that minimize IPS convergence time. These baselines
can also act as an ablation study to validate the claims that, for the
purpose of computing a warm-start:

(1) A loss function designed to minimize IPS convergence time will
be more effective than a loss function designed to produce a
feasible and cost-minimizing solution.
4

Fig. 1. A flowchart of the training algorithm.

(2) A neural network architecture that can exploit the graph struc-
ture of a power system by accounting for relations between
nodes will be more effective than a neural network architecture
that treats nodes as independent entities.

The baseline GNN will have the same architecture as the GNN in the
proposed PPO-GNN framework, but it will instead use a mean-squared
error loss function and will be trained on a dataset with 20,000 unique
states, where the labels are generated by the PyPower IPS solver. As
for the PPO-MLP baseline, the loss function will be the same as that
in the PPO-GNN implementation, but the neural network architectures
will differ.

The structure of the training algorithm is as follows3: first, the load
at each load bus is adjusted. This adjustment is done by randomly
generating a value between 10% and 80% of the system generation
limits for the total load across all load buses and then assigning a
portion of that total load to each load bus using a Dirichlet distribution,
which is defined as:

𝑓 (𝑧,𝜶) = 1
B(𝜶)

𝐷
∏

𝑖=1
𝑧𝛼𝑖−1𝑖 , (17)

B(𝜶) =
∏𝐷

𝑖=1 𝛤
(

𝛼𝑖
)

𝛤
(

∑𝐷
𝑖=1 𝛼𝑖

) , (18)

where 𝜶 ∈ R𝐷 is a vector of concentration parameters for each load
bus, and 𝐷 is the number of loads in the power network. The Dirichlet
distribution is a distribution over a vector 𝑧 ∈ R𝐷 such that each 𝑧𝑖 > 0
and:
𝐷
∑

𝑖=1
𝑧𝑖 = 1. (19)

3 github.com/AzadDeihim/ACOPF-PPO-GNN.

https://github.com/AzadDeihim/ACOPF-PPO-GNN

Electric Power Systems Research 234 (2024) 110782A. Deihim et al.
Table 1
Layer sizes for each neural network architecture. These values denote the dimensional-
ity of the output of each layer, determined by the shape of the weight matrices between
each layer.

GNN layer 14-Bus 118-Bus 300-Bus

Actor Critic Actor Critic Actor Critic

Layer 1 size 128 128 256 256 512 512
Layer 2 size 256 256 512 512 1024 1024
Layer 3 size 128 128 256 256 512 512

MLP layer 14-Bus 118-Bus 300-Bus

Actor Critic Actor Critic Actor Critic

Layer 1 size 128 128 256 256 512 512
Layer 2 size 256 256 512 512 1024 1024
Layer 3 size 128 128 256 256 512 512

Table 2
Coefficient settings for the objective function of PPO, learning rate settings for actor
and critic networks, and discount factor settings.

14-bus 118-bus 300-bus

𝑐1 0.5 0.5 0.5
𝑐2 0.01 0.01 0.01
𝛾 0.0 0.0 0.0
𝜆 0.0 0.0 0.0
𝑟𝑛𝑐 12 12 15
Learning rate 0.0005 0.0005 0.0005

The vector returned by Dirichlet distribution denotes the share of the
total real power demand each load bus will be delegated. The reactive
power demand at each load bus is calculated via a randomly generated
power factor between 0.8 and 1.

Given the new state of the environment, the agent will use these
values to compute an initial guess. Then, a timer is started, and the
initial guess is given to the PyPower IPS as a starting point. When
the IPS converges, the timer is stopped. If it converges, the negative
of the elapsed time is given as a reward. If it does not converge, a
large negative reward is given. After 1000 iterations of this process,
the agent will undergo a policy update and then continue from the first
step. Statistics regarding average reward, IPS convergence time, and the
number of IPS non-convergences are recorded during each 1000 time
step period. The total number of iterations is not predefined; training
will end once the agent’s reward converges and is no longer improving.
A flowchart diagram of the training algorithm is shown in Fig. 1.

Separate GNNs model the actor and critic, and their architecture
only varies slightly. While they are both given the same input, they will
output different values: the actor will output 𝑎 ∈ R2𝐺+2𝑁 , the action,
whereas the critic will output the value or expected reward of state
transition. In both the 14-bus experiment and the 118-bus experiment,
the actor and critic will have three graph convolution layers, where
each layer performs the node-wise transformation described in (8). The
output for all nodes of the final graph convolution is flattened into a
vector and then linearly transformed via:

𝑎 = 𝑊𝑋 + 𝑏, (20)

where 𝑊 is the weight matrix and 𝑏 is the bias vector. We use a hyper-
bolic tangent activation function between all layers of the GNNs. The
optimization algorithm used in backpropagation is the Adam optimizer.

Details regarding hyperparameter settings for each experiment, in-
cluding the architecture of the actors and critics, can be found in
Tables 1 and 2. The action standard deviation is initially set to 0.5
and decays by 0.01 every 250 time steps until it reaches 0. We chose
discount factors of 0.0 because actions in different time steps are
completely independent, and state transitions are entirely stochastic;
thus, long-term rewards should not matter to the agent.
5

Table 3
Comparison of the mean and standard deviation of IPS convergence times and
convergence rate of IPS between PPO-GNN and the baseline on the 14-bus test case.

Mean 𝑟𝑐 Standard deviation 𝑟𝑐 Convergence %

PPO-GNN 0.53 s 0.09 s 100.0%
PyPower 0.79 s 0.19 s 96.5%
GNN 0.62 s 0.13 s 97.9%
PPO-MLP 0.61 s 0.09 s 96.2%

4. Results

This section presents results from the experiments outlined in Sec-
tion 3.1. PPO-GNN and the baseline are evaluated on the same 5000
randomly generated states for all experiments. During testing, the critic
network is discarded as it is only required for training; all initial
guess computation is conducted by the actor. All models will be eval-
uated on their ability to produce initial guesses that can minimize IPS
convergence time and minimize the number of non-convergences.

4.1. 14-Bus

The IEEE 14-bus test case represents a small power system with
14 buses, five generators, 11 loads, and 20 lines. For the IEEE 14-bus
system, we demonstrate that our proposed framework can significantly
decrease IPS computation time while minimizing the number of non-
convergences. Training details are provided in Fig. 2. Fig. 2 shows
that after about 9000 time steps, the agent converges to an average
reward of −0.54 and is able to compute initial guesses that allow the
IPS to solve the ACOPF in under 0.55 s while only causing the IPS
to not converge in less than 0.1% of states. We compare the results
to the baselines in Table 3. This shows that the proposed framework
outperforms the baselines significantly in terms of IPS convergence time
and the number of non-convergences. By using the proposed PPO-GNN-
based framework to compute initial guesses for IPS, we observe a 33%
speed-up over the PyPower ACOPF solver, a 14% speed-up over the
GNN, and a 13% speed-up over PPO-MLP. The initial guesses supplied
by PPO-GNN resulted in a 100.0% convergence rate on the test set.
On the other hand, initial guesses provided by the baselines incurred
significantly lower convergence rates. Results in Fig. 2 and Table 3
indicate that the quality of the initial guess plays an important role
in the IPS’s ability to converge. In the early training time steps, we
observe convergence rates below 75%. We also observe that over the
course of training, the average IPS convergence time decreases from
0.85 to 0.53 s, demonstrating that even in some of the earlier time steps
where PPO-GNN was undertrained, the initial guesses still resulted in
lower IPS convergence times than the baselines. Additionally, it only
takes the GNN roughly eight milliseconds to compute an initial guess.
The total training time for PPO-GNN in this experiment was roughly
five hours, the majority of which was IPS-solving time.

4.2. 118-Bus

The IEEE 118-bus test case represents a power system with 118
buses, 19 generators, 35 synchronous condensers, 177 lines, nine trans-
formers, and 91 loads. Similar to the 14-bus system, our framework
delivers improved performance over the baselines. We compare the
results of PPO-GNN with the baselines in Table 4, demonstrating a
30% improvement over the PyPower solver, a 12% improvement over
the GNN, and a 14% improvement over the PPO-MLP in terms of IPS
computation time. Fig. 3 shows a detailed visualization of training
statistics. After about 12,000 time steps, the agent converged to an
average reward of −1.19, an average IPS convergence time of 1.19 s,
and a 100.0% convergence rate. Similar to the 14-bus experiment, PPO-
GNN is the only model capable of achieving a 100.0% convergence
rate on the test set. Also, during training, we observed much lower

Electric Power Systems Research 234 (2024) 110782A. Deihim et al.

r
r

Fig. 2. PPO-GNN training statistics for 14-bus test case. The three scatter plots
epresent the number of non-convergences, average IPS convergence time, and average
eward on the 𝑦-axis and the number of time steps on the 𝑥-axis.

Table 4
Comparison of the mean and standard deviation of IPS convergence times and
convergence rate of IPS between PPO GNN and the baseline on the 118-bus test case.

Mean 𝑟𝑐 Standard deviation 𝑟𝑐 Convergence %

PPO-GNN 1.19 s 0.19 s 100.0%
PyPower 1.70 s 0.39 s 99.4%
GNN 1.35 s 0.23 s 99.6%
PPO-MLP 1.39 s 0.28 s 97.9%

Fig. 3. PPO-GNN training statistics for the 118-bus test case. The three scatter plots
represent the number of non-convergences, average IPS convergence time, and average
reward on the 𝑦-axis and the number of time steps on the 𝑥-axis.

convergence rates in the early stages of training, often below 60%,
as well as IPS convergence times of over 2 s, showing that in this
experiment, the outcome of the IPS is heavily reliant on the quality
of an initial guess. Since the GNN was larger in this test case, it took
the GNN about 18 ms on average to compute an initial guess. The total
training time for PPO-GNN in this experiment was roughly 12 h, the
majority of which is IPS solving time.

4.3. 300-Bus

The IEEE 300-bus system contains 69 generators, 60 load tap chang-
ers, 304 transmission lines, and 195 loads. This is the largest and
6

Table 5
Comparison of the mean and standard deviation of IPS convergence times and
convergence rate of IPS between PPO GNN and the baseline on the 300-bus test case.

Mean 𝑟𝑐 Standard deviation 𝑟𝑐 Convergence %

PPO-GNN 2.79 s 0.71 s 99.5%
PyPower 2.98 s 0.84 s 99.3%
GNN 3.35 s 0.91 s 98.1%
PPO-MLP 3.43 s 0.87 s 95.9%

Fig. 4. PPO-GNN training statistics for the 300-bus test case. The three scatter plots
represent the number of non-convergences, average IPS convergence time, and average
reward on the 𝑦-axis and the number of time steps on the 𝑥-axis.

most complex of the power systems used in this study. As shown in
Table 5, PPO-GNN outperforms all baselines but only with a marginal
improvement over the PyPower ACOPF solver, which in previous ex-
periments performed significantly worse than other models. This most
likely indicates that other models performed poorly on this test case,
rather than the PyPower ACOPF solver performing well. Fig. 4 displays
the training statistics for PPO-GNN on the 300-bus test case. In the early
stages of training, we can see that the initial guesses provided resulted
in non-convergence nearly 100% of the time but slowly decreased
to nearly 0% after roughly 20,000 time steps of training. Similarly,
convergence time decreased by a factor of over three from nearly 11 s
to under three seconds from the start of training to the end of training.
This indicates that the 300-bus test case is significantly more sensitive
to the quality of an initial guess compared to smaller test cases, and
it is likely that this trend will continue if experiments were to be
conducted on larger, more complex systems. Training time for PPO-
GNN on the 300-bus test case exceeded training time on other test
cases by a substantial margin, requiring nearly 30 h to fully train.
Nonetheless, when fully trained, initial guess computation only takes
about 30 ms.

4.4. Supplementary experimentation

We conduct additional experiments by sampling a wider range of
initial guesses to observe how an initial guess may affect the quality
of the resulting IPS convergence point in terms of cost, the ability to
converge, and convergence time. This experiment also aims to under-
stand if the reward function presented in (16) may cause the IPS to
converge quickly but to a suboptimal solution. We sample a uniform
distribution within the system’s limits of 2000 unique initial guesses;
we then record the resulting solution’s costs and the IPS’s convergence
time, given these initial guesses, if it could converge. This experiment
was conducted using the same random state on each test case. Results

of this experiment are presented in Table 6. In every case, the IPS

Electric Power Systems Research 234 (2024) 110782A. Deihim et al.

W

D

c
i

Table 6
Convergence rate, convergence time, and resulting cost of IPS given a random uniform distribution of initial guesses.

Convergence % Min. Cost $ PPO-GNN cost $ Mean convergence time PPO-GNN convergence time

14-Bus 76.7% 2.03E+07 2.03E+07 0.82 s 0.49 s
118-Bus 93.8% 3.63E+08 3.63E+08 1.50 s 1.15 s
300-Bus 34.2% 2.38E+09 2.38E+09 5.10 s 3.02 s
converged to the same point regardless of the initial guess, if it could
converge. Still, convergence rates in this experiment were far lower
than in previous experiments as initial guesses were randomly selected,
indicating that IPS may be more sensitive to the quality of an initial
guess than what was suggested in our previous experiments; the same
can be said for IPS computation time. These results also suggest that
the PPO-GNN can provide an initial guess that produces a fast solution
without compromising the quality of the resulting ACOPF solution.

5. Conclusions

In this work, we proposed a novel framework for attaining quick,
optimal solutions to ACOPF using PPO and GNN to compute initial
guesses for an IPS. These initial guesses were assessed by whether or
not the IPS could converge, given that initial guess and how quickly
it could converge to the optimal solution. This resulted in a trained
GNN that produces IPS initial guesses that minimize the number of non-
convergences and significantly decrease IPS convergence time com-
pared to three baselines: PyPower’s ACOPF solver, initial guesses com-
puted by a GNN that is trained to calculate ACOPF solutions directly,
and an MLP trained with PPO using the same reward function as our
proposed framework. This was demonstrated on three different IEEE
test environments: the 14-bus test case, the 118-bus test case, and the
300-bus test case. In the future, we look to explore the use of this
framework on much larger power system test cases to better under-
stand the scalability of this solution, as well as instances of topology
changes, such as line outages. Additionally, this work did not include a
comprehensive assessment of alternative GNN architectures or different
reinforcement learning algorithms, nor did we explore a wide variety of
hyperparameter settings. With that, the solution presented in this paper
can be improved significantly, and we hope that this can provide a new
direction for ACOPF research.

CRediT authorship contribution statement

Azad Deihim: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Validation, Visualization, Writing – orig-
inal draft, Writing – review & editing. Dimitra Apostolopoulou: Su-
pervision, Writing – review & editing. Eduardo Alonso: Supervision,

riting – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
7

Data availability

There is no data, but there is code. A github link is included.

References

[1] E. Mohagheghi, M. Alramlawi, A. Gabash, P. Li, A survey of real-time optimal
power flow, Energies (2018).

[2] K. Baker, Solutions of DC OPF are never AC feasible, in: Proceedings of the
Twelfth ACM International Conference on Future Energy Systems, Association
for Computing Machinery, 2021, pp. 264–268.

[3] Y. Zhou, B. Zhang, C. Xu, T. Lan, R. Diao, D. Shi, Z. Wang, W.-J. Lee, A data-
driven method for fast AC optimal power flow solutions via deep reinforcement
learning, J. Mod. Power Syst. Clean Energy (2020) 1128–1139.

[4] L. Zhang, B. Zhang, Learning to solve the AC optimal power flow via a
Lagrangian approach, in: North American Power Symposium, 2022, pp. 1–6.

[5] Z. Wang, J.-H. Menke, F. Schäfer, M. Braun, A. Scheidler, Approximating multi-
purpose AC optimal power flow with reinforcement trained Artificial Neural
Network, 2022.

[6] R. Nellikkath, S. Chatzivasileiadis, Physics-informed neural networks for AC
optimal power flow, Electr. Power Syst. Res. (2022).

[7] Y. Cao, H. Zhao, G. Liang, J. Zhao, H. Liao, C. Yang, Fast and explainable warm-
start point learning for AC Optimal Power Flow using decision tree, Int. J. Electr.
Power Energy Syst. (2023) 109369.

[8] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal policy
optimization algorithms, 2017, CoRR.

[9] S. Liu, C. Wu, H. Zhu, Topology-aware graph neural networks for learning
feasible and adaptive AC-OPF solutions, IEEE Trans. Power Syst. (2022) 1–11.

[10] K. Baker, Learning warm-start points for Ac optimal power flow, in: IEEE 29th
International Workshop on Machine Learning for Signal Processing, 2019, pp.
1–6.

[11] X. Pan, M. Chen, T. Zhao, S.H. Low, DeepOPF: A feasibility-optimized deep
neural network approach for AC optimal power flow problems, IEEE Syst. J.
(2023) 673–683.

[12] R. Canyasse, G. Dalal, S. Mannor, Supervised learning for optimal power flow
as a real-time proxy, in: IEEE Power & Energy Society Innovative Smart Grid
Technologies Conference, 2017, pp. 1–5.

[13] P.L. Donti, D. Rolnick, J.Z. Kolter, DC3: A learning method for optimization with
hard constraints, 2021, CoRR.

[14] W.L. Hamilton, R. Ying, J. Leskovec, Inductive representation learning on
large graphs, in: Proceedings of the 31st International Conference on Neural
Information Processing Systems, 2017, pp. 1025–1035.

[15] Z. Ma, J. Xuan, Y.G. Wang, M. Li, P. Liò, Path integral based convolution and
pooling for graph neural networks, in: Advances in Neural Information Processing
Systems, 2020, pp. 16421–16433.

[16] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, Y. Bengio, Graph
attention networks, 2018, CoRR.

[17] T.N. Kipf, M. Welling, Semi-supervised classification with graph convolutional
networks, 2016, CoRR.

[18] C. Morris, M. Ritzert, M. Fey, W.L. Hamilton, J.E. Lenssen, G. Rattan, M.
Grohe, Weisfeiler and leman go neural: Higher-order graph neural networks,
in: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence,
2019.

[19] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, second ed.,
The MIT Press, 2018.

http://refhub.elsevier.com/S0378-7796(24)00668-0/sb1
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb1
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb1
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb2
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb2
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb2
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb2
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb2
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb3
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb3
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb3
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb3
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb3
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb4
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb4
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb4
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb5
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb5
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb5
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb5
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb5
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb6
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb6
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb6
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb7
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb7
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb7
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb7
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb7
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb8
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb8
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb8
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb9
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb9
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb9
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb10
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb10
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb10
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb10
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb10
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb11
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb11
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb11
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb11
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb11
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb12
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb12
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb12
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb12
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb12
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb13
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb13
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb13
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb14
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb14
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb14
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb14
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb14
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb15
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb15
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb15
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb15
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb15
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb16
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb16
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb16
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb17
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb17
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb17
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb18
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb18
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb18
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb18
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb18
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb18
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb18
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb19
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb19
http://refhub.elsevier.com/S0378-7796(24)00668-0/sb19

	Initial estimate of AC optimal power flow with graph neural networks
	Introduction
	Background
	AC Optimal Power Flow
	Graph Convolutional Networks
	Reinforcement Learning
	Proximal Policy Optimization

	Methodology
	Environmental Set-Up

	Results
	14-bus
	118-bus
	300-bus
	Supplementary Experimentation

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

