
              

City, University of London Institutional Repository

Citation: Afsharnaderi, M. (1987). Effective exchange interactions for magnetic 

surfaces,overlayers and surface impurities in the itinerant model of ferromagnetism. 
(Unpublished Doctoral thesis, City, University of London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/33234/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Effective Exchange Interactions for Magnetic Surfaces,

Overlayers and Surface Impurities in the Itinerant

Model of Ferromagnetism

by

Mahshid Afsharnaderi BSc

A thesis submitted for the Degree of Doctor of

Philosophy

Department of Mathematics

The City University, London

June 1987



CONTENTS Page

Acknowlegments 4

Abstract 5

CHAPTER 1 Itinerant Model of Ferromagnetism

1.1 Introduction 1 6

1.2 An Approximate Representation of Exchange 8

Interaction in Transition Metals

1.3 Green's Functions and Resolvents 15

1.3.1 The Retarded Green's Function 16

1.3.2 Equation of Motion for the Green's Function 19

1.3.3 Spectral Representations 21

1.3.4 The Density of States 29

1.3.5 The One-particle Green's Function for the 33

Hubbard Model with HF-approximation

CHAPTER 2 Spin-Wave Green's Function of the Heisenberg

and Itinerant Ferromagnet

2.1 Introduction 2 36

1



Page

2.2 Bulk Spin-Wave Green's Function of the Heisenberg 40

Ferromagnet

2.3 Bulk Spin-Wave Green's Function of the Itinerant 45

Ferromagnet

2.4 An Effective Heisenberg Ferromagnet for Spin-Waves 53

2.5 Short-Range of Effective J for a Strong 58

Tight-binding Itinerant Ferromagnet

CHAPTER 3 Effect of Surface On Spin-Waves

3.1 Introduction 3 62

3.2 Surface Spin-Wave Green's Function of a Heisenberg 63

Magnetic Insulator

3.3 Surface Correction to the Bulk Spin-Wave Green's 68

Function of a Ferromagnetic Metal

3.4 The Mapping of the Spin-Wave Problem for a 79

Semi-infinite Metallic Ferromagnet onto an Equivalent 

Problem for an Insulator

CHAPTER 4 Magnetic Impurities in the Surface of Metallic

Fe rromagne ts.

4.1 Introduction 4 82

2



Page

4.2 Surface Impurity Exchange Integrals in a Strong 83

Tight-binding Itinerant Ferromagnet

4.3 Magnetic Effects of an Impurity Atom Above the 92

Surface of a Strong Itinerant Ferromagnet

4.3.1 The Effect of an Ad-atom on the Surface 101

Green’s Function

4.4 Up-spin Localized (Bound) States Outside the 103

Energy-band

4.4.1 The Occupation-number of the Up-Spin 106

Bound-State

4.5 Instability of Magnetic Surface Impurity ill

Conclusion 115

Appendix A 121

Appendix B 126

Appendix C 128

Appendix D 131

References 138

3



ACKNOWLEGEMENTS

I especially wish to express my sincere thanks to my supervisor, 

Dr J Mathon for his continued guidance, encouragement and helpful 

criticism.

I also wish to express my deep appreciation to my present Head of

Department Prof M A Jaswon.

 

Above all, my gratitude goes to my parents for their unbounded 

patience and unswerving support throughout a lengthy period of 

preparation.

4



ABSTRACT

Many studies of 'surface' properties of transition metals have been 
made in the past few years. These surface properties are 
determined by the local band structure which is directly related to 
the magnetization density. It is well known that long-wavelength 
spin-waves exist in any ferromagnet, in particular in an Itinerant 
one and they determine the magnetization at low temperatures. The 
general aim of this thesis is to investigate the behaviour of 
spin-waves on the surface of an Itinerant ferromagnet while it may 
be covered with an overlayer of impurities or with isolated 
impurities. The spin-wave energies in metallic ferromagnets are 
determined by the Transverse Dynamical susceptibility of the 
system. It is shown that the static unenhanced susceptiblity of an 
Itinerant ferromagnet can be interpreted as an effective exchange 
interaction of the type obtained for a Heisenberg ferromagnet. 
This is the basis of our work which is then used in the physical 
interpretation of properties of surface -spin-waves in transition 
metals. In the first part of the thesis, the mapping of the 
spin-wave problem for a semi-infinite metallic ferromagnet 
(modelled by a simple cubic tight-binding crystal) on an equivalent 
problem for an insulator is discussed. The effect of surface is 
treated as a perturbation to the bulk problem. Both the Bulk 
spin-wave Green's function and the surface perturbation are 
parametrized in terms of Heisenberg-like effective exchange 
integrals. This formulation is exact in the Random Phase 
Approximation (RPA) for long-wavelength spin-waves. The effect of 
surface is separated into the ’geometric' effect (ie cutting all 
the bulk effective exchange integrals across the surface) and a 
surface renormalization of the bulk exchange integrals (due to 
surface core-shift, HF corrections and Friedel oscillations). The 
main part of the thesis is concerned with a generalization of this 
model to impurities embedded in the surface and to impurities above 
the surface. The general theory obtained is then applied to an Fe 
impurity on a Pd substrate, and it is shown that the system can 
become unstable for certain critical values of its parameters.
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Chapter 1 Itinerant Model of Ferromagnetism.

1.1 Introduction 1

The ferromagnetism of transition metals of the iron group has 

been interpreted by various models which are classified 

essentially into two groups. The first is the 'localized spin 

model*  which is based on the atomic or Heitler-London theory, 

where it is assumed that the magnetic electrons are localized on 

each atom in the crystal. The second is the 'itinerant-electron 

model' which is based on the molecular orbital or energy-based 

theory, where it is assumed that the magnetic electrons are band 

electrons which travel through the crystal as running waves.

Each of these approaches has its advantages and disadvantages, 

but in certain physical situations, one approach may be more 

appropriate than the other. The 'itinerant-electron model' is 

the appropriate model for the description of electron transport 

and specific heat in the metals, while the 'localized-spin 

model' is the appropriate one for the description of exciton 

states in an ionic crystal. It is found experimentally that the 

d-electrons of transition metals have properties characteristic 

of both the 'itinerant-electron model' and the 'localised-spin 

model'. The experimental agreement on the non-half integral 

atomic moments are explained directly in terms of the 

'itinerant-electron model', while the strong temperature 

dependence of the susceptibilities of transition metals are more 

conveniently discussed in terms of the localized spins.

6



However a type of theory capable of reconciling these two models 

for a ferromagnetic metal such as Fe has been derived. 

(See J Hubbard; 1979).

The spin-wave state is one in which the motion of the spin 

density at one point in space is correlated with that at another 

point, (Bloch; 1932). It is these correlated effects in narrow 

bands which lead to the atomic behaviour and it is only by 

taking correlation effects into account that one can understand 

how d-electrons exhibit both kinds of behaviour simultaneously. 

(See J Hubbard; 1963)
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1.2 An Approximate Representation of Exchange Interaction in 

Transition Metals.

In this section, the approximate model of electron interactions 

in narrow energy bands used in later calculations is described. 

Although our assumption is such that ferromagnetism of itinerant 

electrons is possible only for a degenerate band and not for a 

single band, we take in the following, the advantage of 

simplification by considering an s-band. However, we shall 

assume we are dealing with 3d-transition metal electrons.

Consider a hypothetical partly-filled narrow s-band, containing 

n electrons per atom. The Bloch functions ¥nk[(n - 1, ...,5)

for the d-band] are assumed to have been calculated in some 

appropriate Hartree-Fock potential. The ferromagnetic 

transition metal is characterized by means of the one-band 

Hubbard Hamiltonian. (See J Hubbard ; 1963):

(1.2.1)

where k is the wave-vector ; cr is the spin index ; or 

indicates spin opposite to a ; Ek is the energy corresponding 

to ; nkcJ. and n±a are the occupation numbers in the Bloch

and Wannier representations respectively. They are defined by

*
nka cka ckcr

(1.2.2)
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The operators c*  , c and c*  , c are the creation and 
kcr k^ icr io-

destruction operators of electron in the Bloch and Wannier

representations respectively, related by

* c
icr

1 -Bi *
= — E e 1 c

VN k ko-

(1.2.3)

1
VN

ik. R _•
E e 1
k

U is the Coulomb repulsion when two electrons are situated on 

the same atomic site.

More generally,

where V(r -r ) is the Coulomb interaction ,* V(r - r ) -
^12 

within a unit cell.

We define the Wannier function an(r-Rj) by
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i iK-Bi
^(r) = _ E e 1 a^r-Rp

VN Ri
(1.2.5)

The interaction (1.2.4) involves two integrals:

(i) Un - the intra-atomic Coulomb integral,

°n = H lan(r2)l2 (1.2.6)

(ii) Jmn - the intra-atomic exchange integral of Hund’s rule

- type,

Jmn “ J J*  an/—x^ aM—z^ r^pam^—z^ aM—x^ x d-z (i* 2*7) 

and also has important integrals involving nearest neighbouring 

interactions.

For the sake of comparison, one may note that U ~ 20 eV for 

3d-electrons in transition metals.

The largest of the neglected terms in Eq (1.2.4) are those of 

nearest neighbours which can be estimated to have the order of 

magnitude ~ 2 eV. (See N F Mott; 1964).

For Nickel with 0.6 holes (magnetic carriers) per atom, the

Hund's rule J plays a small role since two holes rarely come

10



on the same atom due to correlation effects not included in the

Hartree-Fock approximation. On the other hand, Jmn is

significant in Iron and Cobalt. ( See E P Wolfarth ; 1980 ).

One may use Hartree-Fock (HF) and Random Phase Approximation

(RPA) replacing U with ueff which takes into account the

correlation effects. In the case of the Hamiltonian of Eq

(1.2.1), this amounts to simply replacing the term

nio ni,-CT 
i/Q-

by E ■ 
i/C

niCT < niz—CT > for all i, and this gives

the energy

EHF “ £ £
k ct

eff
nka + u E no n—cr

CT
(1.2.8)

where nQ is the number of particles with spin o, per atom at

any site i.

We can write

UnCT n-CT 4 U[(na + n_a)2 <na n_a)ZJ (1.2.9)

Then

Un<r n-a
_L
4 U(na - n_a)z + constant (1.2.10)

(See E D Thompson ; 1963)
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Eq (1.2.10) can be written in terms of the relative

magnetization £, where

n
(1.2.11)

and n - nff + n_a ; giving

Una na = - U C2n2 + constant (1.2.12)

Eq (1.2.12) "is in fact the expression for the additional energy 

of the system arising from the magnetization of the solid in 

the 'Stoner' model (1938, 1946). Thompson, Wolfarth and Bryan

(1964) showed that

where

J°°N(E) f^(E) dE.
o

(1.2.13)

12



1f^E) for ct I, I
(E-Ma)/kBT

1 4- e B

(1.2.14)

is the ’Fermi-Dirac function’ for c-spin particles, is the 

corresponding chemical potential often called the Fermi-level ; 

kB = 1.38062 the Boltzmann constant ; T is the temperature and 

N(E) is the density of states.

The total energy (the sum of the one-particle energies) in the 

’Stoner model’, is given by

E = £ Ek nko- - 7 U <2 n2. (1.2.15)
k, a

At T = 0, Eq (1.2.■ 15) is equivalent to

-CTO’ rEF
E N(E) dE - | U £2 n2.E = fF E N(E ) dE + J (1.2.16)

o o

with

CT
fEF

na - J N(E) dE.
o

for ct — !, I (1.2.17)

CT
where Ep is the Fermi-level in CT-spin band.
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The criterion for ferromagnetism is obtained by comparing the 

energy E given by Eq (1.2.15) for small < at T = 0, with 

the paramagnetic energy Eq  . It is found (See E D Thompson, 

E P Wolfarth and A C Bryan ; 1964) that

E = Eo + n—— - A y n2 (1.2.18)
4 N(Ep)

where N(Ep) is the density of states per atom at the 

Fermi-level.

Eq (1.2.18) can be written in the form

E = Eo + [1 - U N(Ep)] (1.2.19)
4 N(EF)

From Eq (1.2.19) , it is clear that the energy is less on

magnetizing ; if

U N(Ep) > 1. (1.2.20)

Thus, if for any Ep the condition (1.2.20) satisfied, then the 

system will become ferromagnetic.
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1.3 Green’s Functions and Resolvents.

The application of Green’s functions is widespread in 

’solid-state theory' and in the theory of ’many-particle 

systems’. The importance of Green’s functions in solid state 

physics arises from the fact that exact expressions for many 

physical properties such as density of states and susceptibility 

may be written in terms of them. Also, the poles of a Green’s 

function determine the excitation energies of a system.

We shall here give a brief discussion on some properties of the 

Green's function. However, the reader is referred to Zubarev 

(1960) for a detailed account.
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1.3.1 The Retarded Green's Function

There are three kinds of Green's Functions, namely the Causal

Gc the Advanced G^ ~ ) and the Retarded G^ + \

Gc(t,f ) = << A( t ) ; B( t' ) >>c

- -i < T A(t) B(t' ) > (1.3.1)

G<~\t,t' ) = << A(t) } B(t'

- i e(t*  - t) < [A(t), B(t* )] > (1.3.2)

G< + \t,t' ) = << A(t) ; B(t' ) >/ + >

= -i 0(t - t') < (A(t), B(t’)J > (1.3.3)

< < A( t) B(t' ) >> is an abbreviated notation for a Green's

function, ©(t) is the Heaviside step-funciton defined by

t > 0

t < 0
(1.3.4)

< ... > indicates averaging over a grand canonical ensemble

defined by

16



-X
Tr (e (1.3.6)

X is an operator defined by

X — H — gN (1.3.7)

where H is the time-independent Hamiltonian operator ; g is 

the chemical potential often called the Fermi-level and N is 

the total number of particles.

are the Heisenberg representations of theA( t) and B( t ’ )

operators A and B expressed by

iXt -iXt
A(t) = e A( 0) e (1.3.8)

The symbol T in the Causal Green's function is the time

ordering operator which is defined by

A(t) B(f )

T A(t) B(t' ) - (1.3.9)

T) B( t' ) A(t) t < t'

/
\

t > t *

T) ~ ± 1 .

17



The sign of rj is chosen positive or negative by considering 

what is most convenient for the problem. One usually chooses 

the positive sign if A and B are Bose operators, and the 

negative sign if they are Fermi operators. The choice of 

operators A and B is determined by the condition of the 

problem.

[A,B] indicates the commutator or the anti-commutator;

[A,B] - AB - T) BA. (1.3.10)

(*)
Since << A(t) s B(t’) >> are functions of (t - t’) only, one 

can define for real E, the Fourier transforms

1 
ZTT< < A ; B > >

E
(±) iEt

< < A( t) ; B( t' ) > > e dt

(1.3.11)
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1.3.2 Equation of Motion For The Green's Function G(t,t*) .

(*)
<< [A(t), H] ; B( t ’ ) >> (1.3.13)

The operators A and B satisfy an equation of motion of the 

form

- [A, H] (1.3.12)
dt

where H is the time-independent Hamiltonian.

(±)
Thus, the operators << A(t) ; B(t') >> given by Eqs

(1.3.2) and (1.3.3) can be differentiated w.r.t t in this

fashion, ie

(±)
d G (t,f ) 

i------- —
dt

i -d— << A(t) 
dt

(*)
B(t*  ) >>

-= de(t f ) < [A(t > +
dt

Using the relationship between the discontinuous function e(t)

and the 6-function of t, ie

8(t) -= de( t)
dt

(1.3.14)

we can write

19



5( t—t * ) < (A(t), B( t' )]1 at_<< A<t) ; B<t*) >>

(*)  + << [A( t), H] ; B(t’ ) >>

(1.3.15)

The second-term in the R.H.S of Eq (1.3.15) shows a chain of 

Green’s functions which are simply equations of motion and must 

be supplemented by boundary conditions. The nature of these 

boundary conditions shall be discussed in the next section.
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1,3.3 Spectral Representations.

In this section, we shall derive the spectral representations 

for the time correlation functions < A( t) B(t’) > and

< B( t * ) A( t) >. These functions are the averages over the

statistical ensemble of the product of operators A and B in 

Heisenberg representation. It is important to have these 

representations since they supplement the set of equations of 

motion for Green’s functions (See Eq 1.3.15) with the necessary 

boundary equations.

be the eigenfunction of the operator X given by

Eq (1.3.7) and En its corresponding eigenvalue. We can now

write

\" En\ (1.3.16)

Then using Eq (1.3.5), the time correlation function

< A(t) > can be written in the form

< A(t) B(t’ )

-X

Tr(ee A(t) B(f ))

> n >.

B( t' )

> Q 1

Q 1 £
n

Q 1 E
n

(1.3.17)

where 0 - kRT.
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Using the completeness relation, ie

(1.3.18)

in Eq (1.3.17), we obtain
I

< A(t) B(f ) > - Q X £ <
n,m

-En 
e 0

(1.3.19)

Using Eq (1.3.8) for both operators A(t) and B( t’), we have

A(t)
iX t

e A(0)
-iXt

e

(1.3.20)

B(f )
iXt’

e B(0)
-iXt'

e

where

-iXt i 
e \ n >

-iEnt \n >

(1.3.21)
\ iXt

< m \e eiEmfc

Substituting Eqs (1.3.20) and (1.3.21) into Eq (1.3.19), we

obtain

22



< A(t) B(f) > = Q 1 £ Anm Bm„ e 
m, n

0 e “M4'’ (1.3.22)

where

(1.3.23)

Similarly, we have

< B( t • ) A( t) = 2 E Bnm \.n e e
n,m

(1.3.24)

By interchanging the summation indices m and n, Eq (1.3.22)

becomes

- m 
e V _

< A(t) B(t’) > - Q £ Anm Bnm e
mz n

(1.3.25 )

Fourier transforming both Eqs (1.3.24) and (1.3.25), we have

< B( t ’ ) A(t) (1.3.26)
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and

< A(t) B( t ’ )

n
~ -ifi( t - t' ) 

e e do (1.3.27)

where we have introduced the notation

4>(0) = Q 1 £
m, n

(1.3.28)

Eqs (1.3.26) and (1.3.27) are the required spectral 

representations for the time correlation functions and 4>(Q) 

is the spectral intensity of < B( 0) A(t) >.

Using the commutation eq 1.3.10), the Retarded Green's function

G^4> of Eq (1.3.3) can be written in the form

G(f)(t,t’) « -iO(t - t') < A(t) B(t’) + B(t') A(t) >

- -i0( t - t' ) { < A( t ) B( t' ) > + < B( t' ) A( t ) > }

(1.3.29)

Fourier transforming Eq (1.3.29), we have

( I*  ) w
G<+)(E) - << A;B >>E - J - i0(t) { < A( t) B( 0) > + < B( 0)

- oo

i.Et
A( t) >} e dt (1.3.30)

24



Now, using Eqs (1.3.27) and (1.3.28) in Eq (1.3.30), we have

where by the definition of e(t) we can write

00 i(E - Q)t
f dt e G(t) = ------- - ----------

-<D E - Q + ie
(1.3.32)

which when substituted in Eq (1.3.31), yields

(1.3.33)

and similarly, the advanced Green’s function can be written in the

form

(1.3.34)

If E is now taken to be complex, then G (E) can be continued

( O analytically in the complex E plane. In the case of G (E) ,

( i)the integral (1.3.11) converges provided Im E > 0, so G can be 

defined and is a regular function of E in the upper half of the 

complex E - plane. This can be written mathematically in the form 

of

25



G(E)

Gv '( E) for Im E > 0

(1.3.35)

G( \E) for Im E

ie G( E) is an analytic function throughout the whole complex

E-plane except on the real axis.

Interchanging and Q in both Eqs (1.3.33) and (1.3.34) and

then subtracting them, we get

G( + )(Q + i€) - G< >(Q - iG)

oo
= f 0(E)

-<o

E
(e® + 1) ] dE

Q — E — iG

(1.3.36)

< 0

E

1[
0 - E + iG

1

Using the 8-function representation, ie

8(x) - -i- [•—----- - --1----- } (1.3.37)
2ni X - iG x + iG

We arrive at

E

G< ') - G< -) -
00 0

- 2rri f 0(E) (e + 1) 6(Q - E) dE (1.3.38)
- 00
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The difference between the two Green’s functions can also be 

written in terms of Im + \ ie

G< = 21 Im g ( + ) (1.3.39)

(Since G^ + \ G^ ^ are complex conjugates of one another.)

By using Eqs (1.2.38) and (1.3.39) , we can now obtain the

spectral intensity, ie

4>(Q) = -
1 Im G( + )(n)
TT Q

ee + 1

(1.3.40)

Now that 4>(ft) is determined, the spectral representation for the

correlation function given by Eq (1.3.27) can be written as

< B( t ’ ) A( t) 1 
rr

J

—00

Im G^ + \n) df} (1.3.41)

By setting t' = 0, and

(1.3.42)

27



Eq (1.3.41) can be transformed to

< 13(0) A(t)
> = - i J im G( + )(n) f(n) e 10t dn 

—00
(1.3.43)
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1,3.4 The Density of states

For the time-independent Schrodinger operator (E-H) we can expand 

in terms of the eigenfunctions of H, provided that zero is not an 

eigenvalue of H. (See Landsberg 1969). Then

G « (E - H) 1 \ n >< n \

£ \n >< n\ 

n E - En
(1.3.44)

where satisfies

(1.3.45)

We can now define the Green’s operators G^ 1 by the equation

G(±)(E) --------- —------
E - H ± i<= 

(1.3.46)

\ n > <

n E - En * i<=

29



Using the following definitions for the delta function and the

principal value respectively

5(x) = lim ----- - -------
e-*o  xz + e2

P(x) X

X2 + 62

(1.3.47)

(1.3.48)

We obtain

G(±)(E) = £ \n >< n\[P(E - En) t  i it  8(E - 
n

En)J (1.3.49)

Then

G( + )(E) - G(“\e ) -= - 2rri c\n >< n\ 6(E -En 
n

Now consider Eq (1.3.50) in an arbitrary

Then

< 1\g ( + )-g (~)\1*  > - - 2rri £<l\nxn 
n

I (1.3.50)

representation \ 1 >.

\1’ > 6(E - En)

(1.3.51)
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The diagonal elements in Eq (1.3.51) are

< 1 ^G<+) - g ( \ 1 > = “ 2TTi £ < 1 y n > < n \ 1 > 8( E - En)
n

(1.3.52)

Summing over all the states 1 and interchanging the order of

summation on the R.H.S of Eq (1.3.52), we have

£ < 1 \ G< + - G< > \ 1 > « - 2rri £ £ < 1 \ n > < n \ 1
1 n 1 '

8(E - En)

- - 2rri £ 8(E - En)
n

(1.3.53)

For a system with a continuous spectrum, £ 8(E - En) is the sum 
n

of a large number of energy levels in the neighbourhood of E. The 

number of such levels per unit energy interval dE is defined to 

be the density of states p(E). Since the two functions G^ + ^ and 

G^-) are complex conjugates, we have from Eqs (1.3.39) and 

(1.3.53 ),

-2 rri p(E) “ 2i £ Im G< + ) (E).
1 11

ie p(E) - - ^ £ Im G( ^(E).
77 1 11

- Tr( Im G< h ) 
rr

(1.3.54)

(1.3.55)
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The density of states per atom, where N is the number of 

particles in the system is then given by

p(n)(E) = 1 P(E).
N

(1.3.56)
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1.3.5 The One-Particle Green's Function For The Hubbard Model With

HF Approximation.

To discuss the conditions under which a local moment may form and 

to compute the magnitude of the moment, one customarily studies the 

one-particle Green's function k_,;t), which gives 

information about a system of electrons, ie one-particle 

excitation. The Retarded one-particle Green's function is defined 

as follows :

Ga'CT'(k1, kpt) = << ^(t)

= -ie(t) [Ck.o-(t) 7 ck2a,(0)] * 

(1.3.57)

Where c^ff and c£a are the destruction and creation operators of 

electrons in the Bloch representation respectively. These operators 

are anitcommutating, ie

* * *
1' Ck2a'} — Ct - -j. C-t- — i + C Ct _ _

V k?o”
(1.3.58)

In the Wannier representation, the one-particle Green's function

GO/Cr becomes
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C* a.(0) >>

= - i©(t) < [ci(J(t) , 0*̂(0)]  > (1.3.59)

Where ci(J and c* a are the destruction and creation operators of 

electrons at the site , in the Wannier representation. These

*operators are given in terms of c^ and c^ by Eq (1.2.3), for 

an infinite sample.

The Green's function Gacr of the Hartree-Fock Hubbard Hamiltonian 

given by Eq (1.2.1) is usually referred to as the HF one-electron 

Green’s function.(We shall require this function in later section.) 

For example, the poles of the RPA dynamic susceptibility discussed 

in Sec 2.3 (which give spin-wave energies) can always be expressed 

in terms of these functions. Therefore a brief discussion is 

included here.

In an operator form, the HF one-electron Green’s function is given 

by

*

.(t )
13

<< cicr(t) • c- >>

★

i©(t) < [cia(t) , C (0)] > (1.3.60)

(For simplicity, we have chosen to write Gca as G°.)
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is a diagonal matrix in the Bloch-representation, whoseGa

elements are given by

/ V lr \ — ....... 1( 2S,2S ) ~
e ct - EK 4- is

where

E, zE

"\

for a = l

'E—A for o = I

(1.3.61)

(1.3.62 )

In the Wannier representation, Ga becomes

ik.R
gCT ~ 1 £ e_________

*3 N k Ea - Ek+ is 
(1.3.63 )

where R - R^ - Rj
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Chapter 2 Spin-Wave Green's Functions of the Heisenberg and

Itinerant Ferromaqnets.

2.1 Introduction 2.

Consider a spin with spin quantum number S and Z-component of
Z

angular momentum Si (fi = 1), localized at each lattice site in a 

ferromagnet. A spin-wave is a ’sinusoidal disturbance*  of such 

spins. (Sinusoidal disturbance describes a quantity which changes 

in magnitude with time according to a sine curve).

It was first shown by Bloch that states near the ground-state of a 

ferromagnet (where it is generally assumed that all spins are lined 

up) can be approximated by superposition of these sinusoidal 

spin-waves.

This was discussed on the basis of the Heisenberg model for

magnetic insulators, with Hamiltonian

H° ■= - £ J s . s
1,1’ *

(2.1.1)

where the summation is taken over all combinations of

nearest-neighbour spins s and s , and J is the
1 1 ’ 11'

exchange integral between nearest-neighbour spins.

We now define two new operators S1
4-

and S1 for spin

36



SjL ~ (gX' sy, sz) such that

I-spin and replaces it by a particle of t-spin ; the operator Sj

4- X y
S1 = Sx 4- i S1

(2.1.2)
- X y

S1 = s± - i si

+
The operator si corresponds to the removal of a particle of

has the opposite effect. These operators are called spin-deviation 

operators.

Substituting Eqs (2.1.2) into Eq (2.1.1) , we obtain

(2.1.3)

We now make a further approximation and replace the spin-deviation
* 

operators by the spin-raising and lowering operators Cjl and c^

respectively , ie

4- *

(2.1.4)
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*
whore and c-^ obey the Bose commutation rules:

* **
[c-p cr] - CT Cp Cp c1 - 8i ;l ,

(2.1.5)

[c-p Cp]

z
so that Sj becomes

si = i - •
*

-1 C1 • (2.1.6)

*
Using Cj_ and cx in the Bloch-representation, ie

* 1 * iS-1
C1 = “ E cg e

VN g
(2.1.7)

1 -ig.iCi - -i E cg e
VN g

Our Hamiltonian of Eq (2.3) becomes

o r -i3-R -I *H° — £ (£ J(R) (1 - e )} cg cg 
SB

(2.1.8)

where B = Bj - Bp

(See J M Ziman ; 1972).
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If we denote the ground-state of a ferromagnet by , then an 

particular spin reversed, is given by

(2.1.9)

(2.1.8), the spin-wave energy E^ of such a

-iq.R 
e ) (2.1.10)

R

For a simple cubic lattice with only nearest neighbour interaction 

and g. R << 1, Eq (2.1.10) becomes

excited state with one

i iS-B]
= „ E e si

N 1

Using the Hamiltonian 

state is then given by

E = 'hur - E J(R) (1 -

Eg - t - 6 J az q2 (2.1.11)

where is the frequency of the assumed wave-vector g , a is

the lattice constant and J - J(R) is taken to be a constant for 

any nearest neighbour exchange.
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2.2 Bulk Spin-Wave Green's Function of The Heisenberg Ferromagnet.

In this section, we shall determine the matrix elements of the

Green's function l/(E - H°), where H° is given by Eq (2.1.1)

Our model is an infinite simple cubic crystal with lattice constant 

a, such that the lattice sites are given by the translation vectors 

x^ defined by

(2.2.1)

where

at = (1 0 0) 

a2 = (0 1 0) (2.2.2)

a3 - (0 0 1) 

and 1 , 12, 1 are three integers which can be positive, negative 

or zero ; and to which we refer collectively as 1.

We now introduce a real, symmetric (N x N) matrix D°, whose 

elements are
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11' 11'
1' / 1. (2.2.3)

D° - - £ J
11 1' 11’

(1*  * 1)

(2.2.4)

Eq (2.1.3) can now be written as

(2.2.5)

Here, it is interesting to note that by the definition of the 

transverse susceptibility of the Heisenberg Hamiltonian, namely

- +
(2.2.6)

and using Eqs (2.1.4) and (2.2.5) , we make the observation that
— 4-

X is directly related to the Green’s function of the Heisenberg

Hamiltonian, given by

b *
G - < < C-. ; C-i , > >
11’ 1 1 

ie

b - 4
G11 • (< sl^t^ ; S1'(°) >>

(2.2.7)

(2.2.8)
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represent theWe now set out to solve for Gn’-

complete set of real eigenvectors of the matrix D° and lws}

(h - 1) its corresponding set of eigenvalues ie

o (s)
£ Djlt 4^, 
1'

(s)
- 0)s (2.2.9)

with satisfying the orthonormality and closure condition,

(s) (s’)
£ - Sss,
1

£ 4/$?> = 8llt
s 1

can now be taken as the basis for
* 

eigenvectors which correspond to new operators ag 

(2.2.10)

a new set of

and ag , such

that

* (s) *
C1 = £ ^1 as

s

(2.2.11)

(s)
Cl = £ KP1 as

s

(4> = 40
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Substituting Eqs (2.2.11) into Eq (2.2.5) , we have

1,1’
E

(s) *
E cs E
s s'

(S’ )

^1’ cs’

(2.2.12)

Thus, we have formally diagonalized the Heisenberg Hamiltonian H°.

b
The bulk spin-wave Green's function Gn’ (“) for the infinite

Heisenberg ferromagnet can now be defined as

^11*  <w) = O 5ii- “ Dll’l_1 (2.2.13) 

which when expanded in terms of the eigenfunctions of D° , takes

the form 

(2.2.14)

provided that zero is not an eigenvalue of it.

If the wave-vector k is determined by the cyclic boundary condition 

and is uniformly distributed throughout the first Brillouin Zone of 

the crystal, then the eigenvectors are imaginary exponentials and 

Eq (2.2.14) may be written in the form
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b
Gll’ (u>)

ik.Cx-j-z, , )
1 £ e-------- L_JL„
N k G) — GJ},

(2.2.15)

where G>}, is the 'bulk spin-wave excitation energy' given by

“k = E Jx (1 - cos k
1

• Xi)

(1^0)

(2.2.16)
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2.3 Bulk Spin-Wave Green’s Function of An Itinerant Ferromaqnet.

It was shown by Herring and Kittle (1951) that long wavelength 

spin-waves exist in any ferromagnet, in particular in an Itinerant 

one. In order to derive spin-wave energies in metallic 

ferromagnets, one usually calculates the response to a weak 

magnetic field that varies in space and time, namely the 

’Transverse Dynamical Susceptibility.' (See T Izuyama, D J Kim and 

R Kubo ; 1963). Using the conventional definition of a Retarded

Green's function (See Eq (1.3.3), the dynamical spin susceptibility 

can be defined in terms of spin-densities as follows:

00 
f -iwt-et

= lim J << Sa(k,t) s S^-k) >> e dt
C—O4- —a?

(2.3.1)

Sa, S0 are the spin-densities of electrons with spin a and /3

respectively ; given by

k

S(k)
*

“ E F(k,k' ) (ak+k, cr ak, ) (2.3.2)
k'

S(k,t) = EF(k,k’) <ak+k'(t) * ak-(t )

*
Where ak , ak are the two-component annihilation and creation

operators of a Bloch-state k ; a is the Pauli-matrix, and F(k,k' ) 

is the form-factor defined by

45



—ao

-ik’ . R ® * -ik . r (2.3.3)
F(k,k')= E e J w ( r) w( r 4- R) e dr

k' —00

which may be put as an approximation F(k) if the overlap

integrals of Wannier functions w for R / 0 (R is the vector

denoting the lattice site.) are ignored, ie

00r * -ik . r
F(k,k’ ) - F(k) = J w(r) w(r) e dr (2.3.4)

This is substantially the form-factor of the 3d-atomic orbital

using a tight-binding approximation. Eq (2.3.1) can now be reduced

X (K/W) = I F(K) I2 X‘ (k,«)
oq 3 aj3

(2.3.5)

with

X’ . << S’ (k,t) ; S’ (-k) >> e~lwt dt
a/3 J a j3

—oo
(2.3.6)

where S'
a

S’ are defined by
3

* <*>
S’(k) - E a a 

X• k+k’
(2.3.7)

It *
S’(k,t) - E a k4.<.t) a 

k’
ak. (t)
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If we define

ak+K = ak (2.3.8)

for any reciprocal lattice vector k , then x' (k/^) is periodic 
a/3

in k , with the periodicity of the reciprocal lattice vectors.

Therefore, Eq (2.3.5) may be written as

X (K,w) 
a/3

|F(K)|2 x’ (S.w) 
a/3

(2.3.9)

where

q = k - k (2.3.10)

is a Reduced wave-vector which lies in the first Brillouin Zone.

The susceptibility x’ (g,w) which is the reduced form of 
a/3

X (k,(d) / is appropriately known as the ’Reduced Susceptibility'. 
a/3

Here, we shall determine the component x’ (g>w) of the Reduced 
— F

susceptibility x' (3/W) / which is defined by
a/3

00
r -iwt

X’ (S/W) = I << S'(g,t) j• S'(-g) >> e dt
-1 J -—oo 4-

(2.3.11)

oo

1 J
—00

[S' (q,t) , S'(-g)]
— 4*

-iwt 
e dt (2.3.12)
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(2.3.13)

where the reduced spin-densities S' , S' are defined by 
- +

S'(q,t) = E ak: <fc>
k

s’(-g) +

*
= c akl ak+gl

k "

With g given by Eq (2.3.10).

The Retarded Green's function << S'(g,t) ; S'(-g) >> may now be 

determined by its equation of motion (See Eq (1.3.13)

d
i ----- << S'(3/t) ; S'(-g) >> -

dt ~ 4‘

-8(t) < [SJg,t) , S^(-g)] > + << [S^(g,t),H] S'(-g) >>+

(2.3.14)

where H is the Hamiltonian of the electron system.

For simplicity, we shall only consider the one-band Hubbard

Hamiltonian H given by Eq (1.2.1). In the Bloch-representation,

H can be written in the form



where

Hi £ £ nkcr
k CT

Hz = U £ £ ak,,<r ak ,-a ak',-a ak',cr
cr 1 z

where E^ is the energy of a Bloch-state and n^ is

number of the state kcr , a being the spin-state,

*
nkcr ~ aka akcr

For our convenience we let

*
®k(SA) - a^^jCt) a-^f(t) .

Then, using Eqs (2.3.13) ; for each member of

(2.3.16)

(2.3.17) 

the occupation 

e

(2.3.18)

(2.3.19)

the R.H.S Of

Eq (2.3.14), we have

d
1 1'— << °k(3»t) ; s’(-q) >> -=

dt * +

= —6(t) < [6^(q,t) , S7-q)J > + << [f\(q,t) , H];S|( -q) >>

(2.3.20)
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where

- nk+gl~nkt (2.3.21)

C°k<3) • HJ = (Er  - Ekl-g)^) (2.3.22)

[^(3) , H2] == U £ ^.(H) {-nk+gJ+nkt}
k ~

+ ek( S) { nk+k, f 4- nk+g+k, |} (2.3.23)

Further/ the chain of successive Green’s functions is cut off by

the approximation

<< nkcr el<3A) ; S'(-g) >> = nk(J << ©j/S/t) ; S’(~a) >>
— 4- — 4-

(2.3.24)

This is known as the Random Phase Approximation (RPA).
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Now, using Eqs ( 2.3.21 ), (2.3.22 ), ( 2.3.23 ) and (2.3.24) ; The

equation of motion (2.3.20) becomes

d
i ----- << Ok(q,t) ; S'(-q) >> «

dt +

-5(t) (nk+a( ~ nxt J +

(€kt ~ €k+ql> << °k(3/t) ; S’(-g) >> 4-

U(nkf nk+ql £ << ek+k,^a/V 
k'

S’(-S) >> +
(2.3.25)

where

€k<r ~ Ek u E nk+k*  , cr- k.----- (2.3.26)

is the HF one-particle energy with spin a.

Finally, using the Fourier transformation of

<< ©x(Sb't) ; S’(-g) >> and summing over all wave numbers, we
+

obtain the solution

r (g,w)
X*  (S/W)

— 4- (2.3.27)
"+ I - u r (g,w)

-4-

where r (g ,co) is defined by
— 4*

1 nkt “ nk+gl
r (g,co) - - E ----------------------------- (2.3.28)

— + N
- 6k4-gl ” w
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The poles of Eq (2.3.27) lead to excitation energies of the 

system. This implies that there are two types of singularities in 

X’ (S/W):
— 4-

a) Singularities of r_ ^(g,^) itself, which lead to the ’stoner 

excitation energies’. These energies form a 'branch-cut' along 

the real part of the frequency w , and depend on g.

b) Singularities which arise when

U r_+ (g,w) = 1

ie

U £ -------------1-------------- = 1

— €k+gi ~ €kt ~ °

(2.3.29)

(2.3.30)

(See Appendix A).

These are isolated poles along the real part of co that also 

depend on g and are called the 'bulk spin-wave excitation 

energies•.
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2.4 An Effective Heisenberg Ferromaqnet for Spin-Waves.

In this section, we shall aim at deriving an effective Heisenberg 

p f FHamiltonian H for spin-waves in an Itinerant ferromagnet.

This approach has the advantage that the formulation in terms of 

effective exchange integrals, namely , is physically very

simple, and the effect of impurities or of a surface on spin-waves 

can be easily included.

We begin by noting that H^^ is completely determined by its 

resolvent G, ie

G = (wl - Heff) 1 (2.4.1)

and the resolvent G is in turn completely determined by the

energy spectrum of magnetic excitations of the system.

We saw in section 2.2 that the resolvent G for a Heisenberg

ferromagnet is in fact equivalent to its transverse susceptibility.

Similarly, for an Itinerant ferromagnet, the transverse dynamical 

susceptibility determines an effective Hamiltonian by

= (wl - Heff) 1

where is given in RPA by Eq (2.3.27)

(We have dropped the ( ’ ) sign in XL-j.)*

(2.4.2)
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For low excitation energies co and small g , r_ j.(g,co) of

Eq (2.3.28) can be expanded in powers of co. Using the Taylor's

expansion, we have

r_p(g[/W) = r_+(2/0) + g 4- 0(i2) (2.4.3)

where A is the exchange splitting.

Substituting Eq (2.4.3) into Eq (2.3.29) and writing it in the

Wannier representation using

F_+(g/O)=^ E
N 1,1’

ig-CXfX,,)
(co=0) e 11 (2.4.4)

we have

where f + (co=0 )
11’

is the static unenhanced susceptibility of the

Itinerant ferromagnet in the Wannier representation.
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Since the Goldstone mode g >=0 is always a pole of Eq (2.3.27), we

have 

i - ur_k(o,o) = o

Thus, using Eq (2.4.6) in Eq (2.4.5), we obtain

i - ur1L(o) = £ urllt(O)
1’

(2.4.6)

(2.4.7)

(!’/ 1)

which shows that the approximate resolvent of one Itinerant 

ferromagnet in the Wannier representation takes the form

Gitin = (2.4.8)

where

Bn, = UArlx,(O)

B11 C Bll’
1’

(1’/ 1)

(2.4.9)

(2.4.10)

Comparing Eqs (2.2.3) and (2.2.4) with Eqs (2.4.9) and (2.4.10), it 

is quite clear that is equivalent to the resolvent of an

effective Heisenberg Hamiltonian with exchange integrals
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= UZkTn , (g>=0) .
11' 11

(2.4.11)

As mentioned at the beginning of Sec 2.4, our aim was to derive an 

effective Heisenberg Hamiltonian for an Itinerant ferromagnet, so 

that it could be used to calculate the spin-wave energies in such a 

ferromagnet. This is achieved by finding an approximate Green's 

function for the Hamiltonian of an Itinerant ferromagnet using RPA 

method. By doing this, we arrive at an expression in terms of the 

static unenhanced susceptibility of the Itinerant ferromagnet which 

leads to a Green’s function with the same structure as the Green's 

function of a Heisenberg ferromagnet. It is then justified to 

replace the Hubbard Hamiltonian of an Itinerant ferromagnet by an 

equivalent Heisenberg Hamiltonian where the exchange integrals J 

are now determined from the band-structure. We choose to call 

these parameters, effective exchange integrals and denote them by

. However, it should be noted that, this procedure gives good 

results only when the magnetic excitations are of low energy and 

long wavelength, ie small w and q.

Moreover, we are now in a position to take advantage of the 

results obtained by Wolfram and Callaway (See T Wolfram & 

J Callaway ; 1963) which deals with an impurity in a ferromagnetic 

insulator, ie we can treat an isolated impurity in an Itinerant 

ferromanget as a perturbation to the bulk problem (See J Mathon ; 

1984). Similarly, we can use the results of De Wames and 

Wolfram: (See R E De Wames & T Wolfram ; 1969) to map the surface 

problem for an Itinerant ferromagnet onto an equivalent surface 

problem for a Heisenberg one.
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It is also important to note that it is possible to show Je^
11’

(which depend only on Xpl R) are large only for

distances |R|

to the next.

of the order of hopping of electrons from one atom

It was shown by Mathon (1983) that for a strong
eff 

ferromagnet with a free-electron (parabolic) band, J (R) decays
eff 

exponentially with distance. Exponential decay of J (R) for

strong ferromagnets makes the use of an effective Heisenberg model

attractive since problems involving inhomogonnti.es such as

impurities and surfaces are more easily handled within the

Heisenberg model with a relatively short-range exchange.

In the proceding section, we shall address this problem for a 

strong tight-binding Itinerant ferromagnet and demonstrate that it 

is quite sufficient to consider only the nearest neighbour 

in the limit A >> Ey.
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2.5 Short-Range of Effective J for a strong Tight-binding 

Itinerant Ferromagnet.

Our model is a strong Itinerant ferromagnet in the tight-binding 

approximation, with the condition Ep/A << 1 where Ep and A

are the Fermi-level and the exchange-splitting respectively.

We first consider the HF one-electron Green function (See Sec 

1.3.5) for a bulk ferromagnetic crystal, given by

Ga (B - Bi - Bi . ) 
bulk 1 i

(2.5.1)

where for a strong-ferromagnet, the down-spin propagators Gl
bulk

are real. (Since there are no particles in the down-spin band ie

Im G1 = 0). Using Eq (2.5.1) we have
bulk

1
N

(2.5.2)

where from Eqs (1.2.61) and (1.2.62), we now define,

1 (2.5.3)

with

(2.5.4)T
R
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Rn n is the position-vector between two nearest neighbour atomic 

sites and T is the electron hopping integral.

Using Eq (2.5.3) in Eq (2.5.2), we have

Gl

0[(^)3]
A

bulk (R) E (w -
3

A - Wg) X iq.R
e (2.5.5)

For Ep/A << 1, we may expand (w A - wg) 1 in powers of w/A.

1
N

Hence,

(w - A - wg) 1 = 1
A2

+ 0[(y)3J
21 A

(2.5.6)

Substituting Eq (2.5.6) into Eq (2.5.5) and using Eq (2.5.4), we

- i (1 
A

+ ^) 
A

have

G1 (R) 
bulk

_ .id + i 
A * *’

1 £ e 
A' N g

iq. R T
A2

E ~
R N

E 
g

:n. n

4 (2.5.7)

which gives

G1 (R) = - -(1 
bulk A + * 5R,0

T
A2

E
R

6r ,r „ „ +— —n . n
0[(~)3]

A
(2.5.8)
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where

1
N

iS-(Bi E e i
3

Bj. )
(2.5.9)

is the Kronecker delta.

From the definition of the Heisenberg Hamiltonian of Sec 2.2, it is

clear that
eff 

J
11*

are the off-diagonal elements of their

appropriate Green's function. Thus, looking at Eq (2.5.8), the

term with ^Bn.n becomes the leading term and G1
bulk

takes the

form

Gl (Bn n> 
bulk n,n

_ T
A2

(2.5.10)

From Eq (2.4.11), we have

Jeff (R) 
bulk “

U AT (R)
bulk "

(2.5.11)

where for a strong ferromagnet, r is given by 
bulk

r 
bulk

Ep
1 J 
rr J

—00

Re G1 (w) Im G1 (w) dw. 
bulk bulk

(2.5.12)

Thus, using Eqs (2.5.10), (2.5.11) and (2.5.12) we have
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JGff < 
bulk (Bn n>n. n

1
IT

Ep
J A*

-00

( - ) Im Gj ( R , u) do> 
A2 bulk n,n

IT

Ep
J

—ao

Im Gf
bulk(En.n'w) dw (2.5.13)

where

E
n.n TZ

Im(Gf (R - 0)) 
bulk

(2.5.14)

(See Appendix B) and

Im GbulK

/

UA — A2 , Ep < < A

We have therefore shown that the effective exchange integrals 

within the range of electron hopping tend to a finite limit for 

A/Ep >> 1 and all the other exchange integrals tend to zero.

From Eq (2.5.10), we see that the range of for a
bulk

tight-binding band with nearest neighbour electron hopping is

electron hopping T. Hence, it is 

to a more general tight-binding band 

Although this formal proof holds 

the tight-binding calculations of 

of the response functions for 

appreciable only over distances of

determined by the range 

possible to extend this result 

with longer electron hopping, 

only for strong ferromagnets, 

Finnis and Pettifor (1984) 

paramagnets show that they are 

the order of electron hopping.

61



Chapter 3 Effect of Surface on Spin-Waves.

3.1 Introduction 3.

There is renewed interest in the study of 'surface spin-waves',

primarily, since the surface magnetization and its temperature

dependence are now directly measurable, (see C Walker

et al; 1984 T Pierce et al; 1982 - S Alvarado et al; 1982)

At low-temperatures, the surface magnetization is determined by

D

J

spin-waves

In this chapter, we examine the effect of a surface on both metallic 

(itinerant) and non-metallic (Heisenberg) ferromagnets. We shall then 

study spin-waves and their magnetic properties in such systems and, 

finally, as we did for bulk spin-waves, we shall map the surface 

spin-wave problem for a metal onto an effective Heisenberg model. We 

shall also include the study of impurities on a ferromagnetic surface 

with a view to investigate the behaviour of spin-waves in such 

structures.
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3.2 Surface Spin-Wave Green's Function of a Heisenberg Magnetic

Insulator.

There are many theoretical studies of the effect of surface on 

spin-waves in magnetic insulators. Here, we shall consider the 

Heisenberg model of a magnetic insulator described in Sec 2.1, where 

the spins on sites 1 and 1* are coupled by an exchange 

interaction - J s, . s
11' 1 1'

Our approach here is that of De Wames and Wolfram's (See

R E De Wames and T Wolfram; 1969). We introduce the surface plane by

J
11'

across a cleavage weplane, iecutting the exchange integrals

set equal to zero all the J
1

the

between
1*

spins on atoms which are on

adjacent sides of plane z _ 1
~ 2 a , so that all the

J 's between atoms in the planes z = 0 and z = a are zero.
11'

This procedure is referred to as the 'geometric effect' of the

surface.

We begin with a Hamiltonian for a semi-infinite ferromagnetic crystal 

with a surface described above,

H - H° + V (3.2.1)

where H° is given by Eq (2.2.5) and V represents the geometric 

effect of surface,
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V — £ V
1,1'

C C
11' 1 1’

(3.2.2)

with

(3.2.4)

d’ * 1)

*

where C3 and C
1 1’

are given by Eqs (2.1.5).

semi-infinite Heisenberg ferromagnet can now be defined as

The surface spin-wave Green’s function GSi (w)
11’

for the

- D ]-1
11’

(3.2.5)

where

D = D° + V
11* 11’ 11’
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To obtain the Green's function (w), we note, using Eq (2.2.13)

that it can be written as an inverse matrix

GSi = [u)I - D° - V] i

= [(G13)"- - V]-1

ie GSi = [I - GbV]_1 G13 

where the elements of the matrix Gb

(3.2.7)

are given by Eq (2.2.15).

With the intention of mapping the surface spin-waves problem of an

itinerant ferromagnet onto an effective Heisenberg model, we now

study the effect of our surface to GSi when we renormalize it. This

renormalization is done by allowing the exchange constant coupling

perpendicular (J1 ) to the crystal surface, to

deviate from their bulk values (Jb), in the first two atomic planes

adjacent to the surface. (It should be noted that the deviation of

in the first two atomic planes, is sufficient

for a strong ferromagnet which will be studied in Sec 3.3).

By letting V-j^ = 0 ie ignoring the diagonal elements of the

geometric effect, we can use Kalkstein & Soven's result and write

- Gb( | i-j |, k | | ) - Gb( i+j , k | ( ) (3.2.8)

in the mixed Bloch-Wannier representation.

65



The only purpose of ignoring is that we can express GS1 simply

in terms of the bulk Green’s function Gb. However, these elements 

shall be included later in the renormalized Green's function where the 

effect of J||' J_L iS considere<3, This effect will lead to a

perturbation to GS1, which is presented in the form of a (2x2) matrix 

called wHeis. Hence, using a Dyson equation, the renormalized Green's 

function Gsz can be written in the form

GSz — g s 1 + G31 w^e^S GSz 

or more conveniently

Gsi

Gsi wHeis

(3.2.9)

(3.2.10)

where G31 is calculated by Eq (3.2.8). It is easy to show that the 

elements of w11013 are given by

Wn = “4 Aq (1 - 6 )
1 1

- (1 - e ) (3.2.11)

w12 = 1 - (3.2.12)

W22 “ ~WH ' (3.2.13)

(See R E De Wames and T Wolfram ; 1969), where
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&

J
(3.2.14)

Jb
(3.2.15)

(3.2.16)

As promised earlier, we now include the diagonal elements of V in

w* 1613 which is equivalent to adding a (2x2) matrix 0

_ 0 (L

to wHeis.

We note that this will only affect the matrix element w which now

becomes

W11 = ~4 Aq <1_€| | ) “ 1 " (3.2.17)
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3 . 3 Effect of Surface on the Spin-Wave Green's Function of an

Itinerant Ferromagnet.

The measurements made on metallic ferromagnets require interpretation 

in terms of the Itinerant model of ferromagnetism. However, there are 

no such calculations of the effect of surface on bulk spin-waves and, 

information on surface spin-waves is very limited.

Surface spin-waves were studied previously by Griffin and Gumbs. They 

were forced (by the complexity of the surface problem in metals) to 

adopt the classical infinite barrier model (CIBM) which assumes that 

the static electron-density in a metal remains constant right up to 

its surface. However, recent band-structure calculations (See 

H Krakever et al ; 1983) indicate that this assumption is not

valid in transition metals such as Ni and we shall show that CIBM 

is not a realistic model of metals.

In this section, we describe a real space approach to the problem of 

spin-waves in a simple cubic tight-binding Itinerant ferromagnet with 

a (100) surface, using the simplest one-band Hubbard model of an 

Itinerant ferromagnet with surface, in the random phase approximation. 

As in Sec 3.2, our semi-infinite crystal contains both the geometric 

and the renormalization effects when the surface is introduced. The 

geometric effect itself leads to Friedel oscillations in the 

electron-density. To preserve layer-by-layer charge neutrality, we 

have to compensate this effect by an adjustable potential V.
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The Hamiltonian of our semi-infinite crystal then becomes

H' (3.3.1)

where H is given by Eq (1.2.1) where the summation indices are now

over the semi-infinite crystal only. The perturbation V is given by

V — r V- n -1 icr
iz(T

(3.3.2)

with

- H + V

Eq (3. 3.1) in the Wannier representation becomes

H’ = E £ Eij cicr cjcr + u £ nit nil 4 vo £ nicr (3.3.4)
i/j a i i,cr

where Eij is the hopping integral given by

Eu - j.
N

E E^ ei3‘ (-i -j > (3.3.5)
g
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It was shown by Mathon and Al-Asadi (1981), that poles of the

transverse susceptibility matrix xS (w) determine the surface 
ij

spin-wave energies, where xS is given by
ij

Un Xs.(w) 
nj

(3.3.6)

With x° being the unenhanced surface susceptibility of 
ij

non-interacting particles moving in a spin-dependent HF potential

V- - V10- * + 1 ni,-a (3.3 .7)

where V is the surface potential (or core-shift) given by

Eq (3.3.3) and I n4 __ is1, -<r the HF exchange potential. The HF

potential is highly inhomogeneous since both V and the cleavage 

plane perturb the electron-density near the surface. As a result, the 

kernel x° is an off-diagonal matrix (See Mills et al; 1972 and 
ij

Muscat et al; 1975). The solution of Eq (3.3.6) is thus equivalent 

to the inversion of a general (off-diagonal) infinite matrix. All the

previous attempts at solving it without drastic approximations have

failed (since x°
ij

is off-diagonal both in the Wannier and Bloch

representations).

From Sec 2.3, we have the standard unenhanced susceptibility of a 

bulk Itinerant ferromagnet r(q,w) given by Eq (2.3.28) which is 

a diagonal matrix in the Bloch-representation. Using the 

translational symmetry in the direction parallel to the surface, we
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treat the surface as a perturbation to the bulk problem. (This is a 

method usually adopted for magnetic insulators, (See D L Mills and 

A A Maradudin; 1967).

Thus, we can write

r (3 /W) + (g ,w)
tj I I Jll

(3.3.8)

where r in the mixed Bloch-Wannier representation is given by

r (g ,a) = ^- £ r(q.,w) -<Bi B j)
ij H N-Lq± 1

(3.3.9)

the perturbation to the bulk.

with Nj_ denoting the number of atomic planes parallel to the surface

and q_U the wave-vector perpendicular to the surface. A.^ denotes

Writing Eq (3.3.6) in the mixed Bloch-Wannier representation, we

have

Xs.(S ,<•>) 
ij I I

- X°.(S /<•>) + E X° (S,w) U xs (g ,w)
1J I I n ln 11 nj ||

(3.3.10)

where x° (H , w) is now given by Eq (3.3.8). 
ij I I
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We now set out to determine A^j. It can be seen from Eq (3.3.8) that

A is just the differrence between the non-interacting surface 

susceptibility x° and the bulk r , ie

A = X° - r (3.3.11)

In order to solve for A, we follow the same approach as in Sec 3.2,

ie we shall first consider the geometric effect of the surface. For

r is now determined by Eq (2.5.12) and thea strong ferromagnet,

kernel x° by

X° ,(w)
Ep 

= -1 f Re G° (E+w)
13 rr J ij

—oo

t
Im G° (E) dE. (3.3.12)

ij

where Goa
ij

is the one-electron surface propagator given by

GOCT(g ,E) = Ga (: 3 ,E) - Ga (i+j,q ,E) (3.3.13)
II bulk II bulk II

where

iq na

Ga (n,g
1

,E) = — E
e J_ (3.3.14)

bulk | | N q. E - Ea(g ,q )

(See D Kalkstein and P Soven ; 1971).
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arei;j label atomic planes parallel to the surface; q and q

the components of the wave-vector parallel and perpendicular to the 

surface and Ea(g , q ) is the bulk one-electron energies moving in
I I X

the HF potential.

Griffin and Gumbs took the crudest approximation of A. They assumed

that all the matrix elements of x° for i,j >1 are equal to the 
ij

elements of the bulk r . (this is known as the CIBM). It is clear 
ij

that CIBM is not a realistic model for metals since the quantum

interference effect of the surface is overlooked. (They determine the

kernel x° using the propagators rather than G°).

A more realistic surface is the one where the effect of the core-shift

VQ and of the HF corrections are included. This yields a better

surface Green’s function
- OCT
G , whose matrix element

— OCT
Gjj is given by

-OCT
OCT

(3.3.15)

1

where is the HF potential in the surface plane, and we have

assumed that n^ differs from n£ , ie

(3.3.16)

Eqs (2.5.12), (3.3.12) and (3.3.15) determine completely the 

perturbation matrix A.
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Writing Eq (3.3.10) in an operator form, we have

Xs X° + X° Uo Xs (3.3.16)

Thus,

Xs x°
I - x° Uo

(3.3.18)

where the poles of the secular equation

1 - X° Uo = 0 (3.3.19)

give the surface spin-wave energies.

It is easy to show that the spin-wave Green’s function of a

semi-infinite ferromagnet
—s

G satisfies the following Dyson

equation,

—S
G Gb + Gb witin GS (3.3.20)

where

Gb = [i - uor) 1

GS = [I - uo(r + A)] 1

(3.3.21)

(3.3.22)
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and the surface perturbation w1tln is given by

witin Uq (x o _ r  } (3.3.23)

We now set out to find witin that would make the Dyson equation

(3.3.20) solvable. With Eq (2.5. 11) in mind, we note that

Eq (3.3.23) can be written in the form

Witin = (Jeff - Jbeff) (3.3.24)

which suggests that the effect of Friedel oscillations and HF 

corrections can be regarded as a renormalization of the bulk effective 

exchange integrals near the surface. is the surface exchange

integral). We shall consider such renormalization only in the first 

two atomic planes, ie we consider a truncated (2x2) matrix wltin. 

We note that Eq (3.3.20) is very similar to Eq (3.2.9) which is the 

Dyson equation for the Green's function of a conventional Heisenberg 

ferromagnet with exchange integrals in the surface and between

the surface and adjacent plane different from Jb.

itin
We shall now show that the matrix element w

11
has the same

structure as the matrix element w11618 given
11

by Eq (3.2 .11). In

other words, it is possible to derive effective €| 1 and €
_L ‘

This

result can be proved exactly in the limit A > > Ep and we shall now

present the proof.
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It follows from Eqs (2.5.12), (3.3.14) and (3.3.24) that itin is

given by

witin
11

f Ep Re G°o( E + 0),k + q). ImG°JE,k)

-oo

-Re G^(E + w,k + q).Im G^(E,k)] dE (3.3.25)

It is now easy to show using the expansion (2.5.8) and keeping terms

up to (EF/A)Z that

Re G™ (E + w,k + q) = i-i2(E + w+Eg) (3.3.26)

w
r i

and

-o1 1 nbRe GOO(E + U),k 4- q) = - i (^) - (E + " + W

1 nb 2
+ Z*  E° (3.3.27)

with

iS«Rn nE — —T £ e 11,11
3 —n.n

(3.3.28)

Rn is the position vector between two nearest neighbouring atoms.
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Both ~ Q ' "hl 1Re G_ and Re G„' have terms a — oo oo A which in the limit

- > >
EF
(dimensionless) ~Gff W1L

Jb
integrated w.r.t the

1 would yield divergent contributions to the normalized

However, since Im
-o I

and Imoo
pb!

OO '

there is an exact

Eq (3.3.25). Such a

energy lead to ng

cancellation of

cancellation occurs

•and nb respectively, then

these divergent terms in

only if the HF corrections

given by Eq (3.3.16) are included exactly. This shows that the HF

corrections are essential in the surface spin-wave problem.

We are now able to express wltin calculated from Eq (3.3.25) in

the Heisenberg-like form of Eq (3.2.17), ie

witin
*11 - wo 4 W(q). (3.3.29)

for a neutral surface (ng ■= nb). wQ can be identified with the

constant (independent of g) component of witin 
n

in Eq (3.2.17) and

is given by

1
e f

—o!
wo - - 1 ( )rrnbN E

ns D k
f
-03

(E - Eg + Eo) Im G_„oo (k,E)dE (3.3,.30)

and hence the effective <s
1

for an Itinerant ferromagnet is defined by

€ - w + 2

1
(3.3.31) 
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w(q) comes from the terms in Eqs (3.3.26) and (3.3.27) containing

E_ and can be expressed as -4 A (q)(l - € ) with effective e
a II II

given by

(3.3.32)

Using Eq (3.3.31), we postulate that w and w22 for an Itinerant 

ferromagnet have the same form as the Heisenberg wi2 and w in 

Eqs (3.2.12) and (3.2.13) respectively.

We now have an approximate wifcin which has the correct 

spin-rotational symmetry which will enable us to use it in 

Eq (3.3.20) and discuss the effect of surface on spin-waves. It is 

reasonable to choose w12 and w22 in this form since we can show 

that it is exact in the limit A/Ep>> 1. The proof is given in the 

next section.
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3.4 The mapping of the Spin-Wave problem for a semi-inflnite Metallic

Ferromagnet onto an equivalent problem for an ^Insjalatqr.

We showed in Sec. 3.3 that since the Itinerant surface perturbation is

very much similar to that of a Heisenberg one, then it is reasonable

to map one onto the other. We would now like to justify our mapping
itin

by showing that the value of € deduced from w55 given by
±

Eq (3.3.31) is quite close to the true Itinerant e which is

defined by

itin
€

eff

eff
Jbulk

(3.4.1)

Using Eq (2.5.11), we have

eff
Jbulk = UAT' 

bulk

and similarly

W° (3.4.3)

eff
where is the effective exchange integral between spins in the

surface (i=0) and its adjacent plane (i=i).

79



In the mixed Bloch-Wannier representation, Eq (3.4.1) is given by

(3.4.4)

with given by Eq (3.3.12) and rQL given by Eq (2.5.12).

Hence, we require the one-electron HF propagators GOi and .

Using the expansion (2.5.8) and keeping terms up to (Ep/A)2, we 

have in the limit A >> 1,

bl in
Re G (E + w, k + g) = -

oi A
(3.4.5)

and

—o l
Re G (E + w, k + g) = ■

oi
T
A2

(£)
“s

(3.4.6)

—o t
With Im G„. and o i Im Gbl obtained from Eqs (3.3.15) and (2.5.1) 

oi
respectively, we can now easily show that,

eitin

-o t 
Im G dE 

oi

bl 
Im G dE

o 1
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(3.4.7)

For a neutral surface (ns = nb), Eq (3.4.7) becomes

(3.4.8)

where is given by Eq (3.3.31)

€itin = €
X

6
±

We have thus proved that

ferromagnet with — >> 1,
Eo F

problem with and
II 1

the surface problem for an Itinerant 

reduces exactly to a Heisenberg surface

determined by the band structure.
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Chapter 4 Magnetic Impurities in the Surface of Metallic

Ferromagnets.

4.1 Introduction 4.

The magnetic properties of impurities on the surface of a metallic 

substrate are of interest and can now be studied experimentally 

when the number of impurity atoms amounts to a small fraction of 

an atomic layer. (See G Bergmann, 1979 ; G Allan ; 1984).

In this chapter, we wish to study the effect of an impurity atom in

(and above) the surface of a ferromagnetic 3d metal. We approach

this problem by studying their effective exchange integrals; which 

are as follows

(i) Effective exchange integral between an impurity atom buried in

the surface and its nearest neighbouring atoms in the same 

plane.

(ii) Effective exchange integrals between an adatom and a metallic

substrate atom just below it.
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4.2 Surface Impurity Exchange Integrals in a Strong Tight-binding

Itinerant Feromagnet.

There is, at the present time, a rapidly deepening insight into the 

behaviour of electrons in alloys. As systems with a continuously 

variable mean number of electrons per atom, alloys have always 

received a lot of attention from magnetic theorists and their 

properties have been rapidly invoked to support or oppose 

particular models. Although the inhomogeneity of a disordered 

alloy destroys the simple Bloch-wave character of the one-electron 

eigenfunctions of the many-electron system, it has been realised 

for sometime now that the electrons around an isolated atom in a 

sea of metallic electrons can be treated almost as satisfactorily 

as those of the host metal and that there are quite well-defined 

conditions for the occurrence on or near the impurity of an 

imbalance in the densities of up-and down-spin itinerant electrons, 

ie we may obtain a local moment. The effect of impurities on the 

spin-wave spectrum of bulk alloys has been studied, using a 

localized model. (See T Wolfram and J Callaway ; 1963).

The approach that we have undertaken here has already been 

described in Chapter 3. This model enables one to study the 

magnetic effect of impurities in metallic alloys. In this section, 

we are looking at the magnetic effect of one impurity atom buried 

in the surface-plane of a metallic substrate. The exchange 

coupling (or the indirect exchange) between the impurity atom and 

its nearest neighbouring host atom is taken to provide the 

necessary informations.

83



We begin by describing our substrate by a model for a strong 

tight-binding itinerant ferromagnet.

The model is one of electrons moving in a single band of 

Bloch-states with an interaction which operates only when two 

electrons of opposite spin are in Wannier-states on the same atom. 

(For this non-degenerate model, the ground-state for a completely 

ferromagnetic spin alignment is unaffected by the interaction). 

Thus, our substrate is a semi-infinite crystal, described by the 

one-band Hubbard model ; See Eq (1.2.1). The crystal itself is 

assumed to consist of (N| j x N^) atoms where N| j is the number 

of atoms on a single- layer parallel to the surface layer and Nj_ 

is the number of layers. The layer is assigned by an index n, 

which is 0 for the top surface. Our Hubbard Hamiltonian is then 

given by

H' + Vimp (4.2.1)

where H’ is the Hamiltonian of the semi-infinite pure substrate

given by Eq(3.3.1) and is given by

vimp *
£ c0a C0<j
cr

(4.2.2)

imp 
with VQ

impcr 
let VQ

being the energy-level of the impurity atom. We now

represent the HF surface impurity potential, ie
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yimpci
O

= VimP
o

4- Ieff (nj^ - ng ) (4.2.3)

eff
where IQ is the intra-atomic Coulomb interaction energy of the 

pf fimpurity atom. (Note that I is assumed to be the same as in
0

the substrate). n* 7 and are the number of a-spin
o o

particles on the substrate atom and the impurity atom respectively.

It should be clear by now that the effective exchange integrals are 

derived from off-diagonal matrix-elements of their appropriate 

Green's functions. Thus, to obtain the effective exchange integral 

of an impurity atom buried in the surface plane of a substrate (as 

described above), we need to calculate the off-diagonal Green's 

function of the impurity. This can be derived using a Dyson 

Equation. However, we first set out to find the diagonal Green's 

function matrix-element at the impurity atom itself, since this is 

needed in the derivation of the off-diagonal Green's function. We 

hope that this will become clearer to the reader as we continue. 

We divide the work into two parts. In the first part, we derive
imp

the local Green's function of the impurity atom Gqq , and in the
imp

second part, the off-diagonal Green's function GQ1
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(I). The Diagonal Surface Impurity Green's Function.

We begin with the Dyson Equation

impg 
G

-Ou
G 4-

-Og impg
G V0

impg
G (4.2.4)

where
impg 
G denotes the diagonal surface impurity Green’s

function;
-Og
G is the diagonal surface Green’s function of a pure

substrate, derived in Appendix D and yimpg is given by Eq

(4.2.3).

Following the same approach described in Appendix D, it is easy to

see that the local surface Green's function of the impurity atom,
impg 

Goo is then given by

impg 
Goo

1

-Ou
G00

““^"Og “impg
G00 V0

(4.2.5)

where
impg

vo can be obtained self-consistently by Eq (4.2.3)

with na 
o

and nimpg given
0

by

a
no

1 
n

e f  
f
-oo

Im
impg

G00 <E> dE. (4.2.6)

Impg
n0

1
n

Ep 
f

-oo
Im

impg
G00 <E) dE. (4.2.7)
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Clearly, the presence of an Impurity and hence a new surface

Green's function
ef f

Gimp , result in a new effective exchange

integral Jimp,|| compared with the old effective exchange

integral ; ie is taken to
imp,||

be the exchange coupling

between the buried impurity atom in the surface and its nearest

neighbouring atom also in the surface plane.

We now proceed to derive the off-diagonal Green's function in order

to obtain
imp,||

(II) The Off-diagonal Surface Impurity Green's Function.

We let R | denote the position-vector between the impurity atom

and its nearest neighbouring atom in the surface plane, ie

R|| - (0 a) (4.2.8)

The off-diagonal Green's function of the impurity atom can then be

derived using Eq (D21) (See Appendix D), where in place of the

surface Green's functions
-Oct  -Oct

G and G 
01 00

corresponding potential replaces
0

we must now substitute

Oct

of the pure substrate ie G and
01

respectively. Also,
cr

V
0

Thus, we have

Oct

G ,
00

the

impcr
G

01

-Oct

G
01

1
-Oct
G

00
V

impcr
0

(4.2.9)
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As in Chapter 3, the susceptibility of this system will now 

determine the surface impurity effective exchange integral 
eff

Jimp, | | * from Eq (3.3.12) that the off-diagonal

surface impurity susceptibility of a strong ferromagnet can now be 

evaluated by

integral in the absence of an impurity.

imp,|i1
(w)

e f

= -1 f
impl imp!

X Re G (m + E) Im G (E) dE.
01 n - 01 01—00

(4.2.10)

and by Eq (2.5.11), we then have

eff imp,|| -

Jimp,|| U A x01
(4.2.11)

It is of interest to show first the surface effective exchange

Fig 1(a) shows

integral

the dependence of the 
eff
J
bulk,||

/n
bulk

/

n
0

surface

(normalised on

Solid curve is

the

for

effective exchange

occupation of the

n
bulk

0.2 and

A/Ep = 2 broken curve is for n =0.2 and A/Eo > > 1. 
bulk F
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Q)
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Fig 1(b) shows the dependence of the surface impurity effective

exchange integral
eff eff
J /J on the occupation of the
imp,|| bulk.||

surface impurity
imp

n /n . Solid curve is for n -0.2
0 bulk bulk

and A/E,-, = 2 ; broken curve is for n =0.2 and A/E„ >> 1. 
b bulk p

Here, we have assumed that the occupation of the surface layer

itself is the same as the bulk occupation, ie n = n
0 bulk
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—i
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4.3 Magnetic Effects of An Impurity Atom Above The Surface of A

Strong -Itinerant Ferromagnet.

The magnetic moment of impurities on the surfaces of metals can now 

be measured down to concentrations of a few per cent of a 

mono-layer. (See G Bergmann ; 1981, 1982). The first surface 

impurity system investigated was Fe on the surface of 

exchange-enhanced paramagnet palladium. In 1981, Bergmann used the 

methods of anomalous Hall effect and of weak localization to 

investiage the magnetic moments of isolated Fe impurities on the 

surface of Pd.

In this section, we wish to study the effect of an impurity atom 

situated abo^e a magnetic substrate, on the surface magnetization 

using a self-consistent method. We choose to call this atom, the 

adatom.

The substrate is assumed to be a semi-infinite crystal of a strong 

tight-binding itinerant ferromagnet described in Sec 4.2. The 

layer on which the adatom lies, is assigned by index 1 and the 

adatom is situated above the atom positioned at the origin, on the 

top surface layer.

It is easy to see that the presence of such an atom (adatom) will 

affect the surface charge density in its immediate vicinity. This 

means that the surface charge neutrality that is enforced by the 
a

HF potential VQ given by Eq (3.3.16) is then lost. In other 
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words, the number of electrons on the surface atom, below the 

adatom is no longer equal to its bulk value, ie no 71 %• However, 

this problem can be overcome by introducing an adjustable potential 

for the surface atom. This potential could be interpreted as 

having an impurity atom buried in place of the pure surface atom. 

This idea is based on the fact that the presence of such an atom 

results in a perturbation which is then modelled by a new potential 

(as discussed in Sec 4.2).

It is now justified to describe our system by the Hubbard

Hamiltonian

ad imp ad
H H 4" V (4.3.1)

where
imp

H is the Hamiltonian of the semi-infinite crystal with
imp

an ’•impurity” buried in the surface. H is then given by
ad

Eq (4.2.1), and V is given by

(4.3.2)

with Tir representing the hopping integrals for the electronic

transition between the adatom and the substrate which may be

different from Eij.

Using the Hamiltonian
ad

H , we can now find the local Green's

function
ad cr

G of the adatom, by solving the Dyson Equation
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add impd impd add add
G — G + G V G (4.3.3)

impd
where G is given by Eq (4.2.5).

impd 
However, it should be noted that the HF impurity potential VQ

(See Eq (4.2.3)) depends on the occupation of the "impurity” atom, 

and this, must be determined by taking into account the effect of 

the adatom on the "impurity" atom. This is discussed in detail in 

Sec 4.3.1.

Thus, we have

add impd impd add add
G •= G +■ £ G V G (4.3.4)

mn mn _ _ mp pq qn

By defining

add
p = q = 1

p - 0, q - 1 and p = 1, q - 0 

otherwise.

(4.3.5)
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Then Eq (4.3.4) is simplified to

adcr impcr impcr adcr adcr adcr
G = G + G (V G 4- T G )

On 'mn mn mi i tn

impcr adcr
4 G T G

mO m
(4.3.6)

adcr
The local Green's function G^ is then obtained by putting

m - n - 1 in Eq (4.3.6) ie

adcr
G
li

impcr impcr adcr adcr adcr
G + G (V G 4- T G )
ii ii 11 Oi

impcr
4 G

10
adcr

T G

(Ea) 1 +
r, , adcr adcr 

(Eff) y(V G + T
i li

adcr
G ) 

Oi
(4.3.7)

where

impcr
G (ECT) 1 (4.3.8)

i i

impcr impcr
G G = 0 (4.3.9)

10 Oi

and Ea is given by Eq (1.3.62).
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To find Gada , we put m - o , n - 1 in Eq (4.3.6) which would
01

then give

ada
G

01

impa
- G T

oo

ada
G

1 i
(4.3.10)

substituting Eq (4.3.10) into Eq (4.3.7) we get

ado -i
G = (E°) +
ii

_ -1 ada ada
(E°) (V G + 

i ii

impa
oo

, ada 
T2 G )

it

which simplifies to

ada _ ada
G - (ECT - V - T2
ii i

impa — i
G )

oo
(4.3.11)

ada
The off-diagonal Green’s function of the adatom, ie G 

oi
is then

obtained by substituting Eq (4.3.11) into Eq (4.3.10):

ada impa a ada 2 impa -1
G - T G (E-V -TG )

01 00 00
(4.3.12)

ada
where V is the

L
HF level of the adatom, given by

ada
V

1

eff ada
V 4- I n
iii

(4.3.13)
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T is the hopping integral between the adatom and the substrate, 
add

(both Vx and T are adjustable parameters) ; n is the number

of cr-spin particles on the adatom, given by

adcr .. fEF add
n, = - Im G , (E) dE.

X |"T J XX

—00

(4.3.14)

add
The off-diagonal Green’s function G given by Eq (4.3.12) can

oi
eff 

be used to determine the effective exchange-integral J
ad,X 

between the adatom and an impurity on the surface of a strong 
eff 

ferromagnetic metal. It follows from Eq (3.2.12) that J can
ad,J_

be determined by the off-diagonal susceptibility matrix-element

given by

ad,J. _ 1
rEF ad I ad!

X (u) “ I Re G (gj + E) Im G (E) dE (4.3.15)
oi n ' _ ox—oo O X

eff
Thus' is then determined by

eff
J

ad,J_

ad,
U A x

ox
(4.3.16)

Fig 2(a) shows the dependence of the adatom effective exchange 
eff eff

integral J /J (with a Ni surface) on the occupation of
ad,J_ bulk,J_

ad
the adatom n, /nH1,lv Solid curve is for n = 0.2 and

1 DULK • bulk

A/Ep - 2 ; broken curve is for n - 0.2 and A/Ep >> 1. Here,
r bulk r

we have assumed that the occupation of the surface impurity is the 
imp

same as the bulk occupation,ie nQ * nbulk *
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Fig 2(b) shows the dependence of the adatom effective exchange 
eff eff

integral J /J (with a Pd surface) on the occupation of
ad#X bulk,J.

the adatom n* d/n • Solid curve is for n =0.07 and A/Ep = 2;
1 bulk bulk r

broken curve is for n =0.07 and A/Ep >> 1. Again, we have 
bulk r

imp
assumed that n_ = n

° bulk
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4.3.1 The Effect of An Adatom On The Surface Green's Function.

We discussed in the earlier part of Sec 4.3, that the presence of 

an adatom positioned above the surface of a metallic substrate will 

affect the surface charge neutrality. This would then indicate 

that the surface Green's function changes. In this subsection, we 

wish to explain in greater detail the derivation of a surface 

Green's function, including the effect of an adatom.

By putting m - 0 in Eq (4.3.6), we obtain

ada impa impa ada ada ada impa ada
G = G 4- G (V G +■ T G >+ G T G

on on OX 1 xn on oo in

(4.3.17)

But
impa

G = 0, so that
OX

Eq (4.3.17) reduces to

ada impa impa
G = G + G

on on oo

ada
T G

in
(4.3.18)

Putting n - 0 we get

ada impa impa ada
G - G + G T G

OO OO OO JLO
(4.3.19)

Substituting Eq (4.3.12) in Eq (4.3.19), we find that
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ado 
G

oo

ado
G

impo
oo

o adc z impo
E - V - T G

oo

imp, ado
oo

(4.3.20)

(To be consistent with our notation 
imp, ado

G ).
oo

ado
we choose to replace G by 

oo

imp, ado impo
G is then the new surface Green's function, with Goo

OO
ado

and V
i

given by Eqs (4.2..5) and (4.3.5) respectively.

The number of particles on the surface atom, is now evaluated using 
imp, ado

the appropriate Green's function G , ie
oo

imp,add , iW-adcr
n = * | G (E) dE.

o n ' oo

(4.3.21)

ado ado
It is important to note that

the surface Green's function

have its HF
impo 

potential V
o

in the calculation of G and G
11 oi

impo
G given by F.q (4.2.6), should

oo

(See Eg (4.2.3)) replaced by

imp imp
V ■= V 4-

o o

eff imp,ado
I (n

o

impo x 
n ’

o
(4.3.22)
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4.4 (Jp-Spin Localized (bound) States Outside The Energy-Band.

ef f
From Figs 2(a) and (b), it can be seen that Jad decreases

with increasing occupation of the adatom, ie with increasing

attractive potential on the adatom. This seems to suggest that 
eff ada

J might become zero for some critical values of V and
ad,X i

T. This would imply loss of stability of the ferromagnetic 

ground-state of the adatom. Since, we are considering a strong 

ferromagnet, then this can only happen if a l-spin bound-state 

is formed. (For a strong ferromagnet, there exists no I-spin

extended states in the band). Therefore 
ad t

investigate the range of V , T 

it is necessary to 

for which such a

bound-state can occur. This is the subject of this section.

For a strong ferromagnet, the exchange-splitting A is such 

that only states of t-spin direction lie below the Fermi-level. 

For a spatially inhomogeneous ferromagnet, the t-spin states 

may be of two types: band (extended) state and bound (localized) 

states. The localized states have isolated energy-levels that 

lie outside the bulk spectrum. These isolated energy-levels are 

the poles of the Green's function that describes the system. 

We, therefore, start with the ad-atom Green's function
ad l

G (See Eq (4.3.11)) to show how and when these bound-states 
11

occur. (In the following section, we shall show that the 

stability of ferromagnetic states depends very much on the 

existence of such bound-states ).
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Consider the Green's function of the t-spin states of an

impurity atom above a strong semi-infinite ferromagnetic

substrate, ie

ad t 
G

11

impt
oo

(4.4.1)

(See Eq (4.3.11)).

It can be readily seen that the poles of
ad!

G
ii

outside the

bulk continuum, exist if

ad t z
E - V - T Re

i

impt
G (E) 

oo
(4.4.2)0

for |E| < E*

The fact that the energy spectrum is obtained from the imaginary

part of the Green's function only, (See Sec 1.3.4) suggests that

outside the band Im G = 0. Hence, outside the energy-band
impt imp I

G = Re G in Eq ( 4.4.2).
oo oo

Eq (4.4.2) can be rewritten as

t ad t 2 impt t
.3)E V - T Re G (E = E ). (4.4

b 1 oo b

where
t

E is the
b

energy-level of the t-spin state which lies

outside the t-spin band.
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It is useful to note that since the local Green's function 
imp, ad I

G of the substrate (See Eq (4.3.20)) has also the same
oo

ad t
denominator as G of the adatom, then the surface substrate

11

atom will also have a bound-state with the same atomic 
t

energy-level E given by Eq (4.4.3) .

From Eq (4.3.13) and since there are no I-spin particles, ie
ad I

n -= 0, we deduce
i

adt
V = V

i r
(4.4.4)

To obtain the range of V , T for which such bound-states 
i

exists, Eq (4.4.3) has to be solved numerically.
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4.4.1 'The Occupation-Number of The Up-Spin Bound-State

In general, we might find two, one or no localized states 

depending on the hopping integral T and on the value of V,, 

ie we might have a situation where there is :-

a) One bound-state above the energy-band AND one below it;

b) One bound-state EITHER above OR below the band;

c) NO bound-states.

In the present context, only the bound-state below the band is 

relevant, since the bound-state above the band would be 

unoccupied.

It is clear that in (a) and (b), the number of particles 

inside the band decreases, since some would have to fill the 

energy-band of the bound-state( s). The range of Vx, T for 

which a bound-state below the band occurs is shown in Fig 3.

106



9-
91

-Z
l-

tl

10



In this section, we shall show how the number of particles 

inside a bound-state is calculated and as in the previous 
ad!

section we choose to work with G
xi

ad t
Let n denote the number of particles inside the

bound
energy-band corresponding to the t-spin bound-state of the

ad-atom. As already discussed in Sec 4.4
!

, E 
b

is the atomic

energy-level of the bound-state which can be determined by

Eq (4.4.3). We then have

ad!
n
bound

1
IT

J 

—oo

Im
ad!

G (E - ie)
1 £

dE (4.4.5)

as e - 0.

Substituting (E — ie) in place of E in Eq (4.4.1) and using

Eq (4.4.4), we have

ad t
G (E - ie) - 

xi
E - e - V, - T2 Re imp!

G (E - ie) 
oo

(4.4.6)

2 imp!
E - Vr - T Re Goo (E - ie) + ie 
--------------------------- .------------------------- --------- (4.4.7)

2 imp I 2 2
[E - V - T Re G (E - ie)] + e 

oo

From Eq (4.4.7), we can deduce

ad! e
Im G ( E - ie) - --------- --------------- ---------------------------------------

LL 2 imp! 2
[E - V, - T Re G (E - ie)] J- e? 

oo

(4.4.8)
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0, multiplying Eq (4.4.8) by 1
17 we get a

delta-function of the form

. ad t
Im G (E)

TT XI

2
= 6[E - {Vt + T Re

imp!
G (E))J 

oo
(4.4.9)

Substituting Eq (4.4.9) into Eq (4.4.5), we have

ad t 
n
bound

6[E - {Vr + T2 imp!
Re G (E)}]

oo
dE (4.4.10)

which can be written in the form

ad t I 
n (E ) = 
bound b

6(1)

where

(Re
imp!

G (E)H 
oo j

'E
t

dt. (4.4.11)

imp!
t - E - V. - T2 Re G (E) 

oo
(4.4.12)

Using [s(t) - 1, Eq (4.4.11) reduces to

ad l 
n
bound

1

, <3
1 - T2 -----{Re

dE
impt

G (E)}J
oo [

'e = E
b

(4.4.13)

which gives the occupation number of particles in the t-spin

As (£

f

I

!
bound at E^.
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Similarly, one can obtain the occupation number of particles, 
imp, ad J

n namely, in the I-spin bound-state band of the surface
bound

impurity atom. It follows that by considering the Green’s 
imp, ad I

function G (See Eq 4.3.20) we get
oo

imp, ad I I , imp I
n (E ) = Tz[Re G
bound b oo

ad I I
"bound <Eb) (4.4.14)

ad I
where n is given by Eq (4.4.13).

bound
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4.5 Instability of Magnetic Surface Impurity.

Bergmann (1981,1982) used the methods of anomalous Hall effect 

and of weak localization to investigate the magnetic moments of 

Fe impurities on the surfaces of polyvalent metals and on the 

surface of Pd. He found that Fe impurities on such surfaces 

show stronger tendency toward moment formation than in the bulk.

This can be explained within the Anderson model. A surface 

impurity has fewer neighbours than in the bulk, the impurity 

level is narrower and therefore, the local Stoner condition for 

magnetic moment is easier to satisfy on the surface than in the 

bulk. This already happens for an impurity burried in the 

surface. A tight-binding calculation of the local 

susceptibility of a surface impurity confirms this qualitative 

argument. (See J Mathon ; 1983).

However, there is one important exception to this rule. A bulk 

Fe impurity has a giant moment of about 10gB in Pd, but 

Bergmann found no moment for an Fe adatom on the surface of 

Pd. It has been shown by Bergmann and Mathon (1986) and also 

Gradmann and Bergholz (1984) that measurements on Pd-Ni-Pd and 

Ni-Pd sandwiches indicate that the surface susceptibility of Pd 

is at least as high as in the bulk.

It is only reasonable to expect that an Fe impurity on the 

surface of Pd should also induce a giant moment at least as 

large as in the bulk. One possible explanation for the absence 

of moment is that the ferromagnetic state of a surface impurity 
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is less stable than that in the bulk, ie it becomes unstable and

therefore the total moment reduces. To demonstrate this, we use 

an argument analogous to that of Friedel and Kanamori, 

(See J Friedel ; 1958 - J Kanamori, 1965). We shall show that

the adatom impurity potential for Fe in Pd is strong enough 

in the surface to produce a localized state in the l-spin band, 

but is nonetheless weaker than that in the bulk. To show this, 

we need consider the I-spin local Green's function of the 

adatom, ie

ad I I z impI -i
G — (E — V - T G ) (4.5.1)

1,1 i oo

and show that for some values of the hopping integral T and 

the adatom potential V , the condition for a bound-state, ie

I z impI
E*  — V — T Re G (E*  ) — 0 (4.5.2)

OQ

is satisfied at the bottom of the I-spin band, where

E’ = E + A. (4.5.3)

A is the substrate exchange splitting.

Using Eq (4.2.4), we have

(4.5.4)
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To solve this self-consistent problem, we have used a 

semi-elliptical model density of states for the surface atomic 
ad 

layer. In Fig 4, the dependencies of the adatom occupation nx 

on the adatom potential V are shown for two values of 

adatom/surface hopping T.

Since Bergmann (1981) estimated that Fe impurities in his 

experiment interacted with about six substrate atoms, we chose 

the values of T to be about half of the substrate bandwidth.

This is consistent with the impurity having six nearest 

neighbours rather than twelve, as it would have in the bulk.

'The arrows in Fig 4 indicate where the transition from the

ferromagnetic onto the antiferromagnetic state occurs. It 
ad

happens in our one-band model for n ~ 0.8 - 0.9, depending on
X

the precise value of T. This value is consistent with the

number of holes on a free Fe atom, ie 4. The instability of

the ferromagnetic state of a surface impurity obtained here, 

could be the explanation of Bergmann's results. It is 

interesting to note that such an instability occurs only if the 

occupation of the adatom is large. This would not happen for

Ni adatom and this agrees with unpublished results of Bergmann, 

which show that Ni atoms have a moment on the surface of Pd.

Our results can also be compared with those obtained by Lopez 

and Falicov (1982). However, they only considered the limit 

when the occupation of the adatom is large, ie the case of 

antiferromagnetic coupling. They did not discuss the transition 

between ferro and anti-ferromagnetic state which we have done.
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CONCLUSION

In section 1.1, the 'Itinerant model of ferromagnetism of

transition metals' was introduced, discussed and compared with the

Localized spin model'.

In section 1.2, the correlation effect between electrons was

discussed, and attention was drawn to the complexity of deriving a 

model by which one could then discuss excited states, ie 

spin-waves. Therefore, the simplest one-band Hubbard model was 

adopted. In order to discuss excited states, we first have to 

solve the ground-state problem in the HF-approximation. The 

Hubbard model in the HF-approximation reduces to the Stoner model 

and that was briefly discussed.

In section 1.3, the general concept of Green’s functions was 

introduced and their properties discussed.

In section 2.1, the Heisenberg model is described, since this is 

widely used in determining spin-waves in magnetic insulators. More 

importantly, it became the basis of our work in deriving an 

effective Heisenberg ferromagnet, using the band-theory.

In section 2.2, a review of the properties of the bulk spin-waves 

in a Heisenberg ferromagnet was presented. It was deduced that the 

Transverse susceptibility of such a system was directly related to 

the Green's function of Heisenberg Hamiltonian.
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In section 2.3, the Transverse Dynamical susceptibility of an 

Itinerant ferromagnet was presented, whose poles give the spin-wave 

energies in the bulk of such ferromagnets. It was shown that these 

poles lead to two types of excitation energies s the Stoner 

energies which form a continuum and isolated energies known as the 

bulk spin-wave energies.

In section 2.4, the results of the previous section 2.2 and 2.3 

were used to give some physical insight into the properties of 

spin-waves in Itinerant ferromagnet. This was achieved by showing 

that the Itinerant spin-wave Green's function in the Wannier 

representation had the same form- as the Heisenberg Green's 

function. When compared, the exchange integrals were found to be 

proportional to the transverse static unenhanced susceptibility in 

the HF approximation of the Itinerant ferromagnet. Thus, a simple 

physical interpretation could be given to such susceptibilities. 

The bulk effective exchange integrals were computed from the 

one-electron HF-propagators. This procedure is referred to as 

'mapping an Itinerant ferromagnet onto an effective Heisenberg 

one’, where the exchange integrals were determined by using the 

one-band Hubbard model. A further advantage of such an effective 

J is that we could use the results of Wolfram and Callaway (1963) 

to interpret the effect of an isolated impurity on the spin-waves 

in the bulk of an Itinerant ferromagnet.

In section 2.5, it was proved that the effective exchange integrals 

were of appreciable size only for distances of the order of 

electron hopping. The one-band Hubbard model we have used included 
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only nearest neighbouring electron interactions. It was then 

argued that only the effective exchange integrals of nearest 

neighour coupling were important.

In section 3.1, surface spin-waves were introduced. It was pointed 

out that the surface magnetization at finite temperatures in both 

metallic and non-metallie ferromagnets is determined by such 

spin-waves. The aim of this chapter was to use the results of 

Chapter 2, in order to study the spin-wave problems for a 

semi-infinite metallic ferromagnet with impurities on its 

surface-plane.

In section 3.2, a brief account was given of the results obtained 

by De Wames and Wolfram (1969), on the effect of surface on 

non-metallic ferromagnets. It was shown that the effect of surface 

can be described in two stages. In the first stage, all bulk

exchange integrals are set equal to zero across the surface. This 

was referred to as the 'Geometric effect of the surface.’ In the 

second stage, the surface exchange was renormalized by computing 

the exchange integrals in the surface plane and in the plane 

immediately adjacent to it. These were determined by calculating 

the perturbation matrix from a Dyson equation.

In section 3.3, the surface spin-waves problem for a semi-infinite 

metallic ferromagnet was formulated by adopting the same approach 

for an equivalent problem for an insulator, (discused in the 

previous section). Our approach is a substantial improvement on
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the CIBM of Griffin and Gumbs (1976). This is due to two main 

factors: firstly, we worked in real-space where the surface 

perturbation is of short-range, whereas the surface perturbation in 

CIBM is of long-range since they worked in the k-space. Secondly, 

our choice of representation, enabled us to include exactly, the 

surface renormalization of the J . These were also neglected in 

CIBM.

The general Dyson equation for spin-wave Green's functions obtained 

by Al-Asadi (1980) was adopted in deriving the enhanced surface 

susceptibility, where the surface perturbation matrix wltin is 

truncated to a manageable size. It was shown that wltin was the 

difference between the unenhanced surface and the bulk 

susceptibility. Using the results of section 2.5, we made the 

observation that the surface perturbation could be regarded as a 

renormalization of the bulk effective exchange integrals. The 

surface effective exchange integrals were computed using the 

results of Mathon (1983) and thus x° was determined by the 

one-electron surface propagators, moving in a spin-dependent HF 

potential. The mapping of the surface Itinerant problem onto the 

surface Heisenberg one was proved in the limit A >> Ep. In this 

limit, it was shown that the matrix elements of the surface 

perturbation of a metallic ferromagnet followed the same format as 

that of a non-metallic one.

In section 3.4, based on the results of section 3.3, it was shown

that the value of the normalized surface effective exchange

integral <s. deduced from wit;in was quite close to the true
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itinerant which is the ratio of the surface effective exchange 
eff

integral and its bulk value.

In section 4.1, the general formulation of Wolfram (1969) for a 

bulk impurity in a metal, was extended to magnetic impurities in 

and above the surface of metallic ferromagnets. Each has been 

looked at in detail in sections 4.2 and 4.3.

In section 4.2, the work involved in computing the surface impurity 

effective exchange integral was shown. The same approach as in 

Chapter 3 was adopted. The general theory was applied to a Ni 

surface and the surface effective exchange integrals of a Ni 

surface were computed (Fig 1 (a)). Also, an impurity atom was then 

buried in that surface and surface impurity effective exchange 

integrals were computed. (Fig 2 (a)).

In section 4.3, an impurity situated above a metallic substrate was 

discussed. One of the main ingredients of the problem is that the 

presence of such an atom influences the surface charge density 

strongly (at least) in its immediate vicinity. This problem was 

overcome by introducing an adjustable potential for the surface 

atom. This was interpreted as having an impurity atom in the 

surface plane, which lead to a self-consistent HF problem which was 

then solved. Surfaces of Ni and Pd were considered and modelled by 

a single degenerate band. The adatom effective exchange integrals 

were then computed for the parameters appropriate to Ni and Pd. 

These are shown in Figs 2(a) and (b). It is easy to see that with 

increasing attractive potential on the adatom, the integrals
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decrease (in both cases). Such behaviour suggested that they

might become zero for some critical value of adatom potential.

This would imply loss of stability of the ferromagnetic

ground-state of the adatom.

In section 4.4, this problem was investigated further. A strong 

ferromagnet was considered where there exists no I-spin extended 

states in the band. We then found the range of adatom HF potential 

V and hopping integral T, where the l-spin bound-state could 

occur. However, in doing so, we discovered an t-spin bound-state 

below the band. Fig 3 shows the range of V, ,T for which such a 

bound-state occurs. The occupation number and energy level at 

which an t-spin bound state occurred were computed by deriving the 

appropriate adatom Green’s function.

In section 4.5, the application of the general theory for surface 

impurity described in Sec 4.4, to Fe impurity on a Pd substrate 

(which was investigated by Bergmann (1980)), was discussed. Using 

the appropriate values of parameters for Fe on Pd, we found that 

I-spin bound-state does occur. This means that for such a system, 

the ferromagnetic coupling becomes unstable. This is our 

explanation for the absence of moment he had observed.
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APPENDIX A;

Derivation of D

For a cubic crystal ; the excitation energy is h co - Dq2, 

where q is the magnitude of the wave-vector and D, we are 

about to derive.

We start with the ’secular equation*  :

*

ie £ 
k

and

A — — I (n - n ) 
N eff l I

1
I 
eff

(Al)
£ — + A — *hco
k+g k

*
where £

k
denotes a sum over k shuch that

! 
e < e 
k F

I
€ >6
k+g F

(A2)
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is the change in magnetic energy ; I is the interaction energy

of two electrons of opposite spin sitting on the same atomic

site.

Thus,

* 1
E ______________________ = E
k G - g 4 A - hu) k

k+g k

n - n
kt k4gl

(A3)
G - G 4 A - tiW 
k4g k

n
kt

= E -------------------------------- - E
k e - g 4 A - hco k 

k4g k

n
k4gi

(A4)
€. — €. 4 A - hu)
k4g k

Let k + g -* k’

Therefore,

n
k+gi

n 
k*  1

k g  - G 4- A - hu) k’ g  
k'

— G 4- A - tied
k+g k k’-g

n 
k' I

= E-------------- - --------------------
k’ G — G + A - ft GJ

k • k’+g 

( for g
k ’ -g -(k’-g)

and

n 
kl

= £--------------------Z----------------------

k g - g + A - Tkw 
k k+g

(A5)

122



Using Eqs (A4) and (A5) in Eq (Al), we have

n
-1 . kt

I « 1 £--------------------------------
eff Nkg - 4 A - Tiw

k4g k

n 
ki---------------- ----------------  (A6)

<S — <5 4 A — hw
k k+q

1
Now consider —------------------- ------- -—

<5 - € 4- A - ti(J
k4g k

For a given small g ( - small w) the above expression can

be expanded in powers of

(e - e + A - tiw) 1
k 4 g k

» A ^[l - <ek + g ■ ~ <ek -I- g - - *“>
.. ]

A A2

2

1 + g - ek - +'“) <€k + g " ek - *“>
(A7)

A
A2 A3

Similarly,

( €k “ ek 4 g + A >

1
A

€k 4 g " 6k +
4 - ------- --------- - --------

A2

2
( + 4 hu))

4 ---- --------------- - ------------ 4 (A8)

123



4
We shall neglect the terms of 0(~)

A

Using Eq (A7), we can write

"kt 1
E nkt 
k "

L
is ek + q ~ ek + A_jT1W A

“ 7z E nkt<6k + g " ek> + Tz £ nkl
A k “ “ “ A k “

+ A3 k (<S£ + 3 “ ' 

+ * 2hco £ nk| <6k + q ^k)

(since co is small)

(since q is small)

Dqz n. + ~ n
A2 ' A

qz £ nkI V2 6k
6A2 k “

(A9)
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And similarly

nkl
E ------------------------------------ \ Dqz rij + - n,

A2 A

+ qz E V2^
6AZ k

+ — q2 E nkl (V^)2 .
3A3 k

(A10)

Substituting Eqs (A9) and (A1O) into Eq (A6), we get

-x
N I 

eff
-nJ + (nt - nJ

" q2 £<nkt + nkl> v* 6k
6A2 k ~

“ q2 E (nk| - nk|) (V <=k)2
3A3 k -

(All)

Rewritting Eq (All), we have

—x
N I

eff
Dq2

Thus,

1
+ —

6A

nkt nki)
(V ek)2]

(A12)

D «------------------
3(n, -nJ

<nk! + nkl) z
t-------------------------- V 6k -

<nk1 - nkl> (v €k)2]

(A13)

A

1
E 
k A2
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APPENDIX B;

Green’s Function of the Infinite Crystal

The Green’s function of the t-spin particles for the 

crystal, in the bloch-representation, is given by

infinite

G'(k) 1

E - E*

where

-T £ e
R

iX.R

(Bl)

(82)

Thus, Eq (Bl) can be written as

g ’ .(B) eiK »B
E - Ek

(B3)

in the Wannier representation.

Using the translational symmetry of the infinite crystal,

Eq (B3) can be written in the form

ik.R
T E e

t
G 
ij

(R)
1 1 £ 8

TZ N k E - E*
(B4)
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Substituting Eq (B2) into Eq (B4), we have

R

T E ei-‘-
1 1 R

TZ N
L 
k E + T E ei—

(B5)

which is equivalent to

E + T E e1-*-  - E

1 1 -= —- — E -------------------------------
TZ N k e + T E e^*-

R

(B6)

Eq (B6) can now be simplified into

t 1 E 1
G (R) = — - — E -----------
ij TZ TZ k E - Ek

(B7)

1 E I
— — " ----- G. (R = 0) (B8)

TZ TZ ij

It is easy to see that

t E !
Im G (R) -=----- Im G (R = 0).

ij tz  ij
(89)

. (R)
13

127



APPENDIX C;

Unperturbed Bulk Ferromagnet

Consider an unenhanced (non-interacting particles) bulk 

(unperturbed and infinite) ferromagnet. We define the standard 

susceptibility of such a ferromagnet by

r(g,o» = i £
N K

fkt fk + gl

+ ql Ekt u
(Cl)

= 1)

where f^ is the Fermi-function given by Eq (1.2.14) ; E^ is 

the energy in a-spin band and both f^ and are such

that

Eko < e f

Ekc > EF

The sum over k and g are over the first Brillouin zone.

The matrix r(g,G>) in the Wannier-representation is defined by

1
N

ig.(Rt - R-j) E e 1 J
g

F. ,(w) r(g,w) (C2)
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which is diagonal in the Bloch-representation, ie

(C3)

Consider now an enhanced (interacting particles) bulk 

ferromagnet.

We define the susceptibility of such a ferromagnet in terms of 

the unenhanced susceptibility r.

Thus,

X - T + U (C4)

where U is the intra-atomic exchange integral between the 

electrons.

Using Eq (C4), we can write the Dyson equation

x -= r + r u x (C5)

Therefore, in the operator form, we have

X-~------- (C6)
r - ur
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The matrix-element of x in the Wannier-representation is given

by

X. .(<•>) e x
I - U r(q,w)

(C7)1
N

E
S

which is diagonal in the Bloch-representation;

Xqq.(w)
r(g,o)

I - u r(q,a)
(C8)
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APPENDIX D:

The Diagonal and Off-diagonal Green's Functions of a Pure

Semi-infinite Ferromagnet

(I) The Diagonal Surface Green's Function:

The Green's function for the semi-infinite crystal with a HF 
ct

perturbation VQ in the surface plane can be obtained using the

Dyson equation,

-OCT OCT 'oct ct -oc t

G = G + G Vo G (DI)

whose matrix-element is given by

-oct oct OCT CT -OCT
G = G 4- E E G V G (02)

nm nm p q np pq qm

which will reduce to

-OCT OCT OCT CT — OCT
G - G 4- G V G

nm nm no o om
(D3)

Since

otherwise.

for p = q - 0 ie in the surface
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Putting n - 0 in Eq (D3), we have

—OCT OCT OCT CT -OCT
G G + G V G

om om oo o om
(D4)

which gives

Off

-ocr om
Gom “

ocr a
1 - G V

oo o

(D5)

Substituting Eq (D5) into Eq (D3), we have

—OCT OCT
G — G 

nm nm

OCT CT OCT
G V G

no o om

OCT CT
1 - G V

oo o

(D6)

This is the general matrix-element of a semi-infinite Green’s 

function, where

OCT bCT bCT
G « G ( |n - m| ) - G (n + m) 

nm
(D7)

and

eff oct bcr
I (n - n ) (D8)
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If we let R
“LI

be the position-vector of surface atoms, then

for the atom at the origin, ie R|( = (0,0), we have from

Eq (D6)

-off
G

oo

where

(D9)

OCT
G is approximated further by 

oo

oo

bcr
G (0) (DIO)

bcr 
neglecting the second nearest-neighbour matrix-element G (2).

To be consistent with the notation used in the earlier part of

the work, we have chosen to use n 0. However, for them

Eq (D7) to be valid, one must use n = m - 1.

G^CO) in the Wannier representation is given by

bcr
G (0) (Dll)

where

1 (D12)
CT

E - E + i 8 
k

is the same function in the mixed Bloch-Wannier representation, 

and
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» 2T(cos a + cos ky a 4- cos k^ a) (013)

Changing the summation over kj_ into an integral over the first

Brillouin Zone according to

(014)

We find that Eq (D12) becomes

bcr
0

k
(015)

1

where

= 2T( cos kj^a + cos *ya) (016)

It is then easily shown that in the limit 6-0

(0) ASS (017)

where

1
2

(4T2 - w2 )

/
\ 1

, ,2
\ sign(w) ( io2 - 4TZ )

for energies inside the band.

for energies outside the band.

(018)
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with

(019)

1980.
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(II) The Off-diagonal Surface Green's Function:

Consider the surface atom at the origin whose Green’s function 

was derived in Sec (I) and its next nearest neighbouring atom 

also in the surface plane. The position vector of the latter is 

then given by

R = (o a) (D20)

We refer to the Green’s function of this atom as
-oa

off-diagonal surface Green's function and denote it by G
Ol

Putting n = 0 and m •= 1 in Eq (D6), we find an expresssion
-oa

for G
01

-oa
G

Ol

oa
Goi

oa a
1 - G V

oo o

(D21)

OCT 0(7
where G is given by Eq (DIO) and G in the Wannier

oo 01

representation can be written as

oa oc
G ( = G (R. . )) =

Ol OO 1 *

1 oa ik
X E G (Ki.:) e
Nl 1 -II

oo 1 1
!

1 oa
X

«ll
E G (^1 1 ) e

1 i oo ' 1

.kya

(D22 )

oa
G (k| | ) cos k a 

oo ' '

is an even function).

(D23 )

oa
(Since G (k. . ) ' OOV - I I '
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By symmetry, we have cos k^a - cos k^a, so that

cos kya

Putting 

obtain

OCT
G

ox

X
2

(024)

X = k^, Y " ^ya an<^ usin9 EQ (024) in Eq (D23), we

1 1 E
off

G (ki | ) (cos X + cos Y)
2 Nll1 3S| i

oo • ’
(D25 )
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