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Abstract
Perceptual learning refers to an improvement in perceptual abilities with training. Neural signatures of visual perceptual 
learning have been demonstrated mostly in mid- and high-level cortical areas, while changes in early sensory cortex were 
often more limited. We recorded continuously from multiple neuronal clusters in area V1 while macaque monkeys learned 
a fine contrast categorization task. Monkeys performed the contrast discrimination task initially when a constant-contrast 
sample stimulus was followed by a test stimulus of variable contrast, whereby they had to indicate whether the test was of 
lower or higher contrast than the sample. This was followed by sessions where we employed stimulus roving; i.e. the contrast 
of the sample stimulus varied from trial to trial. Finally, we trained animals, under ‘stimulus roving-with-flanker’ conditions, 
where the test stimuli to be discriminated were flanked by ‘flanking stimuli’. Perceptual discrimination abilities improved 
under non-roving conditions and under roving-with-flanker conditions as training progressed. Neuronal discrimination abili-
ties improved with training mostly under non-roving conditions, but the effect was modest and limited to the most difficult 
contrast. Choice probabilities, quantifying how well neural activity is correlated with choice, equally increased with training 
during non-roving, but not during either of the roving conditions (with and without flankers). Noise correlations changed 
with training in both monkeys, but the changes were not consistent between monkeys. In one monkey, noise correlations 
decreased with training for non-roving and both roving conditions. In the other monkey, noise correlations changed for some 
conditions, but lacked a systematic pattern. Thus, while perceptual learning occurred under non-roving and roving-with-
flanker conditions, the changes in neural activity in V1 were overall modest and were essentially absent under the different 
roving conditions.
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Introduction

Perceptual learning describes the phenomenon of improved 
sensory discrimination abilities that occur with training. 
Associated perceptual improvements in visual discrimination 
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tasks correlate with neuronal activity and tuning changes in 
subcortical and cortical areas (Adab & Vogels, 2011; Adab 
et al., 2014; Crist et al., 2001; Freedman & Assad, 2006; 
Ghose et al., 2002; Ito et al., 1998; Law & Gold, 2008; 
Li et al., 2004; Raiguel et al., 2006; Sanayei et al., 2018; 
Schoups et al., 2001; Thiele, 2004; Yan et al., 2014; Yang 
& Maunsell, 2004; Yu et al., 2016). However, the extent of 
changes at different levels of the processing hierarchy (e.g. 
Ghose et al., 2002; Gu et al., 2011; Law & Gold, 2008; 
Schoups et al., 2001; Uka et al., 2012) and the underlying 
mechanisms (Dosher & Lu, 1998, 1999; Lu & Dosher, 1998; 
Lu et al., 2010) remain under debate. Most prior studies have 
performed single-electrode recordings, comparing pre-train-
ing activity to post-training activity or activity from trained 
to untrained animals or hemispheres (e.g. Adab & Vogels, 
2011; Adab et al., 2014; Raiguel et al., 2006; Yang & Maun-
sell, 2004). A few studies have analysed striate cortex (V1) 
activity using multiple chronically implanted electrodes or 
two-photon imaging during learning (Astorga et al., 2022; 
Schumacher et al., 2022). Often, it was reported that training 
improves coding abilities of neuronal populations by signal 
enhancement, while reduction in neuronal (correlated) noise 
made no contribution (Yan et al., 2014) (but see Cheng et al., 
2023; Sanayei et al., 2018).

We previously investigated population coding mecha-
nisms of perceptual learning in a mid-level visual area, 
where we recorded from chronically implanted electrodes 
in macaque area V4, while monkeys performed a two-alter-
native forced choice contrast discrimination task (Sanayei 
et al., 2018). In V4, perceptual learning increased informa-
tion encoding in individual neurons. Additionally, it was 
accompanied by a reduction in noise correlations which fur-
ther increased coding abilities of V4 neuronal populations.

Here, we used the same monkeys and performed the same 
non-roving task during V1 recordings to allow for a direct 
comparison between the effects in V1 and those previously 
seen in V4 (with the caveat that receptive field locations 
between the V1 and V4 recording sites differed and that 
sessions were consecutive, not simultaneous). It neverthe-
less allows us to compare the strength of training effects on 
neural activity between cortical areas. While the consecutive 
measurements do not allow for a direct test of the reverse 
hierarchy theory of perceptual learning (RHT Ahissar & 
Hochstein, 2004; Hochstein & Ahissar, 2002), RHT predicts 
that learning effects in area V4 would be stronger than in 
V1 (Ahissar & Hochstein, 2004), that improvement of fine 
contrast discrimination abilities should be location-specific, 
and that transfer between locations should be larger for easy 
discriminations.

In addition to non-roving conditions, we performed 
recordings under roving-without- and roving-with-
flanker conditions. These were added for two reasons. (1) 
Human studies have shown that perceptual learning under 

roving-without-flanker conditions is slower and more limited 
(Adini et al., 2004; Kuai et al., 2005; Yu et al., 2004; Zhang 
et al., 2008) than under non-roving conditions (Yu et al., 
2004). We wanted to explore whether similar effects occur 
in macaques, with the benefit of being able to obtain thou-
sands of (training) trials from single individuals. (2) Flanker 
stimuli were used to explore the role of context-dependent 
neural plasticity in perception and learning. The addition 
of flanker stimuli may change the balance of excitation and 
inhibition in a local network and therefore increase plasticity 
and perceptual learning in adults (Adini et al., 2004; Polat & 
Sagi, 1993; Tsodyks et al., 2004) (but see Yu et al., 2004). A 
human study found that while training without flankers pro-
duced no significant improvement on contrast discrimination 
thresholds, the presence of flanker stimuli yielded threshold 
reductions of ~ 50% (Adini et al., 2002).

We found that perceptual learning occurred under non-
roving and roving-with-flanker conditions (although perfor-
mance under roving-with-flanker conditions never exceeded 
non-roving performance); i.e. performance improved with 
training, but were largely absent under roving-without-
flanker conditions. Changes in neural activity in V1 were 
overall modest and were mostly restricted to non-roving-
based perceptual learning.

Methods

Most of the methods described have been published previ-
ously. To preserve as much of the method details as possi-
ble, we duplicate most of the relevant text from the original 
papers for reference purposes (Chen et al., 2013, 2014; San-
ayei et al., 2018).

Data Collection

All procedures were approved by the Newcastle Univer-
sity Animal Welfare Ethical Review Board (AWERB) and 
carried out in accordance with the European Communities 
Council Directive RL 2010/63/EC, the US National Insti-
tutes of Health Guidelines for the Care and Use of Animals 
for Experimental Procedures, and the UK Animals Scien-
tific Procedures Act. Two male macaque monkeys (5 and 
14 years of age at the start of the study) were used.

Head Post Implantation

An initial surgical operation was performed under sterile 
conditions, in which a custom-made head post (PEEK, 
Tecapeek) was embedded into a dental acrylic head stage. 
Details of surgical procedures and post-operative care have 
been published elsewhere (Thiele et al., 2006).
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General Training

Initially, monkeys were trained to perform a delayed match-
to-sample task, in which they compared the colour of a circle 
stimulus with that of succeeding circle stimuli, while main-
taining fixation on a central target. When a target stimu-
lus appeared (a circle of a matching colour), subjects were 
required to release a touch bar in order to receive a fluid 
reward. Fluid control was within levels which do not nega-
tively affect physiological or psychological welfare (Gray 
et al., 2016). Eye position was monitored using an infrared 
video tracking system (Dalsa CCD camera [model SIM-
0002] and eye-tracking software from Thomas Recording 
ET-49 [version 1.2.8]). This initial training allowed subjects 
to familiarise themselves with the experimental setup and 
the timing structure of the task; this task was otherwise unre-
lated to the contrast discrimination experiment described 
below.

Electrode Array Implantation

For surgical preparation, animals were sedated with keta-
mine. During surgery, anaesthesia and analgesia were main-
tained by sevoflurane (gaseous, 1–3%) and alfentanil (intra-
venous 156 μg/kg/h), respectively. Blood pressure, rectal 
temperature, blood oxygen saturation, and end tidal CO2 
were measured continuously. After the surgery, analgesic 
(Metacam 0.1/kg) and prophylactic antibiotics (Ceporex 
0.5 ml/kg) were given for 3 to 5 days.

During surgery, the animals were placed in a stereotaxic 
head holder and the skull overlying the occipital and pos-
terior temporal cortices was exposed. A craniotomy was 
made to remove the bone overlying V1, V2, and dorsal 
V4, using a pneumatic drill. The bone was kept in sterile 
0.9% NaCl for refitting at the end of the surgery. The dura 
was opened to allow access to V1 and V4. Microelectrode 
chronic Utah arrays, attached to a CerePort™ base (Black-
rock® Microsystems, connection dimensions of 16.5 mm 
[height] × 19 mm [base diameter] × 11 mm [body diameter]), 
were implanted under sterile conditions in the cortex, using 
a Blackrock microarray inserter. In monkey 1, one 5 × 5 grid 
of microelectrodes was implanted into area V1, two 4 × 5 
grids of microelectrodes were implanted in area V4, and 
one 5 × 5 grid of microelectrodes was implanted into area 
7a; in monkey 2, a 5 × 5 grid was implanted in V1 and V4 
each. Electrodes were 1 mm in length, and their tips reached 
depths of up to 1 mm. Wire bundles were held in place with 
biologically compatible glue (histoacrylic), and the connec-
tor (CerePort™) was secured to the skull with titanium bone 
screws. Following array insertion, the dura was re-sutured 
over the array, the exposed area was thinly covered with 
sterile Tisseel Lyo two-component fibrin sealant (Baxter 
Healthcare), and the bone flap was reinserted into the skull 

(before the Tisseel had fully set). The bone flap was cross 
bridged to the surrounding skull using Synthes orbital plate 
fragments and Synthes titanium bone screws.

The V1 electrode arrays were inserted under visual guid-
ance into V1. The recording locations were confirmed to be 
in area V1 in both animals via visual inspection immediately 
post-mortem and by analysis of post-mortem Nissl-stained 
brain sections in monkey 1. In and around the V1 and V4 
implant locations, clear signs of gliosis were found in the 
Nissl stain.

Apparatus

Stimulus presentation was controlled using CORTEX soft-
ware (Laboratory of Neuropsychology, NIMH, http:// dally. 
nimh. nih. gov/ index. html) on a computer with an Intel® 
Core™ i3-540 processor. Stimuli were displayed at a view-
ing distance of 0.54 m, on a 25″ Sony Trinitron CRT monitor 
with a resolution of 1280 by 1024 pixels, yielding a resolu-
tion of 31.5 pixels/degree of visual angle (dva). The monitor 
refresh rate was 85 Hz for monkey 1 and 75 Hz for monkey 
2. The output of the red and green guns was combined using 
a Pelli-Zhang video attenuator, yielding a luminance resolu-
tion of 12 bits/pixel, allowing the presentation of contrasts 
that were well below contrast discrimination thresholds 
(Pelli & Zhang, 1991). A gamma correction was used to 
linearize the monitor output.

Data Acquisition and Processing

Raw data were acquired at a sampling frequency of 
32,556 Hz with a 24-bit analogue-to-digital converter, with 
minimum and maximum input ranges of 11 and 136,986 
microvolts respectively (pre-set by Neuralynx, Inc.), a DMA 
buffer count of 128, and a DMA buffer size of 10 ms, using 
a 64-channel Digital Lynx 16SX Data Acquisition System 
(Neuralynx, Inc.). Digital referencing of voltage signals was 
performed prior to the recording of raw data, using com-
mercially provided Cheetah 5 Data Acquisition Software v. 
5.4.0 (Neuralynx, Inc.), to yield good signal-to-noise ratios 
for each channel.

Following each recording session, the raw data were 
processed offline using both commercial (Neuralynx, Inc.) 
and custom-written (Matlab, MathWorks) software. Signals 
were extracted using Cheetah 5 Data Acquisition Software. 
The sampling frequency remained the same (32,556 Hz), 
while the bandpass filter frequency and input range settings 
were individually tailored to each channel. Raw data were 
bandpass filtered with a low-cut frequency of 600 Hz and a 
high-cut frequency of 4000 Hz and saved at 16-bit resolu-
tion. This stage of processing generated ‘continuous MUA’ 
data, which was further processed to yield ‘spiking MUA’.

http://dally.nimh.nih.gov/index.html
http://dally.nimh.nih.gov/index.html
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Spiking Multi‑unit Activity (Spiking MUA)

An iterative procedure was carried out on the continuous 
MUA signal for each channel, in which the threshold for 
spike extraction was varied according to a staircase proce-
dure, in order to yield levels of spontaneous spiking MUA 
(before the onset of the sample stimulus) that were similar 
(within 1% of a ‘target’ level) across sessions. To set the tar-
get level for each channel, the threshold was initially selected 
manually for all channels and sessions, and a ‘representative’ 
session was selected for each channel (i.e. a session with an 
‘average’ signal-to-noise ratio [see below for description] 
for that channel). Hence, the extraction of spiking MUA was 
performed such that spontaneous activity levels were stand-
ardized across recording sessions. As spontaneous activity 
levels were deliberately kept uniform across training days, 
we did (or could) not study whether spontaneous activity 
levels changed during training. What this method did allow, 
however, was the rigorous comparison of levels of stimulus-
evoked activity across the training period, relative to spon-
taneous levels.

Receptive Field Characterization

Receptive fields (RFs) were mapped using a reverse cor-
relation procedure (Gieselmann & Thiele, 2008), for each 

recording channel prior to training and recording. Addi-
tionally, orientation and spatial frequency (SF) tuning 
were determined using a reverse correlation procedure 
(Gieselmann & Thiele, 2008). RF locations (see supple-
mentary Figure S1) and tuning preferences were highly con-
sistent across the training period as determined by regular 
remapping while learning occurred (every 3–5 days).

Behavioural Task

Each monkey was trained in a contrast discrimination task in 
which he differentiated between the relative contrasts of two 
successively presented stationary Gabor gratings (Fig. 1). 
Monkeys were initially trained on a very basic version of the 
contrast discrimination task in which stimuli were presented 
at a location in the upper visual field, i.e. at a substantial 
distance from the receptive fields covered by our electrodes 
which were located in the lower left visual field (for details 
see below). When the animal understood the main concept 
of the task in the upper visual field, the stimuli were shifted 
to the lower left visual field.

Before we performed the perceptual learning task 
described here, we initially assessed perceptual learning 
at a more peripheral location that covered the recording 
grids implanted in area V4 (Sanayei et al., 2018) of both 
monkeys. In that V4 study, the stimuli (Gabor gratings, 

Fig. 1  Contrast discrimination task. Monkeys fixated upon a central 
spot, whereafter a sinusoidal grating sample stimulus of 30% con-
trast (20, 30, 40% for roving without and with flanker conditions) was 
presented for 512  ms, followed by a 512-ms interval. Thereafter, a 
sinusoidal grating test stimulus (of higher or lower contrast than the 
sample) was presented for 512 ms, followed by a second interval of 
512 ms. Finally, two target stimuli appeared to the left and right of 

the location at which the sample and test had previously been pre-
sented; the fixation spot changed colour from black to grey, signalling 
that the animals were allowed to make a saccade to their chosen tar-
get. If the test was of a higher contrast than the sample, the monkeys 
had to saccade to the white target; otherwise, if the test stimulus was 
of a lower contrast, they had to saccade to the black target
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σ = 4°, SF = 2 cycles per degree [cyc/°], orientation = 90°, 
i.e. vertical) were presented at an azimuth of – 5° and an 
elevation of – 16° in both monkeys (left and below relative 
to the fixation point). Relevant behavioural and neuronal 
data have been reported previously (Chen et al., 2013; 
Sanayei et al., 2018).

After having concluded the V4 study, we started the non-
roving V1 study with the full range of contrasts, 4 days later 
in monkey 1 and 1 day later (i.e. the next day) in monkey 2. 
Behavioural and neuronal data reported in the current manu-
script were obtained with stimuli located more centrally and 
using sinusoidal rather than Gabor gratings. In monkey 1, 
the stimuli were presented in the lower left quadrant at an 
eccentricity of – 3.5° azimuth and – 3° elevation (stimulus 
diameter 3°, SF 2 cyc/°, [4 cyc/° during roving tasks]). In 
monkey 2, stimuli were at an eccentricity of – 0.7° azimuth 
and – 1.3° elevation (stimulus diameter 0.75°, SF 4 cyc/°). 
The stimulus locations were matched to the receptive field 
locations (supplementary Figure S1) covered by the Utah 
array electrodes.

Critically, the stimulus locations covered in the first (V4) 
and in this (V1) study had no overlap, and the minimal bor-
der distance between the stimuli that covered V4 RFs and 
those that covered V1 RFs was 3.58° in monkey 1 and 7.94° 
in monkey 2.

We initially assessed perceptual learning using a fixed 
sample contrast of 30% Michelson contrast and 14 different 
test contrasts (these were: 5, 10, 15, 20, 22, 25, 28, 32, 35, 
40, 45, 50, 60, and 90% Michelson contrast). This is referred 
to as the non-roving condition. These sessions were followed 
by sessions where we employed stimulus roving, i.e. where 
the sample contrast could be 20, 30, or 40% Michelson con-
trast on any given trial (Chen et al., 2014). Each sample 
stimulus was followed by a test stimulus with a contrast cho-
sen from 12 possible contrasts. For a sample of 20% contrast, 
the possible test contrasts were 5, 10, 12, 15, 18, 22, 25, 28, 
35, 45, 60, or 90% Michelson contrast. For a sample of 30%, 
the possible test contrasts were 5, 10, 15, 22, 25, 28, 32, 35, 
38, 45, 60, or 90% Michelson contrast. For a sample of 40%, 
the possible test contrasts were 5, 10, 15, 25, 32, 35, 38, 42, 
45, 50, 60, or 90% Michelson contrast.

After perceptual learning under roving-without-flanker 
conditions had been assessed, we determined how perfor-
mance and perceptual learning were affected by adding 
flanking stimuli. Here, the centre grating stimuli were iden-
tical to those used in the roving-without-flanker conditions 
(described above), but additional gratings were displayed 
collinearly, immediately above and below the vertically ori-
ented sample and test stimuli, forming a column of three 
gratings, positioned edge to edge. The flanker stimuli had the 
same size, SF, and orientation as the sample and test stimuli. 
The contrast of the flankers was constant at 30% Michelson 
contrast (Chen et al., 2014).

Each trial was initiated by monkeys touching a touch bar 
and fixating a fixation spot (diameter = 0.1°, fixation win-
dow = 2° by 2°) presented on a grey background (52.17 cd/
m2). Five hundred thirty-nine millisecond after fixation 
onset, a vertically oriented sinusoidal stimulus centred at 
the V1 receptive field coordinates was presented for 512 ms 
(this was flanked by above mentioned flankers in the flanker 
experiment). The sample contrast was as described above. 
This was followed by a 512-ms inter-stimulus interval (with 
only the fixation point present). Thereafter, a test stimulus 
was presented for 512 ms. The test was identical in size and 
orientation to the sample stimulus, but differed in contrast 
(chosen pseudo-randomly from 14 different contrasts for the 
non-roving conditions and from 12 different contrasts for the 
different roving conditions, as described above). After test 
offset, another blank period of 512 ms with only the fixation 
point occurred, followed by the appearance of two target 
squares (one black, one white, size = 0.5°) located to the left 
and right of the previous sample and test location, which 
also was the cue for the monkey to indicate whether the test 
had a higher or lower contrast than the sample stimulus. The 
monkeys had to make a saccade to the white square (within 
a 2° by 2° window) if the test stimulus had a higher contrast 
than the sample stimulus and to the black square if the test 
stimulus had a lower contrast than the sample. A correct sac-
cade resulted in a fluid reward, while an incorrect saccade 
resulted in no reward and a 0.2-s timeout. If the monkey 
broke fixation before saccade cue onset or failed to respond 
within 1000 ms of the onset of the saccade cue, the trial 
was terminated immediately, followed by a 0.2-s timeout. In 
order to motivate subjects to complete each trial and discour-
age them from guessing on difficult trials, stimulus drum-
ming was implemented using the ‘repetition with delay’ 
function on CORTEX following error trials, i.e. enforcing 
the repeated presentation of a stimulus condition, until a 
minimum number of correct trials was accrued. Recording 
began simultaneously with the first day of training.

Spontaneous Activity Level Matching Across 
Sessions

We employed procedures to achieve approximately con-
stant spontaneous activity across session as previously 
described and justified in detail in Sanayei et al. (2018). 
Briefly, we implemented an automated threshold for spike 
extraction using a Matlab routine, where we selected a 
target level of spontaneous activity (used as a refer-
ence across sessions). This was based on a session with 
‘medium’ signal quality (i.e. with an ‘average’ SNR (see 
below) compared to other sessions) and with satisfactory 
stimulus-induced responses. The level of spontaneous 
activity obtained during this session was taken as the ‘tar-
get’ level of spontaneous activity across all sessions (rt), 
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for that particular channel. We then employed an iterative 
staircase procedure to arrive (for each session and channel) 
at a level of spontaneous activity (rs) that lay within 1% 
of the target value.

Signal‑to‑Noise Ratio Calculation

The signal-to-noise ratio (SNR) was calculated for each 
channel on each day. The SNR was calculated as

where by the mean stimulus activity was obtained from 30 to 
542 ms after test onset, while the mean spontaneous activity 
was obtained during the 512-ms period before test onset with 
a 30-ms offset for the time window to account for latencies. 
SD is the standard deviation of the mean response. This was 
calculated for each test contrast condition, yielding fourteen 
SNR values per recording session for a given channel. Trials 
were included regardless of whether the subject’s response 
was correct. The size of the SNR varied depending on the 
test contrast. The highest of the fourteen SNR values was 
then taken as being representative of the signal quality from 
a given channel for each session during non-roving sessions. 
During roving sessions, the SNR values obtained upon pres-
entation of the highest possible test contrast (on trials with 
a 20% sample contrast) were taken as being representative 
of the signal quality from a given channel for each session. 
SNR values for different channels and training days are 
shown in Supplementary Figures S2 and S3.

We performed analysis of the data in 2 ways: (1) Chan-
nels were included in the individual channel analyses if 
they had daily SNR ≥ 1, on at least 80% of the total num-
ber of recording days. This resulted in 15 channels being 
included in the non-roving analysis from monkey 1 and 25 
channels from monkey 2. For the roving-without-flanker 
sessions, nine channels were included for monkey 1 and 
also for monkey 2. For the roving-with-flanker sessions, 
nine channels were included for monkey 1 and 25 chan-
nels for monkey 2. (2) Alternatively, we included all chan-
nels in the analysis, irrespective of their SNR. Overall, we 
did not observe any qualitative differences in our results 
between the two approaches, and we report the approach 
with channel exclusion (SNR-based approach) here. The 
reason for this approach is that channels with very poor 
signal-to-noise ratio throughout could add noise to the 
data and conceal perceptual learning effects at the popu-
lation level. The safeguard of SNR ≥ 1, on at least 80% 
of the total number of recording days, ensures that chan-
nels which attain contrast tuning (or contrast responses) 
through learning will still be detected and included.

(1)SNR =
meanstimulus activity −meanspontaneous

SDspontaneous

Determination of Analysis Time Window

The results reported in this paper are based on the analysis 
of multi-unit spiking activity. We analysed data in two ways: 
(1) using the entire stimulus period (i.e. a time window of 
512 ms shifted by 30 ms to account for the latency of the 
neuronal response). (2) We determined the period of neural 
activity that encoded the most information about stimulus 
contrast (discriminability) and used that time window for 
all analyses. The time window was determined, by perform-
ing an ‘area under the receiver operating characteristics’ 
(AUROC) ‘ideal observer’ discrimination analysis using a 
sliding time window over the test period as described previ-
ously (Sanayei et al., 2018). To avoid biases in the assess-
ment of how learning affects the discriminability of single 
channels, we used the summed activity from all channels for 
this analysis. Furthermore, to avoid biases due to possible 
differences between sessions, results from these exploratory 
analyses were considered only after averaging activity across 
all experimental sessions, without any distinction between 
early or late sessions. Discriminability varied over the 512-
ms interval in both animals. In both monkeys, maximal stim-
ulus discriminability values occurred shortly after stimulus 
onset and decayed sharply after the transient response to 
stimulus onset; i.e. a window of 128 ms yielded the best 
discriminability. Conversely, choice ‘discriminability’ (or 
choice probability) was shifted towards later time periods in 
monkey 2, where significant choice probability occurred for 
time periods during the last 256 ms of the analysis period. 
In monkey 1, choice probability was low throughout the 
analysis period. Given these differences in stimulus and CP 
discriminability periods presented in data here, we used a 
single unified window that spanned the entire 512-ms pres-
entation period. We performed control analyses using just 
the 128-ms period after stimulus onset (shifted by 30 ms to 
account for response latency) for stimulus discriminability, 
but the results were qualitatively the same and quantitively 
almost indistinguishable.

Contrast Response Function (Neurometric 
Functions)

To estimate neurometric functions, which give an indication 
of stimulus discriminability, we calculated the area under 
the receiver operating characteristic (AUROC), using the 
responses that occurred during a given sample (i.e. sepa-
rate neurometric functions for each sample contrast) and 
each test presentation period (30 ms after stimulus onset 
to 542 ms after stimulus onset) for each recording session 
(see above for control analysis time windows using only the 
initial 128 ms of the response window). These AUROC val-
ues were then fitted with a four-parameter Weibull function 
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using maximum likelihood estimation (MLE), according to 
the following formula:

where y is the AUROC value; x is the contrast of the test 
stimulus; α is the contrast at which the neurometric func-
tion is at 63% of its range; the shape exponent β modulates 
the slope at threshold; γ is the range; and δ is the maximum 
(fitted) AUROC value reached by the neurometric function.

We calculated the slope at 30% contrast as

We also determined the point of neuronal equality (PNE) 
for each channel and training day, i.e. the point where neu-
ronal responses to sample and test contrasts were indistin-
guishable (AUROC = 0.5). During a subset of sessions for 
some channels, the range spanned by the AUROC values did 
not include the value of 0.5 (i.e. the fitted neurometric curve 
was located entirely within either the upper or lower half of 
the range spanned by the y-axis); thus, the PNE could not be 
calculated for these sessions. For days in which PNEs could 
not be calculated for certain channels, the averages were 
calculated across those channels for which PNEs could be 
calculated.

Additionally, we assessed contrast tuning by fitting a 
Naka-Rushton function to the single-channel response 
data (spikes/second) of each session. The Naka-Rushton fit 
yielded the following: (1) the slope of the tangent to the 
best-fitted Naka-Rushton function at a contrast level of 30% 
(the sample contrast). The steeper the slope at (and around) 
30% contrast, the better the channel was at discriminating 
between stimuli with contrasts close to the sample contrast 
(the categorization boundary); (2) C50, the contrast that 
elicited a response of half the response range; and (3) the 
minimum and (4) maximum values of the best-fitted Naka-
Rushton function.

Calculation of Point of Neuronal Equality (PNE) 
Changes at the Population Level

On some channels, the PNE was > 30% at the start of learn-
ing. On other channels, the PNE was < 30% at the start of 
learning. Hence, to examine whether the PNE changed with 
learning at the population level, we calculated the absolute 
value of the difference between PNE and 30% contrast. By 
using the absolute value of the difference, we were able to 
combine the two groups of channels (those with PNE > 30% 
at the start of learning and those with PNE < 30% at the 
start of learning) and investigate whether PNEs shifted 
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systematically towards the sample contrast with learning, 
irrespective of their starting position.

Sample‑Test Discriminability

To analyse how well channels discriminated between sample 
and test stimuli, we calculated AUROC values for each sam-
ple-test contrast pair (see above) and determined whether 
they systematically changed with learning. Specifically, we 
would expect the AUROC values for test contrasts that were 
higher than the sample stimulus to increase with learning 
and those for test contrasts that were lower than the sample 
contrast to decrease with learning.

Choice Probability

Choice probabilities (CP) were monitored over the course 
of training to assess the degree to which neuronal activity 
reflected the identity of monkey’s chosen target (is correlated 
with the choice). Levels of spiking activity for a given test 
stimulus were categorized according to whether the subject 
made a saccade to the black or to the white target; i.e. they 
were conditioned upon the monkey’s choice. This yielded 
two activity distributions for each test stimulus. CPs were 
calculated from these two distributions using the AUROC 
approach. This was done for the challenging test contrast 
conditions (e.g. for 22, 25, 28, 32, 35, and 38% when a 30% 
sample contrast was presented). For each channel, the mean 
CP (for a given test contrast) was calculated for early and late 
sessions (the first and last 5 days of training, respectively). A 
mixed-model two-way RM-ANOVA was performed to deter-
mine whether CPs changed significantly with training days 
(early versus late sessions, factor 1) and test contrast (factor 
2). In addition, we calculated CP differences for contrasts 
on opposite sides of the categorization boundary (e.g. CP 
for 40% minus CP for 20% test contrast stimuli, 38–22% test 
contrast) and pooled these for each channel and recording 
day. We then determined whether CP difference distribu-
tions were significantly different between early (first 5 days 
of training) and late sessions (last 5 days of training) using 
a Wilcoxon signed-rank test.

Grouping Data During the Roving Tasks

The roving tasks (without or with flankers) yielded many 
contrast differences between samples and test stimuli (36 in 
total, i.e. three different sample contrasts with 12 test con-
trasts each). Additionally, absolute contrast differences var-
ied between sample contrasts. Assessment and visualization 
of these data in a comprehensive manner across training days 
were difficult; hence, after initial analysis of individual con-
ditions, we decided to group the data according to assumed 
task difficulty, using Weber fractions (Weber fraction = test/
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sample contrast) as a grouping mechanism (pooling was 
done after initial CP and neurometric value calculation). 
Specifically, for each sample-test contrast, we calculated 
the Weber fraction and used eight groups in total. Groups 
consisted of the following Weber fractions: 0–0.5, > 0.5–0.
75; > 0.75–0.875; > 0.875–1; > 1–1.11; > 1.11–1.25; > 1.25–
1.5; and > 1.5. This grouping ensured that for almost every 
sample contrast, we obtained at least one sample-test frac-
tion pair in each group. This allowed comparison of potential 
effects within and across sample contrasts. We then averaged 
Weber fractions within each group that had the same sam-
ple contrast. To assess changes over training, we calculated 
the non-parametric correlation coefficient (Spearman’s rho) 
between training days and AUROC values for neurometric 
and choice probability analyses. We used an FDR correc-
tion (Benjamini & Hochberg, 1995) to account for multiple 
comparisons.

Noise and Stimulus Correlation Analysis

Noise correlations were calculated separately for each stimu-
lus contrast and recording day. We calculated the Pearson 
correlation of firing rates between two channels given a spe-
cific test stimulus on each training day. Noise correlation 
values were then Fisher z-transformed (separately for each 
channel pair and for each test contrast) and finally averaged 
across the first and last 5 days of training. To determine 
whether noise correlations changed with learning, we per-
formed a mixed-model two-factor RM-ANOVA, with con-
trast and training period as main factors. Stimulus correla-
tions were calculated using mean contrast-dependent firing 
rates for each neuron.

Fisher Information Analysis

We used a recently published method and algorithms 
(Kanitscheider, Coen-Cagli, Kohn, Pouget, et al., 2015) 
to calculate the Fisher information in single channels and 
in populations of simultaneously recorded channels (Kan-
itscheider et al., 2015a, 2015b). We estimated the informa-
tion present when comparing 28–32% contrast, 25–35% 
contrast, 22–38% contrast, etc. The derivative to calcu-
late the Fisher information for, e.g. 28 to 32% contrast, is 
thus delta = 4% contrast (see (Kanitscheider et al., 2015a, 
2015b; Kanitscheider, Coen-Cagli, Kohn, Pouget, et al., 
2015) for details). For 25–35% contrast, the delta = 10% 
contrast (and so on forth). This is analogous to the meth-
ods described by Kanitscheider et al. (Kanitscheider et al., 
2015a, 2015b), but it is converted from the orientation 
domain to the contrast domain. In the orientation domain 
used by Kanitscheider et al. (Kanitscheider et al., 2015a, 
2015b), the Fisher information was scaled by the orienta-
tion difference (maxD = pi). We have used an analogous 

system where we assume that 50% contrast difference is 
equal to maxD = pi; i.e. a 4% contrast difference would 
equate to (pi/50)*4. Note that even if this conversion is 
not equivalent as contrast data are not circular (while ori-
entation data are), it does not affect the conclusions from 
our study. This is because absolute values of information 
were of little interest here; rather, our objective was to 
examine whether learning altered the information encoded 
for a fixed contrast difference. To calculate the information 
that a given channel (or channel population) encoded in 
the first (or last) 5 days of training, the trials from a given 
channel and a given contrast pair for all 5 days were con-
catenated, as if they had been recorded in a single session. 
We included trials with correct decisions in this analysis. 
The analysis required equal numbers of trials between the 
two stimulus conditions, but the number of trials was not 
equal as the animal stopped working at unpredictable times 
on individual days. We therefore used the lower number 
of trials available for a given test contrast pair on a given 
training day and discarded the excess trials. This approach 
yielded between 168 (minimum) and 335 (maximum) tri-
als for each channel, test contrast comparison, and monkey 
(monkey 1: n = 168–236; monkey 2: n = 233–335).

The information encoded by differently sized (neu-
ronal) populations was calculated by using the approach 
described above to concatenate trials from different 
recording channels and then calculate the information in 
a population of size x (i.e. number of channels) with chan-
nel and trial identity retained. To identify the extent to 
which correlated activity reduced the information present 
in a population, we calculated the activity when trials were 
shuffled, using the algorithms provided by (Kanitscheider 
et al., (2015a, 2015b).

Significance of Noise vs. Signal Correlation 
Regression Slope Changes

We performed a permutation test to determine whether the 
slopes (of an intermediate linear regression; intermediate as 
both variables were dependent variables) found for the late 
period were significantly different from the slopes during 
the early period for channel pairs with positive signal cor-
relations. To do so, we joined the early and late distributions 
of the signal and of the noise correlations for the respective 
channel samples (separated according to their information 
content, see ‘Results’). We then drew 1000 random samples 
(with a sample size which equalled the sample size for the 
late distributions) from that joint distribution and calculated 
the slope for each of these. If the original slope from the late 
training period fell outside the 95% range of the slopes from 
the joint distributions, it was deemed significantly different 
to the slope from the early distribution.
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Results

Task

Two monkeys performed three versions of a two-alterna-
tive forced choice (2-AFC) task (Chen et al., 2013, 2014), 
where they discriminated whether a test stimulus had a 
higher or lower contrast than a preceding sample stimu-
lus. The three different versions of the task are referred to 
here as (1) non-roving, (2) roving-without-flanker, and (3) 
roving-with-flankers.

Non‑roving Task

Here, the sample stimulus contrast was fixed at 30%. The 
test stimulus contrast varied between 5 and 90% contrast 
in 14 steps (5, 10, 15, 20, 22, 25, 28, 32, 35, 40, 45, 50, 60, 
and 90% contrast). Sample and test stimuli were each pre-
sented for 512 ms, with a delay of 512 ms between stimuli 
(Methods and Fig. 1 for details). Monkeys indicated whether 
the test stimulus had higher or lower contrast by making a 
saccade to one of two targets appearing 512 ms after test 
offset (Fig. 1 for a task sketch and timeline). Sample and 
test stimuli were presented in the same visual field location, 
which covered the aggregate receptive fields (RFs) of the 
channels recorded (Supplementary Figure S1; additional 
details see Methods).

Roving‑Without‑Flanker Task

Here the contrast of the sample stimulus was not fixed at 
30%, but could take on one of three values (20, 30 or 40%) 
on a given trial (pseudo-randomly). The test stimulus took 
on one of 12 possible contrasts, depending on the sample 
contrast (20% sample: [5, 10, 12, 15, 18, 22, 25, 28, 35, 45, 
60, 90% test]; 30% sample: [5, 10, 15, 22, 25, 28, 32, 35, 38, 
45, 60, 90% test]; 40% sample: [5, 10, 15, 25, 32, 35, 38, 42, 
45, 50, 60, 90% test]), yielding 36 conditions in total.

Roving with Flankers

All basic grating parameters were identical to those in the 
roving-without-flanker task, but additional flanker gratings 
were displayed collinearly immediately above and below the 
central sample and test stimuli, forming a column of three 
gratings, positioned edge to edge. The flanker stimuli were 
identical to the sample and test stimuli in terms of size, SF, 
contrast, and orientation.

Grating stimuli were centred at parafoveal locations in 
the visual field at an eccentricity of 4.6° (azimuth − 3.5°, 
elevation − 3°) and 1.5° (azimuth − 1.3°, elevation − 0.7°) 

for monkeys 1 and 2, respectively. The gratings were verti-
cally oriented; the SF was 4 cyc//° in both monkeys; and the 
diameter was 3° in monkey 1 and 0.75° in monkey 2. The 
stimulus size was chosen based on stimulus eccentricity and 
RF size, hence the difference in stimulus size between the 
two monkeys.

Data Set and Analyses

Spiking activity was obtained from chronically implanted 
Utah arrays (Methods). We refer to small multi-unit neuronal 
clusters, recorded from a given electrode, as ‘channels’. We 
recorded from 22 and 25 channels in monkeys 1 and 2, 
respectively. These yielded good responses (signal-to-noise 
ratio (SNR) > 1) on more than 80% of the recording days 
(‘Methods’). To obtain comparable activity levels across ses-
sions, we carried out matching of baseline activity across 
sessions for MUA data (‘Methods’). We performed analy-
ses where we included either all channels and only good 
SNR channels (‘Methods’). These two approaches yielded 
similar results overall; hence, we report the results where we 
excluded channels with poor SNR.

For all the main analyses, we used a 512-ms analysis 
window, from 30 ms after stimulus onset to 30 ms after 
stimulus offset. Note that we also applied an approach in 
which we used the window length that contained the maxi-
mum amount of information (see ‘Methods’) using a 128-ms 
window starting 30 ms after stimulus onset (to account for 
response latency), but this approach did not result in notable 
differences in the overall results. Hence, we used a fixed time 
window across all analyses reported here.

Behavioural Data from Non‑roving, 
Roving‑Without‑Flanker, and Roving‑with‑Flanker 
Conditions

Before we present neuronal and associated behavioural data 
obtained under learning of non-roving, roving-without-
flanker, and roving-with flanker conditions, we provide 
an overview of the large-scale behavioural changes seen 
across the three task conditions. These changes provide 
context to what can (or cannot) be expected in terms of 
neuronal changes and the discussion that follows later. For 
comparison, we also provide the behavioural data that were 
obtained under non-roving conditions when V4 neurons 
were recorded (previously published Chen et al., 2013, 2014; 
Sanayei et al., 2018)). We first calculated a single overall 
hit rate as a function of training days. This was done for 
matched test contrasts (i.e. only using the test contrasts that 
were used in both data sets) for the V1 and V4 non-roving 
sessions. Matched test contrasts were used as otherwise dif-
ferences in task difficulty could account for possible perfor-
mance differences. For roving conditions, we calculated a 
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single performance measure across all sample/test contrasts, 
as this best gives an indication of whether true learning 
occurred or whether trade-offs did occur (e.g. improvements 
for some conditions counterbalanced by deteriorations for 
other conditions). The results are shown in Fig. 2A. Under 
non-roving conditions, performance improved with training 
in both monkeys. This was the case for the V1 and the V4 
data set. For both data sets, it appears that the range of learn-
ing was slightly larger in monkey 2 than in monkey 1 (com-
pare the differences between performance at the start and the 

end of learning). Under roving-without-flanker conditions, 
neither of the animals showed clear signs of performance 
improvement; indeed, performance remained below that 
attained at the end of the non-roving conditions, testament 
to the difficulty of adjusting a categorization boundary on a 
trial-by-trial basis. Learning did occur again under the rov-
ing-with-flanker conditions, whereby both monkeys started 
at a performance level that was below the level attained 
under roving-without-flanker conditions. Monkey 1 then 
improved to a level that matched the non-roving conditions 

Fig. 2  A Behavioural per-
formance under non-roving 
(V1 and V4), roving-without-
flanker, and roving-with flanker 
conditions. Average behavioural 
performance (probability of a 
correct decision, y-axis) across 
matched test contrasts for V1 
and V4 non-roving conditions 
and across all test contrasts 
(roving conditions) across train-
ing days (x-axis). V1 non-rov-
ing, roving-without-flanker, and 
roving-with flanker conditions 
are indicated by magenta, black, 
and blue colours respectively. 
Data from the V4 sessions 
(peripheral stimulus locations) 
are added for comparison (red). 
R-values and p-values for cor-
relations between behavioural 
performance and training day 
are given as insets. B Hit rate 
for the six easiest test contrasts 
under non-roving conditions 
as training progressed when 
recordings were performed at 
the V4 RFs (peripheral loca-
tions), which was followed by 
training and recording at the V1 
RF (parafoveal) locations. Test 
contrasts are colour coded and 
values are given as insets. C 
Performance under non-roving 
conditions for matched test con-
trasts on the first and last day of 
training for V4 sites (light blue, 
magenta, open diamonds), for 
the first day of training at V1 
sites (light blue filled circles), 
and for the last day of training at 
V1 sites (magenta, filled circles)
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(and exceeded the roving-without-flanker performance), 
while monkey 2 only reached the performance under rov-
ing-without-flanker, but not the performance under non-
roving conditions. Thus, while introduction of flankers did 
aid learning, performance under roving-with-flanker never 
exceeded performance under non-roving conditions in either 
monkey. To summarize, (A) learning under non-roving con-
ditions appeared to be slightly larger in monkey 2 than mon-
key 1, (B) under roving without flankers, no performance 
improvements occurred, and (C) performance improvements 
under roving with flankers did not exceed performance under 
non-roving, suggesting that overall sensitivity did not exceed 
sensitivity previously attained under non-roving conditions. 
From these behavioural data, we predict that if V1 neurons 
show signatures of perceptual learning, these would be pre-
sent under non-roving conditions, and they would be slightly 
larger in monkey 2, while under roving conditions, neuronal 
changes would be largely absent in both animals.

Figure 2B shows performance for the six ‘easiest’ test 
contrasts as learning progressed when stimuli were placed at 
the more peripheral locations (V4 recording sites) and when 
they were placed at the parafoveal (V1 recording site RF) 
locations. Note that in both monkeys, training at the V1 sites 
followed training at the V4 sites immediately (3-day gap in 
monkey 1, next day in monkey 2). The data show that for 
the easy test contrasts, performance initially dropped when 
the stimulus location changed, arguing against (full) transfer 
across retinotopic locations even for the easy conditions. 
Figure 2C shows the performance ‘drop’ for matched con-
trast conditions when training was moved from peripheral 
(V4) to parafoveal (V1) locations. Performance dropped for 

almost all matched test contrasts, suggesting that there were 
no test contrasts for which transfer between sites occurred. 
Following training, it recovered to levels similar to those 
attained at the V4 locations.

Non‑roving Data: Neurometric Contrast Response 
Functions

To calculate neurometric functions and neuronal discrimi-
nability, we performed ‘area under the receiver operating 
characteristic’ (AUROC) analyses.

To detect changes in neurometric functions, we monitored 
the point of neuronal equality (PNE, ‘Methods’), which is 
the point where activity levels elicited by the sample and 
test stimuli were identical (AUROC = 0.5). Changes in the 
slope of the neurometric function at 30% contrast as well 
as changes in the PNE of an example channel are shown in 
Fig. 3A–C. The neurometric function became shallower (at 
30% contrast) over the course of training (Fig. 3B). Moreo-
ver, the PNE shifted away from the value of 30% with train-
ing (Fig. 3C). The example shown in Fig. 3 reflects the pat-
tern seen across the population in monkey 2.

To calculate whether the parameters of our fitting func-
tions changed over time with training, we calculated Spear-
man rank correlations for average parameter values across 
channels (n = 15 for monkey 1 and 25 for monkey 2) for each 
session (n = 17 sessions for monkey 1; n = 22 sessions for 
monkey 2). None of the parameters of the neurometric func-
tion changed systematically with training in monkey 1 (see 
Fig. 3 for details and statistics). In monkey 2, the slope of the 
neurometric function at 30% contrast decreased significantly 

Fig. 3  Neurometric changes with learning for an example channel. A 
Single-channel neurometric functions and their changes with learning 
(earlier sessions in blue and later sessions in purple). Vertical lines 

show the point of neuronal equality (PNE) for each recording day. 
B Slope of the neurometric function at 30% (the sample contrast). C 
Change in the PNE with learning
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(Fig. 4, Spearman’s rank correlation, p < 0.001). Contrary 
to our expectations, the PNE shifted away from the sam-
ple contrast in monkey 2 (away from 30%, Spearman’s rank 
correlation monkey 2: p = 0.007). The exponent β of the 

Weibull function increased in monkey 2 (Fig. 4, Spearman’s 
p < 0.001). Contrast tuning assessed using a Naka-Rushton 
function is presented in the supplementary materials (Sup-
plementary Figure S4). Overall, these data suggest that 

Fig. 4  Learning-induced 
changes in selected parameters 
of the neurometric function. 
Changes in the contrast at 
which the neurometric function 
reached 63% of its range; the 
slope of the neurometric func-
tion at 30% contrast; and point 
of neuronal equality (PNE, 
relative to the sample contrast) 
of the neurometric function. 
Insets show the Spearman rank 
correlation coefficients (r) and 
the p-value of the parameter of 
interest (dependent variable) 
vs. recording day (independent 
variable). Averages across chan-
nels are displayed along with 
error bars show (S.E.M) (n = 15 
and n = 25 for each record-
ing day for monkeys 1 and 2 
respectively)
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neuronal changes in V1 either show no systematic change 
(monkey 1) or show changes that are not in line with an 
increased sensitivity at the sample contrast (monkey 2).

The results differ from those obtained in area V4 of the 
same monkeys (Sanayei et al., 2018). Note that the spatial 
location of the sample and test stimuli was different from 
that used to assess the effects of perceptual learning that 
was previously reported in area V4; hence, training had not 
occurred specifically for the locations used in the current 
study in V1.

Changes in Test‑Sample Neuronal Discriminability 
with Learning

Behavioural changes with learning for the most difficult 
contrasts occurred in both monkeys (Fig. 5A). We defined 
the first 5 days as being ‘early’ sessions and the last 5 days 
as ‘late’ and determined whether performance for the six 
most difficult contrasts changed significantly between early 
and late sessions using a two-factor ANOVA (factor 1: 
time, factor 2: contrast). Both factors changed significantly 
in both monkeys and there was also an interaction between 
the factors (see insets in Fig. 5A for F- and p-values). For 
this analysis, we used values obtained on individual days, 
not those obtained by averaging data across three consecu-
tive recording days. This approach ensured independence 
of samples and was applied to all statistical tests performed 
throughout the paper.

Learning-induced changes of neuronal discriminability 
were quantified using signal detection theory approaches 
(AUROC) comparing sample- and test-evoked activity (e.g. 
the difference between 30 and 28% contrast), for each day 
and channel. Values of AUROC that deviated from 0.5 indi-
cated higher discriminability (0.5 corresponded to chance 
level; 0 and 1 indicate perfect discriminability). The 14 dif-
ferent test contrasts yielded 14 groups of AUROC values 
for each recording session. We focus on the six contrast 
levels that were closest to the sample contrast, namely the 
three contrasts just above (32, 35, and 38% contrast) and 
just below (22, 25, and 28% contrast) the sample contrast, 
as these were the most difficult discriminations, with clear 
changes in behavioural performance (Fig. 5A). The aver-
age AUROCs for these contrasts as a function of learning 
are shown in Fig. 5B. In both monkeys, the data suggest 
that AUROC differences (between lower and higher test 
contrasts) increased with learning; i.e. AUROCs on the two 
sides of the categorization boundary became more separated. 
To quantify this, we calculated AUROC differences between 
22 and 38%, 25 and 35%, and 28 and 32% test contrasts for 
the first and last 5 days of training. We then averaged those 
three difference values for each training day. The difference 
distributions for these two training periods are shown in 
Fig. 5C. Training significantly increased the differences in 

both monkeys (monkey 1: p = 0.02; monkey 2: p < 0.001, 
two-sided Wilcoxon signed-rank test). Thus, there were 
changes in behavioural and neuronal discriminability in V1 
neurons, even though these were not unequivocally appar-
ent when analysing neurometric response functions (Fig. 4).

Choice Probability Analysis

To determine whether training affected the degree to which 
the monkeys’ upcoming decision was reflected in the neu-
ronal responses (in neutral terms: whether the two were 
correlated), we computed choice probabilities (CP, see 
‘Methods’ for details). This was done for each channel as a 
function of time after training onset (Fig. 6A, with a 3-day 
running average). Calculations of CP required a sufficient 
number of incorrect as well as correct trials; hence, this anal-
ysis focused on data obtained from the six most demanding 
test contrast conditions. CPs closer to 0 corresponded to the 
selection of the ‘lower test contrast’ target, while CPs closer 
to 1 corresponded to the selection of the ‘higher test con-
trast’ target. If neuronal activity in our target areas became 
more effective in influencing the animal’s upcoming deci-
sion (or if the readout of sensory information improved), 
then CP values for test contrasts of less than 30% should 
have decreased over the course of training, while CP values 
for test contrasts of more than 30% should have increased.

To determine whether training significantly affected the 
CP distributions, CPs were calculated separately across the 
first and last 5 days for each recording channel and each 
monkey. A two-way ANOVA was performed, with training 
period (early or late) and test contrast as factors. In both 
monkeys, significant main effects of contrast occurred, and a 
significant interaction between period and contrast occurred 
(monkey 1: test contrast: F(5, 888) = 15.3, p < 0.001; 
training period: F(1, 888) = 0.2, p = 0.696; interaction: 
F(5, 888) = 3.7, p = 0.002; monkey 2: test contrast F(5, 
1488) = 58.8, p < 0.001; training period: F(1, 1488) = 11.1, 
p < 0.001; interaction: F(5, 1488) = 27.2, p < 0.001).

We then calculated the CP difference for contrast pairs 
(38–22%, 35–25%, 32–28%) for each channel, averaged 
those differences for each recording day, and determined 
whether difference distributions over the first 5 days vs. 
over the last 5 days of training were significantly affected 
by training (Wilcoxon signed-rank test). In both monkeys, 
CP differences significantly increased with training (Fig. 6, 
p < 0.001).

Population Coding Analyses

Thus far, we analysed information content in individual 
recording channels. We next examined how the informa-
tion present at the population level changed with learning. 
Changes in information across the population could have 
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been due to changes in single-channel coding (see above), 
but may also be due to changes in the correlation structure 
(noise correlations) of simultaneously active channels. In 
line with the analysis performed on V4 data under identi-
cal task conditions (Sanayei et al., 2018), we first examined 

whether the information that was encoded by a single 
channel regarding the stimulus changed with learning and 
whether this depended on its coding abilities at the start of 
training. We then analysed information encoded by the pop-
ulation and associated changes. In monkey 1, information 

Fig. 5  Changes in discriminability at behavioural and neuronal lev-
els. A Average proportion of reports that the test contrast was higher 
than the sample contrast, as training progressed. For test contrasts 
higher than the sample contrast (yellow and red colours), the propor-
tion increased, while for test contrasts lower than the sample contrast 
(blue colours), the proportion decreased, indicating improved per-
formance across all conditions. Insets at the bottom indicate F- and 
p-values from an ANOVA, indicating that performance depended 
on contrast, training day, and an interaction between contrast and 
training day. B Neuronal discriminability (AUROC) for sample-test 
contrast as a function of learning. Error bars show S.E.Ms. C Dis-

tribution of discriminability difference for the three most difficult 
sample-test contrast comparison pairs (e.g. AUROC values for com-
parisons between 28% versus 32%, 25% versus 35%, and 22% versus 
38%) for the first (blue) and last (magenta) 5 days of learning across 
all channels recorded. Darker red regions show overlap of the two 
distributions. Insets display the mean and S.E.M of the two distribu-
tions. p-values indicate whether distributions differed significantly. 
Performance and discriminability for each data point were averaged 
over three consecutive days; i.e. error bars in A and B denote S.E.M 
of performance (AUROC) averaged across 3 days (thus, the number 
of data points is the total number of recording days minus 2)
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encoded was limited overall and changed very little with 
learning (Supplementary Figure S5). In monkey 2, the infor-
mation content was much higher (compared to monkey 1) 
at the start of learning and increased with learning (Sup-
plementary Figure S5).

Which channels improved most with learning? Those 
with large information content at the start of learning, or 

those with relatively little information content? To investi-
gate this, we examined whether the amount of information 
encoded for a specific contrast pair was correlated with the 
information encoded for a different contrast pair between 
early and late training periods (Supplementary information 
and Supplementary Figure S6 A-C). We then analysed the 
correlation between information values during early training 

Fig. 6  Choice probability and noise correlations as a function of 
learning. A Choice probability as a function of learning for both 
monkeys for different test contrasts (colour coded and displayed as 
insets). Averages across channels are displayed. Left column for each 
monkey: Choice probability for test activity levels (separately for 
the three hardest contrast levels below and above sample contrast, 
respectively). Insets show CP difference (e.g. CP at 40% minus CP 
at 20%) distributions for the first 5 days of learning (light blue histo-
grams) and the last 5 days of learning (magenta histograms). P-values 
for differences between the distributions are shown next to the histo-

gram plots. Data are averaged over three consecutive days, i.e. num-
ber of data points = recording days minus 2. Error bars denote S.E.M. 
B Left subplot: average noise correlations between channel pairs for 
the different test contrasts during the first (light blue) and last 5 days 
(magenta) of learning. Right subplot: distribution of noise correla-
tion across all test contrasts during the first (light blue) and last 5 days 
(magenta) of learning. Vertical bars indicate sample means; p-values 
indicate whether noise correlations differed between early and late 
training stages
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and the proportional gain in information that was obtained 
with learning (the proportional information gain was defined 
as the difference in information between late and early train-
ing, normalized by the information encoded in early train-
ing). If information increases were proportional across all 
channels, we would find no correlation. If the channels con-
taining the lowest amount of information gained proportion-
ally the most during learning, then this correlation would be 
negative (and similarly, if channels containing the highest 
amount of information showed the least gains, this correla-
tion would be positive). We found generally negative corre-
lations for all contrast pairs (Supplementary Figure S6 D, for 
associated p-values, see inset in Figure S6 D). Neurons with 
relatively small discrimination power for small contrast dif-
ferences gained proportionally more discrimination power, 
while already-selective neurons showed proportionally lower 
gains in selectivity. Thus, learning increased the number of 
neurons carrying useful information about difficult contrast 
differences, thereby increasing the size of the population that 
could contribute to solving the task.

Changes in Noise Correlations with Learning

Noise correlations were calculated for each contrast for the 
first five 5 of training and for the last 5 days of training, for 
each channel combination (see ‘Methods’ for details). Noise 
correlations (when averaged across contrasts) increased with 
learning in monkey 1 and decreased with learning in monkey 
2 (Fig. 6B, rank-sum test). Thus, unlike in area V4 (San-
ayei et al., 2018), noise correlations did not systematically 
decrease with perceptual learning in macaque V1.

Noise correlations affect coding abilities of neuronal 
populations (Abbott & Dayan, 1999; Panzeri et al., 1999; 
Pola et al., 2003). Thus, the decrease in correlations with 
learning in monkey 2 could improve population cod-
ing abilities beyond the single-channel discriminabil-
ity increase described. Conversely, in monkey 1, where 
single-channel coding abilities did not increase notably, 
noise correlations actually increased and could possibly 
have been detrimental to population coding. To investigate 
these possibilities and allow for a comprehensive compari-
son to previously published V4 data from the same ani-
mals, we examined the amount of information encoded as 
a function of population size when we retained noise cor-
relations (by analysing simultaneous responses) and when 
we removed correlations (by analysing shuffled population 
responses). We analysed linear Fisher information about 
test contrast as a function of population size, increasing 
the population one channel at a time (see ‘Methods’ for 
details). In monkey 1, population information coding was 
larger for difficult contrasts during early sessions, and the 
difference between unshuffled and shuffled population 
responses was relatively small (Supplementary Figure S7). 

For easy contrast conditions, learning increased population 
coding information and the difference between shuffled 
and unshuffled coding was generally similar (Supplemen-
tary Figure S7). Thus, the increased noise correlation in 
V1 appeared to reduce population coding abilities. In mon-
key 2, population-encoded information increased strongly 
with training for difficult contrasts but showed little dif-
ference for easy contrasts. Generally, the shuffled popula-
tion encoded a lot more information, than the population 
where noise correlations were retained. This showed that 
the reduction in noise correlations in monkey 2 was not 
sufficient to remove ‘detrimental’ correlations; however, 
the differences between shuffled and unshuffled informa-
tion coding might have been larger had the noise correla-
tion reduction not occurred.

To further determine how changes in noise correlations 
affected population coding abilities, we calculated the 
slope between signal and noise correlations for early and 
late learning periods. A shallower slope enables neuronal 
populations to encode more information (Gu et al., 2011; 
Minces et al., 2017). The slope between noise and signal 
correlation was calculated separately for channel pairs 
where both channels were part of a less sensitive popu-
lation (bottom third of information-coding channels), or 
where both channels were part of a more sensitive popula-
tion (top third of information-coding channels). The slope 
between signal and noise correlations was not significantly 
affected by training, irrespective of information content 
or animal (all p > 0.05, two-sided permutation test, Sup-
plementary Figure S8).

In sum, training did not systematically change noise 
correlations in V1 across monkeys, and it did not change 
the relationship between signal and noise correlations. 
Thus, changes to the correlation structure of neurons in 
V1 did not systematically increase encoding abilities of 
neuronal populations.

Roving‑Without‑Flanker Data

Given the absence of overall behavioural improvements 
under roving-without-flanker conditions (Fig. 2), we did 
not expect to see changes in neuronal tuning in V1. Nota-
bly, overall performance dropped to levels below those 
attained under non-roving conditions, but this drop is 
probably a reflection of increased categorization difficulty, 
not in contrast discrimination difficulty. Previous studies 
have argued that adjustments to categorization bounda-
ries are reflected in higher cortical areas, not in low/mid-
level sensory areas (Freedman & Assad, 2006; Freedman 
& Miller, 2008). We therefore also did not expect to see 
adjustments to categorization boundaries reflected in V1 
activity.
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Neurometric Contrast Response Functions Under 
Roving‑Without‑Flanker Conditions

Under roving-without-flanker conditions, we performed 
the same analysis of neurometric functions as described for 
non-roving conditions; however, here, the analysis was done 
separately for each sample and its associated test contrasts. 
Contrary to the results under non-roving conditions (where 
changes were found in monkey 2, but not monkey 1), under 
roving-without-flanker conditions, we found that the slope 
of the neurometric function at the sample contrast signifi-
cantly decreased with training in monkey 1 (details in Sup-
plementary Materials, Supplementary Figure S9) and the 
point of neuronal equality changed for a sample contrast of 
20% (moving towards 20%), for 30% (moving away from 
30% towards 20%), and for 40% (moving from just above 
40% to just below 40%). Neurometric function parameters 
hardly changed in monkey 2, except for a change in the point 
of neuronal equality changed for a sample contrast of 30% 
(moving from just above 30% to just below 30% (Supple-
mentary Figure S9).

Changes in Test‑Sample Neuronal Discriminability 
with Learning Under Roving‑Without‑Flanker 
Conditions

The average performance across all test contrasts condi-
tioned upon the three different sample contrasts across 
training days is shown in Fig. 7A (note that this is similar 
to the roving data shown in Fig. 2, but is broken down into 
the different sample contrasts). Simply looking at the sta-
tistical significance of the correlations, it appears that some 
(tiny) improvements occurred. Across all test contrasts, sig-
nificant improvements occurred for the 40% sample contrast 
in monkey 1 and for the 20% and 30% sample contrasts in 
monkey 2. However, these changes are very small in both 
monkeys, even if significant (FDR-corrected) for some sam-
ple contrasts.

Behavioural improvements may occur for some test con-
trasts, which are offset by deterioration for other test con-
trasts. To assess this, we grouped the behavioural and neu-
ronal data according to task difficulty, using Weber fractions 
(Weber fraction = test/sample contrast) as a grouping mecha-
nism (Fig. 7). For easy discriminations (where the sample-
test contrast difference is large, i.e. for small and large Weber 
fractions), performance in both monkeys was close to perfect 
(values close to 1) for all sample contrasts (Fig. 7B, see 
data for Weber fractions < 0.5 and > 1.5, even though some 
significant changes did occur, see insets). For more difficult 
discriminations (Weber fractions closer to 1), performance 
improvement occurred for some sample-test contrasts, but 
this was often counterbalanced by performance deteriora-
tion with training for other contrasts (Fig. 7B; for example, 

compare the condition with a 20% sample contrast and a 
Weber fraction of 0.75–0.875 to that with a 20% sample 
contrast and a Weber fraction of 1.25–1.5 in monkey 2). 
Changes in neural discriminability showed decreasing dis-
criminability for both monkeys for Weber fractions < 1 for 
many sample contrasts, especially in monkey 1 (Fig. 7B, 
ROC values). This was less pronounced for Weber frac-
tions > 1, where significantly increased discriminability 
occurred occasionally (see r- and p-value insets in Fig. 7B, 
e.g. at Weber fraction 1.11–1.25, monkey 2, sample contrast 
30%). However, increased discriminability was modest over-
all and occurred less often than decreased discriminability. 
To determine whether changes in behavioural discriminabil-
ity were correlated with changes in neuronal discriminabil-
ity, we calculated the correlation between behavioural and 
neuronal changes and associated significance. In monkey 1, 
no significant correlation existed between these measures 
for any of the Weber fraction grouped contrasts (FDR-cor-
rected). In monkey 2, two significant (p < 0.05, FDR cor-
rected) correlations were found, but only one of these was 
associated with significant behavioural and neuronal changes 
with training (increases for both; Weber fraction 1.11–1.25, 
30% sample contrast). Overall, this suggests that the minimal 
(and counterbalanced) behavioural changes that occur under 
roving-without-flanker conditions are not associated with 
changes in V1 neural activity and are a reflection of (minor) 
high-level adjustments in behavioural strategy instead.

Roving‑with‑Flanker Conditions

Behavioural improvements occurred with learning after 
flankers were added (Figs. 2 and 8). However, the initial 
performance upon flanker introduction dropped to levels 
below performance levels attained under non-roving and 
roving-without-flanker conditions. Even after learning, per-
formance never exceeded non-roving performance or even 
stayed below those performance levels (monkey 2, Fig. 2). 
As stated previously, given these behavioural data, we did 
not expect a further change in contrast sensitivity in V1 neu-
rons, as perceptual learning–based contrast sensitivity had 
already been ‘maxed out’ under non-roving conditions.

Neurometric Contrast Response Functions Under 
Roving‑with‑Flanker Conditions

Under roving-with-flanker conditions, none of the neuro-
metric function parameters changed significantly with train-
ing in monkey 1 (Supplementary Figure S10 for details). 
In monkey 2, the only changes observed in the parameters 
of the neurometric functions were a change in the slope 
for sample contrasts of 20% and of 30% (Supplementary 
Figure S10).
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Changes in Test‑Sample Neuronal Discriminability 
with Learning Under ‘Roving‑with‑Flanker’ 
Conditions

As with the analyses on roving-without-flanker condi-
tions, we grouped the data based on Weber fractions. The 
average performance across all test contrasts for the three 
different sample contrasts across training days is shown 
in Fig. 8A. In both monkeys, the average performance sig-
nificantly increased with training (see insets in Fig. 8A). 
Figure 8B shows that in monkey 1, increases in perfor-
mance occurred mostly for more difficult conditions, as 
performance was close to perfect for the easiest conditions. 
In monkey 2, performance increased across all conditions, 
although improvements were more pronounced for diffi-
cult conditions (Fig. 8B, monkey 2). Changes in neural 
discriminability (ROC values in Fig. 8B) were very lim-
ited across all conditions in both monkeys, with signifi-
cant increases for some conditions in both monkeys (see 
insets Fig. 8B; all p-values are FDR-adjusted [n = 23]). To 
determine whether changes in behavioural discriminability 
were correlated with changes in neuronal discriminability, 
we calculated the correlation between these two measures. 
In monkey 1, no significant (FDR corrected) correlation 
existed between these measures for any of the Weber frac-
tion grouped contrasts (FDR corrected). In monkey 2, six 
(6/24) significant (p < 0.05, FDR corrected) correlations 
were found, but only four of these occurred for conditions 
where significant behavioural and significant neuronal 
changes with training occurred (increases for both; Weber 
fraction < 0.5, 20% and 30% sample contrast; Weber frac-
tion 1.25–1.5 sample contrast 30%; Weber fraction 1.5–10, 
30% sample contrast), one of the significant correlations 
showed a significant increase at the behavioural level and 
a trend for (p = 0.06, FDR corrected) increased discrimina-
bility at the neuronal level (Weber fraction 1.11–1.25, 30% 
sample contrast), while one significant anti-correlation 
between behavioural (significant decrease) and neuronal 

changes (trending increase, p = 0.08, FDR corrected) was 
found for a Weber fraction of 1–1.11 (40% sample con-
trast). Thus, while some changes co-occurred at the behav-
ioural and neuronal level in monkey 2, this was limited to 
1/3 of conditions tested, and no correlated changes were 
found in monkey 1.

We therefore argue that behavioural changes that 
occurred under roving-with-flanker conditions are a reflec-
tion of improved learning of categorization boundaries, not 
improved contrast sensitivity, and are not (or only mini-
mally) reflected in V1 activity.

As a final check for this argument, we determined choice 
probabilities under roving-without- and roving-with-flanker 
conditions. Under roving-without-flanker conditions, no sig-
nificant changes of choice probabilities were found in either 
monkey (Supplementary Figure S11). Under roving-with-
flanker conditions, 5/25 choice probabilities significantly 
changed in monkey 1, whereby 2/5 significantly decreased 
and 3/5 significantly increased. In monkey 2, 10/24 choice 
probabilities significantly changed with training, whereby 
7/10 significantly decreased and 3/10 significantly increased 
(Supplementary Figure S12). Thus, changes to CP were 
overall very limited under roving conditions and showed 
increases as well as decreases.

Changes in Noise Correlations with Learning Under 
Roving Conditions

To complement the comparison to non-roving conditions, 
noise correlations were calculated for each contrast for the 
first 5 days of training and for the last 5 days of training, for 
each channel combination (see ‘Methods’ for details). Noise 
correlations when averaged across contrasts did not show 
any consistent changes across sample contrasts with learning 
in monkey 1 (Fig. 9A). Noise correlations increased signifi-
cantly for a sample contrast of 30%, decreased significantly 
for a sample contrast of 40%, and showed no significant 
change for a sample contrast of 20%. However, in monkey 
2, noise correlations decreased significantly with learning 
across all three sample contrasts (Fig. 9A).

Under roving conditions with flankers (Fig. 9B), noise 
correlations increased significantly in monkey 1 for sample 
contrasts of 20% and 30%, while there were no significant 
changes for a sample contrast of 40%. In monkey 2, noise 
correlations decreased significantly with learning across all 
three sample contrasts (Fig. 9B).

Thus, in monkey 2, noise correlations significantly 
decreased with learning for all training conditions (non-
roving, roving-without-flanker, roving-with-flankers), while 
for monkey 1, either no changes occurred or changes varied 
across conditions. If anything, noise correlations in monkey 
1 showed a trend to increase with learning.

Fig. 7  Behavioural performance and neuronal discriminability under 
roving-without-flanker conditions. A The average behavioural perfor-
mance across all test contrasts for the three different sample contrasts 
across training days. R-values and p-values (FDR corrected for mul-
tiple comparisons) for correlations between behavioural performance 
and training day are shown. B Changes in neural (red) and behav-
ioural (blue) discriminability for different test contrasts, pooled across 
different task difficulty levels using Weber fractions. Easy discrimi-
nations (where the difference between sample and test contrasts was 
large) correspond to Weber fractions that are much smaller or larger 
than 1. R-values and p-values (FDR corrected for multiple compari-
sons) for correlations between behavioural and neurometric perfor-
mance and training day are shown. Significant negative correlations 
indicate that behavioural performance and/or neurometric discrimina-
bility decreased with training, while significant positive correlations 
indicate that they increased with training

◂
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Discussion

Training improved behavioural performance of contrast 
discrimination under non-roving and roving-with-flanker 
conditions, but were largely absent under roving-without 
flanker stimuli in macaque monkeys. In the case of non-
roving stimulus conditions, behavioural improvements were 
accompanied by changes in neural discriminability and 
choice probability in area V1, but overall, these neuronal 
changes were limited and some of the measures employed 
(e.g. noise correlation) differed between animals.

Previous studies in humans of contrast discrimination 
perceptual learning under non-roving and roving condi-
tions yielded somewhat contradictory results. Some studies 
argued against perceptual learning in the absence of flanker 
stimuli (Adini et al., 2002; Dorais & Sagi, 1997), while a 
separate study showed evidence for perceptual learning of 
contrast discrimination under non-roving conditions (Yu 
et al., 2004). In the latter study, flanker addition did not 
result in improvements beyond the levels attained under non-
roving conditions (they even argued ‘…that contrast roving 
essentially kills contrast learning regardless of the presence 
of flankers.’ (Yu et al., 2004)). Our data are in line with those 
of Yu et al. (2004). We attribute the more limited changes 
seen under non-roving conditions in Adini et al. (2002) when 
compared to changes in our monkey (but also somewhat in 
Yu et al. (2004)) to differences in training exposure. Our 
monkeys were generally trained over longer periods of time 
and performed a larger number of trials than human subjects 
(who usually performed ~ 4–5 sessions of ~ 2 h). Indeed, per-
formance in both monkeys continued to increase after 4–5 
training days under non-roving conditions.

Parameters of neurometric functions only changed in one 
of the two monkeys under non-roving conditions, and here, 
training shifted the point of neurometric equality away from 
the contrast that formed the decision boundary (30% con-
trast). This was associated with a decrease in the slope of 
the neurometric function at 30% contrast. Thus, perceptual 
learning did not cause a systematic sharpening of the tuning 
curve and did not improve neuronal tuning at the decision 
boundary in V1 neurons, when assessed with neurometric 

curve fitting approaches (or more traditional Naka Rushton 
contrast fitting). This result is contrary to previous reports, 
where perceptual learning of orientation differences was 
investigated in areas V1 or V4 and higher ventral stream 
areas (Adab & Vogels, 2011; Adab et al., 2014; Raiguel 
et al., 2006; Yang & Maunsell, 2004), and it differs from our 
previously published results in V4 (in the same monkeys) 
where contrast discrimination was investigated (Sanayei 
et al., 2018), or V1 in cats that were trained in a contrast 
detection task (Hua et al., 2010). However, neurometric dis-
criminability (AUROC, Fig. 5) itself increased close to the 
decision boundary under non-roving conditions. This is in 
line with results from V4 under identical task conditions 
(Sanayei et al., 2018); but the changes were substantially 
more modest in area V1 than in V4. Why did neurometric 
(or Naka-Rushton) fitted contrast tuning change so little (or 
not at all monkey 1) when AUROC-based discriminabil-
ity at the decision boundary did show small but significant 
changes? Fitted tuning functions are based on the entire 
range of response values, and small changes of just a few 
values may fail to result in consistent adjustments of the 
fitted parameters, as some changes in one parameter can 
be offset by changes in a different parameter. Determin-
ing AUROC-based discriminability bypasses that problem. 
In addition to AUROC-based discriminability, changes in 
choice probability were also found under non-roving con-
ditions, which qualitatively matched those from area V4 
(Sanayei et al., 2018), but again changes in V1 were quan-
titatively smaller.

In V1, unlike in area V4, learning-induced changes in 
noise correlations were restricted to one of the two mon-
keys, both of which were also used in our previous V4 study. 
Thus, results in area V1 differ from data reported for vari-
ous cortical areas (Gu et al., 2014; Kumano & Uka, 2013; 
Ni et al., 2018; Sanayei et al., 2018; Uka et al., 2012; Yan 
et al., 2014). The degree to which changes in noise cor-
relations benefit decoding abilities is debatable (Gu et al., 
2011; Minces et al., 2017; Moreno-Bote et al., 2014; Ni 
et al., 2018; Panzeri et al., 1999, 2022; van Kempen et al., 
2017; Yan et al., 2014). In our previous V4 study, we found 
that a simultaneous change in signal and noise correlation 
could benefit decoding (Sanayei et al., 2018). This was not 
uniformly the case under identical task conditions in V1, 
and our data are thus more similar to the lack of reduction 
in noise correlations as a function of learning in area V1 that 
was previously observed in a contour detection task (Yan 
et al., 2014).

Training at V1 RF locations (parafoveal) occurred after 
training had been done at V4 RF (peripheral) locations. 
Could lack of location-specificity of perceptual learning or 
the sequence of the training at different locations have con-
tributed to the smaller learning effects in V1? Several of our 
results speak against this possibility. Perceptual learning at 

Fig. 8  Behavioural performance and neuronal discriminability under 
roving-with-flanker conditions. A The average performance across all 
test contrasts for the three different sample contrasts across training 
days. Insets show correlations (and p-values, FDR corrected for mul-
tiple comparisons) between performance and training day. B Change 
in neural (red) and behavioural (blue) discriminability for differ-
ent test contrasts, pooled across different task difficulty levels using 
Weber fractions. Easy discriminations (where the difference between 
sample and test contrasts was large) are indicated by Weber fractions 
much smaller or larger than 1. Significant negative correlations indi-
cate that performance/discriminability decreased with training; signif-
icant positive correlations indicate that performance/discriminability 
increased with training

◂
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the behavioural level was at least as pronounced at parafo-
veal locations (V1) as it was at peripheral (V4) locations 
(Fig. 2 and also see Fig. 4 in Chen et al., 2013). Indeed, in 
monkey 1, the behavioural changes were more pronounced at 
parafoveal (V1) than at peripheral (V4) locations. Critically, 

behavioural data suggest that transfer of learning across 
locations was very limited in both monkeys (Fig. 2B, C). 
The lack of transfer between locations also argues against 
the idea that monkeys simply became better at performing 
a classification task, as this would probably result in larger 

Fig. 9  Noise correlations as a function of learning under different 
roving conditions. A Distributions of noise correlations across all 
test contrasts during the first (blue) and last 5 days (red) of learning 
under roving-without-flanker conditions. B Distributions of noise cor-

relations across all test contrasts during the first (blue) and last 5 days 
(red) of learning under roving-with-flanker conditions. Vertical bars 
indicate sample means; p-values indicate whether noise correlations 
differed between early and late training stages
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transfer between stimulus locations at least for easy condi-
tions. The lack of transfer argues for retinotopic specificity. 
However, this does not mean that learning must occur at the 
lowest cortical level, as the spatial distance between train-
ing locations would allow for the retinotopic specificity to 
exist in low (V1, V2) as well as mid-level visual areas such 
as V4 or TEO. If the size of stimuli determined the location 
of learning (low-level stages for small stimuli vs. mid-level 
stages for larger stimuli), we would have expected to see 
similar-sized changes in our V4 and V1 study, which was 
not the case.

The reverse hierarchy theory of perceptual learning pre-
dicts that learning effects in area V4 would be stronger than 
in V1, that learning should be location specific for difficult 
discriminations, but transfer between locations should be 
larger for easy discrimination conditions than difficult con-
ditions (Ahissar & Hochstein, 2004; Hochstein & Ahissar, 
2002). While the first two predictions were met in our data 
set, transfer was not larger for easy vs. difficult conditions 
(Fig. 2C). This also differs from results obtained in a deep 
neural-network model of perceptual learning, which sup-
ports learning specificity for fine but not easy discrimina-
tions, but similar to our data argues for increasing changes 
in sensitivity with increasing hierarchy (Wenliang & Seitz, 
2018).

Under roving-without-flanker conditions without flankers, 
perceptual learning was largely absent for both monkeys. 
Some improvements occurred at individual test and/or sam-
ple contrasts (see Fig. 6), but these were often counteracted 
by reduced performance at other test and/or sample contrasts 
(previously described in Chen et al., 2013, 2014). Given 
the absence of overall behavioural improvements, it is no 
surprise that neurometric functions, neuronal discriminabil-
ity, and noise correlation also did not change in this condi-
tion. In the absence of flankers, it was not even the case that 
monkeys were able to adequately adjust their categorization 
boundaries under roving conditions.

Addition of Flanker Stimuli

Flanker introduction resulted in an initial drop in perfor-
mance, relative to non-flanker conditions. While learning 
under roving-with-flanker conditions did occur in both 
monkeys, overall performance never exceeded non-roving 
conditions (in monkey 1), it even stayed below non-roving 
conditions (monkey 2). Assuming that neuronal changes in 
V1 help to improve behavioural contrast discrimination, an 
absence of additional neuronal changes in our study (after 
non-roving training) is unsurprising given that overall per-
formance does not improve any further. The learning that 
does take place under roving-with-flankers conditions is 
likely to be a ‘high-level-conceptual’ learning, namely the 
ability to heed the sample more and adjust the categorization 

boundary accordingly from trial to trial, but this was only 
possible after introduction of the flankers. In a previous 
study, Law and Gold (Law & Gold, 2008) recorded from 
area MT and LIP while monkeys were being trained on a 
coarse motion discrimination task. In their training and 
recording, they changed the axis of motion from day to day, 
which would induce some roving, as with our design. While 
they did not find any changes in neural responses in area 
MT, they did find neural correlates of learning in LIP. In line 
with the results of Law and Gold (2008), our V1 data show 
that low-level sensory areas are not critical for representing 
variable categorization boundaries.

In this study, we used MUA activity to investigate per-
ceptual learning in V1. This was done to enable analysis 
of changes as learning progressed. We do not believe that 
results would have been different had we recorded from sin-
gle units instead. Continuous recording from single units 
over extended periods of time is difficult. Spike amplitudes 
(and waveforms) may change across different recording 
days. Using a spike template across recording days could 
then result in dramatic activity changes over the course of 
training for some channels as spikes drift in and out. To 
counteract the problem of some neurons (spikes) drifting in, 
others drifting out, we applied a baseline firing rate match-
ing approach in conjunction with multi-unit thresholding 
(Methods). In the previous study (Sanayei et al., 2018), we 
had a few single units that (we believe) were stable across 
all recording sessions and which produced the same overall 
results as those seen in our MUA approach. The advantage 
of our approach (continuous recording as learning pro-
gressed from multiple simultaneously recorded channels) 
also allowed us to perform population coding analyses, 
which is not possible when averaging across single-cell 
recording data. Using this approach, we found that changes 
to the structure of population responses increased coding 
abilities in area V4 (Sanayei et al., 2018), but not V1.

What can we conclude from the differences found 
between our V4 and V1 data? According to the reverse hier-
archy theory of learning, learning-induced neuronal changes 
occur throughout the visual hierarchy, but are overseen by 
high-level cognitive processes (Ahissar & Hochstein, 2004; 
Hochstein & Ahissar, 2002), assumed to occur first in high- 
and mid-level areas. It proposes that attention mechanisms 
‘alert’ the cortex to behaviourally relevant stimuli and that 
a form of gating is carried out by neuromodulators that 
operate in task-relevant regions, enabling plasticity. Thus, 
top-down mechanisms such as attention are responsible for 
selective alterations of relevant neuronal populations. Under 
contrast discrimination, this learning signal induced more 
plasticity in mid-level (V4) than low level (V1) areas, and 
some of these low-level changes were present in our data 
set. The difference seen in our V1 and V4 data suggest that 
neuronal changes might be even more pronounced in area 
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TEO and IT than area V4. Additionally we might expect 
changes under roving-with-flanker conditions in high-level 
areas that represent categorization boundaries in line with 
results from LIP, IT, and prefrontal recordings (Freedman 
& Assad, 2006; Law & Gold, 2008; Meyers et al., 2008).

How to interpret the differences across monkeys? Fig. 2 
compares the level of behavioural learning across tasks and 
also to the previous V4 (peripheral) data. Monkey 2 overall 
shows a wider range of behavioural improvements (except 
for the roving-without-flanker data where neither monkey 
showed changes), even if the final performance can be above 
(V1 non-roving) or below (V1 roving-with-flankers, V4) the 
performance of monkey 1. Similar to the changes seen in 
neuronal V1 data, neuronal changes in monkey 2 in the pre-
vious V4 study were also overall larger than in monkey 1 
(see e.g. Figure 3C, 4B, 5, 6, 7 in Sanayei et al., 2018). Thus, 
there seem to be genuine differences in the amount of neu-
ronal change that occurred in the two monkeys which paral-
lel the behavioural changes seen. Whether a larger neuronal 
change in monkey 2 was the cause for the wider range in 
behavioural changes (or vice versa) or whether the increased 
starting performance in monkey 1 limits the amount of neu-
ronal change that could be obtained is unclear. We suspect 
that it was the higher starting level in monkey 1, maybe 
having better contrast discrimination naturally, that limits 
the overall neuronal change possible.

Overall, in our study, the contribution of V1 neurons to 
improved perceptual performance was comparatively lim-
ited, and changes were smaller than those previously seen 
in area V4 and differed from the results seen when monkeys 
were required to perform contour integration (Astorga et al., 
2022; Yan et al., 2014) or bisection tasks (Crist et al., 2001). 
Perceptual learning of contrast discrimination is possible 
under non-roving conditions. Under roving conditions with 
flanker stimuli in macaque monkeys, we also saw behav-
ioural improvements, but we believe these were a reflec-
tion of learning of categorization boundaries, not perceptual 
improvements per se. The neuronal structures underpinning 
changes associated with perceptual learning, while partly 
present in V1, appear to increase with cortical hierarchy. 
Changes associated with improved categorical decision-
making were absent in V1.
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