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Abstract: The causal structure of a system imposes constraints on the joint probability distribution
of variables that can be generated by the system. Archetypal constraints consist of conditional
independencies between variables. However, particularly in the presence of hidden variables, many
causal structures are compatible with the same set of independencies inferred from the marginal dis-
tributions of observed variables. Additional constraints allow further testing for the compatibility of
data with specific causal structures. An existing family of causally informative inequalities compares
the information about a set of target variables contained in a collection of variables, with a sum of the
information contained in different groups defined as subsets of that collection. While procedures to
identify the form of these groups-decomposition inequalities have been previously derived, we sub-
stantially enlarge the applicability of the framework. We derive groups-decomposition inequalities
subject to weaker independence conditions, with weaker requirements in the configuration of the
groups, and additionally allowing for conditioning sets. Furthermore, we show how constraints with
higher inferential power may be derived with collections that include hidden variables, and then
converted into testable constraints using data processing inequalities. For this purpose, we apply
the standard data processing inequality of conditional mutual information and derive an analogous
property for a measure of conditional unique information recently introduced to separate redundant,
synergistic, and unique contributions to the information that a set of variables has about a target.

Keywords: causality; directed acyclic graphs; causal discovery; structure learning; causal structures;
marginal scenarios; hidden variables; mutual information; unique information; entropic inequalities;
data processing inequality

MSC: 62H22; 62D20; 94A15; 94A17

1. Introduction

The inference of the underlying causal structure of a system using observational data
is a fundamental question in many scientific domains. The causal structure of a system
imposes constraints on the joint probability distribution of variables generated from it [1–4],
and these constraints can be exploited to learn the causal structure. Causal learning
algorithms based on conditional independencies [1,2,5] allow the construction of a partially
oriented graph [6] that represents the equivalence class of all causal structures compatible
with the set of conditional independencies present in the distribution of the observable
variables (the so-called Markov equivalence class). However, without restrictions on the
potential existence and structure of an unknown number of hidden variables that could
account for the observed dependencies, Markov equivalence classes may encompass many
causal structures compatible with the data.

Conditional independencies impose equality constraints on a joint probability distri-
bution; namely, an independence results in the equality between conditional and uncon-
ditional probability distributions, or equivalently, in a null mutual information between
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independent variables. In addition to the information from independencies between the
observed variables, causal information can also be obtained from other functional equality
constraints [7], such as dormant independencies that would occur under active interven-
tions [8]. Further causal inference power can be obtained incorporating assumptions on
the potential form of the causal mechanisms in order to exploit additional independencies
associated with hidden substructures within the generative model [9,10], or independencies
related to exogenous noise terms [11–13]. Other approaches have studied the identifiability
of specific parametric families of causal models [3,14]. However, these methods only pro-
vide additional inference power if the actual causal mechanisms conform to the required
parametric form.

Beyond equality constraints, the causal structure may also impose inequality con-
straints on the distribution of the data [15,16], which reflect non-verifiable independen-
cies involving hidden variables. Figure 1 illustrates this distinction between pairs of
causal structures distinguishable based on independence constraints (Figure 1A,B) and
causal structures that may be discriminated based on inequality constraints (Figure 1C,D).
The structures of Figure 1A,B belong to different Markov equivalence classes because in
Figure 1A variables V1 and V2 are independent conditioned on S, while in Figure 1B, to
obtain an independence it is required to further the condition on V3. On the other hand,
the structures of Figure 1C,D belong to the same equivalence class because no indepen-
dencies exist between the observable variables Vi, i “ 1, 2, 3. Nonetheless, if the hidden
variables were also observable, these structures would be distinguishable. In Figure 1D, all
the dependencies between the observable variables are caused by a single hidden variable
U, while in Figure 1C dependencies are created pairwise by different hidden variables.
In this case, a testable inequality constraint involving the observable variables reflects the
non-verifiable independencies that involve also hidden variables. Intuitively, in Figure 1C,
the inequality constraint imposes an upper bound on the overall degree of dependence
between the three variables, given that these dependencies arise only in a pairwise manner,
while in Figure 1D no such bound exists.

Importantly, unlike equality constraints, inequality constraints provide necessary but
not sufficient conditions for the compatibility of data with a certain causal structure. While
a certain hypothesized causal structure—like in Figure 1C—may impose the fulfillment of a
given inequality intrinsically from its structure, other causal structures—like in Figure 1D—
can generate data that, given a particular instantiation of the causal mechanisms, also
fulfill the inequality. Accordingly, the causal inference power of inequality constraints lies
in the ability to reject hypothesized causal structures that would intrinsically require the
fulfillment of an inequality when that inequality is not fulfilled by the data. This means
that tighter inequalities have more inferential power, giving the capacity to discard more
causal structures.

V2U

V3

V1

U12

V2

V3

V1

U13
U23

V2S

V3

V1V2S

V3

V1

CA B D

Figure 1. Examples of causal structures distinguishable from independencies (A,B) and structures
that may only be discriminated based on inequality constraints (C,D). In this case, the structure in (C),
and not the one in (D), intrinsically imposes a constraint due to dependencies between the observable
variables Vi, i “ 1, 2, 3 arising only from pairwise dependencies with hidden common causes.

Two main classes of inequality constraints have been derived. The first class corre-
sponds to inequality constraints in the probability space, which comprise tests of com-
patibility such as Bell-type inequalities [17,18], instrumental inequalities [19,20], and in-
equalities that appear on identifiable interventional distributions [21]. The second class
corresponds to inequalities involving information-theoretic quantities. The relation between
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these probabilistic and entropic inequalities has been examined in [22]. One approach to
construct entropic inequalities combines the inequalities defining the Shannon entropic
cone, i.e., associated with the non-negativity, monotonicity, and submodularity properties
of entropy, and additional independence constraints related to the causal structure [23,24].
Additional causally informative inequalities can be derived if considering the so-called
Non-Shannon inequalities [25,26]. When the causal structure to be tested involves hidden
variables, all non-trivial entropic inequalities in the marginal scenario associated with
the set of observable variables can be derived with an algorithmic procedure [23,24] that
projects the set of inequalities of all variables into inequalities that only involve the subset
of observable variables.

As an alternative approach, information-theoretic inequality constraints can be derived
by an explicit analytical formulation [24,27]. In particular, [27] introduced inequalities com-
paring the information about a target variable contained in a whole collection of variables
with a weighted sum of the information contained in groups of variables corresponding
to subsets of the collection. Two procedures were introduced to select the composition of
these groups. In a first type of inequalities, the composition of the groups is arbitrarily
determined, but an inequality only exists under some conditions of independence between
the chosen variables, whose fulfillment reflects the underlying causal structure. In a second
type, no conditions are required for the existence of an inequality, but the groups must
be ancestral sets; that is, must contain all other variables that have a causal effect on any
given element of the group. In both cases, [27] showed that the coefficients in the weighted
sum of the information contained in groups of variables are determined by the number of
intersections between the groups.

In this work, we build upon the results of [27] and generalize their framework of
groups-decomposition inequalities in several ways. First, we generalize both types of
inequalities to the conditional case, when the inequalities involve conditional mutual infor-
mation measures instead of unconditional ones. While this extension is trivial for the first
type of inequalities, we show that for the second type it requires a definition of augmented
ancestral sets. Second, we formulate more flexible conditions of independence for which
the first type of inequalities exists. Third, we add flexibility to the construction of the
ancestral sets that appear in the second type of inequalities. We show that, given a causal
graph and a conditioning set of variables used for the conditional mutual information
measures, alternative inequalities exist when determining ancestors in subgraphs that elim-
inate causal connections from different subsets of the conditioning variables. Furthermore,
we determine conditions in which an inequality also holds when removing subsets of
ancestors from the whole set of variables, hence relaxing for the second type of inequalities
the requirement that the groups correspond to ancestral sets.

Apart from these generalizations, we expand the power of the approach of [27] by
considering inequalities whose existence is determined by the partition into groups of
a collection of variables that also contains hidden variables. That is, hidden variables
can appear not only as hidden common ancestors of the collection but also as part (or
even all) of the variables in the collection for which the inequality is defined. To render
operational the use of inequalities derived from collections containing hidden variables,
we develop procedures that allow mapping those inequalities into testable inequalities
that only involve observable variables. While this mapping can be carried out by simply
applying the monotonicity of mutual information to remove hidden variables from the
groups, this does not work when all variables in the collection are hidden. We show that
data processing inequalities [28] can be applied to obtain testable inequalities also in this
case, or applied to obtain tighter inequalities than those obtained by simply removing the
hidden variables. We illustrate how testable inequalities whose coefficients in the weighted
sum depend on intersections among subsets of hidden variables instead of among subsets
of observable variables can result into tighter inequalities with higher inferential power.

In order to derive testable groups-decomposition inequalities, we do not only apply
the standard data processing inequality of conditional mutual information [28], but we
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derive an additional data processing inequality for the so-called unique information measure
introduced in [29]. This measure was introduced in the framework of a decomposition of
mutual information into redundant, unique, and synergistic information components [30].
Recently, alternative decompositions have been proposed to decompose the joint mutual
information that a set of predictor variables has about a target variable into redundant,
synergistic, and unique components [31–35] (among others). These alternative decompo-
sitions generally differ in the quantification of each component and differ in whether the
measures fulfill certain properties or axioms. However, in our work, we do not apply
the unique information measure of [29] as part of a decomposition of the joint mutual
information. Instead, we show that it provides an alternative data processing inequality
that holds for different causal configurations than the standard data processing inequality
of conditional mutual information. In this way, the unique information data processing
inequality increases the capability to eliminate hidden variables in order to obtain testable
groups-decomposition inequalities. Accordingly, the groups-decomposition inequalities
we derive can contain unique information terms apart from the standard mutual informa-
tion and entropy measures that appear when considering the constraints of the Shannon
entropic cone [23,24].

We envisage the application of the causally informative tests here proposed in the
following way. Given a data set, a hypothesized causal structure is selected to test its
compatibility with the data. First, the set of inequality constraints enforced by that causal
structure is determined. Second, their fulfillment is evaluated from the data and the causal
structure is discarded if some inequality does not hold. In the first step, the determination
of the set of groups-decomposition inequalities enforced by a causal structure requires at
different levels the verification of conditional independencies. This is the case, for example,
with the conditional independencies that are necessary conditions for the existence of the
first type of inequalities introduced by [27]. If all variables involved were observable, this
verification could be conducted directly from the data. However, as mentioned above, we
here consider groups-decomposition inequalities that may contain hidden variables as part
of the collection of variables, which precludes this direct verification. For this reason, we
will work under the assumption that statistical independencies can be assessed from the
structure of the causal graph, namely with the graphical criterion of separability between
nodes in the graph known as d-separation [36]. That is, we will rely on the assumption
that graphical separability is a sufficient condition for statistical independence and hence
characterize the set of groups-decomposition inequalities enforced by a causal structure
without using the data. Data would only be used in the second step, in which the actual
fulfillment of the inequalities is evaluated.

This paper is organized as follows. In Section 2, we review previous work relevant
for our contributions. In Section 3.1, we formulate the data processing inequality for the
unique information measure. In Section 3.2, we generalize the first type of inequalities
of [27], formulating for the conditional case more general conditions of independence for
which a groups-decomposition inequality exists. We also apply data processing inequalities
to derive testable groups-decomposition inequalities when collections include hidden
variables. In Section 3.3, we generalize the second type of inequalities of [27] as outlined
above. In Section 4, we discuss the connection of this work with other approaches to
causal structure learning and point to future continuations and potential applications.
The Appendix contains proofs of the results (Appendices A and B) and a discussion of
the relations between conditional independencies and d-separations required so that the
inequalities here derived are applicable to test causal structures (Appendix C).

2. Previous Work on Information-Theoretic Measures and Causal Graphs Relevant for
Our Derivations

In this section we review properties of information-theoretic measures and concepts
of causal graphs relevant for our work. In Section 2.1, we review basic inequalities of
the mutual information and in Section 2.2 the definition and relevant properties of the
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unique information measure of [29]. We then review in Section 2.3 Directed Acyclic
Graphs (DAGs) and their relation to conditional independence through the graphical
criterion of d-separation [36,37]. Finally, we review the inequalities introduced by [27] to test
causal structures from information decompositions involving sums of groups of variables
(Section 2.4). We do not aim to more broadly review other types of information-theoretic
inequalities [23,24] also used for causal inference. The relation with these other types will
be considered in the Discussion.

2.1. Mutual Information Inequalities Associated with Independencies

We present in Lemma 1 two well-known inequalities that will be used in our deriva-
tions. This lemma corresponds to Lemma 1 in [27]. For completion, we provide the proof
of the lemma.

Lemma 1. The mutual information fulfills the following inequalities in the presence of the corre-
sponding independencies:

piq (Conditional mutual information data processing inequality): Let A, B, B1, and D be
four sets of variables. If IpA; B1|B, Dq “ 0, then it follows that IpA; B|Dq ě IpA; B1|Dq.

piiq (Increase through conditioning on independent sets): Let A, B, C, and Y be four sets of
variables. If IpA; C|Bq “ 0, then IpY; A|Bq ď IpY; A|B, Cq.

Proof. piq is proven applying, in two different orders, the chain rule of the mutual informa-
tion to IpA; B, B1|Dq:

IpA; B, B1|Dq “ IpA; B|Dq ` IpA; B1|B, Dq “ IpA; B1|Dq ` IpA; B|B1, Dq.

Since IpA; B1|B, Dq “ 0 and the mutual information is non-negative, this implies the
inequality. To prove piiq, the chain rule is applied in different orders to IpY, C; A|Bq:

IpY, C; A|Bq “ IpC; A|Bq ` IpY; A|B, Cq “ IpY; A|Bq ` IpC; A|B, Yq.

Since IpC; A|Bq “ 0 and the mutual information is non-negative, this implies the inequality.

2.2. Definition and Properties of the Unique Information

The concept of unique information as part of a decomposition of the joint mutual infor-
mation IpY; Xq that a set of predictor variables X “ tX1, . . . , XNu has about a target (possibly
multivariate) variable Y was introduced in [30]. In the simplest case of two predictors tX1, X2u,
this framework decomposes the joint mutual information about Y into four terms, namely the
redundancy of X1 and X2, the unique information of X1 with respect to X2, the unique infor-
mation of X2 with respect to X1, and the synergy between X1 and X2. The predictors share
the redundant component, the synergistic one is only obtained by combining the predictors,
and unique components are exclusive to each predictor. Several information measures have
been proposed to define this decomposition, aiming to comply with a set of desirable properties
which were not all fulfilled by the original proposal [29,31–33]. However, in this work we will
not study the whole decomposition but specifically apply the bivariate measure of unique
information introduced in [29]. In Section 3.1, we derive a data processing inequality
for this measure and in Section 3.2 we show how it can help to obtain testable groups-
decomposition inequalities for causal structures for which the standard data processing
inequality of the mutual information would not allow elimination of the hidden variables.
In this Section, we review the definition of the unique information measure of [29], we
provide a straightforward generalization to a conditional unique information measure,
and state a monotonicity property that will be used to derive the data processing inequality
of the unique information. The unique information of X1 with respect to X2 about Y was
defined as

IpY; X1zzX2q ” min
QP∆P

IQpY; X1|X2q, (1)
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where ∆P is defined as the set of distributions on tY, X1, X2u that preserve the marginals
PpY, X1q and PpY, X2q of the original distribution PpY, X1, X2q. The notation IQ is used to
indicate that the mutual information is calculated on the probability distribution Q. We
use IpY; X1zzX2q to refer to the unique information of X1 with respect to X2, compared
to IpY; X1|X2q, which is the standard conditional information of X1 given X2. We use the
notation X1zzX2 instead of the notation X1zX2 introduced by [29] to differentiate it from
the set notation X1zX2, which indicates the subset of variables in X1 that is not contained
in X2, since we will also be using this set notation. This unique information measure is
a maximum entropy measure, since all distributions within ∆P preserve the conditional
entropy HpY|X2q, and hence the minimization is equivalent to a maximization of the
conditional entropy HpY|X1, X2q. The rationale that supports this definition is that the
unique information of X1 with respect to X2 about Y has to be determined by the marginal
probabilities PpY, X1q and PpY, X2q, and cannot depend on any additional structure in the
joint distribution that contributes to the dependence between tX1, X2u and Y [29]. This
additional contribution is removed by minimizing within ∆P.

In a straightforward generalization, we define the conditional unique information
given another set of variables Z as

IpY; X1zzX2|Zq ” min
QP∆P1

IQpY; X1|X2, Zq, (2)

where ∆P1 is the set of distributions on tY, X1, X2, Zu that preserve the marginals PpY, X1, Zq

and PpY, X2, Zq of the original PpY, X1, X2, Zq. By construction [29], the conditional unique
information is bounded as

mintIpY; X1|Zq, IpY; X1|X2, Zqu ě IpY; X1zzX2|Zq ě 0. (3)

This is consistent with the intuition of the decomposition that the unique information
is a component exclusive of X1. In Lemma 2, we present a type of monotonicity fulfilled
by the conditional unique information. This result is a straightforward extension to the
conditional case of the one stated in Lemma 3 of [38]. We include the full proof because
it will be useful in the Results section to prove a related data processing inequality for
the unique information. To better suit our subsequent use of notation, we consider the
two predictors to be Z1 and tX1, X1

1u, and the conditioning set to be Z2.

Lemma 2. The maximum entropy conditional unique information is monotonic on its second
argument, corresponding to the non-conditioning predictor, as follows:

IpY; X1, X1
1zzZ1|Z2q ě IpY; X1zzZ1|Z2q.

Proof. Consider the distribution P1,11 ” PpY, X1, X1
1, Z1, Z2q and its marginal P1 ” PpY, X1,

Z1, Z2q. Consider any distribution Q1,11 P ∆P1,11 and its marginal Q1 on pY, X1, Z1, Z2q.
Then Q1 P ∆P1 . By monotonicity of the mutual information, IQ1,11

pY; X1|Z1, Z2q is lower
than or equal to IQ1,11

pY; X1, X1
1|Z1, Z2q. Since IQ1,11

pY; X1|Z1, Z2q does not have X1
1 as an

argument, it is equal to the information calculated on its marginal IQ1pY; X1|Z1, Z2q. Since
this holds for any distribution in ∆P1,11 , it holds in particular for the distribution Q˚

1,11

that minimizes IpY; X1, X1
1|Z1, Z2q in ∆P1,11 . Since Q˚

1 belongs to ∆P1 , the minimum of
IpY; X1|Z1, Z2q in ∆P1 is equal to or smaller than IQ˚

1
pY; X1|Z1, Z2q and hence equal to or

smaller than IQ˚

1,11
pY; X1, X1

1|Z1, Z2q.

2.3. Causal Graphs and Conditional Independencies

We here review basic notions of Directed Acyclic Graphs (DAGs) and the relation between
causal structures and dependencies. Consider a set of random variables V “ tV1, . . . , Vnu.
A DAG G “ pV;Eq consists of nodes V and edges E between the nodes. The graph contains
Vi Ñ Vj for each pVi; Vjq P E . We refer to V as both a variable and its corresponding node.
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Causal influences can be represented in acyclic graphs given that causal mechanisms are not
instantaneous and causal loops can be spanned using separate time-indexed variables. A path
in G is a sequence of (at least two) distinct nodes V1, . . . , Vm, such that there is an edge between
Vk and Vk`1 for all k “ 1, . . . , m ´ 1. If all edges are directed as Vk Ñ Vk`1 the path is a causal
or directed path. A node Vi is a collider in a path if it has incoming arrows Vi´1 Ñ Vi Ð Vi`1
and is a noncollider otherwise. A node Vi is called a parent of Vj if there is an arrow Vi Ñ Vj.
The set of parents is denoted PaVj . A node Vi is called an ancestor of Vj if there is a directed
path from Vi to Vj. Conversely, in this case Vj is a descendant of Vi. For convenience, we
define the set of ancestors anGpViq as including Vi itself, and the set of descendants DGpViq as
also containing Vi itself.

The link between generative mechanisms and causal graphs relies on the fact that in
the graph a variable Vi is a parent of another variable Vj if and only if it is an argument of
an underlying functional equation that captures the mechanisms that generate Vj; that is,
an argument of Vj :“ fVj pPaVj , εVj q, where εVj captures additional sources of stochasticity
exogenous to the system. If a DAG constitutes an accurate representation of the causal
mechanisms, an isomorphic relation exists between the conditional independencies that
hold between variables in the system and a graphical criterion of separability between
the nodes, called d-separation [36]. Two nodes X and Y are d-separated given a set of
nodes S if and only if no S-active paths exist between X and Y. A path is active given
the conditioning set S (S-active) if no noncollider in the path belongs to S and every
collider in the path either is in S or has a descendant in S. A causal structure G and a
generated probability distribution ppVq are faithful [1,2] to one another when a conditional
independence between X and Y given S—denoted by X KP Y|S—holds if and only if there
is no S-active path between them; that is, if X and Y are d-separated given S—denoted by
X KG Y|S. Accordingly, faithfulness is assumed in the algorithms of causal inference [1,2]
that examine conditional independencies to characterize the Markov equivalence class of
causal structures that share a common set of independencies. A well-known example of a
system that is unfaithful to its causal structure is the exclusive-OR (X-OR) logic gate, whose
output is independent of the two inputs separately but dependent on them jointly.

In contrast to the algorithms that infer Markov equivalence classes, we will show
that the applicability of the groups-decomposition inequalities here studied relies on the
assumption that d-separability is a sufficient condition for conditional independence. That
is, instead of an if and only if relation between d-separability and conditional indepen-
dence, as required in the faithfulness assumption, it is enough to assume that d-separability
implies conditional independence. As we further discuss in Appendix C, this is a sub-
stantially weaker assumption, since usually faithfulness is violated due to the presence
of independencies that are incompatible with the causal structure. This is the case, for ex-
ample, of the X-OR logic gate, for which faithfulness is violated because the inputs are
separately independent of the output despite each having an arrow towards the output in
the corresponding causal graph. Conversely, the X-OR gate complies with d-separability
being a sufficient condition for independence, since in the graph only the input nodes
are d-separated and the corresponding input variables of the X-OR gate are independent.
Despite only requiring that d-separability implies independence, to simplify the presen-
tation of our results in the main text we will assume faithfulness and indistinctively use
X K Y|S to indicate statistical independence and graphical separability, instead of distin-
guishing between X KP Y|S and X KG Y|S. In Appendix C, we will more closely examine
how in the proofs of our results the sufficient condition of d-separability for conditional
independencies is enough. An important implication of independencies following from
d-separability is that, if variables tX1, X2u are separately independent from Y—namely
Y K X1 and Y K X2—because of the lack of any connection between node Y and both
nodes X1 and X2, then tX1, X2u cannot be jointly dependent on Y, namely Y M tX1, X2u

cannot occur. This is because d-separability between node Y and the set of nodes tX1, X2u

is determined by separately considering the lack of active paths between Y and each node
X1 and X2. Since the set of paths between Y and tX1, X2u is the union of the paths between
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Y and both X1 and X2, considering tX1, X2u jointly does not add new paths that could
create a dependence of Y with tX1, X2u. A dependence can only be created by conditioning
on some other variable, which could activate additional paths by activating a collider.

2.4. Inequalities for Sums of Information Terms from Groups of Variables

We now review two results in [27] that are at the foundation of our results. The first
corresponds to their Proposition 1. We provide a slightly more general formulation that is
useful for subsequent extensions.

Proposition 1. (Decomposition of information from groups with conditionally independent non-
shared components): Consider a collection of groups Arns ” tA1, . . . , Anu, where each group Ai
consists of a subset of observable variables Ai Ă O, being O the set of all observable variables.
For every Ai P Arns, define di as the maximal value such that Ai has a non-empty intersection
where it intersects jointly with di ´ 1 other distinct groups out of Arns. Consider a conditioning set
Z and target variables Y. If each group is conditionally independent given Z from the non-shared
variables in each other group (i.e., Ai K AjzAi|Z, @i, j), then the conditional information that Arns

has about the target variables Y given Z is bounded from below by

IpY; Arns|Zq ě

n
ÿ

i“1

1
di

IpY; Ai|Zq.

Proof. The proof is presented in Appendix A. It is a generalization to the conditional case
of the proof of Proposition 1 in [27] and a slight generalization that allows for dependencies
to exist between variables shared by two groups as long as dependencies with non-shared
variables do not exist.

An illustration of Proposition 1 for the unconditional case is presented in Figure 3
of [27], together with further discussion. In Section 3.2 we will provide further illustrations
for the extensions of Proposition 1 that we introduce. We will use d ” td1, . . . , dnu to
indicate the maximal values for all groups. We will add a subindex dArns

to specify the
collection if different collections are compared. A trivial refinement of Proposition 1 would
consider IpY; ArnszZ|Zq and for each group IpY; AizZ|Zq. This may lead to a tighter lower
bound by decreasing some values in d if some intersections between groups occur in Z. We
do not present this refinement in order to simplify the presentation.

The second result from [27] that we will be relying on is their Theorem 1. We present a
version that is slightly reduced and modified, which is more convenient in order to relate
to our own results.

Theorem 1. (Decomposition of information in ancestral groups.) Let G be a DAG model that
includes nodes corresponding to the variables in a collection of groups Arns ” tA1, . . . , Anu, which
is a subset all observable variables O. Let anGpArnsq ” tanGpA1q, . . . , anGpAnqu be the collection
of ancestors of the groups, as determined by G. For every ancestral set of a group, anGpAiq, let
dipGq be maximal, such that there is a non-empty joint intersection of anGpAiq and other dipGq ´ 1
distinct ancestral sets out of anGpArnsq. Let Y be a set of target variables. Then the information of
anGpArnsq about Y is bounded as

HpYq ě IpY; anGpArnsqq ě

n
ÿ

i“1

1
dipGq

IpY; anGpAiqq.

Proof. The original proof can be found in [27].

In contrast to Proposition 1, a generalization to the conditional mutual information
is not trivial and will be developed in Section 3.3. We will also propose additional gen-
eralizations regarding which graph to use to construct the ancestral sets and conditions
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to exclude some ancestors from the groups. In their work, [27] conceptualized Y as corre-
sponding to leaf nodes in the graph, for example providing some noisy measurement of
Arns, with Y “ Arns being the case of perfect measurement. While this conceptualization
guided their presentation, their results were general, and here we will not assume any
concrete causal relation between Y and Arns. We have slightly modified the presentation of
Theorem 1 from [27] to add the upper bound and to remove some additional subcases with
extra assumptions presented in their work. The upper bound is the standard upper bound
of mutual information by entropy [28]. In the Results, we will also be interested in cases
in which anGpArnsq contains hidden variables, so that IpY; anGpArnsqq cannot be estimated.
Given the monotonicity of mutual information, the terms from each ancestral group can be
lower bounded by the information in the observable variables within each group and HpYq

is used as a testable upper bound.
There are two main differences between Proposition 1 and Theorem 1. First, Theorem 1

does not impose conditions of independence for the inequality to hold. Second, while
the value di of each group Ai is determined in Proposition 1 by the overlap between
groups, with no influence of the causal structure relating the variables, on the other hand in
Theorem 1 the value dipGq depends on the causal structure, since it is determined from the
intersections between ancestral sets. Despite these differences, given the relation between
causal structure and independencies reviewed in Section 2.3, both types of inequalities can
have causal inference power to test the compatibility of certain causal structures with data.

3. Results

In Section 3.1, we introduce a data processing inequality for the conditional unique
information measure of [29]. In Section 3.2, we develop new information inequalities
involving groups of variables and examine how data processing inequalities can help
to derive testable inequalities in the presence of hidden variables. In Section 3.3, we
develop new information inequalities involving ancestral sets. The application of these
inequalities for causal structure learning is discussed. As justified in the proofs of our
results (Appendices A and B) and further discussed in Appendix C, our derivations of
groups-decomposition inequalities only rely on the assumption that d-separability implies
conditional independence. No further assumptions are used in our work, in particular, our
application of the unique information measures of [29] does not require any assumption
regarding the precise distribution of the joint mutual information among redundancy,
unique, and synergistic components.

3.1. Data Processing Inequality for Conditional Unique Information

Proposition 2. (Conditional unique information data processing inequality): Let A, B, B1, D,
and E be five sets of variables. If IpA; B1|B, Eq “ 0, then IpA; B, B1zzD|Eq “ IpA; BzzD|Eq ě

IpA; B1zzD|Eq.

Proof. Let PBB1 ” PpA, B, B1, D, Eq be the original distribution of the variables and de-
fine ∆PBB1 as the set of distributions on tA, B, B1, D, Eu that preserve the two marginals
PpA, B, B1, Eq and PpA, D, Eq. Let PB ” PpA, B, D, Eq be the marginal of PBB1 and ∆PB be the
set of distributions that preserve the marginals PpA, B, Eq and PpA, D, Eq. By the definition
of unique information (Equation (2))

IpA; B, B1zzD|Eq ” min
QBB1 P∆PBB1

IQBB1
pA; B, B1|D, Eq

paq
“

min
QBB1 P∆PBB1

”

IQBB1
pA; B|D, Eq ` IQBB1

pA; B1|B, D, Eq

ı

pbq
“

min
QBB1 P∆PBB1

”

IQB pA; B|D, Eq ` IQBB1
pA; B1|B, D, Eq

ı

.

(4)
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Equality paq follows from the chain rule of mutual information. Equality pbq holds be-
cause IQBB1

pA; B|D, Eq does not depend on B1 and can be calculated with the marginal QB,
marginalizing QBB1 on B1. Note that QB P ∆PB . Since IPBB1 pA; B1|B, Eq is null, PpA, B, B1, Eq

factorizes as PpB1|B, EqPpA, B, Eq. For any distribution Q̃B P ∆PB , which preserves PpA, D, Eq

and PpA, B, Eq, a distribution can be constructed as Q̃BB1 ” PpB1|B, EqQ̃B, such that
Q̃BB1 P ∆PBB1 , since Q̃BB1 continues to preserve PpA, D, Eq and PpA, B, B1, Eq is preserved
by construction. Also by construction, IQ̃BB1

pA; B1|B, D, Eq “ 0 for any Q̃BB1 created from

any Q̃B P ∆PB . In particular, this holds for the distribution Q̃˚
BB1 constructed from Q̃˚

B that
minimizes IQ̃B

pA; B|D, Eq, which determines IpA; BzzD|Eq. The distribution Q̃˚
BB1 mini-

mizes the first term in the r.h.s of Equation (4) and, given the non-negativity of mutual
information, it also minimizes the second term, hence providing the minimum in ∆PBB1 .
Accordingly, IpA; B, B1zzD|Eq “ IpA; BzzD|Eq. The monotonicity of unique information on
the non-conditioning predictor (Lemma 2) leads to IpA; B, B1zzD|Eq ě IpA; B1zzD|Eq.

A related data processing inequality has already been previously derived for the uncon-
ditional unique information in the case of IpA, D; B1|Bq “ 0, with E “ H [39]. Differently,
Proposition 2 formulates a data processing inequality for the case IpA; B1|B, Eq “ 0. When
E “ H, Proposition 2 states a weaker requirement for the existence of an inequality, given
the decomposition axiom of the mutual information [27]. As we will now see in Section 3.2,
Proposition 2 will allow us to apply the unique information data processing inequal-
ity in cases in which IpA; B1|B, Eq “ 0. In particular, IpA; B, B1zzD|Eq ě IpA; B1zzD|Eq

allows us to obtain a lower bound when B contains hidden variables that we want
to eliminate in order to have a testable groups-decomposition inequality. In contrast,
the application of the standard data processing inequality of the mutual information
IpA; B, B1|D, Eq ě IpA; B1|D, Eq requires IpA; B1|B, D, Eq “ 0, and hence the two types of
data processing inequalities may be applicable in different cases to eliminate B. This will
be fully appreciated in Propositions 5 and 6. Note that this application of the unique
information measure of Equation (2) to eliminate hidden variables is not restrained by the
role of the measure in the mutual information decomposition and by considerations about
which alternative decompositions optimally quantify the different components [30,35].

3.2. Inequalities Involving Sums of Information Terms from Groups

In this section, we extend Proposition 1 in several ways. Propositions 3–6 present sub-
sequent generalizations, all subsumed by Proposition 6. We present these generalizations
progressively to better appreciate the new elements. For these Propositions, examples are
displayed in Figures 2 and 3 and explained in text after the enunciation of each Proposition.
Which Proposition is illustrated by each example is indicated in the figure caption and in
the main text. The objective of these generalizations is twofold: First, to derive new testable
inequalities for causal structures not producing a testable inequality from Proposition 1.
Second, to find inequalities with higher inferential power, even when some already exist.
These objectives are achieved introducing inequalities with less constringent requirements
of conditional independence and using data processing inequalities to substitute certain
variables from Arns, so that the conditions of independence are fulfilled or the number of
intersections is reduced and lower values in d are obtained. The first extension relaxes the
conditions Ai K AjzAi|Z @i, j required in Proposition 1:

Proposition 3. (Weaker conditions of independence through group augmentation for a decomposi-
tion of information from groups with conditionally independent non-shared components): Consider
a collection of groups Arns, a conditioning set Z, and target variables Y as in Proposition 1. Consider
that for each group Ai a group Bi exists, such that Ai Ď Bi and Bi can be partitioned in two disjoint
subsets Bi “ tBp1q

i , Bp2q

i u such that Bp1q

i fulfills the conditions of independence Bp1q

i K Bp1q

j zBp1q

i |Z

and Bp2q

i the conditions Bp2q

i K BjzBp2q

i |Bp1q

i Z @i, j, and such that Bp1q

rns
” tBp1q

1 , . . . , Bp1q
n u and

Bp2q

rns
” tBp2q

1 , . . . , Bp2q
n u are disjoint. Define the maximal values dBi like in Proposition 1 but for
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the augmented groups Brns ” tB1, . . . , Bnu. Then, the conditional information that Brns has about
the target variables Y given Z is bounded from below by:

IpY; Brns|Zq ě

n
ÿ

i“1

1
dBi

IpY; Bi|Zq ě

n
ÿ

i“1

1
dBi

IpY; Ai|Zq.

Proof. The proof is provided in Appendix A.

The contribution of Proposition 3 is to relax the conditional independence requirements
Ai K AjzAi|Z. Analogous conditions remain for Bp1q

i , but Bp2q

i needs to fulfill the conditions

Bp2q

i K BjzBp2q

i |Bp1q

i Z @i, j. This means that the variables in Bp1q

i are used to separate the

variables in Bp2q

i from other groups. If Bp2q

i is empty for all i, Proposition 3 reduces to
Proposition 1.

Another difference between Propositions 1 and 3 regards the role of hidden variables.
Assume that each Ai is formed by tVi, Uiu, where Ui are hidden variables and Vi observ-
able variables. In Proposition 1, the requirement that the variables are observable is not
fundamental and could be removed. However, to obtain a testable inequality, monotonicity
of mutual information would need to be applied to reduce each term IpY; Ai|Zq to its es-
timable lower bound IpY; Vi|Zq that does not contain the hidden variables Ui. On the other
hand, the fulfillment of Ai K AjzAi|Z implies Vi K VjzVi|Z, and reducing Ai to Vi can
only decrease the number of intersections, and hence dVrns

values are equal or smaller than
dArns

. Therefore, with Proposition 1, there is no advantage in including hidden variables.
When testing Proposition 1 for a hypothesis of the underlying causal structure (and related
independencies), it is equally or more powerful to use Vrns than Arns.

This changes in Proposition 3, since Bp1q

i appears in the conditioning side of the inde-

pendencies that constrain Bp2q

i . If hidden variables within Bp1q

i are necessary to create the

independencies for Bp2q

i , it is not possible to reduce each group to its subset of observable
variables. Note that, for a hypothesized causal structure, whether the independence condi-
tions required by Proposition 3 are fulfilled can be verified without observing the hidden
variables by using the d-separation criterion on the causal graph, assuming d-separation
implies independence. The actual estimation of mutual information values is only needed
when testing an inequality from the data.

If Brns includes hidden variables, in general IpY; Brns|Zq cannot be estimated and
HpY|Zq is used as an upper bound. For the r.h.s. of the inequality, a lower bound is obtained
by monotonicity of the mutual information, removing the hidden variables. In general,
a testable inequality has the form

HpY|Zq ě

n
ÿ

i“1

1
dBi

IpY; Vi|Zq, (5)

with Vi Ď Bi being the observable variables within each group. In the case that IpY; Brns|Zq

“ IpY; Vrns|Zq, that is, if the hidden variables do not add information, then a testable tighter
upper bound is available using IpY; Vrns|Zq. Importantly, the values dBrns

are determined
using the groups in Brns. Since Ai Ď Bi, group augmentation comes at the price that
dBrns

are equal or higher than dArns
, but the conditional independence requirements may

not be fulfilled without it. Note also that the partition Bi “ tBp1q

i , Bp2q

i u is not known a
priori, but determined in the process of finding suitable augmented groups that fulfill
the conditions.

We examine some examples before further generalizations. Throughout all figures,
we will read independencies from the causal structures using d-separation, assuming
faithfulness. In Figure 2A, consider groups A1 “ tV1, V2u and A2 “ tV3, V4u, and Z “ H.
Proposition 1 is not applicable due to V2 M V3. Augmenting the groups to Bp1q

1 “ Bp1q

2 “

tUu, Bp2q

1 “ tV1, V2u, and Bp2q

2 “ tV3, V4u the conditions of Proposition 3 are fulfilled,
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as can be verified by d-separation. Coefficients are determined by d “ t2, 2u due to
the intersection of the groups in U. Note that hidden variables are not restricted to be
hidden common ancestors, and here U is a mediator between V2 and V3. In Figure 2B,
consider groups A1 “ tV1u, A2 “ tV3u, A3 “ tV5u, which do not fulfill the conditions
of Proposition 1. Augmenting the groups to Bp1q

1 “ tU2, U4u, Bp2q

1 “ tV1u, Bp1q

2 “ tU2u,

Bp2q

2 “ tV3u, Bp1q

3 “ tU4u, and Bp2q

3 “ tV5u the conditions are fulfilled. Maximal intersection
values are d “ t2, 2, 2u. In both examples the upper bound is HpYq since IpY; Brnsq cannot
be estimated due to hidden variables.

V3U2

V1

U4

Y

V5

B C

Yi

Ui Uk

Z2

Vi Vk

Z1

A

V3

V4

U

V1 Y

V2

Y
V2iV1i

U1i U2i

V1k

U1k U2k

V2k

Yi

Ui Uk

Z2

Vi Vk

Z1

Ui

U1k

Y

U1i U2i

V2iV1i

Ui

U2k

V1k V2k

Uk

FD E

Figure 2. Examples of applications of Proposition 3 (A–C) and Proposition 4 (D–F) to obtain testable
inequalities. The causal graphs allow verifying if the required conditional independence conditions
are fulfilled by using d-separation. Variable Y is the target variable, observable variables are denoted
by V, hidden variables by U, and conditioning variables by Z. For all examples, the composition of
groups is described in the main text. For graphs using subindexes i, k to display two concrete groups,
those are representative of the same causal structure for all groups that compose the system. In those
graphs, variables with no subindex have the same connectivity with all groups. Bidirectional arrows
indicate common hidden parents not included in any group.

We also consider scenarios with more groups. Figure 2C represents 2N groups or-
ganized in pairs, with subindexes i, k indicating two particular pairs. The 2N groups
are defined in pairs, with A1j “ tV1ju and A2j “ tV2ju, j “ 1, . . . , N. The causal struc-
ture is the same across pairs, but the mechanisms generating the variables beyond the
causal structure can possibly differ. Proposition 1 is not fulfilled since V1j M V2j. Groups

can be augmented to Bp1q

j1 j “ tU1j, U2ju, Bp2q

j1 j “ tVj1 ju, for j1 “ 1, 2. Proposition 3 then
holds with d “ 2 for all 2N groups. The pairs of groups contribute to the sum as
1{2rIpY; V1j, U1j, U2jq ` IpY; V2j, U1j, U2jqs, which in the testable inequality of the form of
Equation (5) reduces to 1{2rIpY; V1jq ` IpY; V2jqs. The upper bound to the sum of 2N terms
is HpYq. This inequality provides causal inference power because V1j K V2j|U1j, U2j for
all j is not directly testable. As previously indicated, the inference power of an inequal-
ity emanates from the possibility to discard causal structures that do not fulfill it. Note
that for this system an alternative is to define N groups instead of 2N groups, each as
A1

j “ tV1j, V2ju. In this case Proposition 1 is already applicable with the coefficients being all
1, since V1i, V2i K V1j, V2j for all i ‰ j. For this inequality, each of the N groups contributes
with IpY; V1jq ` IpY; V2j|V1jq, and since there are no hidden variables the l.h.s. is IpY; A1

rns
q.

However, this latter inequality holds for any causal structure that fulfills V1i, V2i K V1j, V2j
for all i ‰ j. Given that these independencies do not involve hidden variables, they are di-
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rectly testable from data, so that the latter inequality does not provide additional inference
power, in contrast to the former one.

We now continue with further generalizations. Group augmentation in Proposition 3
cannot decrease the values of the maximal number of intersections. We now describe how
the data processing inequalities in Lemma 1piq and Proposition 2 can be used to substitute
variables within the groups, potentially reducing the number of intersections. We start with
the data processing inequality for the conditional mutual information.

Proposition 4. (Decomposition of information from groups modified with the conditional mutual
information data processing inequality): Consider a collection of groups Arns, a conditioning set
Z, and target variables Y as in Proposition 1. Consider that for some group Ai a group Bi exists
such that Y K AizBi|BiZ, with AizBi ‰ H. Define Brns as the collection of groups that replaces
Ai by Bi for those following the previous independence condition. If Brns fulfills the conditions
of Proposition 3, the inequality derived for Brns also provides an upper bound for the sum of the
information provided by the groups in Arns:

HpY|Zq ě IpY; Brns|Zq ě

n
ÿ

i“1

1
dBi

IpY; Bi|Zq ě

n
ÿ

i“1

1
dBi

IpY; Ai|Zq.

Proof. The proof applies Proposition 3 to Brns followed by the data processing inequality
of Lemma 1piq to each term within the sum in which Ai and Bi are different. Given that
Y K AizBi|BiZ implies IpY; Bi|Zq ě IpY; Ai|Zq, their sum is also smaller or equal.

Proposition 3 envisaged cases in which the conditions of independence of Proposi-
tion 1 were not fulfilled for a collection Arns and augmentation allowed fulfilling weaker
conditions, even if with higher dBrns

values compared to dArns
. Proposition 4 is useful not

only when the conditions of independence are not fulfilled for Arns, but more generally if
some values in dBrns

are lower than in dArns
, hence providing a tighter inequality. Including

hidden variables in Brns is beneficiary when replacing observed by hidden variables leads
to fewer intersections. The procedures of Proposition 3 and 4 can be combined, that is, start-
ing with Arns that contains only observable variables, a new collection can be constructed
adding new variables and removing others from Arns, ending with Brns that contains both
observable and hidden variables. The collection Brns fulfilling the conditions of Proposi-
tion 3 may even contain only hidden variables, and a testable inequality is obtained as long
as the data processing inequality allows calculating observable lower bounds for all terms
in the sum.

Figure 2D–F are examples of Proposition 4. Again we consider cases with N groups
with equal causal structure and use indexes i, k to represent two concrete groups. In
Figure 2D, with Aj “ tVju, Proposition 3 does not apply for Arns conditioning on tZ1, Z2u

because Vi M Vj|Z1, Z2, for all i, j. However, given that Y K Vj|Uj, Z1, Z2, each Vj can be
replaced to build Bj “ tUju, and since Ui K Uj|Z1, Z2, for all i, j Proposition 3 applies
after using Proposition 4 to create Brns. A testable inequality is derived with upper bound
HpY|Z1, Z2q and a sum of terms IpY; Vj|Z1, Z2q, each being a lower bound of IpY; Uj|Z1, Z2q

given the data processing inequality that follows from Y K Vj|Uj, Z1, Z2. The coefficients
are dBrns

“ 1. Therefore, in this case Proposition 4 results in an inequality when no
inequality held for Arns. In Figure 2E, the same procedure relies on Y K Vj|Uj, Z1, Z2 and
Ui K Uj|Z1, Z2 to use Bj “ tUju to create a testable inequality with l.h.s. HpY|Z1, Z2q and
the sum of terms IpY; Vj|Z1, Z2q in the r.h.s. with dBrns

“ 1. Note that by U, which has no
subindex, we represent in Figure 2E a hidden common driver of all N groups, not only the
displayed i, k. In this example Proposition 3 could have been directly applied without using

Proposition 4 if augmenting Aj “ tVju to B1
j “ tVj, Uu, with B

1p1q

j “ tUu and B
1p2q

j “ tVju,
since Vi K Vj|U, Z1, Z2. However, dB1

rns
“ N, since all groups B1

j intersect in U. Therefore,
in this case an inequality already exists without applying Proposition 4, but its use allows
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replacing dB1
rns

“ N by dBrns
“ 1, hence creating a tighter inequality with higher causal

inference power.
In Figure 2F, again we consider 2N groups, consisting of N pairs with the same causal

structure across pairs and indices i, k representing two of these pairs. For groups Aj1 j “

tVj1 ju, with j1 “ 1, 2 and j “ 1, ..., N, Proposition 3 is directly applicable for Bp1q

j1 j “ tUju and

Bp2q

j1 j “ tVj1 ju, with dBrns
“ 2. The data processing inequalities associated with Y K Vj1 j|Uj1 j

allow applying Proposition 4 to obtain an inequality for the groups B1
j1 j “ B

1p1q

j1 j “ tUj1 ju,
which dB1

rns
“ 1.

Proposition 4 relies on the data processing inequality of the conditional mutual in-
formation. The data processing inequality of unique information can also be used for the
same purpose, and both data processing inequalities can be combined applying them to
different groups.

Proposition 5. (Decomposition of information from groups modified using across different groups
the conditional or unique information data processing inequality): Consider a collection of groups
Arns, a conditioning set Z, and target variables Y as in Proposition 1. Consider a subset of

groups such that for Ai a group Bi exists such that, for some Zp1q

i Ď Z, Y K AizBi|BiZ
p1q

i ,
with AizBi ‰ H. Define Brns as the collection of groups that replaces Ai by Bi for those following

the previous independence conditions. Define Zp1q

i ” Z for the unaltered groups and Zp2q

i ” ZzZp1q

i
for all groups. If Brns fulfills the conditions of Proposition 3, the inequality derived for Brns also
provides an upper bound for a sum combining conditional and unique information terms for different
groups in Arns:

HpY|Zq ě IpY; Brns|Zq ě

n
ÿ

i“1

1
dBi

IpY; Bi|Zq ě

ÿ

ti:|Zp2q

i |“0u

1
dBi

IpY; Ai|Zq `
ÿ

ti:|Zp2q

i |ą0u

1
dBi

IpY; AizzZp2q

i |Zp1q

i q.

Proof. The proof applies Proposition 3 to Brns and then both types of data processing
inequalities depending on which one holds for different groups:

n
ÿ

i“1

1
dBi

IpY; Bi|Zq
paq

ě
ÿ

ti:|Zp2q

i |“0u

1
dBi

IpY; Bi|Zq `
ÿ

ti:|Zp2q

i |ą0u

1
dBi

IpY; BizzZp2q

i |Zp1q

i q
pbq

ě

ÿ

ti:|Zp2q

i |“0u

1
dBi

IpY; Ai|Zq `
ÿ

ti:|Zp2q

i |ą0u

1
dBi

IpY; AizzZp2q

i |Zp1q

i q.
(6)

Inequality paq follows from the unique information always being equal to or smaller than
the conditional mutual information (Equation (3)). Inequality pbq applies the conditional
mutual information data processing inequality to those groups with Ai different than Bi

but |Zp2q

i | “ 0, and the unique information data processing inequality to those groups with

|Zp2q

i | ą 0.

Proposition 5 is useful when the conditions of independence required to apply
Proposition 3 do not hold for Arns. It can also be useful to obtain inequalities with higher
causal inferential power if dBrns

are smaller than dArns
, even if Proposition 3 is directly ap-

plicable. By definition, the terms IpY; AizzZp2q

i |Zp1q

i q are equal to or smaller than IpY; Ai|Zq,
which can only decrease the lower bound, but the data processing inequality may hold only
for the unique information and not the conditional information term. Note that the partition
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tZp1q

i , Zp2q

i u can be group-specific and selected such that data processing inequalities can
be applied.

Figure 3A shows an example of the application of the data processing inequality of
unique information. For Aj “ tVju, Proposition 3 does not apply to IpY; Arns|Zq because
Vi M Vk|Z. The data processing inequality of conditional mutual information does not hold
with Y M Vi|UiZ. This data processing inequality could be used adding to Ui the latent
common parent in Y Ø Z, but this variable would be shared by all augmented groups Bi,
leading to an intersection of all N groups. Alternatively, the data processing inequality
holds for the unique information with IpY; UjzzZq ě IpY; VjzzZq, and Ui K Uj|Z for all

i ‰ j. Proposition 5 is applied with Zp1q

j “ H, Zp2q

j “ tZu, and Bj “ Bp1q

j “ tUju, @j. This
leads to an inequality with HpY|Zq as upper bound and the sum of terms IpY; VjzzZq at the
r.h.s. with coefficients determined by dBrns

“ 1. In Figure 3B, taking Aj “ tVj1, Vj2u @j and
defining the conditioning set Z “ tZ, Z1, ..., ZNu, we have Vi2 M Vk2|Z and Vj1, Vj2 M Y|UjZ .
On the other hand, Vj1, Vj2 K Y|UjZzZj, so that the data processing can be applied with the

unique information and Proposition 5 is applied with Zp1q

j “ ZzZj, Zp2q

j “ tZju and Bj “

Bp1q

j “ tUju. An inequality exists given that Ui K Uk|Z, and the testable inequality has an
upper bound HpY|Zq and at the r.h.s. the sum of terms IpY; Vj1Vj2zzZj|ZzZjq, with dBrns

“ 1.

Ui Uk

YiVi Vk

Z

Yi

ZZi Zk

U

Uk

Vk1

Vk2

Ui

Vi1

Vi2

Ui1 Uk1

YiVi1 Vk1

Z1

Z2
Vk2Uk2Ui2Vi2

VlVj

U

UlUjUi Uk

YiVi2

Vk1Z

Vk2

Vi1

ZkZi

B CA D

Figure 3. Examples of the application of Proposition 5 (A–C) and Proposition 6 (D) to obtain testable
inequalities. Notation is analogous to Figure 2. The composition of groups is described in the main text.

In Figure 3C, we examine an example in which groups differ in the causal structure of
the conditioning variable Zj: For the groups of the type of group i, Zi is a common parent of
Y and Vi1. For the groups of the type of k, Zk is a collider in a path between Y and Vk1. Con-
sider M groups of the former type and N ´ M of the latter. We examine the existence of an
inequality for groups defined as Aj “ tVj1, Vj2u @j, with Z “ tZ, Z1, . . . , ZNu. Proposition 3
cannot be applied to IpY; Arns|Zq because Vi1 M Vj1|Z for all i ‰ j. The mutual information
data processing inequality is not applicable to substitute Vj1 because Y M Vj1|UjVj2Z. How-
ever, for the M groups like i, the independence Y K Vj1|UjVj2ZzZ leads to the data process-

ing inequality IpY; UjVj2zzZ|ZzZq ě IpY; Vj1Vj2zzZ|ZzZq. For these groups, Zp1q

j “ ZzZ and

Zp2q

j “ tZu. For the N ´ M groups like k, the independence Y K Vj1|UjVj2ZztZ, Zju leads

to IpY; UjVj2zzZ, Zj|ZztZ, Zjuq ě IpY; Vj1Vj2zzZ, Zj|ZztZ, Zjuq. For these groups Zp1q

j “

ZztZ, Zju and Zp2q

j “ tZ, Zju. In all cases the modified groups are Bj “ Bp1q

j “ tUj, Vj2u,
which fulfill the requirement Uj, Vj2 K Ui, Vi2|Z for all i ‰ j needed to apply Proposition 3.
The testable inequality that follows from Proposition 5 has upper bound HpY|Zq and in the
sum at the r.h.s. has M terms of the form IpY; Vj1Vj2zzZ|ZzZq and N ´ M terms of the form
IpY; Vj1Vj2zzZ, Zj|ZztZ, Zjuq. The coefficients are determined by dBrns

“ 1.
Proposition 5 combines both types of data processing inequalities, but only across

different groups. Our last extension of Proposition 1 combines both types across and
within groups. For each group, we introduce a disjoint partition into mi subgroups Ai “

tAp1q

i , . . . , Apmiq
i u and define Ap0q

i ” H. Subgroups are analogously defined for Zi, also with

Zp0q

i ” H. In general, for any ordered set of vectors we use Vrks

i ” tVp0q

i , Vp1q

i , . . . , Vpkq

i u to

refer to all elements up to k, where in general Vp0q

i can be nonempty.
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Proposition 6. (Decomposition of information from groups modified with the conditional or unique
information data processing inequality across and within groups): Consider a collection of groups
Arns, a conditioning set Z, and a target variable Y as in Proposition 1. Consider that for each group

Ai there are disjoint partitions Ai “ tAp1q

i , . . . , Apmiq
i u and Z “ tZp1q

i , . . . , Zpmiq
i u, and a collection

of sets of additional variables Ci “ tCp0q

i , Cp1q

i , ..., Cpmi´1q

i u, such that Y K Apkq

i |Crks

i Zrks

i AizArks

i

for k “ 1, . . . , mi ´ 1. Define the collection Brns with the modified groups Bi “ tCi, Apmiq
i u. If Brns

fulfills the conditions of Proposition 3, the inequality derived for Brns also provides an upper bound
for sums combining conditional and unique information terms for different groups in Arns:

HpY|Zq ě IpY; Brns|Zq ě

n
ÿ

i“1

1
dBi

IpY; Bi|Zq ě

n
ÿ

i“1

1
dBi

IpY; Crkis
i AizArkis

i zzZzZrkis
i |Zrkis

i q ě

n
ÿ

i“1

1
dBi

IpY; AizzZzZp1q

i |Zp1q

i q,

for ki P t1, . . . , mi ´ 1u.

Proof. The proof is provided in Appendix A.

If mi “ 1 for all i, then Ap1q

i “ Ai, Zp1q

i “ Z, Bi “ tCp0q

i , Aiu, and Proposition 6

reduces to Proposition 3. If mi “ 2 and Zp1q

i “ Z for all i, we recover Proposition 4,

with Bi “ tCi, Ap2q

i u. If mi “ 2 for all i and Zp1q

i Ă Z for some i, we recover Proposition 5,

with Bi “ tCi, Ap2q

i u and Zp2q

i “ ZzZp1q

i . Like for previous propositions, some groups may
be unmodified such that Bi “ Ai.

The tightest inequality results from maximizing across ki P t1, . . . , mi ´ 1u each term
in the sum. In the proof of Proposition 6 in Appendix A we show that, when increasing
ki P t1, . . . , mi ´ 1u, the terms IpY; Crks

i AizArks

i zzZzZrks

i |Zrks

i q are monotonically increasing.
However, in general Ci can contain hidden variables, which means that, to obtain a testable
inequality, for each ki P t1, . . . , mi ´ 1u each term needs to be substituted by its lower
bound that quantifies the information in the subset of observable variables. For each group,
the optimal ki leading to the tightest inequality will depend on the subset of observable
variables Vpkiq

i Ď tCrkis
i , AizArkis

i u and the corresponding values of IpY; Vpkiq
i zzZzZrkis

i |Zrkis
i q.

Figure 3D shows an example of application of Proposition 6. Like in Figure 3C, there
are two types of groups with different causal structure. M groups have the structure
of the variables with indexes i, k, and Aj1 “ tVj11, Vj12u. The other N ´ M groups have
the structure of the variables with indexes l, j, and Aj1 “ tVj1 u. The conditioning set
selected is Z “ tZ1, Z2u. Proposition 3 cannot be applied directly because Vi1 M Vk1|Z
for all i ‰ k within the M groups, and Vj M Vl|Z for all j ‰ l within the N ´ M groups.

Proposition 6 applies as follows. For the N ´ M groups, mj1 “ 2 with Ap1q

j1 “ tVj1 u,

Ap2q

j1 “ H, Zp1q

j1 “ Z, and Bj1 “ Cp1q

j1 “ tUj1 u. The independencies Y K Apkq

i |Crks

i Zrks

i AizArks

i
for k “ 1, . . . , mi ´ 1 correspond in this case to Y K Vj1 |ZUj1 , for k “ 1. For the other M

groups, mj1 “ 3 with Ap1q

j1 “ tVj11u, Ap2q

j1 “ tVj12u, Ap3q

j1 “ H, Zp1q

j1 “ tZ2u, Zp2q

j1 “ tZ1u,

Cp1q

j1 “ tUj11u, Cp2q

j1 “ tUj12u, and Bj1 “ tUj11, Uj12u. The independencies involved are
Y K Vj11|Z2, Uj11, Vj12, for k “ 1, and Y K Vj12|Z, Uj11, Uj12, for k “ 2.

Proposition 6 applies because with Brns defined as Bj1 “ tUj1 u for the N ´ M groups
and Bj1 “ tUj11, Uj12u for the M groups, the requirements of independence of Propo-
sition 3 are fulfilled, in particular Bi K Bj|Z for all i ‰ j. The terms IpY; Bj1 |Zq for the
N ´ M groups are IpY; Uj1 |Z1, Z2q and are substituted by lower bounds IpY; Vj1 |Z1, Z2q in
the testable inequality. For the M groups, we have the subsequent sequence of inequalities:
IpY; Uj11, Uj12|Z1, Z2q ě IpY; Uj11, Vj12|Z1, Z2q ě IpY; Uj11, Vj12zzZ1|Z2q ě IpY; Vj11, Vj12zzZ1|Z2q.
The first inequality follows from the independence for k “ 2, the second from the unique
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information being equal or smaller than the conditional information, and the third from
the independence for k “ 1. Considering that a testable inequality can only contain ob-
servable variables, for the M groups the terms in the sum can be IpY; Vj11, Vj12zzZ1|Z2q or
IpY; Vj12|Z1, Z2q, depending on which one is higher. The coefficients are determined by
dBrns

“ 1 and the resulting testable inequality has upper bound HpY|Z1, Z2q.
Overall, Propositions 4–6 further extend the cases in which groups-decomposition

inequalities of the type of Proposition 1 can be derived. Our Proposition 1 extends Propo-
sition 1 of [27] to allow conditioning sets, Proposition 3 further weakens the conditions
of independence required in Proposition 1, and Propositions 4–6 use data processing in-
equalities to obtain testable inequalities from groups-decompositions derived comprising
hidden variables, which can be more powerful than inequalities directly derived without
comprising hidden variables. In Figures 2 and 3, we have provided examples of causal
structures for which these new groups-decompositions inequalities exist. In all these cases,
the use of our groups-decomposition inequalities increases the set of available inequality
tests that can be used to reject hypothesized causal structures underlying data.

3.3. Inequalities Involving Sums of Information Terms from Ancestral Sets

We now examine inequalities involving ancestral sets as in Theorem 1 of Steudel and
Ay [27], which we reviewed in our Theorem 1 (Section 2.4). We extend this theorem allowing
for a conditioning set Z and adding flexibility on how ancestral sets are constructed, as well
as allowing the selection of reduced ancestral sets that exclude some variables. Like for
Theorem 1, we will use anGpArnsq ” tanGpA1q, . . . , anGpAnqu to indicate the collection of
all ancestral sets in graph G from the collection of groups Arns ” tA1, . . . , Anu.

The extension of Theorem 1 to allow for a conditioning set Z requires an extension of
the notion of ancestral set that will be used to determine the coefficients in the inequalities.
The intuition for this extension is that conditioning on Z can introduce new dependencies
between groups, in particular when a variable Zj P Z is a common descendant of several
ancestral groups, and hence conditioning on it activates paths in which it is a collider.
The coefficients need to take into account that common information contributions across
ancestral groups can originate from these new dependencies. At the same time, condition-
ing can also block paths that created dependencies between the ancestral groups. To also
account for this, we will not only consider ancestral sets in the original graph G, but in any
graph G1 “ GZ1 , with Z1 Ď Z. The graph GZ1 is constructed by removing from G all the
outgoing arrows from nodes in Z1. This has an effect equivalent to conditioning on Z1 with
regard to eliminating dependencies enabled by paths through Z1 in which the variables
in Z1 are noncolliders, since removing those arrows deactivates the paths. To account for
these effects of conditioning on Z, for each Zj P Z we define an augmented ancestral set of
the groups Ai P Arns as follows:

anG1 pAi; Zjq ”

#

anG1 pAiq if anG1 pAiq K anG1pZjq X anG1pArnsq|Z

anG1 pAiq Y panG1 pZjq X anG1 pArnsqq otherwise.
(7)

We then define the set SpG1; Zjq ” tAi P Arns : anG1 pAiq M anG1 pZjq X anG1pArnsq|Zu,
that is, the set of groups that have some ancestor not independent from some ancestor of Zj
that is also ancestor of Arns, given Z.

For each Ai, let dipG1; Zjq be the maximal number such that a non-empty intersection
exists between anG1 pAi; Zjq and dipG1; Zjq ´ 1 other distinct augmented ancestral sets of
Ai1 , . . . , AidipG1 ;Zjq´1

. Furthermore, we define dipG1; Zq as the maximum for all Zj P Z:

dipG1; Zq ” max
ZjPZ

dipG1; Zjq. (8)



Entropy 2024, 26, 440 18 of 34

We will use dpG1; Zq to refer to the whole set of maximal values for all groups. If re-
quired, we will use dArns

pG1; Zq to specify that the collection is Arns.

In Figure 4A–D, we consider examples to understand the rationale of how dArns
pG1; Zq

is determined in inequalities with a conditioning Z. In Figure 4A, for groups A1 “ tV1u

and A2 “ tV2u, the augmented ancestral sets on graph G are anGpA1; Zq “ tV1, Zu and
anGpA2; Zq “ tV2, Zu, which intersect on Z and dipG; Zq “ 2 for i “ 1, 2. However, Z is a
noncollider in the path creating a dependence between V1 and V2, and conditioning on Z
renders them independent, so that dipG; Zq “ 2 overestimates the amount of information
the groups may share after conditioning. Alternatively, selecting GZ the ancestral sets are
anGZ pA1; Zq “ tV1u and anGZ pA2; Zq “ tV2u, which do not intersect and dipGZ; Zq “ 1 for
i “ 1, 2 when calculated following Equation (7). A priori, we do not know which graph G1 “

GZ1 , Z1 Ď Z, results in a tighter inequality. Here we see that GZ leads to an inequality with
more causal inference power than G for Figure 4A. In Figure 4B, Z is a collider between V1
and V2, so that conditioning on Z creates a dependence between the groups. If the values di
were determined from the standard ancestral sets, in this case anGpAiq “ anGZ pAiq “ tViu,
for i “ 1, 2, which do not intersect, leading to unit coefficients. However, the augmented
ancestral sets following Equation (7) are anGpAi; Zq “ anGZ pAi; Zq “ tV1, V2u for i “ 1, 2,
so that dipG; Zq “ dipGZ; Zq “ 2. This illustrates that the augmented ancestral sets are
necessary to properly determine the coefficients in inequalities with conditioning sets Z,
in this case reflecting that IpY; V1|Zq and IpY; V2|Zq can have redundant information.

A

V2YV1
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V3 Z2

B C

FD E

V2Z
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V1 V2Z

Y

V1 V2YV1

Z1 Z2

Y
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U

Figure 4. Inequalities involving sums of information terms from ancestral sets. (A–D) Examples to
illustrate the definition of augmented ancestral sets (Equations (7) and (8)). (E,F) Examples of the
application of Theorem 2 to obtain testable inequalities.

Figure 4C shows a scenario in which conditioning creates dependencies of Y with V1
and V2, which were previously independent. The standard ancestral sets anG1 pA1q “ tV1u

and anG1 pA2q “ tV2u would not intersect in any G1 “ GZ1 , with Z1 Ď tZ1, Z2u and would
lead to unit values for di. On the other hand, the augmented ancestral sets are anG1pAi; Zjq “

tViu for i “ j and anG1 pAi; Zjq “ tV1, V2u for i ‰ j, for all G1 “ GZ1 , with Z1 Ď tZ1, Z2u.
This results in dipG1; Zq “ 2 in all cases, which appropriately captures that the two groups
can have common information about Y when conditioning on tZ1, Z2u. The example of
Figure 4D illustrates why each value dipG1; Zjq is determined separately (Equation (7))
first, and only after is the maximum calculated (Equation (8)). Four groups are defined
as Ai “ Vi for i “ 1, . . . , 4. If dipG1; Zq were to be determined directly from Equation (7)
but using Z “ tZ1, Z2u, instead of using separately Z1 and Z2, then for all the ancestral
sets the augmented ancestral set would include all variables, since anG1 pZq X anG1 pArnsq

is equal to anG1 pArnsq. This would lead to di “ 4, @i. However, that determination would
overestimate how many groups become dependent when conditioning on Z, since Z1
creates a dependence between V1 and V2 and Z2 between V3 and V4, but no dependencies
across these pairs are created. The determination of dpG1; Zq “ 2 from Equations (7) and (8)
properly leads to a tighter inequality than the one obtained if considering jointly both
conditioning variables.
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Equipped with this extended definition of dArns
pG1; Zq, we now present our general-

ization of Theorem 1:

Theorem 2. Let G be a DAG model containing nodes corresponding to a set of (possibly hidden)
variables X . Let Y P X be a set of observable target variables, and Z “ tZ1, . . . , Zmu a conditioning
set of observable variables, with Z Ă X . Let Arns “ tA1, . . . , Anu be a collection of (possibly
overlapping) groups of (possibly hidden) variables Ai Ă X . Consider a DAG G1 selected as
G1 “ GZ1 with Z1 Ď Z, constructed by removing from graph G all the outgoing arrows from nodes
in Z1. Following Equation (7), define an augmented ancestral set in G1 for each group Ai P Arns

for each variable in the conditioning set, Zj P Z. Following Equation (8), determine dipG1; Zq

for each group, given the intersections of the augmented ancestral sets anG1 pAi; Zjq. Select a
variable W0 P anG1 pArnsq and a group of variables W Ď DG1pW0q X anG1 pArnsq, possibly W “ H.
Define the reduced ancestral sets ãnG1 pAiq ” anG1 pAiqzW for each Ai P Arns, and the reduced
collection ãnG1 pArnsq ” anG1 pArnsqzW. The information about Y in this reduced collection when
conditioning on Z is bounded from below by

IpY; ãnG1 pArnsq|Zq ě

n
ÿ

i“1

1
dipG1; Zq

IpY; ãnG1 pAiq|Zq. (9)

Proof. The proof is provided in Appendix B.

Theorem 2 provides several extensions of Theorem 1. First, it allows for a conditioning
set Z. Second, given a hypothesis of the generative causal graph G underlying the data,
Theorem 2 can be applied to any G1 “ GZ1 with Z1 Ď Z, and hence offers a set of inequalities
potentially adding causal inference power. As we have discussed in relation to Figure 4A–D,
the selection of G1 that leads to the tightest inequality in some cases will be determined by
the causal structure, but in general it also depends on the exact probability distribution of
the variables. Third, Theorem 2 allows excluding some variables W from the ancestral sets,
although imposing constraints in the causal structure of W. The role of these constraints is
clear in the proof at Appendix B. The case of Theorem 1 corresponds to Z “ H, W “ H,
and G1 “ G.

Excluding some variables W can be advantageous. For example, if Y is univariate and
it overlaps with some ancestral sets, as it is the case when some groups include descendants
of Y, then the upper bound IpY; anG1 pArnsq|Zq is equal to HpY|Zq and also IpY; anG1 pAiq|Zq

is equal to HpY|Zq for all ancestral sets that include Y. Excluding W “ Y provides a
tighter upper bound IpY; anG1 pArnsqzY|Zq and may provide more causal inferential power.
Another scenario in which a reduced collection can be useful is when excluding W re-
moves all hidden variables from anG1 pArnsq, such that ãnG1 pArnsq is observable, giving
IpY; ãnG1 pArnsq|Zq as a testable upper bound instead of HpY|Zq. When comparing inequali-
ties with different sets W, in some cases the form of the causal structure and the specification
of which variables are hidden or observable will a priori determine an order of causal
inference power among the inequalities. However, like for the comparison across G1 “ GZ1

with Z1 Ď Z, in general the power of the different inequalities depends on the details of the
generated probability distributions. Formulating general criteria to rank inequalities with
different Z, G1, and W in terms of their inferential power is beyond the scope of this work.

Note that we have formulated Theorem 2 explicitly allowing for hidden variables.
Also, in Theorem 1 (as a subcase of Theorem 2) the restriction of Arns being observable
variables can be removed. In any case, the inclusion of hidden variables can only increase
the causal inference power if combined with data processing inequalities to obtain a testable
inequality. Propositions 4–6 indicate how to possibly tighten an inequality derived from
Proposition 1 by substituting Arns by a new collection Brns that, including hidden variables,
leads to dBrns

smaller than dArns
. The same application of data processing inequalities of

the unique and conditional mutual information can be used for Theorem 2 to determine
a Brns with dBrns

pG1; Zq smaller than dArns
pG1; Zq. The use of data processing inequalities

is necessary because they allow substituting some of the observable variables by hidden
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variables, instead of only adding hidden variables. When only adding variables, the number
of intersections between ancestral groups can only increase, hence not decreasing dpG1; Zq.
On top of this, a testable inequality replaces information terms of ancestral groups by their
lower bounds given by observable subsets of variables. This means that, adding hidden
variables, the testable inequality will contain the same information terms of the observable
variables, but possibly smaller coefficients, hence resulting in a looser inequality. This is
not the case any more when hidden variables are not added but instead substitute some of
observable variables, thanks to data processing inequalities. This substitution may decrease
the number of intersections between ancestral groups, and the coefficients in the sum may
be higher. We will not describe this procedure in detail, since the use of data processing
inequalities is analogous to their use in Propositions 4–6.

We now illustrate the application of Theorem 2. In Figure 4E, with Z “ tZ1, Z2u,
the conditions of independence required by Proposition 6 do not hold for any set of
groups, either Ai “ tViu, i “ 1, 2, 3, or, with i ‰ j ‰ k, A1 “ tVi, Vju, A2 “ tVi, Vku

or A1 “ tVi, Vju, A2 “ tVku. No data processing inequalities can be applied to replace
some variables to fulfill the conditions. On the other hand, Theorem 2 can always be
applied, since it does not require the fulfillment of some conditions of independence.
For example, for Ai “ tViu, i “ 1, 2, 3 and for G1 “ GZ1Z2 , we have anG1 pV1q “ tV1u,
anG1 pV2q “ tV2u, anG1pV3q “ tV1, V2, V3, U, Yu, and following Equation (7) anG1 pV1; Zjq “

tV1u, anG1 pV2; Zjq “ tV2u, and anG1 pV3; Zjq “ tV1, V2, V3, U, Yu, for j “ 1, 2. This leads to
dpG1; Zq “ t2, 2, 3u. For illustration purpose, we focus on W equal to tY, Uu or any of its
subsets. In all cases ãnG1 pViq “ anG1 pViq, for i “ 1, 2, contributing terms 1{2IpY; V1|Z1, Z2q

and 1{2IpY; V2|Z1, Z2q. For W “ tY, Uu or W “ tYu, the contribution of the observable
lower bound of the third group is 1{3IpY; V1, V2, V3|Z1, Z2q. For W “ tUu or W “ H,
the third group contributes 1{3HpY|Z1, Z2q. For W “ tY, Uu, ãnG1 pArnsq “ tV1, V2, V3u,
which is observable and the upper bound is IpY; V1, V2, V3|Z1, Z2q. For any other subset of
tY, Uu the upper bound in the testable inequality is HpY|Z1, Z2q. Because the terms in the
sum for groups 1 and 2 are equal for all the W compared, in this case it can be checked that
selecting W “ tY, Uu leads to the tightest inequality. This example illustrates the utility of
being able to construct inequalities for reduced ancestral sets.

While in the previous example only Theorem 2 and not Proposition 6 was applicable,
more generally, a causal structure will involve the fulfillment of a set of inequalities, some
obtained using Proposition 6 and some using Theorem 2. Which inequalities have higher
inferential power will depend on the causal structure and the exact probability distribution
of the data, and neither Theorem 2 nor Proposition 6 are more powerful a priori. In Fig-
ure 4F, Proposition 6 cannot be applied using Ai “ tViu, i “ 1, 2, 3 and conditioning on Z,
because Vi M Vj|Z, @i, j and no data processing inequalities help to substitute these variables.
On the other hand, Theorem 2 can be applied with Ai “ tViu, leading to anG1 pV1q “ tV1u,
anG1 pV3q “ tV3u, and anG1 pV2q “ tV2, U1, U2u, for all G1 “ GZ1 . The augmented ancestral
sets are anG1 pV1; Zq “ tV1, V3, U1u “ anG1 pV3; Zq, and anG1 pV2; Zq “ tV1, V2, V3, U1, U2u,
also for all G1, resulting in dpG1; Zq “ 3. Focusing on the case of W “ tY, U2u, or any subset
of it, in all cases the associated testable inequality has HpY|Zq as upper bound and in the
r.h.s. the sum of terms 1{3IpY; Vi|Zq, i “ 1, 2, 3. Alternatively, defining A1 “ tV1, V3, U1u

and A2 “ tV2, U1u, Proposition 3 is applicable with the two groups intersecting in U1 and
V1, V3 K V2|Z, U1. The associated testable inequality has the same upper bound HpY|Zq

and in the r.h.s. the sum of terms 1{2IpY; V1, V3|Zq and 1{2IpY; V2|Zq. In this case, which
inequality has more causal inferential power will depend on the exact distribution of
the data.

Overall, Theorem 2 extends Theorem 1 of [27], allowing conditioning sets and pro-
viding more flexible conditions to form the groups. In the examples of Figure 4, we have
illustrated how Theorem 2 substantially increases the number of groups-decomposition
inequalities that can be tested to reject hypothesized causal structures to be compatible
with a certain data set.
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4. Discussion

We have presented several generalizations of the type of groups-decomposition in-
equalities introduced by [27], which compare the information about target variables con-
tained in a collection of variables with a weighted sum of the information contained in
subsets of the collection. These generalizations include an extension to allow for condition-
ing sets and methods to identify existing inequalities that involve collections and subsets
selected with less restrictive criteria. This comprises less restrictive conditions of indepen-
dence, the use of ancestral sets from subgraphs of the causal structure of interest, and the
removal of some variables from the ancestral sets. We have also shown how to exploit
inequalities identified for collections containing hidden variables—which are not directly
testable—by converting them into testable inequalities using data processing inequalities.

Our use of data processing inequalities to derive testable groups-decomposition in-
equalities when collections contain hidden variables is not entirely new. We found inspira-
tion for this approach in the proof of Theorem 1 in [24]. This theorem derives a causally
informative inequality from a particular type of causal structure, namely common ancestor
graphs in which all dependencies between observable variables are caused by hidden
common ancestors. The inequality presented in the theorem corresponds to the setting of a
univariate target variable and groups composed by different single observable variables.
In their simplest case, each hidden ancestor only has two children, which are observable
variables. Their proof uses the mutual information data processing inequality to convert a
sum of information terms involving the observable variables into a sum of terms involving
the hidden ancestors. The final inequality can equally be proven applying our Proposition 4
by deriving an inequality for the collection of hidden variables and then converting it
into a testable inequality using data processing inequalities. The same final inequality
can also be derived as an application of our Theorem 2 followed by the use of the data
processing inequality.

We have expanded the applicability of data processing inequalities by showing that
this type of inequality also holds for conditional unique information measures [29]. For a
given causal structure, a testable causally informative inequality may be obtained substi-
tuting hidden variables by observable variables thanks to the data processing inequality
of the unique information, in cases in which the data processing inequality of mutual
information is not applicable. As shown in Proposition 6, the unique information data
processing inequalities are particularly powerful for deriving groups-decomposition in-
equalities with a conditioning set, since they can iteratively be applied to replace different
subsets of hidden variables by observable variables choosing which variables are kept
as conditioning variables and which ones are taken as reference variables for different
unique information measures. This use of unique information indicates how other types of
information-theoretic measures could be similarly incorporated to derive causally informa-
tive inequalities. Recent developments in the decomposition of mutual information into
redundant, synergistic, and unique contributions [30] provide candidate measures whose
utility for this purpose needs to be further explored [31–35,40,41] (among others). Further-
more, while this type of decomposition has been extensively debated recently [35,42,43],
aspects of its characterization are still unsolved and an understanding of how the terms are
related to the causal structure can provide new insights.

One particular domain in which our generalizations can be useful is to study causal
interactions among dynamical processes [23,44], for which causal interactions are char-
acterized from time series both in the temporal [45] and spectral domain [46–48]. When
studying high-dimensional multivariate dynamical processes, such as brain dynamics
(e.g., [49–51]) or econometric data [52,53], an important question is to determine whether
correlations between time series are related to causal influences or to hidden common
influences. For highly interconnected systems with many hidden variables, the number
of independencies may be small, hence providing limited information about the causal
structure. In this case, inequality constraints can help to substantially narrow down the set
of causal structures compatible with the data. Accordingly, our generalization to formulate
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conditional inequalities may play an important role in combination with measures to quan-
tify partial dependencies between time series [54,55]. We expect this approach to be easily
adaptable to non-stationary time-series, as it is often the case in the presence of unit roots
and co-integrated time series [56–58]. This can be carried out by selecting collections and
groups consistent with the temporal partitioning in non-stationary information-theoretic
measures of causality in time-series [59,60]. Another area to extend the applicability of our
proposal is to study non-classical quantum systems [16,61–63]. In this case, an extended
d-separation criterion [64] and adapted faithfulness considerations [65] have been proposed
to take into account the particularities of quantum systems. Further exploration will be
required to determine if and how our derivations that rely on d-separation leading to
statistical independence (Appendix C) are also applicable when considering generalized
causal structures for quantum systems.

Besides the extension to particular domains, an important question yet to be addressed
regards the relation between the causal inferential power of different inequalities. Our
proposal considerably enlarges the number of groups-decomposition inequalities of the
type of [27] available to test the compatibility of a causal structure with a given data set.
We have seen in our analysis some examples of how, under certain conditions, the causal
structure imposes an ordering to the power of alternative inequalities. Future work should
aim to derive broader criteria to rank the inferential power of inequalities, for example in
terms of the relation between the conditioning sets or the constituency of the groups that
appear in each inequality. Formulating criteria to rank the inferential power of different
inequalities would help to simplify the set of inequalities that needs to be tested when the
compatibility of a certain causal structure with the data is to be examined.

Apart from a characterization of how groups-decomposition inequalities are related
among themselves, future work should also examine the relation and embedding of this
type of inequalities with those derived with other approaches. In our understanding, the al-
gorithmic projection procedure of [23,24] could equally retrieve some of the inequalities
here described, but without the advantage of having a constructive procedure to derive the
form of an inequality directly reading a causal graph, and instead requiring costly compu-
tations that may limit the derivation of inequalities for large systems. The incorporation of
constraints for other types of information-theoretic measures, such as constraints involving
unique information measures, would require an extension of the algorithmic approach.
Among other approaches, the so-called Inflation technique [66] stands out as capable of
providing asymptotically sufficient tests of causal compatibility [67]. The inflation method
creates a new causal structure with multiple copies of the original structure and symmetry
constraints on the ancestral properties of the different copies, in such a way that testable
constraints on the inflated graph can be mapped back to the compatibility of the original
causal structure. However, despite the ongoing advances in its theoretical developments
and implementation [68], to our knowledge it is not straightforward to identify the order
of inflation and the specific inflation structure adequate to discriminate between certain
causal structures. The availability of inequalities easily derived by reading the original
causal structure can also be helpful in combination with the inflation method, in order to
discard as many candidate causal structures as possible before the design of additional
inflated graphs. The connection with other approaches [69–74] also deserves further inves-
tigation, ultimately to determine minimal sets of inequality constraints with equivalent
inferential power.

Beyond the derivation of existing testable causally informative inequalities, a cru-
cial issue for their application is the implementation of the corresponding tests. This
implementation depends on the estimation of information-theoretic measures from data.
A ubiquitous challenge for the application of mutual information measures is that they are
positively biased and their estimation is data-demanding [75,76]. These biases scale with
the dimensionality of the variables, and hence can hinder the applicability of information-
theoretic inequalities for large collections of variables, or for variables with high cardinality.
However, recent advances in the estimation of mutual information for high-dimensional
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data can help to attenuate these biases [77]. Furthermore, the implementation of the tests
can take advantage of the existence of both upper-bound and lower-bound estimators
of mutual information [78], using opposite bounds at the two sides of the inequalities.
These technical aspects of the implementation of the tests are important to apply all types
of information-theoretic inequalities [23–27,71]. Despite these common challenges, our
extension of groups-decomposition inequalities does not come at the price of having to
test inequalities that intrinsically are more difficult to estimate. Our contribution can sub-
stantially increase the number of inequalities available to be tested, and we have provided
examples in Figures 2–4 of new inequalities in which—in particular thanks to the use of
data processing inequalities—the dimensionality of the collections is not increased. Future
work is required to determine how to efficiently combine all available tests. In the goal to
determine minimal sets of inequality tests that are maximally informative, the statistical
power of the tests will need to be considered together with their discrimination power
among causal structures.
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Appendix A. Proofs of Propositions 1, 3, and 6

Proof of Proposition 1. Given a collection Arns “ tA1, . . . , Anu, define Xrrs as the set of r
variables that are part of at least a group in Arns. We have that

IpY; Arns|Zq
paq
“ IpY; Xrrs|Zq

pbq
“

r
ÿ

k“1

IpY; Xk|Xrk´1s, Zq
pcq

ě

r
ÿ

k“1

IpY; Xk|Xrk´1s, Zq

¨

˝

ÿ

Ai :XkPAi

1
di

˛

‚

pdq
“

n
ÿ

i“1

1
di

ÿ

XkPAi

IpY; Xk|Xrk´1s, Zq
peq

ě

n
ÿ

i“1

1
di

ÿ

XkPAi

IpY; Xk|pXrk´1s X Aiq, Zq
p f q
“

n
ÿ

i“1

1
di

IpY; Ai|Zq

(A1)

Equality paq follows from Xrrs containing the same variables as Arns. Equality pbq follows
from the iterative application of the chain rule for mutual information, where Xr0s ” H

and Xrk´1s “ tX0, . . . , Xk´1u. Inequality pcq follows from the definition of di as maximal,
such that the number of groups that contain Xk is equal or smaller than di for all Ai
containing Xk, and hence

ř

Ai :XkPAi
1{di ď 1. Equality pdq groups together into the inner

sum variables within the same group. Inequality peq follows from Lemma 1piiq. In more
detail, Ai K AjzAi|Z @i, j, combined with the weak union property of independencies [27],
ensures that for each Xk P Ai, Xk K pXrk´1s X AjqzAi|pXrk´1s X Aiq, Z, @j ‰ i. Assuming
faithfulness, this implies Xk K Xrk´1szAi|pXrk´1s X Aiq, Z. Lemma 1 piiq applies with
A “ Xk, B “ tpXrk´1s X Aiq, Zu, and C “ Xrk´1szAi. Equality p f q follows applying the
chain rule within each group Ai.

Proposition 1 of [27] is included in the case Z “ H. The faithfulness assumption
allows relaxing their assumption Xk K XrrszXk@k to Ai K AjzAi|Z @i, j. A tighter bound
can be obtained in some cases if some variables are trimmed. In particular, for a variable
X1, Aj can be trimmed to AjzX1 for all groups such that IpY; Aj|Zq “ IpY; AjzX1|Zq and
possibly lower dj values can be obtained after trimming. We do not explicitly include this
trimming process in the definition of dj to simplify the formulation.
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Proof of Proposition 3. Consider a collection of groups Brns “ tB1, . . . , Bnu, each with a

partition in disjoint subsets Bi “ tBp1q

i , Bp2q

i u that fulfill the conditions Bp1q

i K Bp1q

j zBp1q

i |Z and

Bp2q

i K BjzBp2q

i |Bp1q

i Z @i, j, and such that Bp1q

rns
“ tBp1q

1 , . . . , Bp1q
n u and Bp2q

rns
“ tBp2q

1 , . . . , Bp2q
n u are

disjoint. Define Xpkq

rrks
as the set of rk variables part of at least a group in Bpkq

rns
, for k “ 1, 2. We

have that

IpY; Brns|Zq
paq
“ IpY; Xp1q

rr1s
, Xp2q

rr2s
|Zq

pbq
“

ÿ

XkPXp1q

rr1s

IpY; Xk|Xp1q

rk´1s
, Zq `

ÿ

XkPXp2q

rr2s

IpY; Xk|Xp2q

rk´1s
, Xp1q

rr1s
, Zq

pcq

ě

n
ÿ

i“1

1
di

IpY; Bp1q

i |Zq `

n
ÿ

i“1

1
di

ÿ

XkPBp2q

i

IpY; Xk|Xp2q

rk´1s
, Xp1q

rr1s
, Zq

pdq

ě

n
ÿ

i“1

1
di

IpY; Bp1q

i |Zq `

n
ÿ

i“1

1
di

ÿ

XkPBp2q

i

IpY; Xk|pXp2q

rk´1s
X Bp2q

i q, Bp1q

i , Zq
peq
“

n
ÿ

i“1

1
di

IpY; Bp1q

i |Zq `

n
ÿ

i“1

1
di

IpY; Bp2q

i |Bp1q

i Zq
p f q
“

n
ÿ

i“1

1
di

IpY; Bi|Zq.

(A2)

Equality paq holds because tXp1q

rr1s
, Xp2q

rr2s
u contains the same variables as Brns. Equality pbq

is an iterative application of the chain rule. Inequality pcq is as follows: For the sum in
Xp1q

rr1s
, steps pcq to p f q of Equation (A1) are all combined, substituting sets Ai by Bp1q

i and
given that these variables fulfill conditions of independence equivalent to Proposition 1.
For the sum in Xp2q

rr2s
, only steps pcq and pdq of Equation (A1) are applied, substituting sets Ai

by Bp2q

i . Inequality pdq holds applying Lemma 1 piiq. In more detail, Bp2q

i K BjzBp2q

i |Bp1q

i Z
@i, j combined with the weak union property of independencies [27] mean that for each
Xk P Bp2q

i , Xk K tBp1q

j , pXp2q

rk´1s
X Bp2q

j qzBp2q

i u|pXp2q

rk´1s
X Bp2q

i q, Bp1q

i , Z @j ‰ i. Assuming

faithfulness, this implies Xk K tpXp1q

rr1s
zBp1q

i q, pXp2q

rk´1s
zBp2q

i qu|pXp2q

rk´1s
X Bp2q

i q, Bp1q

i , Z. Ac-

cordingly, Lemma 1 piiq applies with A “ Xk, B “ tpXp2q

rk´1s
X Bp2q

i q, Bp1q

i , Zu, and C “

tpXp1q

rr1s
zBp1q

i q, pXp2q

rk´1s
zBp2q

i qu. Equalities peq and p f q follow from the chain rule of mutual
information.

Before continuing with the proof of Proposition 6, we formulate in Lemma A1 a
property of the unique information that will be used in the proof.

Lemma A1. (Conditioning on reference variables increases conditional unique information): The
conditional unique information IpY; XzzZ1Z2|Z3q is smaller than or equal to IpY; XzzZ1|Z2Z3q,
where Z2 moves from the set of reference predictors of the unique information to the conditioning set.

Proof of Lemma A1. The unique information IpY; XzzZ1Z2|Z3q is by definition (Equation (2))
the minimum information IpY; X|Z1Z2Z3q among the distributions that preserve PpY, X, Z3q

and PpY, Z1, Z2, Z3q, and IpY; XzzZ1|Z2Z3q is the minimum information
IpY; X|Z1Z2Z3q among the distributions that preserve PpY, X, Z2, Z3q and PpY, Z1, Z2, Z3q.
Since the latter constraints subsume the former ones, the minimum can only be equal or
higher.



Entropy 2024, 26, 440 25 of 34

Proof of Proposition 6. For iterations k “ 1, ..., mi ´ 1, consider the following:

IpY; Crk´1s

i AizArk´1s

i zzZzZrk´1s

i |Zrk´1s

i q
paq

ď IpY; Crks

i AizArk´1s

i zzZzZrk´1s

i |Zrk´1s

i q
pbq

ď

IpY; Crks

i AizArk´1s

i zzZzZrks

i |Zrks

i q
pcq
“ IpY; Crks

i AizArks

i zzZzZrks

i |Zrks

i q.
(A3)

Inequality paq holds from monotonicity, information cannot decrease if adding Cpkq

i to

Crk´1s

i . Inequality pbq holds from Lemma A1, moving Zpkq

i from the set of reference
predictors of the unique information to the conditioning set. Equality pcq follows from
AizArk´1s

i “ tApkq

i , AizArks

i u and the assumption in Proposition 6 that

Y K Apkq

i |Crks

i Zrks

i AizArks

i holds. Accordingly, the unique information is preserved removing

Apkq

i (Proposition 2). This leads to the inequality IpY; Crk´1s

i AizArk´1s

i zzZzZrk´1s

i | Zrk´1s

i q ď

IpY; Crks

i AizArks

i zzZzZrks

i | Zrks

i q. Equation (A3) iterated for k “ 1, . . . , mi ´ 1 leads to

IpY; BizzZpmiq
i |Zrmi´1s

i q, with Bi “ tCrmi´1s

i , Apmiq
i u. Finally, this unique information by

construction is smaller than IpY; Bi|Zq. The terms IpY; AizzZzZp1q

i |Zp1q

i q are obtained re-

moving Cr1s

i from IpY; Crks

i AizArk´1s

i zzZzZrks

i |Zrks

i q by monotonicity, from step k “ 1.

Appendix B. Proof of Theorem 2

Proof of Theorem 2. The proof proceeds by induction like the proof of Theorem 1 in [27].
To render the notation less heavy, we simplify anG1 pAiq to anpAiq and dipG1; Zq to di,

with both G1 and Z fixed. Define VZ “ tVp1q

Z , . . . , Vpmq

Z u, with Vpjq
Z ” panpZjq X anpArnsqqzW.

Without loss of generality, for j “ 1, . . . , m we sequentially apply the chain rule to separate

the information that each subset Vpjq
Z provides about Y after the chain rule has already been

applied to Vrj´1s

Z ” tVp1q

Z , ..., Vpj´1q

Z u. At the j-th iteration, we obtain

IpY; ãnpArnsq|Z, Vrj´1s

Z q “ IpY; Vpjq
Z |Z, Vrj´1s

Z q ` IpY; ãnpArnsq|Z, Vrjs
Z q. (A4)

The iterative induction step proceeds as follows. Assume that the inequality of Theorem 2
holds for

IpY; ãnpArnsq|Z, Vrjs
Z q ě

n
ÿ

i“1

1
di

IpY; ãnpAiq|Z, Vrjs
Z q. (A5)

We show that then the inequality also holds for IpY; ãnpArnsq|Z, Vrj´1s

Z q. First, if Vpjq
Z Ď

tZ, Vrj´1s

Z u then tZ, Vrj´1s

Z u “ tZ, Vrjs
Z u and Equation (A5) already provides the desired

inequality. We continue with Vpjq
Z Ę tZ, Vrj´1s

Z u. Split the sum in Equation (A5) into two
sums, one containing groups in the set SpG1; Zjq (see its definition below Equation (7)),
and the other groups not in SpG1; Zjq. For the sake of simplifying notation, we use SZj for
SpG1; Zjq, given that G1 is fixed. We first consider the sum of groups in SZj :

ÿ

AiPSZj

1
di

IpY; ãnpAiq|Z, Vrjs
Z q

paq
“

ÿ

AiPSZj

1
di

”

IpY; ãnpAiq, Vpjq
Z |Z, Vrj´1s

Z q ´ IpY; Vpjq
Z |Z, Vrj´1s

Z q

ı pbq

ě

»

—

–

ÿ

AiPSZj

1
di

IpY; ãnpAiq, Vpjq
Z |Z, Vrj´1s

Z q

fi

ffi

fl

´ IpY; Vpjq
Z q|Z, Vrj´1s

Z q
pcq

ě

»

—

–

ÿ

AiPSZj

1
di

IpY; ãnpAiq|Z, Vrj´1s

Z q

fi

ffi

fl

´ IpY; Vpjq
Z q|Z, Vrj´1s

Z q.

(A6)
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Equality paq follows from the chain rule. Inequality pbq follows from the definition of
dipG1; Zq (in short di) in Equation (8). By construction dipG1; Zq is equal to or higher than
all dipG1; Zjq and dipG1; Zjq is the maximal number of groups intersecting together with
anpAi; Zjq (Equation (7)). For any group i within SpG1; Zjq, anpAi; Zjq includes anpZjq X

anpArnsq and hence dipG1; Zjq ě |SpG1; Zjq|, so that
ř

AiPSZj
1{di ď 1. Inequality pcq follows

from the monotonicity property of the mutual information. For the other sum

ÿ

AiRSZj

1
di

IpY; ãnpAiq|Z, Vrjs
Z q

paq

ě
ÿ

AiRSZj

1
di

IpY; ãnpAiqzVpjq
Z |Z, Vrj´1s

Z q
pbq
“

ÿ

AiRSZj

1
di

IpY; ãnpAiq|Z, Vrj´1s

Z q.
(A7)

Inequality paq follows from applying Lemma 1 (ii), with A “ ãnpAiqztZ, Vrjs
Z u, B “

tZ, Vrj´1s

Z u, and C “ Vpjq
Z ztZ, Vrj´1s

Z u. Independence A K C|B holds because Ai R SpG1; Zjq

means anpAiq K anpZjq X anpArnsq|Z (Equation (7)), which implies ãnpAiq K Vpjq
Z |Z, given

that Vpjq
Z ” panpZjq X anpArnsqqzW. Assuming faithfulness, since all the variables in Vrj´1s

Z

are ancestors of Z, conditioning on tZ, Vrj´1s

Z u does not create any new dependence (ac-
tivating colliders) that did not exist conditioning on Z. Equality pbq holds because given

Equation (7) an overlap between ãnpAiqzZ and Vpjq
Z zZ is in contradiction with Ai R SpG1; Zjq.

Combining Equations (A6) and (A7) in the r.h.s of Equation (A5), we obtain that

IpY; ãnpArnsq|Z, Vrjs
Z q ě

«

n
ÿ

i“1

1
di

IpY; ãnpAiq|Z, Vrj´1s

Z q

ff

´ IpY; Vpjq
Z |Z, Vrj´1s

Z q. (A8)

We then insert this inequality in Equation (A4) to obtain the final desired inequality:

IpY; ãnpArnsq|Z, Vrj´1s

Z q ě

n
ÿ

i“1

1
di

IpY; ãnpAiq|Z, Vrj´1s

Z q. (A9)

After subtracting VZ “ tVp1q

Z , . . . , Vpmq

Z u, the validity of the inequality of Theorem 2 de-
pends on the validity of

IpY; ãnpArnsq|Z, anpZq X ãnpArnsqq ě

n
ÿ

i“1

1
di

IpY; ãnpAiq|Z, anpZq X ãnpArnsqq. (A10)

At each iterations, if ãnpArnsqztZ, Vrjs
Z u is empty, the corresponding assumption in Equa-

tion (A5) is trivially fulfilled and the proof ends. Otherwise, the proof by induction contin-
ues further subtracting variables from ãnpArnsqzanpZq. We define the set of groups whose
ancestral set in G1 overlaps with W:

SW ” tAi P Arns : anG1 pAiq X W ‰ Hu. (A11)

We select subsets of variables to be subtracted using the same criterion used in the proof
of Theorem 1 of [27], but restricting the groups used as reference in each iteration to
be in the complementary set SW, i.e., with anpAiq “ ãnpAiq. In more detail, consider
without loss of generality that in the first iteration the j-th group Aj is taken as reference.

Define Vp0q ” VZ, where VZ “ tVp1q

Z , ..., Vpmq

Z u has already been subtracted from ãnpArnsq.
With Aj as reference, find the joint intersection of ãnpAjqzVp0q with a maximal number

of other groups ãnpAj1 qzVp0q, j1 ‰ j. Define Sp1q

j as the set of groups in this intersection.
The superindex indicates that this set is associated with the first iteration of this part of
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the induction procedure, while the subindex indicates that the j-th group is the reference.
The subindex will be omitted when the group used as reference is not relevant. Define
Vp1q

j ”
Ş

AiPSp1q

j
ãnpAiqzVp0q as the set of variables contained in this intersection. This

subset is subtracted in the first iteration. Analogously, consider that in the k-th iteration
Vrk´1s ” tVp0q, ..., Vpk´1qu has already been subtracted and the j-th group is taken as
reference. Then Spkq

j is determined by the joint intersection of ãnpAjqzVrk´1s with a maximal

number of other groups ãnpAj1 qzVrk´1s, j1 ‰ j. The subset of variables subtracted in the

k-th iteration is Vpkq

j ”
Ş

AiPSpkq

j
ãnpAiqzVrk´1s. By construction Vpkq

j Ď ãnG1 pArnsqzVrk´1s.

Furthermore, |Spkq

j | ď djpG1; Zq, since djpG1; Zq is maximal among djpG1; Ziq for i “ 1, . . . , m
(Equation (8)) for all intersections of the augmented ancestral sets defined in Equation (7),
while Spkq

j is determined by only intersections with no support in Vrk´1s and only among
the reduced ancestral sets. So far, we have described the selection of subsets to be subtracted.
We now look at the iterative induction step when removing a subset Vpkq

j after the previous
k ´ 1 iterations have already been performed. Consider

IpY; ãnpArnsq|Z, Vrk´1sq
paq
“ IpY; ãnpArnsqVpkq

j |Z, Vrk´1sq

pbq
“ IpY; Vpkq

j |Z, Vrk´1sq ` IpY; ãnpArnsq|Z, Vrksq.
(A12)

Equality paq follows from Vpkq

j Ď ãnpArnsqzVrk´1s. Equality pbq is an application of the
chain rule. We now show that under the assumption that

IpY; ãnpArnsq|Z, Vrksq ě

n
ÿ

i“1

1
di

IpY; ãnpAiq|Z, Vrksq, (A13)

the analogous inequality holds for IpY; ãnpArnsq|Z, Vrk´1sq. We again break down the sum

of the groups into two sums, one containing groups in Spkq

j and the other the rest. We first

consider the sum of groups in Spkq

j :

ÿ

AiPSpkq

j

1
di

IpY; ãnpAiq|Z, Vrksq
paq
“

ÿ

AiPSpkq

j

1
di

”

IpY; ãnpAiqVpkq

j |Z, Vrk´1sq ´ IpY; Vpkq

j |Z, Vrk´1sq

ı pbq

ě

»

—

–

ÿ

AiPSpkq

j

1
di

IpY; ãnpAiqVpkq

j |Z, Vrk´1sq

fi

ffi

fl

´ IpY; Vpkq

j |Z, Vrk´1sq
pcq

ě

»

—

–

ÿ

AiPSpkq

j

1
di

IpY; ãnpAiq|Z, Vrk´1sq

fi

ffi

fl

´ IpY; Vpkq

j |Z, Vrk´1sq.

(A14)

Equality paq follows from the chain rule. Inequality pbq holds because |Spkq

j | ď dipG1; Zq for

all Ai P Spkq

j . This is because the intersection that determines Spkq

j contains variables from

Aj and from all other groups Ai P Spkq

j , and hence for all these groups it also determines

dipG1; Zq unless an intersection with more groups exists for Ai. Given |Spkq

j | ď dipG1; Zq

for all Ai P Spkq

j , it follows that
ř

AiPSpkq

j
1{dipG1; Zq ď

ř

AiPSpkq

j
1{|Spkq

j | “ 1. Inequality pcq
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follows from monotonicity of mutual information. We now consider the sum involving
groups that do not belong to Spkq

j :

ÿ

AiRSpkq

j

1
di

IpY; ãnpAiq|Z, Vrksq ě
ÿ

AiRSpkq

j

1
di

IpY; ãnpAiq|Z, Vrk´1sq. (A15)

The inequality holds applying Lemma 1(ii) with A “ ãnpAiqztZ, Vrksu, B “ tZ, Vrk´1su,
and C “ Vpkq

j ztZ, Vrk´1su. By construction, Vpkq

j X tZ, Vrk´1su “ H and hence C “ Vpkq

j .

Furthermore, ãnpAiqztZ, Vrk´1su is equal to ãnpAiqztZ, Vrksu given that Ai R Spkq

j . An in-

tersection of ãnpAiqztZ, Vrk´1su and Vpkq

j is contradictory with the definition of Vpkq

j , since

|Spkq

j | is determined to be maximal, but would increase to |Spkq

j | ` 1 if defined by that

intersection, and that would lead to Ai P Spkq

j instead. Lemma 1(ii) applies given the
independence A K C|B. We now prove that this independence holds. We proceed dis-
carding the presence of all types of paths in G that would create a dependence A M C|B.
Under the faithfulness assumption, we examine the four different types of paths in G that
could create a dependence. First, there is a variable Xr P C and a variable Xl P A with
an active directed path in G from Xr to Xl , not blocked by B. If this path is active in G
conditioning on B “ tZ, Vrk´1su, it also exists in any G1 “ GZ1 , with Z1 Ď Z, since the
removal of outgoing arrows has the same effect as conditioning for the paths in which
the conditioning variables are noncolliders (i.e., do not have two incoming arrows). This
active directed path means that Xr would be an ancestor of Xl in G1. Therefore, given
Xl P A and Xr P C, Xr itself would be part of ãnG1 pAiqzVrk´1s. However, as argued above,
an intersection of ãnG1 pAiqzVrk´1s and Vpkq

j is contradictory with Ai R Spkq

j . Second, there
is a variable Xr P C and a variable Xl P A with an active directed path in G from Xl to Xr,
not blocked by B. Again, this path being active in G when conditioning on B “ tZ, Vrk´1su,
means that it also exists in any G1 “ GZ1 , with Z1 Ď Z. Therefore, Xl would be an ancestor

of Xr in G1. This is again a contradiction with the definition of Vpkq

j because it could be

redefined to include |Spkq

j | ` 1 groups, since Xl would be an ancestor of all groups inter-

secting in Vpkq

j . Third, there is a variable Xr P C, a variable Xl P A, and another variable
Xh that is not part of A nor C with an active directed path in G from Xh to Xr and an
active directed path from Xh to Xl , both not blocked by B. This would also imply that
these directed paths exist in G1 “ GZ1 , with Z1 Ď Z, and hence Xh is an ancestor of A and
C in G1. Since Xh is an ancestor of A “ ãnpAiqztZ, Vrk´1su but by construction Xh R A,
this means that Xh has to be part of tZ, Vrk´1su or of W, since any ancestor of anpAiq is
part of anpAiq. If Xh P tZ, Vrk´1su, conditioning on B “ tZ, Vrk´1su would prevent from
having active directed paths from Xh to Xr and from Xh to Xl , leading to a contradiction.
We now consider the case Xh P W. Since Xh is an ancestor of C “ Vpkq

j , by construction

of Vpkq

j , Xh is an ancestor of ãnpAjqztZ, Vrk´1su. This means that anpAjq includes Xh P W
which, given Equation (A11), is in contradiction with the criterion for selection of reference
groups such that Aj P SW. In these three types of cases, an active path would exist despite
conditioning on B. In the last type, a path would be activated by conditioning on B. At least
one variable Xh P B “ tZ, Vrk´1su has to be a collider or a descendant of a collider along the
path that conditioning activates. Consider first that a single collider Xh is involved. For the
collider to activate the path, it must exist an active directed subpath to Xh from a variable
Xr that is part of C or part of its ancestor set in G1. Since this directed subpath is active in G
when conditioning on B, it is also active in G1. This means that Xr would be an ancestor of
Xh in G1. If Xh is part of Z or part of Vp0q ” panG1pZq X anG1 pArnsqqzW, then Xr being an
ancestor of Xh means that it is part of anG1 pZq X anG1 pArnsq. Accordingly, by definition of
Vp0q, Xr would be part of Vp0q or of W. The former option leads to a contradiction because
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Vp0q has already been removed from ãnpArnsq and is part of the conditioning variables, so
that the subpath from Xr to Xh could not be part of the path activated by conditioning
on the collider. The latter option, Xr being part of W, is in contradiction with it being an
ancestor of C “ Vpkq

j , since this means being an ancestor of the group Aj taken as reference

to build Vpkq

j , which by construction is chosen from S̄W. We continue considering that Xh

is part of Vpk1q P Vrk´1s, for 0 ă k1 ď k ´ 1. In this case, Xr being an ancestor of Xh would
mean that either Xr is in W or it would have been possible to define Vpk1q to include Xr.
In the former case, this leads to a contradiction because for 0 ă k1 ď k ´ 1 all Vpk1q have
been constructed taking as reference a group belonging to S̄W. In the latter case, this leads
to a contradiction because Vpk1q is constructed to include all variables in the intersection
with the maximum number of groups. The same reasoning holds if the activated path
contains more than one collider from B, by selecting the collider Xh closest to a variable in
C along the path. Since for all four types of paths that could lead to A M C|B we reach a
contradiction, A K C|B holds and Lemma 1(ii) can be applied to obtain the inequality in
Equation (A15). Combining Equations (A14) and (A15) with the r.h.s. of Equation (A13),
we obtain that

IpY; ãnpArnsq|Z, Vrksq ě

«

n
ÿ

i“1

1
di

IpY; ãnpAiq|Z, Vrk´1sq

ff

´ IpY; Vpkq

j |Z, Vrk´1sq. (A16)

We then insert this inequality in Equation (A12) to obtain the desired inequality:

IpY; ãnpArnsq|Z, Vrk´1sq ě

n
ÿ

i“1

1
di

IpY; ãnpAiq|Z, Vrk´1sq. (A17)

After the completion of these iterations, all variables in panpZq X anpArnsqqzW and in
groups from SW have been subtracted from ãnpArnsq. The proof ends if after some iteration
ãnpArnsqzVrks is empty. In particular, the proof ends if W is empty and hence all groups
are already subtracted. Otherwise, assume that m1 iterations have been carried out when
finishing this step. The proof by induction continues with a single additional step for
the remaining groups SW. Select a single variable X0 out of ãnpArnsqzVrm1s that is only
contained in groups in SW and apply the chain rule

IpY; ãnpArnsq|Z, Vrm1sq “ IpY; ãnpArnsqzX0|Z, Vrm1sq ` IpY; X0|Z, ãnpArnsqzX0q “

IpY; ãnpArnsqzX0|Z, Vrm1sq ` IpY; ãnpArnsq|Z, ãnpArnsqzX0q.
(A18)

The iterative induction step should prove that if the inequality of the theorem holds for
IpY; ãnpArnsq|Z, ãnpArnsqzX0q it is also true for IpY; ãnpArnsq|Z, Vrm1sq. We will prove this
below. Before we show that the inequality

IpY; ãnpArnsq|Z, ãnpArnsqzX0q ě

n
ÿ

i“1

1
di

IpY; ãnpAiq|Z, ãnpArnsqzX0q (A19)

always holds, and hence it provides the base case for the induction proof. The base case is
true because

n
ÿ

i“1

1
di

IpY; ãnpAiq|Z, ãnpArnsqzX0q
paq
“

ÿ

i:X0PãnpAiq

1
di

IpY; X0|Z, ãnpArnsqzX0q

pbq
“ IpY; X0|Z, ãnpArnsqzX0q

»

–

ÿ

i:X0PãnpAiq

1
di

fi

fl

pcq

ď IpY; X0|Z, ãnpArnsqzX0q.

(A20)



Entropy 2024, 26, 440 30 of 34

Equality paq holds because IpY; ãnpAiq|Z, ãnpArnsqzX0q is zero for the terms that do not
contain X0. Equality pbq holds because the information term is the same across the sum
and can be factorized. Inequality pcq is justified as follows. Let N0 be the number of groups
that contain X0, and hence that intersect in X0. For these groups, dipG1; Zq is higher than
or equal to N0. This means that

ř

i:X0PãnpAiq
1{dipG1; Zq ď 1. We now complete the proof of

the last iterative induction step:

n
ÿ

i“1

1
di

IpY; ãnpAiq|Z, ãnpArnsqzX0q
paq
“

ÿ

AiPSW

1
di

IpY; ãnpAiq|Z, ãnpArnsqzX0q
pbq
“

ÿ

AiPSW

1
di

”

IpY; ãnpAiq, ãnpArnsqzX0|Z, Vrm1sq ´ IpY; ãnpArnsqzX0|Z, Vrm1sq

ı pcq

ě

»

–

ÿ

AiPSW

1
di

IpY; ãnpAiq, ãnpArnsqzX0|Z, Vrm1sq

fi

fl ´ IpY; ãnpArnsqzX0|Z, Vrm1sq
pdq

ě

»

–

ÿ

AiPSW

1
di

IpY; ãnpAiq|Z, Vrm1sq

fi

fl ´ IpY; ãnpArnsqzX0|Z, Vrm1sq
peq
“

«

n
ÿ

i“1

1
di

IpY; ãnpAiq|Z, Vrm1sq

ff

´ IpY; ãnpArnsqzX0|Z, Vrm1sq.

(A21)

Equality paq holds because X0 is selected to be contained only in groups in SW. Equality
pbq follows from the chain rule and from Vrm1s Ď ãnpArnsqzX0. Inequality pcq holds because,
for all Ai P SW, dipG1; Zq is higher than or equal to |SW|, since their ancestral sets intersect
at W0, which is an ancestor of all variables in W. This means that

ř

AiPSW
1{dipG1; Zq ď 1.

Inequality pdq follows from the monotonicity of mutual information, and equality peq holds
because ãnpAiq Ď tZ, Vrm1su for all Ai R SW. We use the last expression in Equation (A21)
at the r.h.s of Equation (A19), and combine it with Equation (A18) to obtain

IpY; ãnpArnsq|Z, Vrm1sq ě

n
ÿ

i“1

1
di

IpY; ãnpAiq|Z, Vrm1sq. (A22)

This completes the iterative induction step of the proof. Since the validity of the base case
has also been proven, this completes the proof.

Appendix C. On Required Assumptions Relating Independencies and d-Separation

In this Section, we discuss more closely the requirements on the relation between
graphical d-separation and statistical independencies needed for the applicability of the
derived inequality constraints. As indicated in Section 2.3, so far we have invoked the
faithfulness assumption [1,2] in order to simplify the presentation, that is, we have not
distinguished between X KP Y|S and X KG Y|S. We will now make this distinction and
reconsider all cases of the proofs of Appendices A and B where faithfulness has been
invoked, showing that in fact it is only required to assume that d-separation is a sufficient
condition for statistical independence.

We start with the role that the assumption of d-separation implying independence
has in the proof of Propositions 1 and 3. As discussed in Section 1, we envisage the
implementation of the tests such that conditional independence requirements of Propo-
sition 1 or 3 are verified in terms of graphical separability for the hypothesized causal
structure. In particular, a test from Proposition 1 is to be applied when verifying that
for the selected collection and groups it holds that Ai KG AjzAi|Z @i, j. It is then as-
sumed that this implies Ai KP AjzAi|Z @i, j. In the proof of Proposition 1, in step
peq of Equation (A1), Lemma 1(ii) has been applied invoking faithfulness to guarantee
that for Xk P Ai, independencies Xk KP pXrk´1s X AjqzAi|pXrk´1s X Aiq, Z, @j ‰ i imply
the independence Xk KP Xrk´1szAi|pXrk´1s X Aiq, Z. However, while this implication
needs to be assumed at the level of independencies, at the level of graphical separability,
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Xk KG pXrk´1s X AjqzAi|pXrk´1s X Aiq, Z, @j ‰ i straightforwardly implies the joint sep-
arability Xk KG Xrk´1szAi|pXrk´1s X Aiq, Z. This is because the separability of Xrk´1szAi
follows from the lack of active paths for each of the nodes it contains, and hence is equiva-
lent to the separability of pXrk´1s X AjqzAi for all j, which jointly comprise the same nodes.
The assumption that d-separation implies independence guarantees the independence
Xk KP Xrk´1szAi|pXrk´1s X Aiq, Z from Xk KG Xrk´1szAi|pXrk´1s X Aiq, Z, without the need
to more broadly require faithfulness. The proof of Proposition 3 relies on an analogous
way on the assumption that d-separation implies independence, using it to guarantee
the conditional independencies involving the subsets in Bp1q

rns
and Bp2q

rns
. In step pdq of

Equation (A2), the fact that separability for a joint set of nodes is straightforwardly
guaranteed by the separability of each of its nodes is again applied and then mapped
to the existence of an independence using this assumption. The fact that conditions
Bp1q

i KG Bp1q

j zBp1q

i |Z and Bp2q

i KG BjzBp2q

i |Bp1q

i Z @i, j can be verified using d-separation
instead of estimating independencies from data is crucial in the case that the groups include
hidden variables, which precludes the direct evaluation of these independencies.

The next result whose derivation relies on the assumption that d-separation implies
independence is Theorem 2. In step paq of Equation (A7), faithfulness was invoked to
guarantee that conditioning on some ancestors of Z cannot create new dependencies that
were not already created by conditioning on Z itself. In more detail, it was assumed

that if the independence ãnpAiq KP Vpjq
Z |Z holds then also ãnpAiq KP Vpjq

Z |tZ, Vrj´1s

Z u

holds, where Vrj´1s

Z are by construction ancestors of Z. Again, at the level of graphical
separability this implication is straightforward and does not require any assumption. This
is because by definition of d-separation a path is activated both when conditioning on

a collider or on any descendant of the collider, and Vrj´1s

Z being ancestors of Z means

that Z contains a descendant for each node in Vrj´1s

Z . Accordingly, no assumption is

needed to ensure ãnpAiq KG Vpjq
Z |tZ, Vrj´1s

Z u from ãnpAiq KG Vpjq
Z |Z. The assumption

that d-separation implies independence is then used to ensure ãnpAiq KP Vpjq
Z |tZ, Vrj´1s

Z u

from ãnpAiq KG Vpjq
Z |tZ, Vrj´1s

Z u. Faithfulness is also invoked in the proof of Theorem 2 to
justify the application of Lemma 1(ii) in Equation (A15). In this case, the existence of an
independence A KP C|B is directly justified in terms of the nonexistence of active paths
in the graph, hence guaranteeing A KG C|B and subsequently using the assumption that
d-separation implies independence to derive A KP C|B.

The considerations above show that the assumption that d-separation implies statisti-
cal independence is enough to derive the existence of groups-decomposition inequalities
under the conditions of Propositions 1 and 3, and of Theorem 2. Furthermore, if unfaithful
independencies are present in the data that do not follow from the causal structure, this
may decrease the power to reject causal structures testing the inequalities, but will not
lead to incorrect rejections. This differs from the impact of unfaithful independencies on
the inference of the Markov equivalence class from data [1,2]. In that case, unfaithful
independencies can lead to an incorrect reconstruction of the skeleton of the graph or
result in contradictory rules for edge orientation. The assumption that d-separation implies
statistical independence is substantially weaker than the reverse assumption also included
in the faithfulness assumption, namely that statistical independence implies d-separation.
The X-OR logic gate is an example that the latter assumption can be violated. Conversely,
if the causal graph is meant to reflect the underlying structure of actual physical mecha-
nisms involved in generating the variables, all statistical dependencies need to originate
from some paths of influence between the variables. Accordingly, a d-separation that does
not lead to an independence can be taken as an indicator that some structure is missing
in the causal graph, namely associated with the paths that create the observed depen-
dence. In this regard, it is appropriate to reject a causal structure if it does not fulfill an
inequality constraint because graphical separability is not reflected in the corresponding
independencies found in the data.
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