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Abstract—This paper introduces a novel application of Graph
Convolutional Networks (GCNs) for enhancing the efficiency of
the Consensus-Based Bundle Algorithm (CBBA) in multi-robot
task allocation scenarios. The proposed approach in this research
lies in the integration of a learning-based strategy to approximate
the heuristic methods traditionally used for scoring in the CBBA
framework. By employing GCNs, the proposed methodology aims
to learn and predict the score function, which is crucial for
task allocation decisions in multi-robot systems. This approach
not only streamlines the allocation process but also potentially
improves the accuracy and efficiency of task distribution among
robots. The paper presents a detailed exploration of how GCNs
can be effectively tailored for this specific application, along
with results demonstrating the advantages of this learning-
based approach over conventional heuristic methods in various
simulated multi-robot task allocation scenarios.

Keywords—Task Allocation, Multirobot System, Distributed
Algorithms, Graph Convolutional Neural Networks

I. INTRODUCTION

The task allocation problem aims to find a globally fea-
sible allocation of tasks to agents while optimizing one or
more objectives. For Multi-Robot Systems (MRS) with varied
capabilities, two main challenges arise: the high computa-
tional complexity of traversal algorithms and the limitations
of centralized algorithms, including reduced task range and
single point of failure risk [1], [2]. To address these, heuristic
algorithms are used as a more efficient, though not always
optimal, alternative to traversal algorithms. The effectiveness
of a given heuristic is dependent on various factors including
the constraints and parameters of the problem being solved
and the objective being optimized [3]. Additionally, distributed
algorithms replace centralized ones, enhancing task range
and system robustness by distributing decision-making across
agents. Distributed consensus-based algorithms can solve task
allocation problems in a cooperative planning process consist-
ing of two phases [4]. In the first phase, an agent constructs
a schedule of selected tasks through an internal decision-
making process. This process has previously been referred to
as a utility function [5], a score function [6], or an objective
function [7]. In the second phase, agents communicate bids
on their selected task allocation and resolve conflicts by
assigning tasks to the agents with the highest bids. Agents
perform one task at a time, and each agent can be assigned
multiple tasks that they execute based on a schedule. Travel

times, task durations, task deadlines, and fuel constraints are
factors. Finding the optimal solution to this task allocation
problem in real-time environments becomes computationally
unfeasible as the number of tasks/agents grows. However,
distributed algorithms assume ideal communication conditions
and rely on consensus for consistent situational awareness
(SA). Current state-of-the-art consensus-based task allocation
algorithms incorporate heuristics into agent score functions in
order to optimize a given objective. While extensive research
has been done in the area of multi-agent learning of optimal
policies [8], [9]. Each solution involves trade-offs between
efficiency, optimality, and robustness [10], [11], [12], [13].

An alternative approach to resolving this dilemma is the
implementation of the auction algorithm. In the auction algo-
rithm, agents bid on individual tasks, and a central system or
designated agent acts as an auctioneer to select the winning
bids. The bundle algorithm simplifies this by having agents bid
on groups of tasks, or bundles, rather than single tasks. While
both methods offer dynamic and potentially efficient task
allocation, they may not be as robust as consensus algorithms
in adapting to changes in communication networks. However,
traditional auction algorithms are generally more computa-
tionally efficient compared to consensus algorithms, which
excel in robustness but may lack in speed, especially in large-
scale systems. The choice between these methods depends
on the MRS’s specific needs for adaptability, efficiency, and
communication robustness.

The Consensus-Based Bundle Algorithm (CBBA) [4] dis-
cussed in this paper is a hybrid approach for task allocation
in MRS, combining auction-based methods and consensus
algorithms. It uses auctions to distribute tasks among robots
and employs a consensus mechanism to resolve any conflicts
arising from overlapping bids or dependencies. CBBA stands
out for its efficient convergence, quickly reaching a stable state
of task allocation. Additionally, it guarantees at least 50%
optimality in its solutions, when the bidding price has the
diminishing marginal gain (DMG) property [!4]. Balancing
speed and efficiency with a reasonable level of accuracy. The
CBBA effectively addresses the challenges of distributed task
allocation by combining the dynamic nature of auctions with
the conflict resolution capabilities of consensus algorithms.

On the other hand, Graph Convolutional Networks (GCNs)



exhibit exceptional capabilities in their application to large-
scale robotic teams. These networks showcase exceptional
performance and demonstrate an impressive ability to gener-
alize across a wide array of complex tasks [15]. This includes
sophisticated applications like coordinated flocking, advanced
navigation strategies, and precise control mechanisms [16],
[17], [18], [19]. The proficiency of GCNs in seamlessly
adapting to these diverse and challenging tasks underscores
their pivotal role in revolutionizing the capabilities of multi-
robot systems.

In this study, we introduce an advanced Al-enhanced
Consensus-Based Bundle Algorithm (AI-CBBA), tailored
specifically for optimizing task allocation for multi-robot sys-
tems. The paper begins by constructing a formal model for the
task allocation problem. This is followed by an exploration
of the consensus-based bundle algorithm, providing a brief
understanding of its mechanisms. Building upon this, the study
delves into a set of heuristic methods designed for the original
CBBA, enhancing its efficiency and effectiveness. A pivotal
component of our approach is the integration of a GCN-based
architecture to predict the score function. The paper final-
izes with a presentation of results and a detailed discussion,
where the performance of our proposed algorithm is compared
against the existing state-of-the-art solutions, demonstrating its
potential in managing complex task allocations. The proposed
algorithm has been used for Explosive Ordnance Disposal
mission [20].

II. LEARNING-BASED DISTRIBUTED TASK ALLOCATION
A. Problem Formulation

In this section, we introduce a mathematical formulation
for the task allocation problem aimed at maximizing the total
score. We propose a binary integer programming model where
the decision variable x;; signifies whether task j is assigned to
agent 4, and the score function S;;(z;,7;) measures the utility
of such an assignment.

The formulation is bound by constraints ensuring each agent
can undertake no more than a set number of tasks K, each
task may only be allocated to one agent, and the total number
of tasks assigned does not exceed the number of available tasks
or the cumulative maximum capacities of the agents. Table I
outlines the parameters used in our model.

N M
maximize E E Sij (i, mi)wi
xr

i=1 j=1
M
subject to Y i < K;, Vi€ I,
Jj=1
N (D
Zl‘ij <1, Vjel,
i=1
N M N
Z inj = min{M, ZK,-},
i=1 j=1 i=1
zi; €{0,1}, V(i,j) € I, x I,.

TABLE I

PARAMETERS DESCRIPTION
Parameter Description
N Number of agents
M Number of tasks
Ty =1 If agent % is assigned to task j and O otherwise
z; € {0,1}M Vector with the jth element as x;;
I, ={1,---,N} Set of agents

Set of tasks

Ordered set of tasks assigned to agent %
Empty set symbolizing no task

Score function of assigning task j to agent ¢
K; Maximum number of tasks to agent ¢

In the CBBA framework, the task allocation process com-
prises two distinct phases. The initial phase is dedicated to
the generation of bids for tasks (Path Planning) by individual
agents, while the second phase, known as conflict resolution,
centers on the exchange of information among agents regard-
ing their bids and the provisional allocation of tasks.

a) Phase I: Task Planning (Bundle Building): The path
planning algorithm presented in Algorithm 1 outlines the
procedure for constructing an optimized task bundle for an
individual agent within a multi-agent system. At the beginning
of each iteration, the agent’s task state is initialized with
the current bundle, owned tasks, potential task set, and task
sequence. The core of the algorithm lies in the while-loop,
which ensures that only the maximum permissible number of
tasks K; are considered for bundle construction. Within the
loop, the algorithm performs a sequence of steps to evaluate
which tasks from the set of unallocated tasks I; — (;(¢) should
be included in the agent’s bundle.

For each of these tasks, a score S*ij is computed,

. 0 if i e,
Sij[(i]:{7 ifjec

maxnﬁ\ml{@?q@” by _ O]}, otherwise.

where O] is the total reward minus the cost for the
sequence 7);, and ’@®,,”, denotes the operation that inserts task
7 at the n-th position in the sequence 7;.

The decision to add a task to the bundle is contingent
upon the score S‘ij exceeding a dynamic threshold w;;, which
reflects the task’s relative value and competitiveness against
bids from other agents.

Following the scoring process, the algorithm identifies the
task with the highest utility to be included in the agent’s
path and updates the task sequence and the set of potential
tasks accordingly. Task ownership is reassigned to reflect
this inclusion, and the associated thresholds are updated,
which will influence subsequent iterations and allocations. The
algorithm concludes its current iteration when the task bundle
is solidified, meeting the capacity constraints of the agent. This
iterative process is executed by each agent in a distributed
manner, ensuring the system converges to a consistent global
assignment that maximizes the overall score functions of all
participating agents, thereby optimizing the allocation of tasks
across the agent network.



Algorithm 1 Path Planning Algorithm for agent-i/iteration (t+

1)
1: Process: Construct Bundle(v;(t), o;(t), i(t), ni(t))
2: l/i(t + ].) = I/Z(t)
3: Ul(t—f—].) :O'Z(t)
4 Gt+1)=¢(®)
50 mi(t+1) = ni(t)
6: while ‘<z| > K; do ]
7 SU[Q] = maxng‘m‘ 6;]71@71“} - @71, ] € It - Cz(t)
8: Vij = H(Slj > wl-j) Vi el
9: J; = argmax S” [Cl] X Vij
10: ng g, = argmax@?i@”'{Ji}

1 0 =0 On, ,, {Ji}
12: C’L = Cz DPend {Jz}

13: Wi J; (f + ].) = Szll
14: O'iJi(t—‘rl):i

15: End Process

b) Phase II: Conflict Resolution Procedure: During con-
flict resolution, agents communicate their bid values and the
provisional winners for each task. The task is provisionally
awarded to the agent with the highest marginal score for that
task. An agent that has been outbid for a task must relinquish
the task and any subsequent tasks in its bundle that were
dependent on it.

This phase operates under the principle of Diminishing
Marginal Gain (DMG), which posits that the marginal score
for a task, denoted by Sij [n:], should not increase with the
addition of tasks to the agent’s bundle. Formally, this is
expressed as:

Siilni] > Sij[ni @ena {3}, 3)

where 7; is the current task bundle for agent 7, and j is a
new task being considered.

Convergence to a stable task allocation and a guarantee of
at least 50% optimality are ensured by the CBBA under the
DMG condition for the scoring function. Should the scoring
function not naturally fulfill the DMG criterion, a warping
mechanism is applied. The warping adjusts the score S’ij (7]
to:

Sij[mi] = min{Si; ]},

which assists in algorithm convergence when the natural
scoring function lacks diminishing returns.

vn € i, “4)

B. Learning-based Optimization

In recent years, learning-based optimization has emerged
as a frontier in advanced computational methodologies, of-
fering profound insights into complex problem-solving. This
paradigm shift has been largely propelled by the advent and
subsequent dominance of deep learning techniques, known

for their unparalleled prowess in feature extraction and rep-
resentation learning. Among the array of deep learning archi-
tectures, Convolutional Neural Networks (CNNs) have gar-
nered widespread acclaim, especially for their performance
in processing data characterized by a Euclidean or grid-like
topology.

Despite their success, traditional CNNs encounter signif-
icant challenges when confronted with data embedded in
non-Euclidean spaces, such as the intricate webs of social
or information networks, where translation invariance is no
longer a given. To bridge this gap, Graph Convolutional
Networks (GCNs) have been introduced as a robust method
for navigating the complex terrain of graph-structured data.
GCNs have revolutionized our ability to tap into the rich
vein of information contained within non-Euclidean domains,
enabling the extraction of salient features that conventional
methods would struggle to discern.

Considering a graph G = (V,E) with V as the set of
vertices and F as the edges denoting relationships, graph
convolutions can be processed in either the spatial or spectral
domains. Spatially, convolutions aggregate feature information
from a node’s local neighborhood directly, leveraging residual
connections for deep memory across layers. Each vertex is
equipped with its own neural network, and its activation in
the k" layer, denoted by th“), is given by the equation:

b o [WWa, 4+ 3 00D
ueN (v)

where W (*) and 6(*) are learned parameters for intra- and
inter-nodal connections, respectively, and o(:) represents a
nonlinear activation function.

For the spectral domain, graph convolutions apply through
the transformation of features into the Fourier space using
eigendecomposition of the normalized graph Laplacian L =
I - D 2AD 3 = UAUT. Here, U contains the eigenvec-
tors, A is a diagonal matrix of eigenvalues, and the Fourier
transformed features are U7 2. A filter parameterized by ©
operates on these transformed features, which is expressed as:

gpxx=UggAU"

where gy denotes the filtered signal. The adjacency matrix,
with self-loops, is denoted by A = A+ Iy, and the layer-
wise propagation in the spectral GCN, which is utilized in
this research, follows:

H) — 4 (D*%AD*%H@WU))

In practical applications, such as multi-robot systems, graph
structures capture the complexity of interactions within the
system and between agents and environments. The agent-
entity graph and task-entity graph encode these interactions.
Through machine learning methodologies, specifically graph
convolutional networks, we analyze these complex structures.
For instance, we encode the position and attributes of tasks in



a vector, apply a GCN to learn meaningful features from these
relationships, and use the extracted features to understand
the underlying data structure. The proposed distributed task
allocation algorithm depicted in Figure 1 demonstrates the
application of spectral GCNs for such feature extraction.

Task Planning Phase ‘
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Fig. 1. Distributed Task Allocation

In alignment with the CBBA’s foundational principles, we
utilize &;(¢) to signify the task sequence within agent i’s bundle
at time ¢, where &; represents the ordered set of tasks. Notably,
the sequence &;(t) does not necessarily correspond with the
order of tasks within the bundle (;(¢). The path length, now
interpreted as energy consumption, is represented by D[&;(t)].
To adapt CBBA for scenarios with energy constraints, each
agent commences by initializing their bundle (;(¢) to include
starting point p; and a terminating point ;. For an agent
i’s current bundle (;(t), the marginal utility S;;[¢;(t)] of
appending task j is conceptualized as the task’s reward less
the incremental energy cost, now expressed as:

Sl6(0)] = {%:j —AEG[GE)], if AEG[GE)] < Ei(G(1)],
0, otherwise
&)

Here, E;[(;(t)] is the residual energy for agent i post-
traversal of ¢;(t), while AF;;[(;(t)] denotes the additional
energy required if task j is to be included in ;(t).

In the revised marginal utility equation, if the vertex x is in
close proximity to v, it is conceivable for AE;;[(;(t)®{z}] to
be less than or equal to AE;;[(;(t)], potentially contravening
the DMG principle. To mitigate this and ensure convergence
when utilizing non-DMG score functions, a warping mech-
anism is introduced, adjusting the score to mingcc, (1) Sij[¢],
thereby aiding the convergence process where traditional DMG
is not inherently present.

The score function’s direct correlation to both reward and
energy consumption raises concerns about its scale invariance.
When the mapping of tasks to agents is scaled linearly, the rel-
ative value of the scores, and consequently the task allocation
decisions, may be altered. In our proposed methodology, we
introduce a suite of heuristic extensions to the CBBA, each
characterized by a novel scoring function. The diversity of
these heuristic extensions is tailored to address the varying
demands of distinct allocation problems, potentially outper-
forming the application of a single heuristic in all scenarios.

The scoring functions for the heuristics are defined as
follows:

Hy =5 — AE(G]

Hy =y
i —AE;;[(
Hy =12 &G

where ~;; denotes the reward associated with task j by agent
i, AF;;[(;] represents the additional energy expenditure for
incorporating task j into the sequence, and &;[(;] symbolizes
the remaining energy budget of agent .

To optimally leverage these heuristics, we employ a machine
learning model trained via a neural network to predict the
effectiveness of each heuristic extension. We adopt a Graph
Convolutional Network (GCN) tailored for learning from
graph-structured data. The architecture of the developed GCN
model, as depicted in Figure 2, comprises:

e A tripartite Graph CNN structure with convolutional
layers yielding 32-, 16-, and 8-dimensional feature maps,
designed to distill environment-specific information such
as task connectivity and site distances.

« A mean pooling layer follows to aggregate node features
into a comprehensive graph-level representation.

o Two dense layers, each with eight neurons, to process the
pooled graph features.

¢ The model culminates in an output layer that provides a
predictive assessment of the aggregate rewards.

Graph Convolutional Networks
GCN

Fully Connected Layers

Mean Pooling

99

32 16 8
Tasks features

[number of features|
Edge features
2, number of edges]

R00000

Fig. 2. Proposed Graph Convolutional Network

By integrating the GCN predictions with our heuristic
framework, we aim to enhance the decision-making process
in the allocation of tasks, ensuring an informed and adaptive
approach.

III. RESULTS AND DISCUSSION

Figure 3 presents a series of bar charts comparing the perfor-
mance of the predictive model across four different heuristic
methods: H1, H2, H3, and H4. For each heuristic, Seriesl
represents the values obtained using the heuristic method,
while Series2 represents the predicted values generated by the
model. The predictions for H1 are closely aligned with the
heuristic values, indicating a high degree of accuracy for this
method. This is particularly evident in instances where the two
series produce almost identical bar heights (e.g., at intervals
1, 4, 6, and 10). This indicates that the model has learned the
pattern for H1 and can replicate its decision-making process



with high fidelity. For H2, the model appears to have greater
variance in its predictive accuracy. While some predictions are
quite close to the heuristic values (e.g., intervals 5 and 8), there
are others where there is a noticeable difference (e.g., intervals
2 and 9). The model demonstrates a similar pattern of accuracy
with the H3 method as with H1, with many of the predictions
being close to the heuristic values. The close correspondence
in intervals 3, 4, and 7 suggests that the model is largely
effective in estimating the H3 heuristic method’s outcomes.
Lastly, H4 shows a mixed pattern where the model accurately
predicts the heuristic values in several intervals (such as 2, 5,
and 7), but also deviates significantly in others (such as 1, 8,
and 10).

Overall, across all four heuristic methods, the model seems
capable of making reasonably accurate predictions and appears
to be a promising tool for replicating the patterns in different
heuristic methods. However, the variations in predictive ac-
curacy across different methods and intervals show that there
are few unique characteristics in each heuristic that the model
is variably capturing. Further analysis would be beneficial to
understand these differences, refine the model accordingly, and
potentially improve its predictive performance.

H2 Prediction

I[m[ﬁmm Hl
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Fig. 3. Seriesl: The Heuristic method, Series2: The prediction made by
the model

The two graphs presented in Figure 4 offer a visualization
of the performance of Al-enhanced CBBA and Typical CBBA
(Original) in comparison to the real score values over a series
of tasks or evaluations.It is observed that both AI-CBBA
and Typical CBBA closely track the real score values.The
Al-enhanced CBBA appears to follow the trend of the real
score more tightly than the Typical CBBA, showing that
the integration of Al methods within the CBBA framework
enhances its ability to mirror the actual score outcomes.

In Figure 5, we present a performance comparison of
CBBA, ICBA, Prim’s algorithm, and AI-CBBA relative to the
number of tasks assigned, with the average distance metric
as the evaluation criterion. As the number of tasks increases
from O to 50, all algorithms exhibit an increasing trend in the
average distance, which is intuitive since more tasks typically
translate to greater traversal distances for agents. The CBBA
shows the steepest increase in distance, indicating that while it

1200 T T T T T

—AI-CBEBA
= real score
Typical CBBA —

1000

800

600

400 r

200

120 T T T
— Al-CBBA
100 H—— pical CBBA

80

60
40 1
201

Y

=20 1

40 . . . . . . .
0 5 10 15 20 25 30 35 40

Fig. 4. Al-enhanced CBBA vs Original (Typical) CBBA vs Real score

might be effective for a smaller number of tasks, its efficiency
diminishes as the task count rises. The ICBA presents an
improvement over CBBA, as evidenced by the lower trajectory
of its curve. Prim’s algorithm, traditionally used for finding a
minimum spanning tree and here adapted for task allocation,
demonstrates a performance that initially parallels the ICBA
but eventually outperforms it as the number of tasks becomes
larger. This indicates Prim’s effectiveness in creating more
efficient path plans over larger task sets, by leveraging its
inherent nature of connecting points in a graph minimally.

Lastly, the AI-CBBA shows the best performance among
all the algorithms, maintaining the lowest average distance
across the task spectrum. Its curve shows that the incorpo-
ration of Al techniques into the standard CBBA framework
significantly optimizes the allocation and sequencing of tasks.
This optimization stems from the AI’s capability to learn
from the environment and the ability to predict more efficient
allocations or paths.

The data presented in Table II offers insightful revelations
concerning the time efficiency of the proposed approach,
evaluated under varying operational scales characterized by the
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number of tasks and the agents. The first column, representing
the minimum time, consistently increases with the number
of agents. The average time, denoted in the second column,
similarly ascends with the number of agents. Maximal time
in the third column escalates as well with agent count. The
standard deviation of time, illustrated in the fourth column,
indicates a growing variability in the time to complete tasks.

TABLE II
TIME RESULTS SUMMARY IN [S]
Number of Agents Min Time Avg Time Max Time  Std Dev
2 0.0488 0.5393 0.9020 0.2682
4 0.0917 1.0006 1.5168 0.4583
6 0.1372 1.4613 2.1640 0.6599
8 0.2154 1.9308 2.8104 0.8517
10 0.2462 2.3975 3.4392 1.0542

IV. CONCLUSION

In this study, we successfully integrated Graph Convolu-
tional Networks (GCNs) into the Consensus-Based Bundle
Algorithm (CBBA) to enhance task allocation in multi-robot
systems, creating an Al-enhanced version (AI-CBBA). This
integration marks a shift from traditional heuristic methods
to a learning-based approach. AI-CBBA outperforms existing
algorithms like original CBBA, Improved CBBA (ICBA), and
Prim’s algorithm in task allocation efficiency. It excels in
managing complex task loads, demonstrating AI’s capability to
learn and optimize both task allocation and sequencing. Our
findings indicate that AI-CBBA could significantly advance
multi-robot system coordination, promising improvements for
complex operations across various domains.
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