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Abstract: Respiratory rate (RR) is a vital indicator for assessing the bodily functions and health status
of patients. RR is a prominent parameter in the field of biomedical signal processing and is strongly
associated with other vital signs such as blood pressure, heart rate, and heart rate variability. Various
physiological signals, such as photoplethysmogram (PPG) signals, are used to extract respiratory
information. RR is also estimated by detecting peak patterns and cycles in the signals through signal
processing and deep-learning approaches. In this study, we propose an end-to-end RR estimation
approach based on a third-generation artificial neural network model—spiking neural network.
The proposed model employs PPG segments as inputs, and directly converts them into sequential
spike events. This design aims to reduce information loss during the conversion of the input data
into spike events. In addition, we use feedback-based integrate-and-fire neurons as the activation
functions, which effectively transmit temporal information. The network is evaluated using the
BIDMC respiratory dataset with three different window sizes (16, 32, and 64 s). The proposed model
achieves mean absolute errors of 1.37 ± 0.04, 1.23 ± 0.03, and 1.15 ± 0.07 for the 16, 32, and 64 s
window sizes, respectively. Furthermore, it demonstrates superior energy efficiency compared with
other deep learning models. This study demonstrates the potential of the spiking neural networks for
RR monitoring, offering a novel approach for RR estimation from the PPG signal.

Keywords: spiking neural network; physiological signal; healthcare; photoplethysmogram;
respiratory rate

1. Introduction

Respiration is a fundamental biological process that absorbs oxygen and eliminates
carbon dioxide via the process of inhalation and exhalation [1]. Respiratory information
provides reliable data for detecting changes in a patient’s health status, along with other
vital signs such as body temperature (BT), blood pressure (BP), and heart rate (HR). In par-
ticular, respiratory rate (RR), which is the number of breaths per minute, is an important
indicator obtained from various biomedical signals, such as photoplethysmogram (PPG)
and electrocardiogram (ECG) signals, to assess the clinical status of patients. In addition,
the variability of the continuous respiratory signal could be utilized to prevent not only
respiratory disorders and lung diseases but also cardiac arrest [1–4].

PPG signal provides respiratory information, and it is a frequently utilized biomed-
ical signal in RR estimation because the measurement method is convenient, low cost,
and noninvasive [5,6]. PPG sensors measure changes in the blood volume from vessels near
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the skin, thereby acquiring information related to various vital signs [7]. The frequency
range of a typical PPG signal is between 0.1 and 5 Hz. For accurate BP estimation, typical
cut-off frequencies range from 0.3-4.5 Hz, whereas cut-off frequencies between 0.4–3 Hz
are required for HR estimation [8,9]. In healthy adults, the RR ranges from 12–20 breaths
per minute [10,11]. This enables the detection of most of the RR information at a relatively
lower frequency than the frequencies associated with blood pressure and heart rate.

Previous studies related to PPG-based RR estimation have focused on two approaches:
signal processing and deep learning-based RR estimation [12,13]. In signal processing-based
approaches, frequency analysis is employed to extract from a PPG signal the components
in the frequency domain that are associated with respiration. There are various frequency
analysis methods such as the empirical mode decomposition (EMD) and wavelet trans-
form [14–17]. In addition, methods such as respiratory-induced intensity variation (RIIV),
respiratory-induced amplitude variation (RIAV), and respiratory-induced frequency vari-
ation (RIFV) [12,18] detect the optimal frequency band by decomposing the PPG signal,
which modulates the PPG signal caused by respiration.

With the advancement of deep learning technology, RR estimation methods using vari-
ous network structures have been proposed. For a robust estimation, Osathitporn et al. [19]
proposed an end-to-end convolution neural network (CNN) with a residual block. They
used three convolution blocks in parallel to extract various features related to respiration.
All blocks in their network were composed of 1-D convolution blocks, leading to a reduc-
tion in the network size. Chowdhury et al. [20] also proposed a lightweight deep learning
network for RR prediction. They added a projection layer at the front of the network to
reduce the size of the input, followed by a residual module with depth-wise separable
convolution blocks for a lightweight structure [21]. Spiking neural networks (SNNs) have
recently attracted the attention of researchers, as an alternate to the lightweight deep neural
networks (DNNs) for real-time monitoring, owing to their low computational cost and
high energy efficiency [21–24].

SNNs are brain-inspired third-generation models that mimic neuronal dynamics [25].
Figure 1 illustrates the differences between a DNN and SNN. In contrast to DNNs, which
propagate real-valued output, SNNs employ a discrete event-driven action potential called
‘spike trains’ as a temporal input and output. To generate spike trains as inputs for
SNNs, real-value inputs are converted using various spike-encoding methods to transmit
information [26–28]. Traditional spike-encoding schemes are classified into two categories:
rate and temporal encoding. These encoding methods are widely used in SNN studies
to convert visual information into spike trains. Rate encoding employs the probabilistic
approach of the Poisson process, where a spike probabilistically occurs through a stimulus,
such as pixel values in image data or the power spectrum in the frequency domain of time-
series data. In contrast, temporal encoding focuses on the timing of the spike occurrence
rather than the frequency of the encoding information. To manage the temporal spike trains,
a biological spiking neuron model was incorporated into the SNNs. Temporal information
is transmitted through accumulation and firing based on a threshold value in the spiking
neuron, which leads to output spike trains that are directed towards the next neurons.

SNNs suffer from information loss during the encoding process [29–31]. In addition,
the non-differential characteristics of spike trains impose limitations on learning in SNNs.
Therefore, SNNs have been studied mainly in classification rather than regression fields [32].
Recently, multiple studies have been conducted to combine the learning mechanisms and
network structures of SNNs and DNNs for achieving a performance comparable to that of
DNNs while maintaining energy efficiency. Sengupta et al. [33] proposed a deep spiking
neural network (DSNN) with VGG [34] and residual architectures [35]. To overcome the
inherent challenges of SNNs, they adopted an artificial neural network for the spiking
neural network conversion method. They conducted pretraining under the ReLU-based
ANN structure, and then converted the weights for the initialization of the SNNs; this will
preserve the weights from the ANN, minimize information loss, and enhance performance.
Despite the loss of information, Guerrero et al. [36] evaluated an event-based regression
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problem using a DSNN. They utilized the temporal relationship of continuous spike
patterns via a recurrent neural network (RNN)-like neuron model to demonstrate the
possibility of regression fields.

Figure 1. The functional difference between DNNs and SNNs.

In this study, we proposed an SNN framework for RR estimation. In addition to the
energy efficiency advantages of SNNs, an SNN architecture combined with CNNs was
adopted to ensure accurate performance. The contributions of this study are summarized
as follows:

• We designed an end-to-end SNN architecture using a feedback-based neuronal model.
To the best of our knowledge, this is the first regression study that applies end-to-end
SNN to real-world PPG data.

• We employed a direct encoding method to convert real-valued PPG segments into
spatial–temporal spike trains. We generated explainable spike trains for RR estimation
via trainable convolution blocks with a biological neuron model.

• We compared the proposed model with other deep learning methods and demon-
strated that the proposed model had an accuracy comparable to that of existing DNN
models while being more energy efficient.

The remainder of this paper is structured as follows: Section 2 illustrates the proposed
network structure and methodology. Section 3 presents the experimental settings for evaluat-
ing the proposed model and compares the benchmark results with other DNN architectures.
Section 4 discusses further details of the proposed model and analyzes the experimental
results. Finally, Section 5 concludes the paper and suggests directions for future research.

2. Materials and Method
2.1. Data and Preprocessing

To evaluate the proposed model, the BIDMC PPG, and Respiration dataset [37]
from PhysioNet [38], containing signals extracted from the MIMIC II matched waveform
database [39], was used. The dataset consisted of 53 recordings of PPG and impedance
respiratory signals acquired from adult patients aged 19–90 years at the Beth Israel Dea-
coness Medical Center (Boston, MA, USA). Each recording was made for 8 min and
sampled at 125 Hz. The dataset was collected by an analog-to-digital converter (ADC) with
16-bit precision.

In this study, reference RR was obtained from the annotations of the dataset, which
were sampled at 1 Hz. To minimize the influence of other components, a bandpass filter
with a cutoff frequency between 0.1–0.6 Hz (6–36 breaths per minute) was used in the
extraction of respiratory information. Furthermore, to ensure sufficient data for training
and validation, we applied a data augmentation strategy. We augmented the data by
overlapping the PPG signals at 1 s intervals. For each 16 s PPG segment, we obtained
the next PPG segment overlapped by shifting 125 data points. As a result, the number of
segments was increased 15 times through the data augmentation.
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2.2. Spiking Neuron Model

Various biologically plausible spiking neuron models, such as the Hodgkin–Huxley (HH),
Izhikevich, integrate-and-fire (IF), and leaky integrate-and-fire (LIF), have been proposed to
transmit information converted into spike trains [40–42]. In particular, the IF and LIF neuron
models have been employed in numerous studies to leverage the advantages of both biological
plausibility and computational efficiency. In this section, we describe the two neuron models
used in the proposed network: soft-reset IF and recurrent IF neuron models.

(1) Soft-reset IF neuron model: This neuron model is utilized in the spike encoder to
minimize the information loss during spike conversion. Figure 2 shows the differences
between the hard and soft-reset mechanisms. In the hard-reset approach, the membrane po-
tential is reset to the reset voltage regardless of whether it exceeds the threshold. However,
in the soft-reset approach, the membrane potential is initialized with a specific voltage that
exceeds the threshold. The soft-reset IF neuron model is defined as follows:

si+1(t) =

{
1, if ui+1(t)− Vth ≥ 0
0, if ui+1(t)− Vth < 0

(1)

ui+1(t) = ui+1(t − 1)(1 − si(t)) + (ui+1(t − 1)− Vth)si(t), (2)

ui+1(t + 1) = ui+1(t) + Wi,i+1si(t + 1). (3)

Equation (1) explains the Heaviside step function for spike activation. si+1(t) denotes the
output spike train, ui+1(t) is the membrane potential at the tth time step in the (i + 1)th
layer, and Vth is a constant threshold voltage set as hyperparameter. If the membrane
potential reaches the threshold, an output spike train is fired. Equation (2) expresses the
soft-reset mechanism, where the membrane potential ui+1(t) depends on the Equation (1).
If the spike is fired, the reset voltage is set to the difference between the previous membrane
potential and the threshold; otherwise, it is maintained at the current value. Equation (3)
expresses the IF neuron model, where Wi,i+1 denotes the trainable weights between the ith
and (i + 1)th layers.

Figure 2. Difference in the operation of the hard-reset and soft-reset mechanisms in an IF neuron.

(2) Recurrent IF neuron model: The conventional IF neuron model in Equation (3)
accumulates the temporal information of the spike trains for sequential processing. However,
there is no direct dependency among the time instances. In other words, updating the neuron
from the current timestep is not influenced by the information from the previous timesteps. We
utilized the feedback-based IF neuron model to incorporate information from the previous
timestep and update of the current state of the neuron, whose mathematical model is
defined in Equation (4):

ui+1(t + 1) = ui+1(t) + Wi,i+1si(t + 1) + Wrecsi+1(t), (4)

where Wrec denotes the recurrent weight of the (i + 1)th layer. It leverages the relationship
between the time instances by merging the information from the current spike trains in the
(i + 1)th layer with the previous spike trains in the ith layer.
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2.3. Spike Encoding

Spike encoding is a crucial step in the processing of real-valued data using spike trains.
The effective conversion of information into spike trains with minimal loss is crucial to the
performance of the SNN model. Rate and temporal encoding methods have demonstrated
good performance in classification tasks. Nevertheless, these traditional methods have
limitations owing to information loss during the encoding process. In this study, we used a
combination of direct encoding approaches and convolution to minimize the loss between
the model prediction and its ground truth, enabling the direct conversion of PPG segments
into spike trains without the need for additional processing steps.

We adopted a single-layer trainable 1D-CNN to encode information specifically related
to respiration. The proposed method efficiently encoded only the respiratory information by
extracting the temporal features of the PPG signal, which were obtained via trained convolu-
tion filters. Spike trains were generated through the accumulation and firing of respiratory
information using a soft-reset IF neuron model that enables encoding with minimal loss.

2.4. Surrogate Gradient Learning

The most critical challenge in training SNNs is the non-differential problem of the
spike activation function [43]. Backpropagation learning, which relies on differentiation, is
typically used in the standard learning procedure for DNNs. However, the Heaviside step
function was used for spike activation, as described in Equation (1). It imposes constraints
on backpropagation learning owing to its non-differentiability at the instance when ui+1(t)
equals Vth. To address this limitation, a surrogate gradient learning method is proposed,
which introduces a differentiable surrogate function that approximates the behavior of the
discontinuous Heaviside step function. The surrogate function enables the utilization of
optimization techniques based on gradients, thereby facilitating the training process for
SNNs, as described in Equation (5) with the first derivative.

S(x) =
x

α
√

1 + x2
+

1
2

, (5)

S′(x) =
1

α(1 + x2)
3
2

, (6)

where x denotes the ui+1(t)− Vth, and α is the scaling parameter to adjust the slope.
Figure 3a illustrates the Heaviside step function and approximate functions corre-

sponding to various parameter values. The parameter α is experimentally chosen as 0.65,
which best approximates the Heaviside step function. Figure 3b depicts the gradient func-
tions corresponding to the functions shown in Figure 3a. By replacing the non-differentiable
spike activation function with the proposed surrogate function, the network can be effec-
tively trained in an approximated environment.

Figure 3. Surrogate functions for approximating the Heaviside step function. (a) Its original functions
corresponding to the parameter α in Equation (5) and (b) its derivative function.

2.5. Network Structure

To overcome the limitations of SNN prediction, a CNN-SNN architecture is proposed
that combines convolution operations with the SNN architecture. The proposed network
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consists of three layers: a spike-encoding layer, spike-hidden layer, and spike-decoding
layer; the spike hidden layer was employed iteratively twice. The information regarding
the input signal is continuously processed across the T time steps within the network to
ensure an accurate interpretation of the input signal. Consequently, the average of the
output values over the T time steps is calculated to predict the RR. The proposed network
paradigm is illustrated in Figure 4.

Figure 4. Schematic diagram of the proposed network structure. The proposed network comprises a
spike encoding layer (blue box), spike hidden layer (green box), and spike decoding layer (purple
box). Note that the spike hidden layer was employed iteratively twice.

Spike Encoding Layer: In traditional encoding methods, the input data are trans-
formed into spike trains before being fed into neural networks. In contrast, this study
employs a trainable machine learning-based encoding method that directly utilizes a
neural network for spike conversion. The features related to respiration were extracted
through convolution operations. Subsequently, the soft-reset IF neurons described in
Equations (1)–(3) was employed to generate spike trains.

Spike Hidden Layer: This layer includes two convolution blocks Each convolution
block comprises a 1-D convolution, batch normalization, and recurrent IF neurons. The
number of hidden layers was experimentally determined since the increase of the number
of hidden layers causes a loss of accuracy.

Spike Decoding Layer: This layer is composed of a pooling layer, recurrent IF neurons,
and a fully connected layer. A pooling operation was applied to aggregate the information
and simultaneously reduce the number of spatial features. The respiratory information
converted into spike form from the hidden layer was analyzed to estimate the RR.

2.6. Model Evaluation

To assess the model performance, we adopted Pearson’s Correlation Coefficient (PCC)
and Mean Absolute Error (MAE) in breath per minute, depending on the sizes of the PPG
segment [19]:

PCC =
∑(Y − Y)(Y′ − Y′)√

∑ (Y − Y)2
√

∑ (Y′ − Y′)2

, (7)

MAE =
1

nW ∑ |Y − Y′|, (8)

where Y and Y′ denote the true and estimated RR, respectively. Y and Y′ are the averages
of the true and estimated RRs, respectively. W is the window size of the PPG segment.
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Furthermore, we adopted the following methods to measure the energy efficiency of
the proposed SNN and DNN model [44]:

E(DNN) =
L

∑
ℓ=2

FLℓ ∗ EMAC, (9)

E(SNN) = FLℓ ∗ EMAC +
L

∑
ℓ=2

FLℓ ∗ EAC, (10)

where FLℓ denotes the number of floating-point operations at layer ℓ, EMAC is the energy
consumption used for the multiply-–accumulate (multiplication and addition) operations,
and EAC is the energy consumption for the accumulated (addition) operations. To count
the number of floating point operations for each layer, we utilized the ptflops library.
Furthermore, we assumed that the energy consumption for the addition process was 0.1 pJ
and the multiplication process was 3.1 pJ, referring to [45].

We divided the training and test data at the subject level. From the BIDMC respiratory
dataset, 40 subjects were randomly selected for the training process and 13 of them were
used for the test process. Furthermore, a five-fold cross-validation method was applied
during the training process. For the benchmark test, a CNN-LSTM model with three
convolution layers and one LSTM layer [46], a CNN-RNN model with three convolution
layers and one RNN layer [47], and a VGG-8 model were chosen [34]. The detailed
parameter settings are presented in Table 1.

Table 1. Components of the proposed and benchmark models.

Model Components Proposed Model CNN-LSTM CNN-RNN VGG-8 Osathitporn et al. [19]

CNN Layers 3 3 3 5 5
LSTM Layers - 1 - - -
RNN Layers - - 1 - -
Dense Layers 2 1 1 3 3

CNN Filter Size 20/8/8 10/5/5 10/5/5 3/3/3/3/3 16/32/64/3/3
Activation Functions IF/RLIF Leaky-ReLU Leaky-ReLU Leaky-ReLU Leaky-ReLU

3. Experimental Results

The proposed model was implemented using the SpikingJelly framework based on
the PyTorch library. The model training was conducted with a batch size of 16, a learning
rate of 0.0005, and the Adam optimization method in an environment with an Intel Core
i7-7700 CPU at 3.60 GHz and a GeForce RTX 4070ti GPU.

3.1. Model Accuracy

Table 2 lists the PCC and MAE performance corresponding to three different window
sizes of the PPG segment. Experiments were conducted with 4, 8, and 16 timesteps of
the spike trains. The proposed model demonstrated outstanding performance despite an
increase in the number of time steps. The optimal performance was achieved when the
time step T was set to 8. Generally, the mean firing rate plays a more critical role than the
patterns of neuronal firing in SNN studies of classification problems [48–50]. Therefore, it
was demonstrated that the performance improved with an increase in the timesteps during
decision making. However, in the proposed model, longer timesteps of the spike trains did
not improve performance.

Table 3 lists the PCC and MAE performances of the proposed model compared with
those of other DNN approaches. The proposed model outperformed the CNN-RNN
and VGG-8 models with MAE values of 1.37 ± 0.04 and 1.15 ± 0.07 bpm when the
window sizes were 16 and 64, respectively. It also yielded better performance than the
VGG-8 model, with an MAE of 1.23 ± 0.03 bpm at a window size of 32. The model of
Osathitporn et al. [19] exhibited the best performance for the 16 and 32 window sizes with
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MAE of 1.34 ± 0.01 and 1.11 ± 0.01 bpm. The CNN-LSTM showed the best performance
with MAE of 1.11 ± 0.03 bpm in 64 window size. However, the overall results of the pro-
posed model achieved comparable performance with the CNN-LSTM, CNN-RNN and
Osathitporn et al. [19] models.

Table 2. PCC and MAE performances corresponding to the different window sizes of PPG segment
and time steps.

Time Steps (T)
Window Size (s)= 16 Window Size (s) = 32 Window Size (s) = 64

PCC MAE (bpm) PCC MAE (bpm) PCC MAE (bpm)

T = 4 0.4980 ± 0.0287 1.5247 ± 0.0332 0.6074 ± 0.0064 1.3642 ± 0.0129 0.6219 ± 0.0111 1.3153 ± 0.0134
T = 8 0.5695 ± 0.0319 1.3710 ± 0.0481 0.6360 ± 0.0070 1.2234 ± 0.0372 0.6615 ± 0.0473 1.1518 ± 0.0697
T = 16 0.5383 ± 0.0343 1.4671 ± 0.0157 0.5447 ± 0.0117 1.3646 ± 0.0352 0.6630 ± 0.0199 1.2204 ± 0.0493

Table 3. Testing results of the proposed model compared with the other DNN models.

Model
Window Size (s) = 16 Window Size (s) = 32 Window Size (s) = 64

PCC MAE (bpm) PCC MAE (bpm) PCC MAE (bpm)

CNN-LSTM 0.5926 ± 0.0355 1.3681 ± 0.0685 0.6864 ± 0.0342 1.1169 ± 0.0705 0.7077 ± 0.0245 1.1116 ± 0.0343
CNN-RNN 0.5233 ± 0.0113 1.4757 ± 0.0348 0.6980 ± 0.0270 1.1605 ± 0.0675 0.7489 ± 0.0298 1.1537 ± 0.0448

VGG-8 0.4577 ± 0.0329 1.4721 ± 0.1795 0.5305 ± 0.0312 1.4434 ± 0.0705 0.5007 ± 0.1199 1.4053 ± 0.0964
Osathitporn et al. [19] 0.5945 ± 0.0142 1.3460 ± 0.0128 0.6705 ± 0.0045 1.1121 ± 0.0108 0.6643 ± 0.0103 1.1321 ± 0.0150

Proposed model 0.5695 ± 0.0319 1.3710 ± 0.0481 0.6360 ± 0.0070 1.2240 ± 0.0372 0.6615 ± 0.0473 1.1518 ± 0.0697

Figure 5a–c display the training and validation loss curves of the proposed model
and the other DNN models with window sizes of 16, 32, and 64, respectively. The x-axis
represents the training and validation epochs, and the y-axis represents the mean squared
error (MSE) losses. The validation losses converge in all cases, and these curves validate the
reliability of the results presented in Table 2. In particular, Figure 5c displays the optimal
convergence compared to Figure 5a,b.

In addition to the PCC in Table 4, we performed visualization to evaluate the reliability
of each estimated RR. Figure 6 shows the Bland–Altman graphs between the estimated
RR and ground-truth RR. Figure 6a,b illustrate the results for window sizes of 16 and 32 s
using the best performing model, the Osathitporn et al. [19] network as indicated in
Table 4. Figure 6c shows the results for a 64-second window size, using the CNN-LSTM
network. Figure 6d–f visualize the results of the proposed model. The x-axis represents
the average of two measurements, and the y-axis represents difference between the two
measurements. For both the best performing models and the proposed model, the majority
of the data points contain within the 95% confidence interval, demonstrating the reliability
of the models.

Table 4. FLOPs and energy cost results of the proposed model compared with the other DNN models.

Model

Window Size (s) = 16 Window Size (s) = 32 Window Size (s) = 64

FLOPs (M) Energy Cost
(µJ) FLOPs (M) Energy Cost

(µJ) FLOPs (M) Energy Cost
(µJ)

CNN-LSTM 16.44 0.5260 44.38 1.4200 84.75 2.7120
CNN-RNN 31.99 1.0230 35.04 1.1210 69.26 2.2160

VGG-8 16.01 0.5523 28.19 1.0760 55.99 2.1250
Osathitporn et al. [19] 6.98 0.2233 13.44 0.4301 26.34 0.8428

Proposed model 6.59 0.0120 12.21 0.0230 21.32 0.0420
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Figure 5. Train and validation losses about CNN-LSTM, CNN-RNN, VGG-8, and Osathitporn
et al. [19] when the window size is (a) 16, (b) 32, and (c) 64. The standard deviations are represented
with shades.
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Figure 6. Bland–Altman graphs for the best performing models (a,b): Osathiporn et al. [19], (c):
CNN-LSTM) and the proposed model (d–f) with window sizes of 16, 32, and 64. Note that the
interval between the lower limit of agreement and the upper limit of agreement represents a 95%
confidence interval.

3.2. Computational Cost and Energy Consumption

Table 4 presents the floating point operations per seconds (FLOPs) and energy costs
for the proposed SNN model and other DNN models. DNNs utilize MAC operations as
metrics for FLOPs, whereas the proposed model employs synaptic operations [51]. The
proposed model showed comparable performance to other DNN models in terms of MAE
performance. Furthermore, compared to the best performing model, it demonstrated
18.6, 18.7, and 64.6 times higher energy efficiency, and 1.05, 1.1, and 3.97 times lower
floating-point operation counts for the window sizes of 16, 32, and 64, respectively.

4. Discussion

Our approach utilized a suitable network architecture to perform a regression test from
time-series medical data, whereas most other SNN studies have focused on classification
problems owing to their poor accuracy performance caused by information loss. In particu-
lar, a spiking neuron model was designed with a recurrent structure similar to RNNs [47],
reflecting the spike information from previous time instances in the next one. Therefore,
the temporal dependencies among the different time instances can be enhanced using
recurrent spiking neurons with the feature extraction capabilities of CNNs. However, there
is a limitation in learning long-term dependencies. To address this limitation, surrogate
gradient learning has been proposed, which introduces a differentiable surrogate function
that approximates the behavior of a discontinuous Heaviside step function. The surro-
gate function enables the utilization of optimization methods based on a gradient process,
thereby conducting a training process for the SNNs.

To analyze the outstanding performance of the proposed SNN model, we visualized
the spike patterns derived from the PPG signals (see Figure 7a–c). Figure 7 shows the
results from randomly selected clean and noisy PPG signals. Figure 7a shows the raw
PPG signals, its true respiratory signal, and the result of its spike encoding. The PPG
signal was bandpass filtered into the respiratory band corresponding to 0.1–0.6 Hz. The
respiratory information was perfectly captured in the spike pattern, which was generated
around the peaks of the respiratory signal, indicating that it contained sufficient respiratory
information. Furthermore, Figure 7b,c illustrate that the respiratory information was
effectively represented, even with noisy PPG signals, except for the minor regions depicted
in the red dashed box.

We set the number of time steps to eight. In other words, the CNN extracts the features
from the PPG signals, and the process of generating spikes with the soft-reset IF neurons is
repeated eight times. In this process, the membrane voltage value from the previous time
step is carried over to the next time step, since the neuron’s membrane voltage is not reset
at each time step. Consequently, spikes are produced at the valleys of the respiratory signal
in noisy PPG signals despite the application of the bandpass filter to extract the respiratory
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information from the low-frequency components of the PPG signal, leading to the error. To
minimize these errors, noise reduction methods such as smoothing filters could be applied.
Furthermore, utilizing the multiple convolution layers can be also used to extract accurate
respiratory information.

Figure 7. The raw PPG signals, true respiratory signals, and its encoded spike patterns from the PPG
signal within 32-s window are visualized across (a) a clean PPG signal and (b), (c) noisy PPG signals.
Note that the dotted red boxes depict the error regions.
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5. Conclusions

In this study, an SNN-based model for respiratory rate prediction was proposed and
compared with deep learning models in terms of accuracy and energy cost. By enhancing
the time dependency through the recurrent structure, the proposed model showed accuracy
performance comparable to that of deep learning models such as CNN-LSTM, CNN-RNN,
VGG-8, and state-of-the-art RR estimation networks, operating at a relatively low compu-
tational cost. As a result, the proposed model demonstrated its advantage in low power
consumption with a maximum of 64.5, 52.7, 50.5, and 20 times lower energy cost compared
to the deep learning models. Furthermore, the analysis of the spike patterns from the
trainable spike encoder revealed that spikes were periodically generated corresponding to
the respiratory patterns of the reference signals, which enhanced the reliability of the model.
To the best of our knowledge, this is the first study to apply an end-to-end SNN architecture
to the regression analysis of real-world PPG data, thereby validating its effectiveness in
RR estimation.
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