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Abstract

This paper proposes panel nowcasting methods to obtain timely predictions of CO2 emissions and energy

consumption growth across all U.S. states. This is of crucial importance not least because of the increasing role

of sub-national carbon abatement policies but also due to the very delayed publication of the data. Since the

state-level CO2 data are constructed from energy consumption data, we propose a new panel bridge equation

method. We use a mixed frequency set-up where economic data are first used to predict energy consumption

growth. This is then used to predict CO2 emissions growth while also allowing for cross-sectional dependence

across states using estimated factors. We evaluate the models’ performance using an out-of-sample forecasting

study. We find that nowcasts improve when incorporating timely data like electricity consumption, relative to a

simple benchmark. These gains are sizeable in many states, even around two years before the data are eventually

released. In predicting CO2 emissions growth, nowcast accuracy gains are also notable well in advance of the

data release, especially after the current year’s energy consumption data are used in making the prediction.
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1 Introduction

The growing climate emergency has rapidly expanded the need for policies on abating CO2 emissions due to fossil

fuel energy production and consumption. The importance of using environmental variables in economic modelling

is now well accepted since the seminal DICE model of Nordhaus (1992). This has led to significant recent debate

amongst economic policymakers on tracking the social cost of carbon (Rennert et al., 2021) as well as the widespread

use of environment-economic models by international institutions such as the OECD and the United Nations.1 In

turn, this has placed increasing importance on the ability to forecast and monitor both short-term and long-term

energy consumption and CO2 emissions. Our focus will be on near-term prediction, or “nowcasting” of these

environmental variables, which has only recently received attention by Bennedsen et al. (2021) in the context of

nowcasting national U.S. CO2 emissions.

In this paper, we propose new models for jointly nowcasting multiple regions’ energy consumption and CO2

emissions, specifically for states in the U.S., which has not yet been studied in the existing literature. This improves

upon studies which look only at the national context by allowing a more granular overview of regional environmental

degradation. The focus on sub-national variables is important for several reasons. Firstly, there is growing evidence

that sub-national efforts to reduce emissions can accelerate the achievement of national abatement targets (see

Hultman et al., 2020 and references therein). Secondly, the discussion of local-level environmental action has

gained a stage in the largest climate meetings, such as the dedicated “Cities, Regions and the Built Environment”

day at COP26. Finally, there are already many sub-national environmental initiatives in the U.S., where around

half of all U.S. states currently have greenhouse gas emissions targets,2 and more than ten states which participate

in the Regional Greenhouse Gas Initiative (RGGI), a market-based program to reduce emissions. For these reasons,

it is crucial that policymakers have access to up-to-date information regarding regional CO2 emissions and energy

consumption. However, it is very challenging to monitor the movements in these variables in real time as the data

are only available annually and with very long publication lags. This challenge has not been addressed by existing

academic studies.

This paper aims to fill this gap in the literature by providing a novel nowcasting methodology for U.S. state-

level energy consumption and CO2 emissions growth. This allows us to obtain timely predictions of these variables

before the data are published. This builds on existing academic studies in several ways. Firstly, our study is unique

in nowcasting state-level energy consumption and CO2 emissions, where only the recent study of Bennedsen et al.

(2021) looks at nowcasting national CO2 emissions and not at state level. Secondly, our paper provides a novel

application of recently-emerging panel data nowcasting methods which have typically been used only for predicting

macroeconomic variables like real GDP (Fosten and Greenaway-McGrevy, 2022) and not environmental variables.

More broadly, panel data nowcasting is a relatively new and increasing field (Koop et al., 2020; Babii et al., 2020;

1See: https://www.oecd.org/environment/indicators-modelling-outlooks/modelling.htm and https://www.unep.org/explore-
topics/green-economy/what-we-do/economic-and-trade-policy/green-economy-modelling [Last accessed: 01/09/2022]

2See: https://www.c2es.org/content/state-climate-policy/ [Last accessed: 29/03/2022]
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Larson and Sinclair, 2022) relative to the long history of time series nowcasting (see the surveys of Banbura et al.,

2013; Bok et al., 2018). Finally, our paper is different from traditional nowcasting studies of real GDP where

publication lags may be only one or two months. In our setting, there is even stronger motivation for the use of

nowcasting due to the annual frequency and the abnormally large publication lags in the U.S. state-level energy

consumption and emissions data. The CO2 data are only available over two years after the end of the relevant

year, while energy consumption data have a delay of around a year and a half. These publication lags are much

longer than is typical in existing studies and require methods which are capable not just of nowcasting but also

backcasting.

The first contribution of the paper is to propose a panel data nowcasting methodology for state-level energy

consumption and CO2 emissions growth. Motivated by the fact that the emissions data are calculated directly from

energy consumption data, we propose a two-step bridge equation approach adapted to the case of panel data. We

first use a mixed-frequency panel MIDAS model to obtain nowcasts of annual state-level energy consumption growth

using higher frequency quarterly and monthly economic activity data. This model we use is adapted from the mixed

frequency approach of Ghysels (2016), which we extend from the time series to the panel data context, and the

model’s predictions can be updated every time new information arrives. We then employ a panel bridge equation

approach to transform the nowcasts of energy consumption growth into nowcasts of CO2 emissions growth. In doing

so, we use a multi-factor error structure to allow for cross-sectional dependence across states in the style of Chudik

and Pesaran (2015). Our panel bridge equation model is similar to the well-known time series bridge equation

approach (see for example Baffigi et al., 2004; Foroni and Marcellino, 2014; Schumacher, 2016) with the difference

that we extend this to allow the modelling of panel data, which is an improvement in contexts where regional data

are available. The cross-sectional dependence structure we use is similar to the recent panel nowcasting approach

of Fosten and Nandi (2023), which in this paper we adapt to the case of bridge equation models.

The second contribution of the paper is the empirical part where we perform a detailed pseudo out-of-sample

forecasting study using our models to predict energy consumption and CO2 emissions growth over a period of

history. We mimic the release schedule of the variables in real time and make multiple nowcasts and backcasts

for every period under consideration. This allows us to assess how the performance of these methods changes as

we add new information into the nowcasting model, as is commonly done in empirical nowcasting studies (see, for

instance, Giannone et al., 2008; Banbura et al., 2013; Bok et al., 2018). For the predictions of energy consumption

growth, we use monthly electricity sales growth or quarterly real personal income growth. Since these economic

series are at a higher frequency and have a much lower publication lag, this makes them highly appropriate for

making regularly updated nowcasts and backcasts. We finally use the bridge equation method to feed in these

energy consumption predictions and arrive at predictions of CO2 emissions growth.

We make several noteworthy findings. We find that the predictions of energy consumption growth improve

on average across states when current economic data are used for nowcasting and backcasting, relative to a näıve
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benchmark. The use of monthly electricity sales data is particularly successful, more so than real personal income

growth. We also find particularly sizeable gains in several individual states, which we assess by looking at the

across-state distribution of the gain in predictive accuracy of our model relative to the benchmark. Given the

increased timeliness of the predictor variables, we see gains in predictive accuracy occurring over a year ahead of

the release of the energy consumption data. These results carry over to our bridge equation predictions of CO2

emissions growth. We find that the energy consumption nowcasts using electricity sales data provide nowcast

gains for CO2 emissions relative to a simple benchmark model. The gains are, again, sizeable in some states, and

the biggest gains occur when we wait until the backcast period and add in the current year’s observed energy

consumption data. This means we are able to provide accurate predictions many months before the release of the

data by the statistical authorities, and we use a much simpler methodology than that used in constructing the data.

We find some additional but marginal gain from using factors estimated to pick up common correlated effects in

the CO2 bridge equation method. We also provide various robustness checks such as the use of per capita energy

consumption and emissions growth as target variables.

Our empirical study builds on an increasing body of empirical work in nowcasting. While only the aforemen-

tioned study of Bennedsen et al. (2021) looks at nowcasting environmental variables, there have been a vast amount

of studies using nowcasting for macroeconomic monitoring. The majority of studies look at nowcasting real GDP

and have done so in a variety of different contexts: developed economies (Bok et al., 2018; Anesti et al., 2022),

emerging economies (Bragoli and Fosten, 2018; Dahlhaus et al., 2017), global GDP (Ferrara and Marsilli, 2019)

and so on. Nowcasting has also been applied to several other macroeconomic series such as the GDP components

(Fosten and Gutknecht, 2020), inflation (Modugno, 2013; Knotek and Zaman, 2017) and unemployment claims

(Larson and Sinclair, 2022). Our paper helps to shift this focus from macroeconomic to environmental nowcasting,

which we believe will be a fruitful area of future research.

The rest of the paper is organised as follows. Section 2 describes the data sources used in the study. Section 3

describes the models we propose and Section 4 details the pseudo out-of-sample methodology we use in evaluating

these models. Section 5 discusses the results of the pseudo out-of-sample experiment and Section 6 concludes the

paper. The Appendix houses additional sets of results not included in the main text.

2 Data

2.1 CO2 Emissions

State-level CO2 emissions data are available from the U.S. Energy Information Administration (EIA).3 The data

are available on an annual basis with observations from 1980 onwards. The data cover the CO2 emissions from

direct fuel use across various sectors: commercial, industrial, residential and transportation. We focus on the

3See: https://www.eia.gov/environment/emissions/state/ [Last accessed: 11/11/2021]
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total emissions by state but we will also consider per-capita CO2 emissions as this has been the target variable of

other studies (Bennedsen et al., 2021). Of crucial importance to this study is that the publication lag for the CO2

emissions data is very large, around two years and three months after the end of the reference year. For instance,

the data for 2018 were released at the beginning of March 2021. This lag is considerably larger than other types

of state-level data such as the economic variables mentioned below. This lack of timeliness will mean that both

nowcasting and backcasting are appropriate.

In producing the data, the EIA estimate state-level CO2 emissions based on underlying energy consumption

data from the State Energy Data System (SEDS).4 Knowing this aspect of the data construction is what motivates

the use of a bridge equation where total state-level CO2 emissions data are directly linked to total state-level

energy consumption data.5 We note that this approach will be like an approximation to the more disaggregated

way in which the EIA computes the state-level CO2 data. To be more precise, according to the EIA’s methodology

documentation,6 the conversion to CO2 emissions from energy consumption is first made at a very granular level

by fuel type and sector, using different emissions factors and proportions of fuel used in fuel combustion. After

conversion, the total CO2 emissions are summed up from the disaggregates. An alternative approach to ours would

be a bottom-up approach to mimic the EIA’s calculation by nowcasting the disaggregate energy consumption

series, converting them and then aggregating them afterwards. However, we do not pursue this approach as it

would entail a large amount of additional nowcast uncertainty: (i) the nowcast errors from a large number of

individual disaggregates summed up to get the total, (ii) the errors from predicting the emissions factors which are

themselves estimated and would require nowcasting, (iii) some estimation of the proportions of each fuel type that

is used in combustion, which the EIA bases on various sources. We prefer a direct top-level approach, much in the

same way that GDP nowcasters target the aggregate GDP series and not the very granular disaggregated output

series which are also available. One notable exception is Higgins (2014) who does propose a bottom-up approach

for GDP nowcasting in the GDPNow methodology at the Federal Reserve Bank of Atlanta. Whether this type of

approach can be useful in our context is something we leave for future study.

2.2 Energy Consumption

The data for state-level aggregate energy consumption (“EC” hereafter) are also available on an annual basis. The

data are available from the SEDS, mentioned above, also produced by the EIA. The annual time series for each

state are available from 1960 onwards. As with CO2 emissions, we will consider both the raw and per-capita EC

in our analysis. Regarding the timeliness of the data, although the data frequency is the same as that of CO2

emissions, the SEDS data are published in a more timely fashion. Here, the publication lag is around one year and

six months, which is roughly nine months quicker than for the CO2 data. For instance, the data for 2019 were

4See: https://www.eia.gov/state/seds/ [Last accessed: 11/11/2021]
5This is instead of modelling CO2 emissions directly as a function of, say, economic variables. We tried this latter approach in our

empirical investigations but found it to perform worse than modelling using energy consumption.
6See: https://www.eia.gov/environment/emissions/state/pdf/statemethod.pdf [Last accessed: 31/08/22]
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published at the end of June 2021. Although the data are more timely, if we wish to use the current year’s EC

in predicting CO2 emissions, this would constitute a backcast and not a nowcast. In order to obtain nowcasts of

EC and therefore CO2 emissions, we require data which are available in a much more timely fashion, such as the

economic indicators outlined next.

2.3 Economic Indicators

Since the aim is to produce state-level EC nowcasts, it is natural to use state-level economic indicators. With limited

available state-level indicators at our disposal, we will present results using two different predictors: electricity

consumption (as measured by sales of electricity to ultimate customers) and real personal income (PI).7 The

former is available from the EIA while the latter is available from the Bureau of Economic Analysis (BEA).8 The

electricity consumption data are available for all states at the monthly frequency with data starting in 1990. The

PI data are available at a quarterly frequency from 1950 onwards, which we deflate by the GDP deflator for the

U.S. to obtain real figures.

There are two factors which make these series appropriate for nowcasting EC and therefore CO2 emissions.

Firstly, their higher frequency makes them much timelier than the annual data, especially in the case of electricity

sales where monthly observations are available. Secondly, for both electricity sales and PI, the publication lag is

relatively low which means that quite early in the year we already start to observe relevant data points for use

in nowcasting. In the case of electricity sales we observe a month’s data around two months after the end of the

relevant month. For PI the publication lag is around three months after the end of the reference quarter. This

implies that already in the middle of the nowcast year, we have data on the first four months of electricity sales

and the first quarter of PI data available for making predictions of EC for that same year.

It is difficult to expand on the set of economic predictor variables we use due to the limited availability of

state-level data. In previous versions of the paper we also used state-level real GDP data alongside PI, but this had

a much shorter history of data available. Other studies such as Bennedsen et al. (2021) note that the industrial

production (IP) index is useful in nowcasting national CO2, but unfortunately IP data are not available by state.

We also experimented in with other economic indices such as the Federal Reserve Bank of Philadelphia’s State

Coincident Indexes.9 However these indices, available at a monthly level and constructed using a dynamic factor

model on four state-level employment type series, did not fare well in our analysis and were ultimately discarded.

There are also weekly state-level economic conditions available through Baumeister et al. (2022). We do not

consider these here as they are not available for as long a history as the PI data, as well as causing issues in the

econometric modelling of an annual-to-weekly frequency mix.

7Other studies using state-level electricity consumption in the context of economic activity in various countries include Baumeister
et al. (2022); Furukawa et al. (2022); Lehmann and Möhrle (2022).

8See: https://www.eia.gov/electricity/data/state/ [Last accessed: 16/08/23] and https://www.bea.gov/data/income-
saving/personal-income-by-state [Last accessed: 12/02/2022]

9See: https://www.philadelphiafed.org/surveys-and-data/regional-economic-analysis/state-coincident-indexes
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3 Panel MIDAS and Bridge Equation Methodology

In this section we describe the models we use to predict the annual growth of EC and subsequently of CO2 emissions

growth.10 As mentioned above, the CO2 data are released in March over two years after the reference year, whereas

the EC data are published in June each year, a year and a half after the reference year. The economic data are

available in a more timely fashion. Our approach is therefore to use a bridge equation to compute predictions of

CO2 emissions growth for the target year by first obtaining predictions of EC using economic indicators. Therefore,

while CO2 emissions are the ‘target’ variable of the bridge equation, we also obtain timely predictions of EC which

is of separate interest in itself.

We differ from the prevalent bridge equation models (see Foroni and Marcellino, 2014; Schumacher, 2016, and the

references therein) in several important ways. Firstly, we use a panel data set-up instead of a time-series approach

that is common in economic nowcasting. Secondly, the EC variable we predict in the first step is not available at a

higher frequency but has lesser publication lags as compared to our final target variable, CO2 emissions. Lastly, we

do not restrict ourselves to AR models for predicting EC as is typical of economic bridge equation set-ups. Instead,

we also use panel data models and incorporate mixed frequencies to use higher frequency monthly electricity sales

or quarterly PI growth.

3.1 Panel MIDAS Model for Energy Consumption

We now describe the panel model for nowcasting EC growth using economic data. We adopt the notation that

there are T annual observations on the target variable and there are N states available in the panel. Since there

are differences in the frequencies of the economic data (monthly for electricity sales and quarterly for PI), we will

first write down the model for the annual-to-monthly frequency mix and then the annual-to-quarterly frequency

mix.

Mixed Frequency Model with Monthly Data

We start out by writing down the model which predicts EC using the available autoregressive lags on day v of the

nowcast period as well as the available monthly lags of the economic indicator:

ci,t = α
(m)
vi + ϕ(m)

v ci,t−dv
+ β(m)′

v x
(m)

i,t− kv
12

+ u
(m)
v,i,t (1)

where t denotes the annual time index and ci,t is a generic notation indicating the annual growth rate in EC. In

the main results this is simply the percentage change in actual EC for state i in year t, in other words the growth

10We focus on the growth rates of these series as is standard in the macroeconomic nowcasting literature when analysing trending
unit root processes. Since there is little existing evidence on unit roots in the state-level EC and CO2 emissions data we performed
a battery of panel unit root tests (the Levin et al. (2002) (LLC) test, the Im et al. (2003) test (IPS) and the Choi (2001) test). As
expected, these tests confirm non-stationarity in levels and stationarity in growth rates. We do not present the results in the text for
the sake of brevity.
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rate of ECi,t. Alternatively, we also explore the results where ci,t is the growth rate of per capita consumption, in

other words the growth rate of
ECi,t

popi,t
, where popi,t is the state population.

This model is a panel version of the unrestricted MIDAS (UMIDAS) model and can be estimated by panel least

squares in order to obtain conditional mean predictions for each individual (see Foroni et al., 2015; Schumacher,

2016). We denote xi,t− kv
12

=

(
xi,t−kv/12, xi,t−(kv−1)/12, ... xi,t−(kv−11)/12

)′

as the stacked skip-sampled elec-

tricity sales growth which is inserted into the model with a monthly lag of kv at nowcast date v. Note that a lag

of one month is denoted in annual terms as t− 1
12 . In equation (1), the slope coefficient β

(m)
v is a vector of length

twelve, corresponding to the stacked skip-sampled process xi,t− kv
12
. We note that the superscript m is used for the

parameters and error term in the equation to distinguish this from the quarterly mixed frequency model below.

The lag structure of the model in equation (1) takes account of the ragged edge problem in the following way.

Denoting v to be the date of prediction, we define dv as the available lag of ci,t at the time of prediction, based

on its publication lag. Similarly, kv is used to denote the available monthly lag of xi,t used in the model at time

v. As we change the nowcast date v, the available lags of each variable may change and the model lag structure

is updated to accommodate new information. Since the model variables change on each date, v, the parameters

of the model and the error term are also indexed by v, whereas the superscript m denotes the monthly model to

differentiate from the quarterly model below. To give an example, in nowcasting year t, if v is the start of year

t (in other words January 1st of year t), based on the data flow described in the Data section above, the model

would use ci,t−3 and xi,t−3/12 (monthly data to October of the previous calendar year). At the end of January the

model would change in light of the electricity sales data release to include xi,t−2/12 (data to November), and so

on, with lags of c and x being sequentially updated as v changes. The full details of the updating procedure will

be described later when we introduce the pseudo out-of-sample set-up.

Mixed Frequency Model with Quarterly Data

We now re-state equation (1) in the context of the quarterly frequency of the PI data. The modification is to clarify

the notation and time indices:

ci,t = α
(q)
vi + ϕ(q)

v ci,t−dv
+ β(q)′

v x
(q)

i,t− qv
4
+ u

(q)
v,i,t (2)

where x
(q)

i,t− qv
4

=

(
xi,t−qv/4, xi,t−(qv−1)/4, xi,t−(qv−2)/4, xi,t−(qv−3)/4

)′

denotes the stacked skip-sampled PI

growth which is inserted into the model with a quarterly lag of qv at nowcast date v.11 Here a lag of one quarter

is denoted in annual terms as t − 1
4 . In equation (2), the slope coefficient β

(q)
v is a vector of length four, and the

superscripts are changed to q to distinguish them from the model above. The nowcast updating works in the same

11We also experimented with empirical results where we first aggregated the monthly electricity sales data to the quarterly frequency
and used equation (2) instead of equation (1). However, the results were not substantially different so we left the monthly model to
include the data at the original frequency.
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way as for equation (1) above. When we change the nowcast date, v, we update the lag structure to incorporate

any newly-available annual data for c and quarterly data for x.

The main difference between equations (1) and (2) is that the dimension is higher in the monthly skip-sampled

UMIDAS model. In principle one could guard against parameter proliferation by introducing a lag weighting

function with fewer parameters as in standard MIDAS models, for instance using exponential Almon lags. However,

our empirical results below show that the monthly model works very well so we are not concerned with this issue.

Equations (1) and (2) are panel versions of the ARX model (AR with an exogenous regressor) and we refer to

these as the ARX model subsequently. We will also use a näıve benchmark method to compare with the predictions

from the panel ARX model. For this benchmark we will use a simple historic mean prediction using all available

data at the time of making the nowcast.12 Next, we use the EC predictions from the panel ARX to predict CO2

emissions growth.

3.2 Bridge Equation for CO2 Emissions

Here we describe the main nowcasting bridge equation for CO2 emissions growth, where we plug in the predictions

for EC obtained from the previous equations (1) or (2). Define ĉv,i,t generically as the predicted value of ci,t for

state i in year t on date v of the nowcast period. The main equation is a panel bridge equation model with a

multi-factor error structure:

ei,t = θvi + ρvei,t−gv + δv ĉv,i,t + λvft + εv,i,t (3)

where we define emissions growth, ei,t, which either represents the growth of CO2,i,t, the CO2 emissions in state i

in year t, or the growth of per-capita emissions Ei,t =
CO2,i,t

popi,t
. In a similar way to before, the autoregressive lags

included in the model depend on the publication lag, which at prediction time v is denoted by gv. As above, the

parameters and error term in equation (3) also depend on v as the model variables change with v.

The variable ft denotes unknown factors with loadings λv which are common across all states and are used to

model the cross-sectional dependence in the error terms. In order to estimate these factors, in a similar way to

Chudik and Pesaran (2015) they are also assumed to influence the ĉv,i,t in the following way:

ĉv,i,t = ζvi + κvei,t−gv + Γvft + ϵv,i,t (4)

We note that equations (3) and (4) assume away heterogeneity (across i) in the factor loadings λ and Γ, which was

permitted in the original paper of Chudik and Pesaran (2015). This is partly because pooling coefficients is often

seen to be preferable to heterogeneous coefficients in panel forecasting (Wang et al., 2019), and also because our

relatively small number of annual time periods makes it less desirable to add coefficient heterogeneity. Thus, the

12In previous version of the paper we also considered using an autoregressive benchmark but the results are qualitatively similar.

9



common factors ft could also be regarded as time fixed-effects (see Pesaran, 2016, Ch. 31, p. 833).

Equations (3) and (4) jointly create a set-up that can be estimated through the Common Correlated Effects

(CCE) method. Since the original method of Chudik and Pesaran (2015) was not designed to use for forecasting, we

use the lagged common correlated effects (LCCE) approach developed in Fosten and Nandi (2023) which ensures

that only the available lags of the predictor variables are used in estimating the factors. In this way, the final

prediction equation replaces the unknown factors in equation (3) as follows:

ei,t = θvi + ρvei,t−gv + δv ĉv,i,t +

pT∑
l=0

γ′
vlzv,i,t−l + εv,i,t +Op(N

− 1
2 ) (5)

where zv,i,t are the factor estimates used to pick up CCE in the errors and pT is a lag truncation parameter. The

factor estimates are obtained by taking a state-weighted average of the vector zv,i,t = [ei,t−gv , ĉv,i,t]
′. Chudik and

Pesaran (2015) and Fosten and Nandi (2023) discuss the equivalence of least squares estimation of equation (5)

and the system of equations (3) and (4). We therefore use panel least squares estimation of equation (5) in our

out-of-sample forecasting exercise.

We will compare the results with those from a simple panel ARX model, where we simply estimate equation

(3) without the factors ft. This will allows us to observe any effects from allowing cross-sectional dependence. As

a näıve benchmark, in the same way as above, we will use the historic mean using the data available at the time

of making the nowcast.

4 Pseudo Out-of-Sample Set-up

We perform pseudo-out-of-sample experiments for nowcasting annual EC and CO2 emissions growth across the

N = 51 individual states including the District of Columbia. We start our out-of-sample nowcasts in 2009 and

finish in 2018. As is common in the nowcasting literature (dating back to Giannone et al., 2008) we will use a

calendar to make multiple nowcast and backcast updates at different dates, v, for every year in the out-of-sample

evaluation period. We do this to replicate the ragged edge in the data using a calendar of releases as they would

have occurred in real time.13. This allows us to see how the nowcasts and backcasts behave, on average, as we add

more information as it becomes available. For every data release we take into account the new lag of data available,

adjust the model lag structure as detailed above, re-estimate the models and obtain first the EC predictions and

then the CO2 predictions from the bridge equation in (5). Once we have finished making nowcasts and backcasts

of a given year, we move on to the next year by expanding the information set as in the recursive out-of-sample

scheme of West (1996).

To be more specific on the nowcast updating procedure, we will start by making a nowcast at the beginning

13We note that, due to the lack of available past vintages of the EC and CO2 data we are not able to perform a fully real time
analysis as in Sinclair and Stekler (2013) and, more recently, Anesti et al. (2022)
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of the reference year, at the end of January. Moving through the nowcast year, we update the predictions every

month and we continue into the backcast period until all relevant data have been released. The full data flow can be

seen in Table 1 which gives an example of the calendar for predicting the year 2021 and the data available at each

prediction date. Throughout the nowcast year, a new observation of electricity sales is added every month, and a

new quarterly observation of PI data is added every three months in March, June, September and December. The

annual data for past years of EC and CO2 (specifically 2019 and 2018) are added in June and March respectively.

Moving into the backcast period, we continue to add monthly electricity data until the end of February when all

data up to December of the target year are available, and we add PI data until the last quarter is released in March

(in other words we do not use “future” data when making nowcasts). In June of the first backcast year, the previous

year’s EC data are released, so we stop making predictions of EC (indicated by the horizontal line in Table 1).

This gives a total of 18 months in the prediction period for EC. When it comes to making the CO2 predictions, we

have the same number of predictions made as in the case of EC but there are two additional updates: in March of

the second backcast year when the first lag of CO2 data is released, and in June when the current year’s EC data

is released. In other words, the last bridge equation nowcast we make of CO2 will replace the predicted EC with

its actual realised value. There will be a total of 30 months in the prediction period for CO2, although there are

many months towards the end of the backcast period with no new data updates.

We therefore have multiple nowcasts and backcasts made for each target year for a total of nine years from

2009 to 2018. To compare the accuracy of the predictions from the various competing methods, we will use the

average root mean squared forecast error (RMSFE) as the criterion.14 This will be the square root of the time-

averaged squared prediction errors, averaged across all states i = 1, ...., N . The RMSFE will be tracked across

multiple nowcast dates, v, and is defined as follows, denoting that T is the last year in the sample and we have P

out-of-sample predictions made:

RMSFEv =
1

N

N∑
i=1

√√√√ 1

P

T∑
t=T−P+1

ε̂2v,i,t (6)

where ε̂v,i,t generically stands for the prediction error of a model on nowcast date v for state i and year t.

We will also perform some analysis of the RMSFE for each state, where we do not average over the states. In

other words we take the RMSFE for state i on nowcast date v as:

RMSFEvi =

√√√√ 1

P

T∑
t=T−P+1

ε̂2v,i,t (7)

However, these results should only be treated as indicative since they are based on rather a small time series sample

size and we will treat these with some caution.

14We also tried a weighted RMSFE with different weights by state, but the results were qualitatively very similar. We discuss this
later in the results section.
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Latest Available Data
Calendar Date (v) EC CO2 PI ELEC

Nowcast 1 2021:M1 2018 2017 2020:Q3 2020:M11
2 2021:M2 2018 2017 2020:Q3 2020:M12
3 2021:M3 2018 2018 2020:Q4 2021:M1
4 2021:M4 2018 2018 2020:Q4 2021:M2
5 2021:M5 2018 2018 2020:Q4 2021:M3
6 2021:M6 2019 2018 2021:Q1 2021:M4
7 2021:M7 2019 2018 2021:Q1 2021:M5
8 2021:M8 2019 2018 2021:Q1 2021:M6
9 2021:M9 2019 2018 2020:Q2 2021:M7
10 2021:M10 2019 2018 2020:Q2 2021:M8
11 2021:M11 2019 2018 2020:Q2 2021:M9
12 2021:M12 2019 2018 2020:Q3 2021:M10

Backcast 13 2022:M1 2019 2018 2020:Q3 2021:M11
14 2022:M2 2019 2018 2020:Q3 2021:M12
15 2022:M3 2019 2019 2020:Q4
16 2022:M4 2019 2019
17 2022:M5 2019 2019
18 2022:M6 2020 2019

19 2022:M7 2020 2019
20 2022:M8 2020 2019
21 2022:M9 2020 2019
22 2022:M10 2020 2019
23 2022:M11 2020 2019
24 2022:M12 2020 2019
25 2023:M1 2020 2019
26 2023:M2 2020 2019
27 2023:M3 2020 2020
28 2023:M4 2020 2020
29 2023:M5 2020 2020
30 2023:M6 2021 2020

Table 1: Nowcast Calendar and Latest Available Data, Example for 2021

Notes: For each calendar month (v) from 2021:M1 through 2023:M6, this table displays the last available year of data for EC and
CO2, the last available quarter of data for PI and the last available month for ELEC. The horizontal line after release 18 denotes the
point at which we stop predicting EC.

5 Results

In this section, we discuss the results of the pseudo-out-of-sample experiment described in the previous section.

We first discuss the accuracy of the EC predictions before then turning to the accuracy of the bridge equation

method results for CO2 emissions. In both cases we present accuracy in terms of a national average before then

providing some state-level analysis. We present results only for the original EC and CO2 growth series, with the

per-capita growth being reported in the Appendix.15 The findings are very similar between the main results and

the per-capita results.

15In arriving at the per-capita figures for the quarterly PI series, the population is assumed to remain constant for all four quarters
of any year and is equal to the annual number.
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5.1 Energy Consumption Results

Figure 1 displays the average RMSFE across states at different nowcast release points according to the release

schedule in Table 1. In all figures, the RMSFEs have been normalised by the RMSFE of the benchmark in the first

nowcast period so that any figures lower than 1 are gains relative to the benchmark in the first period. These results

show that, on average across all states, the RMSFE of the ARX model falls when incorporating new information,

both for electricity sales and PI. In the case of quarterly PI data (“ARX.PI”), we see a steady fall in RMSFE until

the end of the nowcast year (M12:Y1) which is when the first three quarters of data have already been released. This

fall corresponds to an improvement of 10% over the benchmark model. However, the results when using monthly

electricity sales (“ARX.ELEC”) are even more promising. Already by the middle of the nowcast year (M6:Y1)

the model provides around a 15% improvement over the benchmark model. Once all of the nowcast year’s data

have been released at the beginning of the backcast period (M1:Y2), the gain is around 20%. This indicates that

timely electricity sales information are, indeed, useful in nowcasting state-level EC. We also note that the RMSFE

profiles look to be generally declining as we add information, which adds to the evidence for nowcast monotonicity

observed in aggregate national-level studies (Giannone et al., 2008; Fosten and Gutknecht, 2020).
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Figure 1: Average RMSFE Across States - Energy Consumption

Notes: ARX.ELEC/ARX.PI: ARX model with electricity sales/PI data respectively. BM: historic mean benchmark for EC. The
RMSFE figures are normalised by the benchmark at the first release date. Therefore any points below 1 indicate that the RMSFE is
lower than that of the benchmark in the first nowcast period.

While the average RMSFE results across states already show a reasonable improvement over the benchmark

after economic data have been released, when we dig into the state-level information we see much more substantial

improvements of our method. To summarise the results across states, Table 2 presents the quantiles of the state-

specific RMSFEs for the ARX model relative to the benchmark model, for the two predictors considered. In general,
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the table confirms what is seen in Figure 1 and we see that using economic data consistently improves over the

benchmark in virtually all cases, and that the relative RMSFE is falling as new information is added. Moreover,

focussing on the electricity sales results in Table 2b, by the end of the nowcast year we see that the ARX model

has gains of almost 25% relative to the benchmark at the lower quartile, and gains of almost 40% at the 10th

percentile. This shows that there are states in which the gains from our method are especially large.

To dig even further into the state-level results, Figure 3 in the Appendix presents the RMSFE results for every

state (as in Figure 1), with the states ordered from largest to smallest in terms of their 2018 CO2 emissions. From

these plots we see that our method indeed provides big gains in some of the very large emitting states such as

Florida, California and Pennsylvania which all see improvements of 20-30% relative to the benchmark. The gain is

less notable in others, such as Texas. These results should, of course, be treated with an element of caution as the

state-level RMSFEs are calculated on a small number of observations whereas the national average results have the

benefit of pooling information across states. This means that in some cases large differences in relative RMSFEs

across models can be driven by only a handful of observations.

As one further check regarding the state-level results, we also re-computed the equally-weighted average RMSFE

results from Figure 1 to instead use a weighted average of the RMSFEs:

WRMSFEv =
1

N

N∑
i=1

ωi

√√√√ 1

P

T∑
t=T−P+1

ε̂2v,i,t (8)

with the weights ωi calculated according to the 2018 state CO2 emissions levels. The results, displayed in Figure

5 in the Appendix, are incredibly similar to those of the unweighted average in Figure 1 which shows that we do

not miss any “large state” effect when we use the unweighted average.

In summary of the EC results, we find that releases of current economic data, especially electricity sales, yield

improvements in predicting growth rates of EC. The average improvement is of the order 15-20% relative to the

benchmark model and can be even more sizeable when we dig into the individual state-level results. We already

find good accuracy gains in the middle of the nowcast year and especially as we move towards the backcast period

as all of the monthly data have been released. This occurs well over a year in advance of the release of the EC

data, and so we are able to make huge timeliness gains using our nowcasting framework.

5.2 CO2 Emissions Results

Now having the predictions of the EC for the target year, we can proceed to predict the CO2 emissions growth rate

using the bridge equation model in equation (3). Figure 2 displays the results of the bridge equation method based

on EC nowcasts from electricity sales or PI, relative to the historic mean benchmark. In predicting CO2 emissions

we notice that the more traditional economic indicator PI is barely able to beat the benchmark model in any of

the nowcast periods. On the other hand, the use of electricity sales is capable of improving over the benchmark

14



Release Period 10% 25% 50% 75% 90%

1 M1:Y1 0.9062 0.9414 0.9779 1.0107 1.0494
2 M2:Y1 0.9062 0.9414 0.9779 1.0107 1.0494
3 M3:Y1 0.8461 0.9140 0.9508 0.9946 1.0552
4 M4:Y1 0.8461 0.9140 0.9508 0.9946 1.0552
5 M5:Y1 0.8461 0.9140 0.9508 0.9946 1.0552

6 M6:Y1 0.8204 0.8893 0.9561 0.9909 1.0408
7 M7:Y1 0.8204 0.8893 0.9561 0.9909 1.0408
8 M8:Y1 0.8204 0.8893 0.9561 0.9909 1.0408
9 M9:Y1 0.7707 0.8767 0.9246 0.9834 1.0307

10 M10:Y1 0.7707 0.8767 0.9246 0.9834 1.0307

11 M11:Y1 0.7707 0.8767 0.9246 0.9834 1.0307
12 M12:Y1 0.7502 0.8631 0.9058 0.9575 1.0384
13 M1:Y2 0.7502 0.8631 0.9058 0.9575 1.0384
14 M2:Y2 0.7502 0.8631 0.9058 0.9575 1.0384
15 M3:Y2 0.7841 0.8837 0.9479 0.9859 1.0308

16 M4:Y2 0.7841 0.8837 0.9479 0.9859 1.0308
17 M5:Y2 0.7841 0.8837 0.9479 0.9859 1.0308
18 M6:Y2 0.7956 0.8820 0.9568 0.9918 1.0247

(a) Predictor - PI

Release Period 10% 25% 50% 75% 90%

1 M1:Y1 0.7793 0.8690 0.9614 0.9990 1.0285
2 M2:Y1 0.8093 0.9100 0.9776 1.0236 1.0433
3 M3:Y1 0.7920 0.8672 0.9295 0.9892 1.0117
4 M4:Y1 0.7502 0.8398 0.9139 0.9671 0.9988
5 M5:Y1 0.7563 0.8258 0.9030 0.9638 0.9930

6 M6:Y1 0.7509 0.7941 0.8468 0.9350 0.9933
7 M7:Y1 0.7646 0.8003 0.8613 0.9265 0.9738
8 M8:Y1 0.6952 0.7849 0.8482 0.9216 0.9954
9 M9:Y1 0.6756 0.7651 0.8462 0.9477 1.0160

10 M10:Y1 0.6469 0.7663 0.8573 0.9299 1.0235

11 M11:Y1 0.6537 0.7494 0.8364 0.9426 1.0185
12 M12:Y1 0.6460 0.7620 0.8462 0.9504 0.9961
13 M1:Y2 0.6357 0.7393 0.8290 0.9235 1.0206
14 M2:Y2 0.6449 0.7489 0.8166 0.9342 1.0275
15 M3:Y2 0.6449 0.7489 0.8166 0.9342 1.0275

16 M4:Y2 0.6449 0.7489 0.8166 0.9342 1.0275
17 M5:Y2 0.6449 0.7489 0.8166 0.9342 1.0275
18 M6:Y2 0.6605 0.7327 0.8355 0.9426 0.9906

(b) Predictor - Electricity Sales

Table 2: Distribution of Relative RMSFE Across States - Energy Consumption

Notes: The numbers represent the quantiles of the distribution of relative RMSFE across states, where we take the RMSFE of the
ARX model relative to the benchmark. Figures lower than 1 indicate that the RMSFE of the ARX model was lower than that of the
benchmark for all of the states below the relevant quantile.
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by 10-15% once we reach the end of the nowcast period, which is over two years before the publication of the CO2

data. We note that the addition of factors in the bridge equation model (displayed with dashed lines) can yield

some minor improvements in the EC.ELEC model in the nowcast period but these are somewhat marginal.

0.40

0.60

0.80

1.00

M
1:

Y
1

M
2:

Y
1

M
3:

Y
1

M
4:

Y
1

M
5:

Y
1

M
6:

Y
1

M
7:

Y
1

M
8:

Y
1

M
9:

Y
1

M
10

:Y
1

M
11

:Y
1

M
12

:Y
1

M
1:

Y
2

M
2:

Y
2

M
3:

Y
2

M
4:

Y
2

M
5:

Y
2

M
6:

Y
2

M
7:

Y
2

M
8:

Y
2

M
9:

Y
2

M
10

:Y
2

M
11

:Y
2

M
12

:Y
2

M
1:

Y
3

M
2:

Y
3

M
3:

Y
3

M
4:

Y
3

M
5:

Y
3

M
6:

Y
3

Release

R
M

S
E

Model EC.ELEC EC.PI BM

Figure 2: Average RMSFE Across States - CO2 Emissions

Notes: Dashed lines indicate that factors were used in the CO2 model. EC.ELEC/EC.PI: bridge equation predictions for CO2,
electricity sales/PI model for EC. BM: historic mean benchmark for CO2. The RMSFE is normalised on the benchmark in the first
nowcast period as in previous figures.

In addition to these gains from using the timely economic data, another striking finding is the very sharp drop

of almost 75% at the final release date when we incorporate the actual observed EC data into the bridge equation

model. This clearly makes sense as the CO2 data are derived from energy consumption. However, it is noteworthy

that we are able to generate good predictions many months before the CO2 data are released, even when using a

simple panel data regression model which is far simpler than the methodology used to construct the actual CO2

data.

We also take a look into the state-level findings as we did before in the case of EC. Table 3 presents the relative

RMSFE distributions across states, for the EC.ELEC and EC.PI models considered in Figure 2 without factors.

Here we see that the gains from our method relative to the benchmark are as high as 25% at the 10th percentile

in the the electricity sales bridge equation model (Table 3b) and around 20% for the lower quartile. We also see

that, although PI does not provide much average gain in RMSFE, it can still give over 10% gains in selected states.

The sudden drop in average MSFE on the release of the current year’s EC data is also mirrored in these quantile

results at nowcast point 30. The charts for individual states, displayed in Figure 4 in the Appendix, again show

large gains in big CO2 emitting states like Florida and Pennsylvania.
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Release Period 10% 25% 50% 75% 90%

1 M1:Y1 0.9635 0.9904 1.0206 1.0441 1.1002
2 M2:Y1 0.9635 0.9904 1.0206 1.0441 1.1002
3 M3:Y1 0.9459 0.9746 1.0134 1.0478 1.0990
4 M4:Y1 0.9459 0.9746 1.0134 1.0478 1.0990
5 M5:Y1 0.9459 0.9746 1.0134 1.0478 1.0990

6 M6:Y1 0.9234 0.9578 1.0077 1.0395 1.0761
7 M7:Y1 0.9234 0.9578 1.0077 1.0395 1.0761
8 M8:Y1 0.9234 0.9578 1.0077 1.0395 1.0761
9 M9:Y1 0.8990 0.9406 0.9835 1.0186 1.0542

10 M10:Y1 0.8990 0.9406 0.9835 1.0186 1.0542

11 M11:Y1 0.8990 0.9406 0.9835 1.0186 1.0542
12 M12:Y1 0.8807 0.9298 0.9622 1.0021 1.0249
13 M1:Y2 0.8807 0.9298 0.9622 1.0021 1.0249
14 M2:Y2 0.8807 0.9298 0.9622 1.0021 1.0249
15 M3:Y2 0.8871 0.9753 1.0021 1.0276 1.0435

16 M4:Y2 0.8871 0.9753 1.0021 1.0276 1.0435
17 M5:Y2 0.8871 0.9753 1.0021 1.0276 1.0435
18 M6:Y2 0.8804 0.9775 1.0062 1.0318 1.0397
19 M7:Y2 0.8804 0.9775 1.0062 1.0318 1.0397
20 M8:Y2 0.8804 0.9775 1.0062 1.0318 1.0397

21 M9:Y2 0.8804 0.9775 1.0062 1.0318 1.0397
22 M10:Y2 0.8804 0.9775 1.0062 1.0318 1.0397
23 M11:Y2 0.8804 0.9775 1.0062 1.0318 1.0397
24 M12:Y2 0.8804 0.9775 1.0062 1.0318 1.0397
25 M1:Y3 0.8804 0.9775 1.0062 1.0318 1.0397

26 M2:Y3 0.8804 0.9775 1.0062 1.0318 1.0397
27 M3:Y3 0.9005 0.9733 1.0049 1.0289 1.0521
28 M4:Y3 0.9005 0.9733 1.0049 1.0289 1.0521
29 M5:Y3 0.9005 0.9733 1.0049 1.0289 1.0521
30 M6:Y3 0.1741 0.2109 0.2755 0.3230 0.3955

(a) Predictor - PI
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Release Period 10% 25% 50% 75% 90%

1 M1:Y1 0.8993 0.9476 0.9756 1.0120 1.0390
2 M2:Y1 0.9283 0.9579 0.9999 1.0225 1.0578
3 M3:Y1 0.8966 0.9295 0.9659 1.0005 1.0269
4 M4:Y1 0.8705 0.9091 0.9429 0.9952 1.0228
5 M5:Y1 0.8529 0.9067 0.9335 0.9776 1.0056

6 M6:Y1 0.8364 0.8616 0.9048 0.9417 0.9814
7 M7:Y1 0.8278 0.8784 0.9052 0.9504 1.0345
8 M8:Y1 0.8038 0.8401 0.9109 0.9541 0.9925
9 M9:Y1 0.7960 0.8312 0.9135 0.9504 0.9972

10 M10:Y1 0.7588 0.8255 0.9033 0.9546 1.0178

11 M11:Y1 0.7378 0.8047 0.8975 0.9609 1.0083
12 M12:Y1 0.7538 0.8156 0.8991 0.9676 1.0035
13 M1:Y2 0.7501 0.8020 0.8780 0.9536 1.0191
14 M2:Y2 0.7403 0.8064 0.8754 0.9546 1.0237
15 M3:Y2 0.7439 0.8002 0.8816 0.9549 1.0111

16 M4:Y2 0.7439 0.8002 0.8816 0.9549 1.0111
17 M5:Y2 0.7439 0.8002 0.8816 0.9549 1.0111
18 M6:Y2 0.7518 0.8087 0.8770 0.9598 1.0521
19 M7:Y2 0.7518 0.8087 0.8770 0.9598 1.0521
20 M8:Y2 0.7518 0.8087 0.8770 0.9598 1.0521

21 M9:Y2 0.7518 0.8087 0.8770 0.9598 1.0521
22 M10:Y2 0.7518 0.8087 0.8770 0.9598 1.0521
23 M11:Y2 0.7518 0.8087 0.8770 0.9598 1.0521
24 M12:Y2 0.7518 0.8087 0.8770 0.9598 1.0521
25 M1:Y3 0.7518 0.8087 0.8770 0.9598 1.0521

26 M2:Y3 0.7518 0.8087 0.8770 0.9598 1.0521
27 M3:Y3 0.7583 0.8086 0.8772 0.9665 1.0717
28 M4:Y3 0.7583 0.8086 0.8772 0.9665 1.0717
29 M5:Y3 0.7583 0.8086 0.8772 0.9665 1.0717
30 M6:Y3 0.1836 0.2141 0.2769 0.3192 0.3963

(b) Predictor - Electricity Sales

Emissions

Table 3: Distribution of Relative RMSFE Across States - CO2

Notes: The numbers represent the quantiles of the distribution of relative RMSFE across states, where we take the RMSFE of the
bridge equation model relative to the benchmark. Figures lower than 1 indicate that the RMSFE of the bridge equation model was
lower than that of the benchmark for all of the states below the relevant quantile. Results are presented for different methods of
computing the EC forecasts (PI and electricity sales) without factors.
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5.3 Further Results

We also explored the robustness of these empirical results to a number of additional checks, the results of which

we display in the Appendix. Firstly, we re-ran all results of the paper using the per capita EC and CO2 data,

motivated by the use of per capita figures in Bennedsen et al. (2021). The results in Appendix C demonstrate

very little difference to the results reported in the main text which indicates that the same results hold if we use

the per capita or level figures when computing the growth rates. Secondly, we performed an additional set of

results to explore the robustness to the sample split used in generating the out-of-sample predictions. In Figure 9

in Appendix D, the evaluation sample 2001-2018 is used instead of that of 2009-2018 in Figure 2. The results are

very similar, showing that the findings are indeed stable over time. We also explored the idea of nowcasting CO2

directly instead of through the EC bridging variable. Figure 10 shows that the results are worse when using PI

data and quite similar when using electricity sales data. However, this direct model cannot pick up the large drop

in RMSFE we see at the end of the sample on the release of the EC data. In previous versions of the paper we also

tried various other versions of these models, including using combinations of multiple variables and switching to

different variables like the Federal Reserve Bank of Philadelphia’s state coincident index. However, none of these

additional checks were able to outperform the best model using electricity sales data.

6 Conclusion

This paper has proposed methods for obtaining timely predictions of U.S. state-level EC and CO2 emissions growth.

Motivated by the very long publication lags for these variables, we use the flow of more timely economic data to

make nowcasts and backcasts. Our contribution is a first step in the direction of making real time predictions of

sub-national variables related to environmental degradation. We have moved the focus of existing panel nowcasting

studies away from the classic GDP and macroeconomic nowcasting setting.

Our empirical study produces historic out-of-sample nowcasts of state-level EC growth and CO2 emissions

growth, from which we draw the following conclusions. Firstly, we conclude that the use of timely economic data

can give important improvements over a näıve benchmark in predicting EC growth. Especially using electricity sales

data, our methods deliver gains on average across states as well as large gains in certain individual states. These

predictive gains can occur almost two years before the EC data are released. We also find that these predictions of

EC are useful in bridge equation predictions of CO2 emissions growth. Here we also see improvements in the CO2

nowcasts as we add monthly electricity sales data. We also find that a very accurate prediction can be made by

waiting until the release of the current year’s EC data. This occurs many months before the statistical authority

releases the data and using a method which is far simpler.

There is still much more work to be done on state-level energy and CO2 nowcasting. With the ‘big data’

revolution increasing the granularity of available data, it would be useful to see our method perform with a more
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complete dataset. An interesting example would be to assess whether firm-level emissions data can be aggregated

in a timely fashion for the purpose of predicting state-level emissions. Another interesting avenue to explore is

whether state-level nowcasts can be aggregated up to form accurate nowcasts of the national series. Conversely, it

would also be interesting to explore in more detail whether national aggregates can further improve the state-level

nowcasts.
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Appendix A State-Level RMSFE Results
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Figure 3: State-Level RMSFE - Energy Consumption
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A.2 CO2 Emissions
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Figure 4: State-Level RMSFE - CO2 Emissions

28



Appendix B Weighted Average RMSFE Results
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Figure 5: Weighted Average RMSFE Across States - Energy Consumption

Notes: Same as for Figure 1 whereas here the average RMSFE figure is calculated with weights corresponding to the level of state
CO2 emissions in 2018.

0.40

0.60

0.80

1.00

M
1:

Y
1

M
2:

Y
1

M
3:

Y
1

M
4:

Y
1

M
5:

Y
1

M
6:

Y
1

M
7:

Y
1

M
8:

Y
1

M
9:

Y
1

M
10

:Y
1

M
11

:Y
1

M
12

:Y
1

M
1:

Y
2

M
2:

Y
2

M
3:

Y
2

M
4:

Y
2

M
5:

Y
2

M
6:

Y
2

M
7:

Y
2

M
8:

Y
2

M
9:

Y
2

M
10

:Y
2

M
11

:Y
2

M
12

:Y
2

M
1:

Y
3

M
2:

Y
3

M
3:

Y
3

M
4:

Y
3

M
5:

Y
3

M
6:

Y
3

Release

R
M

S
E

Model EC.ELEC EC.PI BM

Figure 6: Weighted Average RMSFE Across States - CO2 Emissions

Notes: Same as for Figure 2 whereas here the average RMSFE figure is calculated with weights corresponding to the level of state
CO2 emissions in 2018.
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Appendix C Per Capita Results

C.1 Overall Results - Energy Consumption
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Figure 7: Average RMSFE Across States - Per Capita Energy Consumption

C.2 Overall Results - CO2 Emissions
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Figure 8: Average RMSFE Across States - Per Capita CO2 Emissions
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C.3 State-Level Results - Energy Consumption

Release Period 10% 25% 50% 75% 90%

1 M1:Y1 0.9451 0.9611 0.9929 1.0171 1.0549
2 M2:Y1 0.9451 0.9611 0.9929 1.0171 1.0549
3 M3:Y1 0.9155 0.9353 0.9607 0.9958 1.0226
4 M4:Y1 0.9155 0.9353 0.9607 0.9958 1.0226
5 M5:Y1 0.9155 0.9353 0.9607 0.9958 1.0226

6 M6:Y1 0.8662 0.9111 0.9644 1.0064 1.0367
7 M7:Y1 0.8662 0.9111 0.9644 1.0064 1.0367
8 M8:Y1 0.8662 0.9111 0.9644 1.0064 1.0367
9 M9:Y1 0.8026 0.9022 0.9387 0.9898 1.0645

10 M10:Y1 0.8026 0.9022 0.9387 0.9898 1.0645

11 M11:Y1 0.8026 0.9022 0.9387 0.9898 1.0645
12 M12:Y1 0.8303 0.8911 0.9311 0.9668 1.0310
13 M1:Y2 0.8303 0.8911 0.9311 0.9668 1.0310
14 M2:Y2 0.8303 0.8911 0.9311 0.9668 1.0310
15 M3:Y2 0.8438 0.9154 0.9708 1.0005 1.0545

16 M4:Y2 0.8438 0.9154 0.9708 1.0005 1.0545
17 M5:Y2 0.8438 0.9154 0.9708 1.0005 1.0545
18 M6:Y2 0.8578 0.9262 0.9741 1.0072 1.0374

(a) Predictor - PI

Release Period 10% 25% 50% 75% 90%

1 M1:Y1 0.8149 0.9194 0.9673 1.0100 1.0337
2 M2:Y1 0.8682 0.9463 0.9850 1.0197 1.0600
3 M3:Y1 0.8197 0.8860 0.9528 0.9951 1.0229
4 M4:Y1 0.8054 0.8630 0.9281 0.9882 1.0268
5 M5:Y1 0.8084 0.8515 0.9111 0.9898 1.0182

6 M6:Y1 0.7842 0.8235 0.8730 0.9408 1.0320
7 M7:Y1 0.7752 0.8321 0.8921 0.9357 1.0346
8 M8:Y1 0.7512 0.7994 0.8829 0.9537 1.0284
9 M9:Y1 0.7166 0.7867 0.8735 0.9657 1.0598

10 M10:Y1 0.7104 0.7962 0.8716 0.9591 1.0426

11 M11:Y1 0.7010 0.7552 0.8596 0.9532 1.0434
12 M12:Y1 0.6827 0.7892 0.8658 0.9620 1.0373
13 M1:Y2 0.6691 0.7686 0.8517 0.9422 1.0475
14 M2:Y2 0.6890 0.7591 0.8566 0.9714 1.0518
15 M3:Y2 0.6890 0.7591 0.8566 0.9714 1.0518

16 M4:Y2 0.6890 0.7591 0.8566 0.9714 1.0518
17 M5:Y2 0.6890 0.7591 0.8566 0.9714 1.0518
18 M6:Y2 0.6697 0.7455 0.8427 0.9615 1.0670

(b) Predictor - Electricity Sales

Table 4: Distribution of Relative RMSFE Across States - Per Capita Energy Consumption
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C.4 State-Level Results - CO2 Emissions

Release Period 10% 25% 50% 75% 90%

1 M1:Y1 0.9676 0.9941 1.0184 1.0382 1.0808
2 M2:Y1 0.9676 0.9941 1.0184 1.0382 1.0808
3 M3:Y1 0.9468 0.9747 1.0104 1.0392 1.0753
4 M4:Y1 0.9468 0.9747 1.0104 1.0392 1.0753
5 M5:Y1 0.9468 0.9747 1.0104 1.0392 1.0753

6 M6:Y1 0.9261 0.9556 1.0059 1.0394 1.0684
7 M7:Y1 0.9261 0.9556 1.0059 1.0394 1.0684
8 M8:Y1 0.9261 0.9556 1.0059 1.0394 1.0684
9 M9:Y1 0.9076 0.9416 0.9834 1.0302 1.0619

10 M10:Y1 0.9076 0.9416 0.9834 1.0302 1.0619

11 M11:Y1 0.9076 0.9416 0.9834 1.0302 1.0619
12 M12:Y1 0.8897 0.9341 0.9702 1.0039 1.0366
13 M1:Y2 0.8897 0.9341 0.9702 1.0039 1.0366
14 M2:Y2 0.8897 0.9341 0.9702 1.0039 1.0366
15 M3:Y2 0.9172 0.9717 0.9989 1.0329 1.0734

16 M4:Y2 0.9172 0.9717 0.9989 1.0329 1.0734
17 M5:Y2 0.9172 0.9717 0.9989 1.0329 1.0734
18 M6:Y2 0.9100 0.9708 1.0019 1.0312 1.0674
19 M7:Y2 0.9100 0.9708 1.0019 1.0312 1.0674
20 M8:Y2 0.9100 0.9708 1.0019 1.0312 1.0674

21 M9:Y2 0.9100 0.9708 1.0019 1.0312 1.0674
22 M10:Y2 0.9100 0.9708 1.0019 1.0312 1.0674
23 M11:Y2 0.9100 0.9708 1.0019 1.0312 1.0674
24 M12:Y2 0.9100 0.9708 1.0019 1.0312 1.0674
25 M1:Y3 0.9100 0.9708 1.0019 1.0312 1.0674

26 M2:Y3 0.9100 0.9708 1.0019 1.0312 1.0674
27 M3:Y3 0.9321 0.9752 0.9974 1.0330 1.0546
28 M4:Y3 0.9321 0.9752 0.9974 1.0330 1.0546
29 M5:Y3 0.9321 0.9752 0.9974 1.0330 1.0546
30 M6:Y3 0.1762 0.2107 0.2713 0.3258 0.4044

(a) Predictor - PI
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Release Period 10% 25% 50% 75% 90%

1 M1:Y1 0.8836 0.9469 0.9813 1.0127 1.0388
2 M2:Y1 0.9283 0.9603 0.9972 1.0260 1.0530
3 M3:Y1 0.8833 0.9279 0.9659 1.0044 1.0350
4 M4:Y1 0.8754 0.9153 0.9500 0.9968 1.0500
5 M5:Y1 0.8547 0.9027 0.9347 0.9879 1.0272

6 M6:Y1 0.8436 0.8640 0.9094 0.9451 1.0487
7 M7:Y1 0.8348 0.8825 0.9010 0.9583 1.0381
8 M8:Y1 0.8081 0.8474 0.9004 0.9656 1.0306
9 M9:Y1 0.8004 0.8347 0.9015 0.9901 1.0177

10 M10:Y1 0.7784 0.8308 0.8979 0.9864 1.0327

11 M11:Y1 0.7533 0.8046 0.8898 0.9800 1.0237
12 M12:Y1 0.7677 0.8250 0.8904 0.9804 1.0265
13 M1:Y2 0.7589 0.8075 0.8810 0.9611 1.0689
14 M2:Y2 0.7487 0.8093 0.8711 0.9695 1.0665
15 M3:Y2 0.7651 0.8077 0.8773 0.9600 1.0552

16 M4:Y2 0.7651 0.8077 0.8773 0.9600 1.0552
17 M5:Y2 0.7651 0.8077 0.8773 0.9600 1.0552
18 M6:Y2 0.7584 0.8070 0.8702 0.9562 1.0764
19 M7:Y2 0.7584 0.8070 0.8702 0.9562 1.0764
20 M8:Y2 0.7584 0.8070 0.8702 0.9562 1.0764

21 M9:Y2 0.7584 0.8070 0.8702 0.9562 1.0764
22 M10:Y2 0.7584 0.8070 0.8702 0.9562 1.0764
23 M11:Y2 0.7584 0.8070 0.8702 0.9562 1.0764
24 M12:Y2 0.7584 0.8070 0.8702 0.9562 1.0764
25 M1:Y3 0.7584 0.8070 0.8702 0.9562 1.0764

26 M2:Y3 0.7584 0.8070 0.8702 0.9562 1.0764
27 M3:Y3 0.7582 0.8073 0.8642 0.9642 1.0828
28 M4:Y3 0.7582 0.8073 0.8642 0.9642 1.0828
29 M5:Y3 0.7582 0.8073 0.8642 0.9642 1.0828
30 M6:Y3 0.1871 0.2172 0.2737 0.3334 0.3962

(b) Predictor - Electricity Sales

Table 5: Distribution of Relative RMSFE Across States - Per Capita CO2 Emissions
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Appendix D Further Results

D.1 Robustness to Sample Split
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Figure 9: Sample Split - Average RMSFE Across States - CO2 Emissions

D.2 Targeting CO2 Emissions Directly Instead of Bridging
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Figure 10: Targeting CO2 Emissions Directly - Average RMSFE Across States

Notes: EC.ELEC/EC.PI denote the bridge equation model for CO2 using predictions of EC produced by electricity sales/PI.
ARX.ELEC/ARX.PI denote the direct mixed frequency model for CO2 using electricity sales/PI.
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