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ABSTRACT
Quantile forecasts made across multiple horizons have become an important output of many financial
institutions, central banks and international organizations. This article proposes misspecification tests for
such quantile forecasts that assess optimality over a set of multiple forecast horizons and/or quantiles. The
tests build on multiple Mincer-Zarnowitz quantile regressions cast in a moment equality framework. Our
main test is for the null hypothesis of autocalibration, a concept which assesses optimality with respect
to the information contained in the forecasts themselves. We provide an extension that allows to test for
optimality with respect to larger information sets and a multivariate extension. Importantly, our tests do not
just inform about general violations of optimality, but may also provide useful insights into specific forms of
sub-optimality. A simulation study investigates the finite sample performance of our tests, and two empirical
applications to financial returns and U.S. macroeconomic series illustrate that our tests can yield interesting
insights into quantile forecast sub-optimality and its causes.
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1. Introduction

Economic and financial forecasters have become increasingly
interested in making quantile predictions, often across differ-
ent quantile levels and at multiple horizons into the future. In
financial markets, for instance, such multi-step quantile pre-
dictions are produced due to the 10-day value-at-risk (VaR)
requirements of the Basel Committee on Banking Supervision.1
In the growth-at-risk (GaR) literature on the other hand, Adrian,
Boyarchenko, and Giannone (2019) propose quantile models to
predict downside risks to real gross domestic product (GDP)
growth at horizons ranging from one quarter ahead to one year
ahead. These methods are now widely implemented in academic
research (Plagborg-Møller et al. 2020; Brownlees and Souza
2021) and in international institutions like the IMF (Prasad et al.
2019), and are typically applied across various quantile levels.
This trend for multi-horizon quantile forecasts has also devel-
oped into a growing literature in nowcasting GaR that typically
uses several intra-period nowcast horizons (e.g., Carriero, Clark,
and Marcellino 2020; Antolin Diaz, Drechsel, and Petrella 2021;
Ferrara, Mogliani, and Sahuc 2021). Finally, it is common for
central banks, such as the Bank of England, to produce fan charts
of key economic variables such as GDP growth, unemployment
or the Consumer Price Index (CPI) inflation rate across several
quantile levels and horizons.

However, despite the expansion in empirical and method-
ological research, there is currently very little statistical guidance
for assessing whether a set of multi-step ahead, multi-quantile
forecasts are consistent with respect to the outcomes observed.

CONTACT Daniel Gutknecht Gutknecht@wiwi.uni-frankfurt.de Faculty of Economics and Business, Goethe University Frankfurt, Frankfurt am Main, Germany.
1See for instance: https://www.bis.org/publ/bcbs148.pdf [Last Accessed: 18/12/20]
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This consistency is often referred to as “optimality,” “ratio-
nality,” or “calibration” in the literature, with ‘full optimality’
referring to optimality relative to the information set known
to the forecaster, while a weaker form of optimality known
as ‘autocalibration’ is defined with respect to the information
contained in the forecasts themselves (see Gneiting and Ranjan
2013; Tsyplakov 2013). This article aims to fill this gap in the
literature by proposing various (out-of-sample) optimality tests
for quantile forecasts that can accommodate predictions either
derived from known econometric forecasting models, or from
external sources like institutional or professional forecasters.
Specifically, we develop tests that assess optimality of quantile
forecasts over multiple forecast horizons and multiple quantiles
simultaneously.

The main test of this article is a joint test of autocalibration
for quantile forecasts obtained across different horizons and
quantile levels. The test is based on a series of quantile Mincer-
Zarnowitz (MZ) regressions (see Gaglianone et al. 2011) across
all quantile levels and horizons, which are in turn used to con-
struct a test statistic for the null hypothesis of autocalibration
across horizons and quantiles using a set of moment equalities
(e.g., Romano and Shaikh 2010; Andrews and Soares 2010). We
suggest a block bootstrap procedure to obtain critical values for
the test. The bootstrap is simple to implement and avoids the
need to estimate a large variance-covariance matrix that would
be required in a more standard Wald-type test. We establish
the first-order asymptotic validity of these bootstrap critical
values.

© 2024 The Authors. Published with license by Taylor & Francis Group, LLC.
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The test of autocalibration based on MZ regressions can
provide valuable information to forecasters. In particular, fail-
ure to reject the null hypothesis of autocalibration suggests
that the forecaster may proceed to use the forecasts as they
are without the need to “re-calibrate” them. On the other
hand, if the null hypothesis is rejected, the test hints at direc-
tions for improvement of the forecasts. That is, it informs the
forecaster about the horizons, quantiles or horizon-quantile
combinations that contributed strongest to the rejection of
the null, and thus an improvement of the forecasts is war-
ranted. In addition, the estimated MZ regression can be used
to infer about the nature of the deviations from autocalibra-
tion, when the forecasts are plotted alongside the realizations.
The estimated MZ coefficients may also be used to perform
a re-calibration of the original forecasts, as has been sug-
gested in the case of mean forecasts in the recent work of
Clements (2022).

We provide two extensions of this test for autocalibration.
The first extension allows for additional predictors in the MZ
regressions, which we call the augmented quantile Mincer-
Zarnowitz test. This test is operationally similar to the first test,
but may provide richer information to the forecaster. It tests
a stronger form of optimality relative to a larger information
set than autocalibration. If autocalibration is not rejected, but
the null hypothesis of the augmented test is rejected, it indi-
cates that the additional variables used in the MZ regression
carry additional informational content which should be used in
making the forecasts themselves. The second extension allows
to test optimality for multiple time series variables and not
just for a single variable. Testing multiple time series variables
simultaneously may be useful in cases where we are interested in
testing whether one type of model delivers optimal forecasts for
multiple macroeconomic variables, or across different financial
asset returns, for instance different companies from the same
sector.

Finally, as a separate contribution, we also outline in the
supplementary material a test for monotonically nondecreas-
ing expected quantile loss as the forecast horizon increases.
This extends the result of Patton and Timmermann (2012) to
the quantile case whereas they focussed on the mean squared
forecast error (MSFE) case for optimal multi-horizon mean
forecasts. The test makes use of empirical moment inequalities
using the Generalized Moment Selection (GMS) procedure of
Andrews and Soares (2010). This test can also be seen as comple-
mentary to monotonicity tests used in the nowcasting literature
for the MSFE of mean nowcasts (see Fosten and Gutknecht 2020,
and references therein).

We provide two empirical applications of our methodology.
The first one applies the basic MZ test to classical VaR forecasts
for S&P 500 returns constructed from a GARCH(1,1) model via
the GARCH bootstrap (Pascual, Romo, and Ruiz 2006). We test
jointly over the quantile levels 0.01, 0.025, and 0.05 and horizons
from 1 to 10 trading days. Autocalibration is rejected overall
and the miscalibration of the forecasts gets stronger for larger
forecast horizons and more extreme quantiles. Furthermore, a
clear pattern emerges over all quantiles and horizons regarding
the conditional quantile bias: the VaR forecasts tend to underes-
timate risk in calmer times, but overestimate it in more stressful
periods.

The second empirical study applies the test in the spirit of the
emerging GaR literature, where we focus on the extensions of
our test using the augmented MZ test and the test with multiple
time series. We expand on the work of Adrian, Boyarchenko,
and Giannone (2019) to formally investigate the performance
of simple quantile regression models using financial conditions
indicators in predicting a range of U.S. macroeconomic series.
Interestingly, we find that the forecasts across four different
series and a range of quantile levels and horizon are sub-optimal
in that they are not autocalibrated. However, further analysis
of the results shows that this sub-optimality is present only in
inflation-type series and not in real series like industrial produc-
tion and employment growth. We also find poorer calibration at
the most extreme quantile under consideration.

In relation to the existing literature, this article extends the
work on quantile forecast optimality or, in other words, absolute
evaluation of quantile forecasts. The focus of this literature has
been on single-horizon prediction at a single quantile, which
mainly stems from the extensive body of research on backtest-
ing VaR, such as Christoffersen (1998), Engle and Manganelli
(2004), Escanciano and Olmo (2010, 2011), Gaglianone et al.
(2011), and Nolde and Ziegel (2017). Our work also comple-
ments the literature on testing the relative forecast performance
of conditional quantile models such as Giacomini and Komunjer
(2005), Manzan (2015) or more recently Corradi, Fosten, and
Gutknecht (2023). Finally, as our focus lies on testing for opti-
mality across horizons, the article also relates to Quaedvlieg
(2021), who emphasized the importance of multi-horizon fore-
cast evaluation to avoid multiple testing issues in the context of
relative evaluation of mean forecasts. The only work on multi-
horizon optimality testing we are aware of is Patton and Tim-
mermann (2012), who consider the case of mean forecasts as
well and discuss several implications of optimality specific to the
multi-horizon context and how to construct tests for them, most
notably the monotonicity of expected loss over horizons, which
we extend to the quantile case in the supplementary material.

The rest of the article is organized as follows. Section 2 lays
out the notion of quantile forecast optimality that will provide
the foundation of our tests. Section 3 then introduces the test
for autocalibration via MZ regression, along with the bootstrap
methodology and theory. Section 4 extends the test to the
augmented MZ test and the test for multiple variables, while
Section 5 gives the two empirical applications of our methods.
Finally, Section 6 concludes the article.

The supplementary material contains results from a Monte
Carlo study (Section S1), where we assess the finite sample prop-
erties of the MZ and augmented MZ tests across various sample
sizes and bootstrap block lengths. The supplement also contains
the proofs for the theoretical results (Sections S2 and S3) along
with the monotonicity test (Section S4). Sections S5 and S6
provide additional empirical results and graphs for the VaR and
the GaR application, respectively. Finally, all tests of the article
are provided as R functions in the R package quantoptimR
available at https://github.com/MarcPohle/quantoptimR.

2. Quantile Forecast Optimality

Consider a multivariate stochastic process {Vt}t∈Z, where Vt
is a random vector which contains a response variable of

https://github.com/MarcPohle/quantoptimR
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interest yt and other observable predictors. We denote the
forecaster’s information set at time t by Ft = σ(Vs; s ≤
t), where σ(.) denotes the σ -algebra generated by a set of
random variables. Assuming a continuous outcome yt with
strictly positive density everywhere for the rest of the arti-
cle, our target functional is the conditional τ -quantile of yt
given Ft−h:

qt
(
τ |Ft−h

) = F−1
yt |Ft−h

(τ ),

where Fyt |Ft−h (·) is the cumulative distribution function of yt
conditional on Ft−h. We denote an h-step ahead forecast at time
t−h for this τ -quantile qt

(
τ |Ft−h

)
by ŷτ ,t,h, and assume that we

observe these forecasts ŷτ ,t,h for each target period t at multiple
horizons, h ∈ H = {1, . . . , H}, and multiple quantile levels,
τ ∈ T = {τ1, . . . , τK} ⊂ [0 + ε, 1 − ε] with ε > 0, for some
finite integers H and K, respectively. That is, at each time point
t we have a matrix of forecasts,

(̂
yτ ,t,h

)
τ=τ1,...,τK ,h=1,...,H . In addi-

tion, throughout the article, we will assume strict stationarity
of {Vt}t∈Z and finite first moments of the forecasts ŷτ ,t,h and yt
itself, see Assumptions A1 and A2 in Section 3.

Since our focus lies on the evaluation of quantile forecasts,
the loss function used for evaluation in this context is the “tick”
or “check” loss which is well-known from quantile regression.
This is written as Lτ

(
yt+h − ŷτ ,t,h

) = ρτ

(
yt+h − ŷτ ,t,h

)
, where

ρτ (u) = u (τ − 1{u < 0}) and where 1{.} denotes the indicator
function giving a value of one when the expression is true and
zero otherwise.

While relative forecast evaluation deals with comparing dif-
ferent forecasting methods or models, mainly by ranking them
via their expected loss, the subject of this article is absolute
forecast evaluation across different quantile levels and/or fore-
casting horizons, in other words the assessment of a particular
forecasting model or method in terms of absolute evaluation cri-
teria for multiple quantile levels and horizons. These evaluation
criteria are usually different forms of optimality (or “rational-
ity”/“calibration”). We start by defining and discussing various
forms of quantile forecast optimality before showing how to
operationalize the latter for testing.

Definition 1 (Optimality). An h-step ahead forecast ŷ∗
τ ,t,h|It−h

for
the τ -quantile is optimal relative to an information set It−h ⊂
Ft−h if:

ŷ∗
τ ,t,h|It−h

= arg min
ŷτ ,t,h

E
[
Lτ

(
yt − ŷτ ,t,h

) |It−h
]

.

We simply call it optimal and denote it by ŷ∗
τ ,t,h if It−h = Ft−h,

that is if it is optimal relative to the full information set: ŷ∗
τ ,t,h ≡

ŷ∗
τ ,t,h|Ft−h

.

Analogous to the case of mean forecasts (Granger 1969),
an optimal quantile forecast relative to an information set can
alternatively be characterized as being equal to the respective
conditional quantile provided the information set is sufficiently
large and includes the forecasts themselves. Specifically, since
“tick” loss is a strictly consistent scoring function for the cor-
responding quantile (see Definition 1 and Proposition 1 in
Gneiting 2011), it holds that an h-step ahead forecast ŷτ ,t,h for
the τ -quantile is optimal relative to any information (sub-)set

It−h satisfying σ
(̂
yτ ,t,h

) ⊂ It−h ⊂ Ft−h, where σ
(̂
yτ ,t,h

)
denotes the sigma algebra spanned by the forecast itself, if
and only if:

ŷτ ,t,h = qt
(
τ |It−h

)
.2 (1)

While interest often lies in testing the null hypothesis of
(full) optimality relative to the information set Ft−h, which
amounts to testing if the forecast, ŷτ ,t,h, is equal to its target,
qt(τ |Ft−h), the possibly large and generally unknown infor-
mation set Ft−h usually makes direct tests of this hypothesis
difficult in practice. Thus, we next discuss weaker forms of
optimality that will form the basis of our test(s) in Sections 3
and 4. In fact, in Section S2 of the supplement (see Lemma
S.1) we show formally that these weaker forms of optimality
may always be viewed as a direct implication of optimality
with respect to the “full” information set Ft−h. That is, any h-
step ahead forecast optimal with respect to the full information
set Ft−h, is also optimal relative to any ‘smaller’ information
(sub-)set It ⊂ Ft .

A special case of this “weaker” form of optimality is opti-
mality with respect to the information contained in the forecast
itself, σ

(̂
yτ ,t,h

)
, or autocalibration, a term first coined by Tsy-

plakov (2013) and Gneiting and Ranjan (2013) in the context of
probabilistic forecasts.

Definition 2 (Autocalibration). An h-step ahead forecast ŷτ ,t,h
for the τ -quantile is autocalibrated if it holds that: ŷτ ,t,h =
qt
(
τ |σ (̂yτ ,t,h)

)
.

On the one hand, autocalibration may be regarded as a direct
implication of full optimality that is particularly suitable for
testing as it only relies upon the forecasts themselves and does
not require any assumptions on the information set Ft−h or
a selection of variables from it. On the other hand, however,
autocalibration may also be viewed as a criterion for abso-
lute forecast evaluation in its own right for several reasons.
First, the concept has a clear interpretation since a forecast
user provided with autocalibrated forecasts should use them
as they are and not transform or “recalibrate” them. Second,
only involving forecasts and observations and no information
set that depends on other quantities, it comes closest to the idea
of forecast calibration as a concept of consistency between fore-
casts and observations (see Gneiting, Balabdaoui, and Raftery
2007). Third, autocalibration might often be a more reasonable
criterion to demand from forecasts than full optimality, which
is a often hard to fulfill in practice. Finally, the Murphy decom-
position of expected loss (Pohle 2020) shows that autocalibra-
tion is a fundamental property of forecasts in that expected
loss is driven by only two forces: deviations from autocalibra-
tion and the information content of the forecasts. The next
section will outline how to test autocalibration, viewed either
as an implication of full optimality or as a forecast property
in its own right, across multiple quantile levels and horizons
simultaneously.

2Note that this result continues to hold for any quantile loss from the class
of generalized piecewise linear loss functions, or in fact for any consistent
scoring function if the τ -quantile is substituted for the corresponding
statistical functional for which this scoring function is consistent.
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3. Quantile Mincer-Zarnowitz Test

3.1. Null Hypothesis and Quantile Mincer-Zarnowitz
Regressions

While autocalibration testing has a long tradition in econo-
metrics through the use of Mincer-Zarnowitz regressions for
mean forecasts (Mincer and Zarnowitz 1969), the latter may
also be used directly for the case of quantiles (see Gaglianone
et al. 2011). Definition 2 in fact suggests that a natural test
for autocalibration of an h-step ahead forecast for the τ -level
quantile may be based on checking whether, for a given sample
of outcomes and quantile forecasts at level τk and horizon h, it
holds that:

qt
(
τ |̂yτ ,t,h

) = α†
h(τk) + ŷτk,t,hβ

†
h(τk) = ŷτk,t,h

almost surely. More generally, since our goal is to test for auto-
calibration over multiple forecast horizons and quantile levels
jointly, we specify such a linear quantile regression model for
every horizon h ∈ H and τk ∈ T as follows:

yt = α†
h(τk) + ŷτk,t,hβ

†
h(τk) + εt,h(τk)

= X′
τk,t,hβ

†
h(τk) + εt,h(τk), (2)

where Xτk,t,h = (1, ŷτk,t,h)
′ and β†

h(τk) = (α†
h(τk), β†

h(τk))
′.

Here, the population coefficient vector β†
h(τk) =

(α†
h(τk), β†

h(τk))
′ of this linear quantile regression model is

defined as

β†
h(τk) = arg min

b∈B
E
[
ρτk

(
yt − X′

τk,t,hb
)]

, (3)

where B denotes the parameter space satisfying conditions set
out in Assumption A3. The composite null hypothesis is given
by:

HMZ
0 : {α†

h(τk) = 0} ∩ {β†
h(τk) = 1} (4)

for all h ∈ H and τk ∈ T versus HMZ
1 : {α†

h(τk) 	=
0} and/or {β†

h(τk) 	= 1} for at least some h ∈ H and
τk ∈ T . Testing the null hypothesis in (4) not only yields a
multi-horizon, multi-quantile test of autocalibration, but also
provides us with an idea about possible deviations from the null.
In particular, examining the contributions of single horizons,
quantiles or horizon-quantile combinations to the overall test
statistic, which will be introduced in Section 3.2, may also be
informative about deviations from autocalibration. Moreover,
the empirical counterpart of qt

(
τ |̂yτ ,t,h

) = α†
h(τk)+̂yτk,t,hβ

†
h(τk)

may be interpreted as autocalibrated forecasts such that, for
a specific value of the forecast ŷτk,t,h, the deviations between
the regression line (or recalibrated forecast) and the forecasts
themselves, ŷτk,t,h−qt

(
τ |̂yτ ,t,h

)
can be interpreted as the quantile

version of a conditional bias. The direction and size of this con-
ditional quantile bias informs us about deficiencies of forecasts
in certain situations, a point that we will come back to and
illustrate in the applications in Section 5.

3.2. Test Statistic and Bootstrap

In what follows, assume that we observe an evaluation
sample of size P, in other words a scalar-valued time
series of observations starting at some point in time R + 1,

{yt}T
t=R+1, and a matrix-valued time series of forecasts,{(̂

yτ ,t,h
)
τ=τ1,...,τK ,h=1,...,H

}T

t=R+1
. Moreover, we may also observe

a vector of additional variables Zt−h from the forecaster’s
information set Ft−h. We will write this additional sample of
vector-valued time series as {Zt}T−1

t=R+1−H .
Using the taxonomy of Giacomini and Rossi (2010), fore-

casts ŷτk,t,h may stem either from “forecasting methods” or
from “forecasting models”. In the former case, we are typically
without knowledge about the underlying model such as with
forecasts from the Survey of Professional Forecasters (SPF),
or may use forecasts that depend on parameters estimated in-
sample using so-called limited-memory estimators based on
a finite rolling estimation window. In the case of “forecasting
models” on the other hand, we need to account for the contri-
bution of estimation uncertainty to the asymptotic distribution
of the statistic. However, since the focus of this article lies on
detecting systematic forecasting bias rather than dealing with
specific forms of estimation error, we consider the latter only
under the expanding scheme with a “large” in-sample estimation
window. Specifically, for forecasting models, we assume that we
also observe R additional observations of yt prior to R + 1
that may be used as estimation window (note that the R in-
sample observations also comprise H observations that are used
to produce the initial out-of-sample forecast for period R + 1),
and that T = R + P with P/R → 0 as P, R → ∞. This allows us
to abstract from estimation error in the analysis and to focus on
systematic features of the forecasts.3

The parametric models we consider in this article take the
form m(Wt−h; θ†

τk,h), where Wt−h denotes a vector of predictor
variable(s) and we assume for simplicity that Wt−h is a sub-
set of Vt−h. Moreover, θ†

τk,h is a population parameter vector
that needs to be estimated in a first step, while the function
m(Wt−h; ·) on the other hand is assumed to be a “smooth”
function of the parameter vector in the sense of Assumption A6.
For instance, m(Wt−h; θ†

τk,h) could itself take the form of a linear
quantile regression model:

qt,h
(
τk|Wt−h

) = m(Wt−h; θ†
τk,h) = W′

t−hθ
†
τk,h.

Alternatively, the model could also take the form of a nonlinear
location scale model:

qt,h
(
τk|Wt−h

) = m(Wt−h; θ†
τk,h)

= mμ

(
Wt−h; θ†

h,μ

)
+ σ

(
Wt−h; θ†

h,σ

)
qt,h,ε (τk) ,

where θ†
τk,h = (θ†′

h,μ, θ†′
h,σ , qt,h,ε (τk))

′ and qt,h,ε (τk) denotes the
unconditional τk quantile of the error term of the location scale
model.

To accommodate both “forecasting methods” and “forecast-
ing models,” we adopt a more generic notation in what follows
and let Xτk,t,h(θ

†
τk,h) stand either for the vector stemming from

a forecasting method or for the population vector of Mincer-
Zarnowitz regressors stemming from a corresponding forecast-
ing model. On the contrary, when forecasts have been generated
from a model that has been estimated through the recursive
(i.e., expanding) scheme using the first t − h observations of the

3In addition, it also allows us to resample forecasts directly in the bootstrap.
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sample, with t = R + 1, R + 2, . . ., we write Xτk,t,h(̂θ τk,t,h) to
denote the dependence on the estimated parameter vector θ̂τk,t,h.
Note that even though we focus on the recursive scheme in light
of the applications, the rolling estimation scheme whereby a
window of the last R observations is used (running from t − h −
R + 1 to t − h) or the fixed scheme where the parameter vector
is estimated only once, that is θ̂ τk,t,h = θ̂ τk,R+1−h,h, are equally
compatible with our set-up and the assumptions below could
be adapted in a straightforward manner. Finally, “forecasting
methods” can be accommodated by assuming θ̂ τk,t,h = θ†

τk,h
almost surely.

Thus, to implement the test for the null hypothesis in (4)
versus the alternative hypothesis, we first estimate the coefficient
vector as

β̂h(τk) =
(

α̂h(τk)
β̂h(τk)

)

= arg min
b∈B

1
P

T∑
t=R+1

ρτ

(
yt − Xτk,t,h(̂θ τk,t,h)

′b
)

(5)

for each h and τk. With these estimates at hand, different pos-
sibilities to construct a suitable test statistic exist. More specif-
ically, since the number of elements in H and T is finite, one
option is to construct a Wald-type test based on the estimates in
(5) together with a suitable estimator of the variance-covariance
matrix. However, when interest lies in testing (4) against its
complement for a larger number of quantile levels and horizons,
constructing a Wald test involves estimating a large variance-
covariance matrix, which can be difficult in practice and may
lead to a poor finite sample performance. On the other hand, as
we argue below, using a moment equality based test in combi-
nation with the nonparametric bootstrap does not suffer from
this drawback. In fact, the moment equality framework can be
extended easily to other set-ups which give rise to an even larger
number of equalities (see Section 4).

To see the possibility of a moment equality based test, note
that under HMZ

0 and the Assumptions A1 to A7 outlined below
it holds that

√
P
(

β̂
†
h (τk) −

(
α†

h(τk)
β†

h(τk)

))
d→ N

(
0, τk(1 − τk)Jh(τk)

−1

E
[

Xτk,t,h(θ
†
τk,h)Xτk,t,h(θ

†
τk,h)

′] Jh(τk)
−1
)

pointwise in h and τk, where the matrix Jh(τk) is given by
Jh(τk) ≡ (6)

E
[

ft,h
(

Xτk,t,h(θ
†
τk,h)

′β†(τk)
)

Xτk,t,h(θ
†
τk,h)Xτk,t,h(θ

†
τk,h)

′]
and ft,h(·) is defined in Assumption A4. In fact, under HMZ

0 , in
Section S3 of the supplement we establish the linear Bahadur
representation:

√
P
(

β̂h (τk) −
(

0
1

))
=Jh (τk)

−1

(
1√
P

T∑
t=R+1

Xτk,t,h(θ
†
τk,h)

×
(

1
{

yt ≤ Xτk,t,h(θ
†
τk,h)

′β†
τk,h (τk)

}
− τk

))
+ oPr(1).

The above representation motivates the use of a moment equal-
ity type statistic for a test of autocalibration. Thus, define the set
CMZ = {

(h, τk, j) : h ∈ H, τk ∈ T , j ∈ {1, 2}}, and let |CMZ| =
κ denote the cardinality of CMZ, while s = 1, . . . , κ is a generic
element from CMZ. For the test statistic, define m̂s either as
α̂h(τk) or as (β̂h(τk) − 1) for a specific τk and h. A test statistic
for the null hypothesis in (4) is then given by

ÛMZ =
κ∑

s=1

(√
Pm̂s

)2
. (7)

Note that the non-studentized statistic in (7) above does not
require estimation of the asymptotic variance, and consequently
will be non-pivotal as its asymptotic distribution does depend on
the full variance-covariance matrix. Heuristically, under HMZ

0 ,
and the conditions imposed in Theorem 1:

√
P

⎛⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
α̂1(τ1)
β̂1(τ1)

...
α̂H(τK)

β̂H(τK)

⎞⎟⎟⎟⎟⎟⎠−

⎛⎜⎜⎜⎜⎜⎝
0
1
...
0
1

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠
d→ N(0, �), (8)

where � is the asymptotic variance-covariance matrix of the
empirical moment equalities scaled by

√
P, which is unknown in

practice and depends on features of the data generating process
(DGP). Of course, this nuisance parameter problem can be
taken into account by using a suitable bootstrap procedure (e.g.,
Hansen, Lunde, and Nason 2011). In particular, we will gener-
ate bootstrap critical values using the moving block bootstrap
(MBB) of Künsch (1989), whose formal validity for quantile
regression with time series observations has been established
by Gregory, Lahiri, and Nordman (2018). In doing so, we will
resample the forecasts directly as the limiting distribution will be
derived under the condition that P/R → π = 0, implying that
forecast estimation error does not feature into the asymptotic
distribution of the test statistic (see West 1996). We do so to
abstract from the dependence on a particular estimator, which
would require further details about the underlying forecasting
models.

We generate bootstrap samples of length P consisting of Kb
blocks of length l such that P = Kbl. We draw the starting index
Ij of each block 1, . . . , Kb, {Ij, Ij+1, . . . , Ij+l}, from a discrete
random uniform distribution on [R + 1, T − l]. These indices
are used to resample from

{
yt , ŷτ ,t,h

}T
t=R+1 jointly for each τ =

τ1, . . ., τK and h = 1, . . ., H. This way we generate B bootstrap

samples, each with
{

yb
t , ŷb

τ ,t,h

}T

t=R+1
for all τ = τ1, . . ., τK and

h = 1, . . ., H. For each bootstrap sample, we construct bootstrap
equivalents of (5) and then the corresponding bootstrap statistic:

Ûb
MZ =

κ∑
s=1

(√
P(m̂b

s − m̂s)
)2

. (9)

The critical value is then given by the (1 − α) quantile of
the empirical bootstrap distribution of Ûb

MZ over B draws, say
cB,P,(1−α).
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3.3. Assumptions and Asymptotic Validity

For the asymptotic validity of this procedure, we make the
following assumptions:
A1: The outcome variable yt is strictly stationary and β-mixing
with the mixing coefficient satisfying β(k) = O

(
k− ε

ε−1
)

< ∞
for ε > 1.
A2: For all h ∈ H, τk ∈ T , and θ ∈ �, Xτk,t,h(θ) is strictly
stationary, and satisfies the mixing condition from A1 as well as
E
[∥∥Xτk,t,h(θ)

∥∥2ε+2
]

< ∞, where ‖ · ‖ denotes the Euclidean
norm and � is defined in A6. The distribution of Xτk,t,h(θ) is
absolutely continuous with Lebesgue density.
A3: For every τk ∈ T and h ∈ H, assume that the parameter
space of βh(τk),B, is a compact and convex set. For every τk ∈ T
and h ∈ H, the coefficient vector β†

h(τk) from (3) lies in the
interior of B.
A4: For all h ∈ H and τk ∈ T , the conditional distribution
function of yt (given Xτk,t,h(θ

†
τk,h)), F(·|Xτk,t,h(θ

†
τk,h)) ≡ Ft,h(·),

admits a continuous Lebesgue density, f (·|Xτk,t,h(θ)) ≡ ft,h(·),
which is bounded away from zero and infinity for all u in U =
{u : 0 < Ft,h(u) < 1} almost surely. For all h, the density ft,h(·)
is integrable uniformly over U .
A5: For every h ∈ H and τk ∈ T , assume that the matrix Jh(τk)
defined in (6) is positive definite and that:

E
[

Xτk,t,h(θ
†
τk,h)

(
1
{

yt ≤ Xτk,t,h(θ
†
τk,h)

′β†
τk,h (τk)

}
− τk

)]
= 0.

A6: Assume that � is compact and that, for each τk ∈ T and
h ∈ H, θ†

τk,h lies in its interior. For all θ1, θ2 ∈ � and t, it holds
that:

‖Xτk,t,h(θ1) − Xτk,t,h(θ2)‖ ≤ B(Xτk,t,h)‖θ1 − θ2‖
for some nonnegative, real-valued function B(Xτk,t,h) satisfying
E[B(Xτk,t,h)

2] < ∞. In addition, assume that for every h ∈ H
and τk ∈ T , the estimator θ̂ τk,t,h satisfies:

sup
t≥R+1

‖̂θ τk,t,h − θ†
τk,h‖ = OPr

(
1√
R

)
.

A7: Assume that R, P, l → ∞ as T → ∞ with P/R → π = 0
and l/P → 0.

Assumption A1 imposes some mild restrictions on the time
dependence of the data that are in turn linked to the existence
and finiteness of corresponding moments in A2. On the other
hand, the continuity of Xτk,t,h(θ) for any given τk, h, and θ only
serves the purpose to simplify some of the arguments in the
proofs of Section S3 in the supplement, and could be relaxed at
the expense of more cumbersome notation. Assumptions A3–
A5 are required to derive the limiting distribution of the linear
quantile regression estimator (e.g., Koenker and Xiao 2006;
Galvao, Montes-Rojas, and Olmo 2011). In fact, A3 and A4
represent standard assumptions on the parameter space and the
smoothness of the (conditional) distribution of yt . A5 ensures
asymptotic normality of the quantile regression estimator, with
the moment condition representing the quantile equivalent of
the well known orthogonality condition from ordinary least
squares (Kim and White 2003). Assumption A6 on the other
hand is only needed when the focus lies on forecasting models.
Specifically, it places restrictions on the underlying parametric

models, but is in fact compatible with commonly used location
scale or linear quantile regression models that satisfy the Lip-
schitz condition in A6 and that can be estimated at rate

√
R.

In particular, as Koenker and Xiao (2009) propose a two-step
estimation procedure for linear GARCH models based on linear
quantile regression, our set-up also comprises the latter type of
models that are frequently used in finance applications. Finally,
Assumption A7 governs the rates at which P and R as well as
the block length l may grow to infinity. In particular, and in
analogy to West (1996), we require π = 0 for estimation error to
be ignorable asymptotically and to be able to resample directly
from the forecasts (rather than to resample from the realized
predictors). In turn, this allows us to focus on miscalibration as
a structural feature of the models.

We are now ready to derive the asymptotic properties of the
statistic under the null hypothesis:

Theorem 1. Assume that A1–A7 hold, and that � ∈ R
κ×κ is

positive definite. Then under HMZ
0 :

lim
T,B→∞ Pr

(
ÛMZ > cB,P,(1−α)

) = α.

Theorem 1 establishes the asymptotic size control of the
moment equality test. It is easy to implement using the moving
block bootstrap and performs very well in terms of finite sample
size and power, which we assess through several simulations.
These can be found in Section S1 of the supplementary mate-
rial. There we provide two contrasting simulation set-ups in
Sections S1.1 and S1.3 to match both the macroeconomic and
financial applications below, which differ in sample sizes, target
quantile levels and time series characteristics (we choose AR and
GARCH processes as DGPs). In terms of block length choice, we
find that values like l = 10 work well in financial applications
with thousands of daily observations and a lower length like l =
4 is adequate in macroeconomic situations with only hundreds
of monthly observations. However, the results do not change
significantly when tweaking the block length. We also provide
additional simulations in Section S1.2 of the supplement for
augmented quantile Mincer-Zarnowitz test that we discuss next.

4. Extensions

In the following two subsections, we will describe two extensions
of the test from Section 3, first to accommodate additional pre-
dictors Zt−h in the Mincer-Zarnowitz regression to test different
forms of optimality, and second to test for autocalibration of
quantile forecasts for multiple time series simultaneously.

4.1. Augmented Quantile Mincer-Zarnowitz Test

Recalling the characterization of optimality relative to any infor-
mation set It−h ⊂ Ft−h from (1), it becomes clear that the
Mincer-Zarnowitz set-up from the previous section may also be
used to test stronger forms of optimality with respect to larger
information sets than σ (̂yτk,t,h). More precisely, while HMZ

0 ver-
sus HMZ

1 is a test of autocalibration, it does not check if all
available valuable information from Ft−h was incorporated into
the forecasting model or taken into account by the forecaster.
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We therefore suggest the idea of augmented quantile Mincer-
Zarnowitz regressions, where a vector of additional regressors
Zt−h ∈ Ft−h is added to the regression model in (2) to test
for optimality relative to σ (̂yτk,t,h, Zt−h), see also Elliott and
Timmermann (2016, chap. 15) for a discussion of augmented
Mincer-Zarnowitz regressions in the context of mean forecasts.

That is, in analogy to the previous section, we again specify
a linear quantile regression model for every horizon h ∈ H and
τk ∈ T as follows:

yt = α†
h(τk) + ŷτk,t,hβ

†
h(τk) + Z′

t−hγ
†
h(τk) + εt,h(τk), (10)

where with slight abuse of notation we use the same symbols as
in the previous section for the first two regression coefficients as
well as the error term, and suppress the possible dependence of
the forecasts on some parameter vector θ†. If the coefficients of
Zt−h in the population augmented Mincer-Zarnowitz regression
are nonzero, that is γ †

h(τk) 	= 0, there is valuable information in
Zt−h that has not been incorporated into the forecasts yet. As a
result, those variables or a subset thereof should be included into
the model to improve forecast accuracy.

Formally, the null hypothesis we test is given by:
HAMZ

0 : {α†
h(τk) = 0} ∩ {β†

h(τk) = 1} ∩ {γ †
h(τk) = 0} (11)

for all h ∈ H and τk ∈ T versus HAMZ
1 : {α†

h(τk) 	= 0} and/or
{β†

h(τk) 	= 1} and/or {γ †
h(τk) 	= 0} for at least some h ∈ H and

τk ∈ T .
In contrast to a standard Mincer-Zarnowitz quantile regres-

sion, the augmented version requires a choice of variables from
Ft−h. These variables included in Zt−h have to be chosen a
priori and may, in some situations, suggest themselves naturally
as illustrated in our macroeconomic application. In other situ-
ations, however, it might be hard to pick those variables from a
potentially very large information set. In those cases, regularized
or factor-augmented Mincer-Zarnowitz regressions could be
used instead of (10). We leave this extension to future research
and state the asymptotic size result of a moment equality based
test of HAMZ

0 versus HAMZ
1 . Specifically, let ̂̃ms denote the quan-

tile estimators α̂h(τk), (β̂h(τk) − 1), or γ̂ h(τk) for a specific
quantile level τk and horizon h. Similarly, in analogy to before,
let κ̃ denote the total (finite) number of moment equalities to be
tested. The corresponding test statistic, ÛAMZ, is given by

ÛAMZ =
κ∑

s=1

(√
P̂̃ms

)2
. (12)

Finally, define the “augmented” covariate and coefficient vec-
tors:

X̃τk,t,h(θ
†
τk,h) = (Xτk,t,h(θ

†
τk,h)

′, Z′
t−h)

′

and β̃
†
h(τk) = (α†

h(τk), β†
h(τk), γ †

h(τk)
′)′, respectively, the latter

with parameter space B̃. We obtain the following result for the
test defined by (12):

Corollary 1. Assume that A1–A7 hold with Xτk,t,h(·), β†
h(τk),

and B replaced by X̃τk,t,h(·), β̃
†
h(τk), and B̃, respectively. More-

over, assume that

plim
P→∞

var

⎡⎢⎣√
P

⎛⎜⎝
̂̃m1

...̂̃mκ

⎞⎟⎠
⎤⎥⎦ ≡ �̃ ∈ R

κ̃×κ̃

is positive definite, where var [·] denotes the variance operator.
Then under HAMZ

0 :

lim
T,B→∞ Pr

(
ÛAMZ > cB,P,(1−α)

) = α.

4.2. Multivariate Quantile Mincer-Zarnowitz Test

While Section 3 establishes a test for autocalibration of quantile
forecasts of a single time series yt , researchers may sometimes be
interested in testing this property across several time series yt =
(y1,t , . . . , yG,t)′ using an array of h step ahead τk-level forecasts(̂
yτ ,t,h

)
τ=τ1,...,τK ,h=1,...,H , where ŷτk,t,h = (̂y1,τk,t,h, . . . , ŷG,τk,t,h)

′,
where h ∈ H, τk ∈ T , and finite G ∈ N. For instance, we may
be interested in testing for forecast autocalibration jointly across
different industries or sectors; components of GDP growth like
consumption or export growth; or different macro series like in
our application in Section 5.2.

We now sketch the extension of the autocalibration test to
such a multivariate set-up. To this end, consider again the fol-
lowing linear quantile regression model:

yi,t = α†
i,h(τk) + ŷi,τk,t,hβ

†
i,h(τk) + εi,t,h(τk),

h ∈ H, τk ∈ T , i = 1, . . . , G. (13)

Here, for each group i ∈ {1, . . . , G}, the coefficient vector
β†

i,h(τk) = (α†
i,h(τk), β†

i,h(τk))
′ is defined as

β†
i,h(τk) = arg min

bi∈B
E
[(

ρτk

(
yi,t − Xi,τk,t,h(θ

†
i,τk,h)

′bi
))]

(14)

with Xi,τk,t,h(θ
†
i,τk,h)

′ = (1, ŷi,τk,t,h)
′.4 Therefore, the set-up in

(13) allows for miscalibration also at the individual time series
level (e.g., industry or sector) if for some i, h, and τk it holds that
αi,h(τk) 	= 0 and/or βi,h(τk) 	= 1, respectively.

The sample analogue of (14), using the evaluation sample of
observations {yt}T

t=R+1 and array-valued forecasts ŷi,τ ,t,h for each
i is given by

β̂ i,h(τk) = arg min
bi∈B

1
P

T∑
s=R+1

(
ρτ

(
yi,s − Xi,τk,s,h(̂θ i,τk,s,h)

′bi
))

.

(15)
As in Section 3, we are interested in testing the composite null
hypothesis:

HMMZ
0 : {αi,h(τk) = 0} ∩ {βi,h(τk) = 1} (16)

for all h ∈ H, τk ∈ T , i = 1, . . . , G, versus HMMZ
1 : {αi,h(τk) 	=

0} and/or {βi,h(τk) 	= 1} for at least some h, τk, and i. Note that,
since G is finite, for a given horizon h and quantile level τk (with
A1–A7 adapted to hold for yi,t and Xi,τk,t,h(θ

†
i,τk,h), i = 1, . . . , G),

the estimator in (15) is consistent for β†
i,h(τk) for each i. The test

statistic for the null hypothesis in (16) versus its complement is
therefore given by ÛMMZ = ∑κ

s=1

(√
Pm̂s

)2
, where either m̂s =

α̂i,h(τk) or m̂s = β̂i,h(τk)−1, respectively, and in a similar way as
above, κ denotes the total number of moment conditions which
in this case accounts for the G different series being used in the
test.

4Note that we use θ†
i to denote the possible dependence of the forecast for

series i on a forecasting model.
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In order to construct a suitable bootstrap statistic in analogue
to Section 3.2, we construct bootstrap analogues β̂

b
i,h(τk) of

(15) from bootstrap samples of length P = Kbl from Kb
blocks of length l by resampling again from the series of
forecast-observation pairs, where the forecasts in this case are
array-valued. The bootstrap procedure does not just take the
horizon, but also the group structure as given, which ensures
that the dependence of the original data across horizons h
as well as across series i = 1, . . . , G is maintained. More
precisely, we again draw the starting index Ij of each block of
forecasts and observations 1, . . . , Kb from a discrete random
uniform distribution on [R + 1, T − l]. These indices are
used to resample from

{
yt ,
(̂
yτ ,t,h

)
τ=τ1,...,τK ,h=1,...,H

}T

t=R+1
.

This way we generate B bootstrap samples, each with{
yb

t ,
(̂

yb
τ ,t,h

)
τ=τ1,...,τK ,h=1,...,H

}T

t=R+1
.

For each i = 1, . . . , G, we then construct a corresponding
bootstrap estimator given by

β̂
b
i,h(τk) = arg min

bi∈B
1
P

T∑
s=R+1

(
ρτ

(
yb

i,s − Xi,τk,s,h(̂θ
b
i,τk,s,h)

′bi
))

.

The final bootstrap statistic becomes Ûb
MMZ =∑κ

s=1

(√
T(m̂b

s − m̂s)
)2

, where m̂b
s is equal to α̂b

i,h(τk) or
β̂b

i,h(τk) − 1, respectively. Constructing critical values on the
basis of Ûb

MMZ, b = 1, . . . , B, as in Section 3.2, the following
corollary holds:

Corollary 2. Assume that Assumptions A1–A7 hold with yt ,
Xτk,t,h(θ

†
τk,h), and θ̂ τk,t,h replaced by yi,t , Xi,τk,t,h(θ

†
i,τk,h), and

θ̂ i,τk,t,h, respectively, for every i = 1, . . . , G. Moreover, assume
that:

plim
P→∞

var

⎡⎢⎣√
P

⎛⎜⎝ m̂1
...

m̂κ

⎞⎟⎠
⎤⎥⎦ ≡ � ∈ R

κ×κ ,

is positive definite, where var [·] denotes the variance operator.
Then, under HMMZ

0 :

lim
T,B→∞ Pr

(
ÛMMZ > cB,P,(1−α)

) = α.

5. Empirical Applications

In this section, we provide two empirical applications. The first
is a finance example applying the MZ test to test the optimality
of GARCH predictions of the tail quantiles of financial returns.
The second application uses the MZ test extensions to assess
the optimality of GaR forecasts made across a range of U.S.
macroeconomic variables.

5.1. Empirical Application 1: Financial Returns

Forecasts of lower tail quantiles of returns distributions (or
upper tail quantiles of loss distributions) play an important
role in financial risk management as the most prominent risk

measures are either themselves tail quantiles or defined in terms
of tail quantiles (see He, Kou, and Peng (2022) for a recent
overview). In particular, the VaR at level τ is just the τ -quantile
of the returns yt , VaR(τ ) = q(τ ), where usually τ is chosen to be
either 0.05 or 0.01. Expected shortfall as well as median shortfall
are also defined in terms of quantiles of the return distribution
and our multi-quantile evaluation framework can be useful in
the evaluation of those risk measures as well (see Section S5.1
of the supplement for a discussion). Producing and backtesting
VaR forecasts is thus a central task in financial risk management.
Therefore, as discussed in the introduction, the majority of
contributions to quantile forecast optimality testing was moti-
vated by this problem. However, the literature focused on single-
quantile forecasts, while it may be of interest to check VaR at
both the 0.01 and the 0.05 level, or even a grid of several VaR lev-
els to approximate the whole tail distribution. In addition, note
that risk management requires forecasts of risk measures over
multiple horizons, for example for one day ahead and cumulative
losses over the next 10 trading days. Nevertheless, extant evalu-
ation methods focus on a single horizon (with the noteworthy
exception of Barendse, Kole, and van Dijk (2023) who also con-
sider multi-horizon evaluation of VaR and expected shortfall)
and consequently one-day-ahead forecasts are usually evaluated.
Our tests solve those problems as they enable joint evaluation of
VaR forecasts over multiple levels and horizons.

To illustrate the use of the Mincer-Zarnowitz test for the
evaluation of forecasts of financial risk measures, we apply it
to multi-horizon, multi-quantile forecasts for daily S&P 500
returns. We consider horizons from h = 1 through h =
10 in terms of trading days and three quantile levels τ ∈
{0.01, 0.025, 0.05}. The classic model for return volatility and
VaR forecasting is the GARCH(1,1) model (Bollerslev 1986). As
no closed-form formula for multi-period-ahead GARCH quan-
tile forecasts is available, except for the case of Gaussian inno-
vations, we use the GARCH bootstrap of Pascual, Romo, and
Ruiz (2006). It draws standardized residuals from the estimated
one-period-ahead model to simulate draws multiple periods in
the future, from which quantiles can be obtained.5 We choose
student-t errors for the estimation of the model.

Our sample consists of daily S&P 500 returns from January
3rd 2000 to June 27th 2022, amounting to 5634 observations.6
We use recursive pseudo-out-of-sample forecasting with an ini-
tial estimation window of size 3000 for h = 10 or, in other
words, R = 3009, leading to an evaluation sample of size P =
2625. Figure S1 in Section S5.2 of the supplementary material
displays the one-day ahead forecasts for the three quantiles and
the realizations. The forecasts for the other horizons look very
similar, but are expectedly a bit wider.

We first use our Mincer-Zarnowitz test over the three quan-
tiles, T = {0.01, 0.025, 0.05}, and ten horizons, H = {1, . . ., 10}.
We use B = 1000 bootstrap draws and a block length of l = 10.
Table 1 presents the results. With a p-value of 0.022 there is clear
evidence against the null of autocalibration. Alternative block
length choices of l = 5 and l = 20 lead to similar p-values (0.030

5We use the implementation of the GARCH bootstrap from the rugarch
package in R (Ghalanos 2022).

6Data taken from the Oxford-Man Realized Library: https://realized.oxford-
man.ox.ac.uk/data/download [Last accessed: 05/07/22]

https://realized.oxford-man.ox.ac.uk/data/download
https://realized.oxford-man.ox.ac.uk/data/download
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Figure 1. Scatterplot of Forecast-Realization Pairs with Mincer-Zarnowitz Regression Line (red) and Diagonal (orange) for h = 1 and τ = 0.01

Table 1. Mincer-Zarnowitz test results, finance application.

Stat 90% 95% 99% p-value

8932.46 5375.701 7072.245 11224.643 0.022

Table 2. Individual contributions to test statistic, Mincer-Zarnowitz test, finance
application.

τ = 0.01 τ = 0.025 τ = 0.05 Sum

h = 1 221.693 51.298 17.953 290.944
h = 2 399.867 182.336 63.023 645.225
h = 3 263.330 193.565 95.534 552.429
h = 4 460.803 252.513 154.109 867.424
h = 5 559.772 248.379 105.181 913.332
h = 6 607.838 336.089 235.282 1179.210
h = 7 201.185 319.621 250.535 771.341
h = 8 344.977 383.845 438.533 1167.356
h = 9 350.399 342.559 405.926 1098.884
h = 10 449.902 586.011 410.401 1446.314
Sum 3859.767 2896.216 2176.476 8932.460

and 0.008) which is promising in that the results are insensitive
to block length.

As the test statistic from (7) can directly be interpreted as
an empirical distance from the null, consisting of scaled (by√

P), squared deviations of all the Mincer-Zarnowitz regression
coefficients from their values under the null, we can also look at
the individual contributions to this statistic from single quantiles
and single horizons or single quantile-horizon combinations,
displayed in Table 2. From this table a clear picture emerges. The
outer quantiles and the longer forecast horizons contribute more
to the test statistic, and thus show stronger evidence for miscali-
bration. Since risk management is typically concerned about the
performance of a certain risk model such as the GARCH(1,1)
across a range of quantile levels or horizons, this also demon-
strates that a common practice to evaluate those models only for
a specific choice of the latter may lead to incorrect conclusions
about the overall performance of the prediction model.7

7In fact, Table S8 in Section S5.2 of the supplement, which contains the p-
values for individual autocalibration tests at given values τ and h, illustrates
that such “telescoping”’ practice may indeed be misleading as there is no
strong evidence against autocalibration from some individual level quantile
horizon combinations.

The tests may also convey information about how models
could be improved by a closer look at the Mincer-Zarnowitz
regression lines themselves. For instance, using h = 1 and τ =
0.01 as an illustrative example since all estimated intercepts are
negative and all slopes of the regression lines less than one (see
Section S5.2 of the supplementary material), Figure 1 shows the
scatterplot of forecast-observation pairs alongside the estimated
Mincer-Zarnowitz regression line and the diagonal. The latter
represents the population regression line under HMZ

0 , in other
words when α†

1(0.01) = 0 and β†
1 (0.01) = 1, respectively.

The discrepancy between the Mincer-Zarnowitz regression line
and the diagonal thus suggests that the forecasts are in fact mis-
calibrated. Contrasting the two, it becomes clear that in calmer
times (when the forecasts and realizations are less extreme, that
is closer to 0) the GARCH(1,1) forecasts tend to under-predict
the actual risk, in other words the quantile forecasts are not
extreme enough, while in more volatile times the forecasts tend
to overestimate risk.

Finally, in Section S5.3 of the supplementary material, we
examine the robustness of our results against various speci-
fication changes and examine other popular calibration tests
designed for single horizon and quantile pairs. Specifically, we
find that the above results do not change qualitatively when
we alter the specification to a different estimation scheme
(rolling) and to smaller estimation window sizes. Similarly,
results remained also unchanged when omitting the COVID-19
period, or when experimenting with the GJR-GARCH model
(Glosten, Jagannathan, and Runkle 1993). Finally, when look-
ing at the autocalibration tests of Engle and Manganelli (2004)
with the respective quantile forecast as regressor and the test
of Christoffersen (1998), we find that the former provides p-
values that are very close to the individual level p-values of the
Mincer-Zarnowitz test, while this is not the case for the test of
Christoffersen (1998) which tests different implications of full
optimality.

5.2. Empirical Application 2: U.S. Macro Series

In this section we use our tests to explore the optimality of
model-based forecasts of various U.S. macroeconomic series.
The analysis of quantile forecasts for macroeconomic series has
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become widespread since studies like Manzan (2015). More
recently, the GaR literature has emerged to provide a tool
to monitor downside risk to economic growth using quan-
tile predictions. This approach typically analyses quarterly real
GDP growth using financial conditions indicators (see Adrian,
Boyarchenko, and Giannone 2019), and has been subsequently
applied to other quarterly macro series like employment and
inflation by Adams et al. (2021).

However, in spite of the increasing interest in quantile fore-
casting in macroeconomics, none of these papers subject their
models to the type of forecast optimality test we develop in
this article. We aim to fill this gap in the empirical literature,
applying our tests to shed light on the optimality of commonly-
used models in predicting various macro series.

Instead of using quarterly data we propose the use of monthly
variables (also used recently in similar contexts by Corradi,
Fosten, and Gutknecht 2023) and we will focus on the same
four target variables analyzed in Manzan (2015). These series,
all transformed to stationarity using the growth rate, are the
Consumer Price Index for All Urban Consumers (CPIAUCSL),
Industrial Production: Total Index (INDPRO), All Employees,
Total Nonfarm (PAYEMS) and Personal Consumption Expen-
ditures Excluding Food and Energy (Chain-Type Price Index)
(PCEPILFE).8 These series are very close in nature to the quar-
terly series analyzed in Adams et al. (2021) and will be regressed
on an autoregressive term and the Chicago Fed National Finan-
cial Conditions Index (NFCI) as in Adrian, Boyarchenko, and
Giannone (2019).

Specifically, we use the direct forecasting scheme to generate
quantile forecasts at quantile levels τk for k = 1, . . ., K and
horizons h = 1, . . ., H as follows:

ŷτk,t,h = γ̂0,h,t(τk) + γ̂1,h,t(τk)yt−h + γ̂2,h,t(τk)xt−h (17)

where yt−h is the autoregressive term corresponding to one
of the four target variables mentioned above and xt−h is the
NFCI. The parameter estimates are obtained by the standard
quantile regression estimator and are indexed both by τk and
h to denote that a separate quantile regression is run at each
quantile and horizon as in the direct scheme, as well as by t
as the forecasts are generate in a pseudo out-of-sample fashion
as mentioned below. In essence, (17) boils down to a forecast
made by a quantile autoregressive distributed lag (QADL) model
(Galvao Jr., Montes-Rojas, and Park 2013) using the direct fore-
casting scheme.

The data series span the period 1984M1 to 2019M12, giving
a total number of T = 432 monthly observations. We use the
recursive out-of-sample scheme and split the sample into equal
portions for the initial estimation sample and the evaluation
sample, R = P = 216. This gives an evaluation sample size,
P, around the middle of the range of Monte Carlo simulations
in Section S1 of the supplement. In making forecasts using (17)
we will use horizons h = 1, . . ., 12 and quantile levels τk ∈
{0.1, 0.25, 0.5}. The use of these quantile levels allows us to focus
on the left part of the distribution, as is common in GaR studies
such as Adams et al. (2021), but also includes the median as an
important case of predicting the center of the distribution. For

8All series in the study are taken from the Federal Reserve Economic Data
(FRED). Url: https:// fred.stlouisfed.org/ [Last accessed: 08/03/22]

Table 3. Mincer-Zarnowitz test results.

Stat 90% 95% 99% p-value

Joint 38264.280 28908.454 45259.085 86531.304 0.067

CPIAUCSL 18269.966 18033.852 32452.813 66594.353 0.099
INDPRO 4258.078 7578.204 11224.918 24413.160 0.222
PAYEMS 871.704 1574.085 2060.305 4994.712 0.308
PCEPILFE 14864.532 2316.907 2792.387 3678.394 0.000

Table 4. Augmented Mincer-Zarnowitz test results.

Stat 90% 95% 99% p-value

CPIAUCSL 21984.030 19794.203 29896.138 57657.304 0.085
INDPRO 5194.690 8722.551 12596.841 27604.813 0.224
PAYEMS 723.354 1494.399 2011.985 4470.360 0.350
PCEPILFE 15648.207 2455.174 2938.071 3801.048 0.000

the bootstrap implementation we use B = 1000 bootstrap draws
and employ a block length of l = 4 as this is seen to work well in
the simulation study in the supplement.

The results in Table 3 display the results of the Mincer-
Zarnowitz tests for autocalibration, with further graphical
insight into the behavior of the out-of-sample predictions given
in Sections S6.1 and S6.2 of the supplement. We first analyze the
joint Mincer-Zarnowitz test (“Joint”) which works on multiple
time series, as described above, where in this context we have
G = 4 target variables and we jointly test for autocalibration
across all series to avoid the multiple testing problem. The results
in the first row of Table 3 show that there is indeed some
evidence against autocalibration when looking across all four
macro series. The p-value of 0.07 indicates that there is evidence
at the 10% significance level that the QADL-type model does
not produce well-calibrated forecasts jointly across these four
series, for forecast horizons h = 1, . . ., 12 and quantile levels
τk ∈ {0.1, 0.25, 0.5}.

With this in mind, it is useful to dig further into the individual
series to see which of them are likely to be causing the rejection
of the joint null of autocalibration. The remainder of Table 3
displays the Mincer-Zarnowitz test when performed individu-
ally for each series. For the two real series, industrial production
and employment, we see little evidence against the null. On
the other hand, for the two price-type series we see somewhat
different results with a clear rejection in the case of PCEPILFE
and a p-value just under 10% for CPIAUCSL. This suggests that
the QADL-type approach suggested by Adrian, Boyarchenko,
and Giannone (2019) does indeed appear appropriate for real
macroeconomic series but less-so for price series.9

One final exercise we perform is to apply the augmented MZ
test where we use additional predictors in the MZ regression.
Table 4 displays the results for each of the four series above,
where in each case the remaining three variables were used as
the augmenting regressors. This serves as a simple check to see if

9In Section S6.3 of the supplement, we also try to isolate the specific hori-
zons and quantile levels that contribute the most to the rejection. Our
findings suggest that for PCEPILFE and CPIAUCSL the smallest contribution
to the statistic comes from quantile level τk = 0.5, while the τk = 0.1
quantile level contributes more substantially, even though no systematic
conclusion can be drawn beyond h = 1. This seems to indicate that
further study should consider investigating the types of series which might
deliver better-calibrated predictions in the far-left tail of the distribution of
inflation-type series.

https://fred.stlouisfed.org/
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any of these other variables would have been able to improve the
forecasts if they were added to the forecasting model, especially
for the real variables for which the weaker null of autocalibration
was not rejected. However, the results in Table 4 are similar to
the non-augmented version of the test. As expected, the stronger
null is rejected as well for the inflation type series, which already
showed rejections for the weaker null of autocalibration. More
interestingly, for the real variables, we still get no rejections. This
suggests that we are not able to improve these forecasts by the
addition of inflation type variables to the forecasting model.

6. Conclusion

This article deals with the absolute evaluation of quantile fore-
casts in situations where predictions are made over multiple
horizons and possibly multiple quantile levels. We propose
multi-horizon, multi-quantile tests for optimality by employing
quantile Mincer-Zarnowitz regressions and a moment equality
framework with a bootstrap methodology which avoids the esti-
mation of a large covariance matrix. The main quantile Mincer-
Zarnowitz test is of the null hypothesis of autocalibration, which
is a fundamental property of forecast consistency. We also pro-
vide two extensions. The first extension tests a stronger null
hypothesis, which allows us to add further important variables
to the information set with respect to which optimality is tested.
This augmented quantile Mincer-Zarnowitz test thus makes it
possible to examine if the information contained in those vari-
ables was used optimally by the forecaster. The second extension
is a multivariate quantile Mincer-Zarnowitz test and allows us
to check autocalibration of forecasts for multiple time series at
possibly multiple horizons and quantiles.

Our tests allow for an overall decision about the quality
of a forecasting approach, whether it is a single model used
over multiple horizons and quantiles or a mix of different
models and expert judgment employed by an institution. Cru-
cially, it avoids the multiple testing problem inherent to most
practical situations, where many forecasts are made over hori-
zons, quantiles or multiple variables. Importantly, our testing
framework is constructive in that it does not only provide a
formal procedure to reach this overall decision, but may also
provide valuable feedback about possible weaknesses of the
forecasting approach under consideration and how it could be
improved.

There are many possible future avenues arising from our
work, for instance the evaluation of distributional or probabilis-
tic forecasts (Gneiting and Katzfuss 2014). Since these distri-
butional forecasts are considered quantile calibrated when the
corresponding quantile forecasts for all quantiles are autocali-
brated, one future extension of our work may look into optimal-
ity testing across a growing (with the sample size) number of
quantiles.

Supplementary Materials

The supplementary materials contain additional Monte Carlo simulations,
proofs for all theoretical results of the paper, an additional monotonicity
test, as well as supplementary empirical results and figures for the applica-
tions.
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