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a b s t r a c t

This paper proposes tests for out-of-sample comparisons of interval forecasts based on
parametric conditional quantile models. The tests rank the distance between actual and
nominal conditional coverage with respect to the set of conditioning variables from all
models, for a given loss function. We propose a pairwise test to compare two models for
a single predictive interval. The set-up is then extended to a comparison across multiple
models and/or intervals. The limiting distribution varies depending on whether models
are strictly non-nested or overlapping. In the latter case, degeneracy may occur. We
establish the asymptotic validity of wild bootstrap based critical values across all cases.
An empirical application to Growth-at-Risk (GaR) uncovers situations in which a richer
set of financial indicators are found to outperform a commonly-used benchmark model
when predicting downside risk to economic activity.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Interval predictions based on quantile forecasts play an important role in economics and finance. Conditional quantile
redictions are routinely used in the finance literature, where measures like Value-at-Risk (VaR) are computed as a tool
or risk management (see for instance Escanciano and Olmo, 2010, and Engle and Manganelli, 2004). More recently, a
imilar approach has gained momentum in macroeconomics where Growth-at-Risk (GaR) predictions are used to monitor
ownside risk to future GDP growth (Adrian et al., 2019; Reichlin et al., 2020; Plagborg-Møller et al., 2020).1 The use of
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aR is now part of the standard toolkit of institutions like the International Monetary Fund (Prasad et al., 2019). The
ommon feature of both VaR and GaR is that they are defined to quantify the expected drop in the target variable
or a pre-determined probability, which is usually set by the regulator or a policymaking institution. This gives strong
otivation for statistical tests based on coverage (Christoffersen, 1998; Escanciano and Velasco, 2010) when evaluating
uantile forecasts for VaR and GaR, instead of other measures of quantile forecast accuracy such as (average) length or
heck loss (e.g., Manzan, 2015; Brownlees and Souza, 2021).
In this paper we propose novel tests to compare the out-of-sample performance of two or more competing models

cross single or multiple different predictive quantile interval(s) in terms of expected (conditional) coverage loss. The tests
an be seen as a ‘hybrid’ between conditional and unconditional testing approaches since we use coverage probability with
espect to a set of conditioning variables from all candidate quantile models as an input to an unconditional predictive
ability test. Specifically, for each model we construct a sequence of conditional coverage probabilities for every out-of-
sample evaluation point. For a given loss function chosen by the researcher (for example, quadratic or linear exponential
loss), our tests then rank the models’ forecast accuracy based on the expected loss of the conditional coverage errors,
defined as the difference between the actual and the nominal coverage level.

The benefit of our hybrid form of the test is to combine the advantages of both the conditional and unconditional
testing approaches. The use of conditional coverage as an input to the loss function contrasts to traditional unconditional
coverage tests (Christoffersen, 1998; Escanciano and Olmo, 2010), which can give unsatisfactory conclusions in many
circumstances. More recently, Li et al. (2022) and Horvath et al. (2022) have suggested conditional out-of-sample
tests, where the benchmark model is favoured under the null hypothesis if it dominates its competitor(s) across all
possible states of the world. By using expected loss, we instead choose the model that has more accurate (conditional)
coverage on average, thus placing less weight onto extreme and rare events. The tests of this paper also differ from the
conditional testing idea of Giacomini and White (2006), which incorporates parameter estimation into the null hypothesis.
Their set-up, while popular in practice, has been documented to be restrictive in terms of the estimation schemes for
model parameters (McCracken, 2020) and the time dependence structure (Zhu and Timmermann, 2020) admissible in a
standard Diebold and Mariano (1995) test. The application of Giacomini and White (2006) in our context would rule out
dynamically misspecified models, which we can accommodate.2

Our test takes a different approach to studies which compare quantile model predictions directly by using the check
loss function from the Generalized Piecewise Linear (GPL) class (Gneiting, 2011). That approach can be used in the one-
sided interval case though comparing predictions for two-sided or even multiple intervals would require the use of linear
combinations of different GPL loss functions. This would be a disadvantage relative to our tests as it would make the
interpretation of rejections in terms of the functional of interest (conditional coverage) rather difficult, if not impossible.

The tests we propose are very flexible and can be extended for use in a wide range of modelling scenarios which
are relevant for empirical researchers. Firstly, the tests are applicable in the context of (strictly) nested and overlapping
model comparisons alike, where the latter refers to a situation in which, for a given quantile level, the predictions of
both quantile models are identical under the null hypothesis of equal expected predictive content with probability one.
This definition of overlapping models comprises situations where the two quantile models are strictly nested in the usual
sense with one model based on a strictly smaller set of conditioning variables than the other model (e.g., comparing the
predictions of two linear quantile autoregressions of different lag orders), but is generally broader, see Section 3.2 for a
more detailed discussion and examples.3 This is important in the empirical GaR context as studies often compare possibly
overlapping models where a quantile autoregression is augmented with different macrofinancial predictors that may or
may not have predictive power. Specifically, if the macrofinancial predictors hold no predictive content, the corresponding
quantile predictions will coincide in population with probability one which fits the definition of overlapping models. We
therefore build on the literature of out-of-sample tests for strictly nested/overlapping models which have become well
known for conditional mean forecasting (Clark and McCracken, 2001, 2014), but not in the case of quantiles. Secondly, our
tests are applicable for testing multiple models and multiple quantile-based intervals. This allows us to provide robust
inference when studies wish to compare GaR models using various different predictors (e.g., Brownlees and Souza, 2021)
and when different GaR levels are used. Finally, we can also extend the test to a setting where forecasts are made at
multiple different horizons. This builds on recent interest in multi-horizon forecast evaluation in the conditional mean
forecasting context, such as Quaedvlieg (2021).

We begin by proposing a test for the baseline case where we have a pairwise model comparison over a single interval.
Since we allow the models to be dynamically misspecified and/or overlapping in analogy to Vuong (1989) and Shi (2015),
there are different cases for the asymptotic behaviour of our test statistic under the null of equal expected conditional
coverage error. If the models are strictly non-nested, the statistic is asymptotically zero mean normal with a variance
reflecting parametric and nonparametric estimation error. This is because the construction of the test statistic requires
both the estimation of the parametric conditional quantile models and of the conditional coverage probability, which is

2 On the other hand, since our approach is based on the comparison of models in terms of unconditional expected loss, our framework cannot
reflect, unlike Giacomini and White (2006), the effect that estimation uncertainty has on relative forecast performance in finite samples. Moreover,
even though the tests use a sequence of conditional coverage errors as inputs into the loss function, our comparison is ultimately unconditional
with the drawback that the comparison remains an ‘‘average’’ model comparison across different states of the world.
3 On the other hand, if the models are non-overlapping, we will say that they are strictly non-nested from now on.
2



V. Corradi, J. Fosten and D. Gutknecht Journal of Econometrics 236 (2023) 105490

e
i
w

i
i
w
s
t

d
f
i
s
m
i

t
t
a
w
i

stimated nonparametrically. On the other hand, when the two quantile models are overlapping, the statistic converges
n probability to zero for all strictly convex loss functions, regardless of whether the models are correctly specified or not
ith respect to the union of the conditioning variables.
In a further step, we extend the pairwise test to the multiple intervals and/or multiple models set-up, where the null

s that no competing model has a smaller expected conditional coverage error than the benchmark model for any of the
ntervals considered. Since this is a composite hypothesis given by the intersection of many pairwise null hypotheses,
e can re-state it in terms of a finite number of weak moment inequalities as in Andrews and Soares (2010). Not
urprisingly, the suggested statistic has a degenerate limiting distribution in the overlapping case when models have
he same conditional coverage error almost surely.

We suggest the use of wild bootstrap critical values, along the lines of the conditional p-value approach of Hansen
(1996). This has previously been extended to account for dynamic misspecification by Inoue (2001) and for parameter
estimation error by Corradi and Swanson (2002). Here, we provide a further extension by showing that this procedure
can properly mimic nonparametric conditional coverage estimation error as well. We show that inference based on
wild bootstrap critical values is first order asymptotically valid in both the degenerate and non-degenerate case. In
macroeconomic applications, such as GaR, the sample size is generally rather short and thus bootstrap based critical
values are preferable to subsampling based ones, as in studies such as Escanciano and Velasco (2010).

We assess the properties of the pairwise and multiple model/interval comparison tests in Monte Carlo simulations
where we explore various data generating processes (DGPs) and sample sizes. The simulations allow for different degrees
of time series dependence and for different correlations among the predictors. The results indicate that our tests have good
finite sample properties. In particular, the tests exhibit size control even when models are overlapping and the asymptotic
distribution of the test statistic is degenerate, a likely feature of the wild bootstrap procedure whose distribution appears
to collapse slower in finite samples due to the presence of various estimated expressions. The power of the test increases
when we evaluate models at multiple quantiles suggesting that model comparisons over a range of quantile ranks may
be more desirable.

We then provide an empirical application to GaR. According to Adrian et al. (2019), the lower quantiles of GDP growth
are sensitive to the National Financial Conditions Indicator (NFCI), while the higher ones are not. The benchmark model is
therefore a linear quantile model with the NFCI as a predictor. Competing models are also linear quantile models, but rely
on different sets of predictors as suggested by Brownlees and Souza (2021). Additionally, we use both GDP growth and
industrial production (IP) growth to proxy economic conditions, the latter of which is available on a monthly basis. When
using GDP, no competing model beats the benchmark. On the other hand, when we use IP, the NFCI model is beaten by
some competitors at least at a one quarter horizon. This is likely due to the higher power of the test in larger samples
suggesting that the use of timelier measures of economic activity may be important for a robust comparison of different
GaR models in practice.

The rest of the paper is organized as follows. Section 2 describes the general set-up of quantile models and conditional
coverage testing. Section 3 introduces the test for pairwise equal expected conditional coverage error loss, provides its
limiting distribution and describes how to construct valid bootstrap critical values. Section 4 provides the extension
to the case of multiple intervals and/or multiple models. Section 5 shows how the tests perform in Monte Carlo
simulation experiments and Section 6 provides the empirical application to GaR. Finally, Section 7 concludes the paper. The
Appendix A contains the definitions of some lengthier technical expressions of the asymptotic variance and the bootstrap
statistic from the main paper. Proofs of theorems can be found in the supplementary material, as well as extensions of the
set-up to (nonlinear) location scale models, to two-sided intervals, to the recursive estimation scheme, and to Conditional
Autoregressive Value at Risk models. The supplementary material also contains additional Monte Carlo simulations, and
another empirical illustration about VaR prediction.

2. Set-up

The main objective of this paper is to compare interval predictions for future values of some target variable, yt , from
ifferent parametric conditional quantile models. Quantile-based interval predictions differ from other types of interval
orecasts in that the interval boundaries are pre-specified and given by the nominal quantile levels [τL, τU ]. That is, unlike
n other interval forecast settings where the forecaster aims at producing a prediction with 1 − α coverage, but the
hape and the characteristics of the interval are not necessarily restricted, we deviate from such settings in that the
ain motivation of the paper lies in GaR and VaR type applications, where the regulator or an institution is interested in

ntervals at pre-determined quantile levels.
We will compare interval predictions of the different quantile models at these pre-specified quantile levels in terms of

he coverage probability with respect to the set of conditioning variables from all models (see Section 3 for a discussion of
his choice). In what follows, we will formally introduce conditional coverage, the classes of quantile models we consider,
nd the corresponding conditional coverage error used to construct the test statistic. Note that for notational simplicity
e will only focus on one-step ahead forecasts, though the extension to general s-step ahead forecasts is immediate and

s explored in the empirical section.
3
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Consider a time series sequence {yt , Z′
t}

T
t=1, where yt is a continuous target variable of interest and Zt is a random

ector that contains other observable predictors. We use Ft to denote the sigma field generated by {ys, Z′
s; s ≤ t}. Given

t , the conditional τ -quantile of yt+1 is defined as:

qτ (Ft ) = inf{y : Fyt+1|Ft (y|Ft ) ≥ τ },

here Fyt+1|Ft (y|Ft ) is the distribution function of yt+1 conditional on Ft .4 In addition, for any τL, τU ∈ T with τL < τU
nd It ⊂ Ft , the probability:

Pr
(
qτL (It ) ≤ yt+1 ≤ qτU (It )|Ft

)
≡ C ([τL, τU ] ;Ft)

is known as conditional coverage with respect to the information set Ft . It is useful to introduce the one-sided conditional
coverage where we set τL = 0 and τU = τ . This is used in the case of GaR, which is defined as the lower one-sided
prediction interval containing future realizations of GDP growth with τ coverage probability. In this case, the conditional
coverage with respect to Ft just becomes a one-sided conditional probability:

Pr (yt+1 ≤ qτ (It )|Ft) ≡ C ((0, τ ] ;Ft) .

Since the purpose of this paper is to construct a comparison test for two or more candidate models used to predict
the interval at levels [τL, τU ] or (0, τ ], respectively, we assume that each of these models belong to one of two parametric
classes of models. Specifically, let Xj,t , j = 1, . . . , J , denote the set of conditioning variables from model j that may contain
yt and elements of Zt as well as lags thereof. Since our main motivating example is the case of GaR, where conditional
quantiles are typically modelled as a linear function of a macrofinancial variable (see, e.g. Prasad et al., 2019; Adrian et al.,
2019), we start with the class of linear conditional quantile models of the form:

qτ (β
†
j ; Xj,t ) = X ′

j,tβ
†
j (τ ). (1)

This model includes the quantile autoregressive (QAR) model as discussed in Koenker and Xiao (2006) and Qu (2008).
In fact, letting:

yt+1 = θ
†
j,0(Ut+1) + θ

†
j,1(Ut+1)yt + · · · + θ

†
j,p(Ut+1)yt−p+1,

with Ut+1 being a sequence of i.i.d. uniform random variables, we can write Xj,t = (yt , yt−1, . . . , yt−p+1)′ and βj(τ ) =

(θj,0(τ ), θj,1(τ ), . . . , θj,p(τ ))′ to obtain the general QAR(p) model, provided the θj’s are monotone increasing in Ut+1.
We can also derive an expression like (1) for location scale models with affine transformations of the first and second

conditional moments, for example:

yt+1 = X ′

j,tδ
†
j + (X ′

j,tγ
†
j )εt+1.

With εt+1 independent of Xj,t , we have that qτ (β
†
j ; Xj,t ) = X ′

j,tβ
†
j (τ ) with β†

j (τ ) = δ
†
j + γ

†
j qτ (εt+1), where qτ (εt+1) denotes

the τ unconditional quantile of the error term εt+1. On the other hand, any location scale model that does not consist of
an affine transformation of the first and/or second moment(s), such as in Machado and Silva (2019), no longer gives rise
to a linear conditional quantile regression model. For instance, let:

yt+1 = m
(
Xj,t , θ

†
j,m

)
+ σ (Xj,t , θ

†
j,σ )ϵj,t+1,

where ϵj,t+1 =

(
yt+1 − m(Xj,t , θ

†
j,m)
)

/σ (Xj,t , θ
†
j,σ ), and m(·, θ†j,m) as well as σ (·, θ†j,σ ) are some nonlinear functions indexed

by finite-dimensional parameter vectors θ†j,m and θ
†
j,σ . In this case, we have that the conditional quantile function

qτ (θ
†
j ; Xj,t ) with θ†j = (θ†′j,m, θ

†′
j,σ )

′ is given by:

qτ (θ
†
j ; Xj,t ) = m

(
Xj,t , θ

†
j,m

)
+ σ (Xj,t , θ

†
j,σ )qτ (ϵj,t+1), (2)

which covers the various types of GARCH models used in the prevailing VaR literature (see for example Escanciano
and Velasco, 2010). Moreover, since linear GARCH models can be re-written as Conditional Autoregressive Value at Risk
(CAViaR) models satisfying certain parameter restrictions, note that the latter model is also covered by our set-up. The
CAViaR model, first introduced by Engle and Manganelli (2004), is now a popular choice for modelling tail dynamics of
financial time series data. As such, in the supplementary material, we outline how our tests can accommodate CAViaR
models via the two-step quantile regression procedure suggested by Koenker and Xiao (2009).

While our set-up formally also covers the quantile models in (2), we relegate the exposition and treatment of these
models including assumptions, their estimation, and their treatment in the asymptotic analysis to the supplementary
material, as well as a brief empirical illustration to VaR forecasting. Thus, we will henceforth focus on linear quantile
regression models, but note that all tests can also be carried out using nonlinear location scale models.

4 In what follows, we keep the t + 1 reference in the quantile notation q (F ) implicit.
τ t

4
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Before turning to the actual tests, we discuss estimation of the conditional quantile models introduced in (1). For τ ∈ T ,
efine:

β
†
j (τ ) = argmin

β∈B
E
[
ρτ

(
yt+1 − X ′

j,tβ
)]

, (3)

where ρτ (u) = u(τ −1{u < 0}) is the usual check function and B denotes the parameter space defined in A.3 of Section 3.2.
We allow for the linear conditional quantile of model j, qτ (β

†
j ; Xj,t ) = X ′

j,tβ
†
j (τ ), to be (dynamically) misspecified with

espect to Xt = {X1,t ∪ · · · ∪ XJ,t}, the union of the conditioning vectors of all candidate models under consideration.5
his may indeed arise when the model does not use all relevant information contained in Xt or the functional form is
isspecified.
In the forecasting literature, it is standard to split the overall sample of size T into a training sample of size R and

prediction sample of size P , and to estimate parameters in a fixed, recursive or rolling manner (e.g., West, 1996). To
void unnecessary complication and for notational simplicity, we will state all of our main results for the case of a fixed
stimation scheme, and discuss the recursive scheme in an extension (see the supplementary material). Thus, we estimate
3) using the first R observations as follows:

β̂j,R(τ ) = argmin
β∈B

1
R

R−1∑
s=1

ρτ

(
ys+1 − X ′

j,sβ
)
, (4)

and so the estimator of the linear conditional quantile model is given by:

qτ (̂βj,R; Xj,t ) = X ′

j,t β̂j,R(τ ). (5)

Since the conditional quantiles may either come from (1) or from (2), and estimation for nonlinear location scale models
differs from (4) and (5), we will adopt a more generic notation hereafter. More specifically, let ψ†

j (τ ) denote a finite-
imensional parameter vector from either of the two classes of parametric models outlined above so that ψ†

j (τ ) = β
†
j (τ )

r ψ†
j (τ ) =

(
θ
†
j,m, θ

†
j,σ , β

†
j (τ )

)′

. The corresponding τ -level quantile can then generically be written as qτ (ψ
†
j ; Xj,t ), while

he conditional coverage of model j is defined as the (conditional) probability that yt+1 lies within the prediction interval
f model j defined by the boundary points qτL (ψ

†
j ; Xj,t ) and qτU (ψ

†
j ; Xj,t ), respectively:

Cj ([τL, τU ] ;Xt) = Pr
(
qτL (ψ

†
j ; Xj,t ) ≤ yt+1 ≤ qτU (ψ

†
j ; Xj,t )|Xt

)
. (6)

Since our test will be based on comparing coverage for different models j = 1, . . . , J , given the common vector Xt , in
erms of deviations from the nominal level τU − τL (see Section 3), we also define the following conditional coverage error
or model j:

Ej ([τL, τU ] ;Xt) = Cj ([τL, τU ] ;Xt) − (τU − τL) ,

hich in the one-sided interval case becomes:

Ej ((0, τ ];Xt) = Cj ((0, τ ];Xt) − τ .

These errors are conditional in the sense that they are defined with respect to a specific Xt , and a different realization
f Xt may lead to a different sequence of errors. This reflects the fact that models may provide good predictions (in terms
f coverage) in one state of the world, but not necessarily in another. For instance, while model j may have correct GaR
overage when Xt denotes a realization of the conditioning set in a recession, coverage may deviate from its nominal
evel when Xt represents a realization of the predictor variables in an economic expansion phase.

. Pairwise comparison

.1. Null hypothesis and statistic

Our first objective is to test pairwise quantile forecast accuracy, measured in terms of the average distance between
ctual and nominal conditional coverage. We therefore introduce a loss function that will allow to penalize deviations
f coverage from its nominal level for each realization of Xt . That is, let L (·) denote a given loss function that satisfies
ssumption A.2 below. We specify the null hypothesis as equal expected conditional coverage error between the two
odels, for this given loss function L (·). Formally, for a given pair τL, τU ∈ T and two models j = 1, 2, we test:

H0 : E ((L (E1 ([τL, τU ] ;Xt)) − L (E2 ([τL, τU ] ;Xt))) 1{Xt ∈ X }) = 0 (7)

5 We write Xt = {X1,t ∪ · · · ∪XJ,t } to denote the union of row vectors of possibly different dimensions. The dimension of the resulting row vector
Xt is defined as d = dim(Xt ), and we assume that all variables in Xt are distinct predictors in the sense of exhibiting some independent variation
a.s. (see A.4 in Section 3).
5
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ersus:

HA : E ((L (E1 ([τL, τU ] ;Xt)) − L (E2 ([τL, τU ] ;Xt))) 1{Xt ∈ X }) ̸= 0.

n the case of a one-sided interval, H0 becomes:

H0 : E ((L (E1 ((0, τ ];Xt)) − L (E2 ((0, τ ];Xt))) 1{Xt ∈ X }) = 0 (8)

ersus its negation. In the statement of H0, we compute the mean over the set X , which is a compact subset of the support
of Xt . As outlined in Section 3.2, this plays a role for the estimation of conditional coverage and could be relaxed at the
cost of more complex arguments in the derivation of the asymptotic distribution of the test statistic. In addition, observe
that we evaluate a model with respect to the common vector Xt , rather than in terms of its own conditioning vector Xj,t .
While the latter approach may keep the ‘‘curse of dimensionality’’ at bay, such a comparison will in general be misleading,
especially if both conditioning vectors are strictly disjoint.6

In order to construct a test statistic for H0 versus HA, we first estimate the conditional coverage for model j in ((6) ),
and get a sequence of P local out-of-sample hits, where only those observations in proximity to the evaluation point Xt
receive a positive weight. More specifically, let qτ (ψ̂j,R; Xj,t ) denote the empirical counterpart of qτ (ψ

†
j ; Xj,t ), and let:

1
{
qτL (ψ̂j,R; Xj,t ) ≤ ys+1 ≤ qτU (ψ̂j,R; Xj,t )

} 1
hdK

(
Xs − Xt

h

)
for s = R, . . . , T − 1

denote a sequence of estimated hits from model j, where d = dim(Xt ), K
( u
h

)
= K

( u1
h

)
× · · · × K

( ud
h

)
is the product of

d univariate kernel functions defined in Assumption A.5(iii) below, and h denotes a deterministic bandwidth sequence
satisfying h → 0 as P → ∞. By averaging the P hits conditionally on Xt and weighing by the empirical density, we
obtain:

Ĉj,P,R ([τL, τU ] ;Xt) =
1
Phd

T−1∑
s=R

1
f̂X (Xt)

1
{
qτL (ψ̂j,R; Xj,t ) ≤ ys+1 ≤ qτU (ψ̂j,R; Xj,t )

}
K
(
Xs − Xt

h

)
,

here:

f̂X (Xt) =
1
Phd

T−1∑
s=R

K
(
Xs − Xt

h

)
(9)

is a standard estimator of the nonparametric density. This gives rise to the empirical conditional coverage error of model
j defined as:

Êj,P,R ([τL, τU ] ;Xt) = Ĉj,P,R ([τL, τU ] ;Xt) − (τU − τL) ,

hich instead reads as:

Êj,P,R ((0, τ ];Xt) = Ĉj,P,R ((0, τ ];Xt) − τ

or the case of a one-sided interval.
Finally, for testing H0 versus HA, for the two-sided interval case, we rely on the following statistic:

ŜP,R(τL, τU ) ≡
1

√
P

T−1∑
t=R

(
L
(
Ê1,P,R ([τL, τU ] ;Xt)

)
− L

(
Ê2,P,R ([τL, τU ] ;Xt)

))
1{Xt ∈ X } (10)

while in the one-sided interval case, we use:

ŜP,R(τ ) ≡
1

√
P

T−1∑
t=R

(
L
(
Ê1,P,R ((0, τ ] ;Xt)

)
− L

(
Ê2,P,R ((0, τ ] ;Xt)

))
1{Xt ∈ X }. (11)

We close this subsection with a brief discussion to acknowledge potential shortcomings of conditional coverage as a
comparison measure for quantile-based interval predictions. When the nominal evaluation level of (τU −τL) or τ lies close
o the boundary of zero or one, it may be difficult to discard completely uninformative forecast models with coverage
qual to zero (or one) for most realizations of Xt . In this case, it can also be useful to assess the interval length as additional
nformation, even if this is not the criterion required by regulators or institutions in the case of VaR or GaR. There are a
ew ways to do this. When the object of interest is a two-sided quantile interval [τL, τU ], a suitable loss (scoring) function

6 For instance, suppose that the DGP is given by qτ (FT ) = β1X1,t +β2X2,t + qτ (et+1), where (β1, β2)′ = (0, 1)′ and all right hand side variables are
ndependent of each other with strictly increasing marginal distribution functions everywhere. In this case, if model 1 omits X2,t , while model 2 omits

1,t , it still is the case that Pr
(
yt+1 ≤ β

†
1 X1,t + F−1

u1,t+1
(τ )
⏐⏐X1,t

)
= Pr

(
yt+1 ≤ β

†
2 X2t + F−1

u2,t+1
(τ )
⏐⏐X2,t

)
= τ almost surely with u1,t+1 = et+1 + β2X2,t

and u = e .
2,t+1 t+1

6
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hat also accounts for length is the interval score (e.g., Gneiting and Raftery, 2007). In the case of equal tailed, quantile
ounded intervals of the form τL = α/2 and τU = (1 − α/2), the interval score takes the form:

(qu − ql) +
2
α
(ql − yt+1)1{yt+1 < ql} +

2
α
(yt+1 − qu)1{yt+1 > qu},

here ql and qu denote the quantile predictions of the lower and the upper bound of the interval, respectively. However,
his interval score is not suitable for the case of one-sided intervals (0, τ ] as it is not clear how to assess length relative
o ‘hits’ outside the interval range in that case, and so this is not applicable in the GaR or VaR context.7 In constructing
length statistic for the one-sided case, Brownlees and Souza (2021) suggest the following average length measure for
ome model j:

1
P

T−1∑
t=R

qτ (ψ̂j,R; Xj,t ) − q̂0.01,

where q̂0.01 denotes the unconditional empirical 1%-level quantile of yt+1. We consider this statistic to be less informative
han conditional coverage for comparing models as it simply measures the difference in their averaged conditional quantile
redictions.

.2. Limiting distribution

We now state the assumptions required to derive the limiting distribution of the test statistics in (10) and (11). Since
e also consider the general case with J > 2 models below, we will state all conditions for a generic J . In what follows,

et ∥ · ∥ denote the Euclidean norm and ∇
(k)g(·) denote the kth order partial derivative of the function g(·) with respect

o its argument.

ssumption A.1. For all j = 1, . . . , J , (yt+1, X ′

j,t )
′ are strictly stationary and β -mixing with coefficients satisfying∑

∞

k=1 β(k)
ε

2+ε < ∞, ε > 0.

Assumption A.1 imposes mild restrictions on the time dependence of the data. In particular, note that the condition of
β-mixing (absolutely regular) data is mainly required for addressing a second order term, which becomes relevant in the
overlapping case, but could otherwise be replaced by strong mixing conditions. The next assumption defines the class of
loss functions we consider for the test:

Assumption A.2.

(i) The loss function L(·) is three times continuously differentiable on the interior of its support SL, where SL ⊂ [−1 −

, 1 + ϵ] for some ϵ > 0, with Lipschitz continuous derivatives.

ii) L(u) = 0 for u = 0.

iii) ∇
(1)L(u) ≤ 0 for u < 0 and ∇

(1)L(u) ≥ 0 for u > 0.

(iv) ∇
(2)L(u) > 0 on the interior of its support SL.

Assumption A.2(i)–(ii) implies that L is a generalized loss function, as defined in Granger (1999). In fact, A.2(ii) ensures
hat whenever u1 is further away from zero than u2, then L(u1) > L(u2). A.2(i) and Assumption A.2(iv) are used in the
erivation of the limiting behaviour of the statistic in the degenerate case. Note that several commonly used loss functions,
uch as the quadratic and linear exponential (Linex) loss, satisfy Assumption A.2. Thus, if the researcher has a preference
or over- rather than under-coverage, they could choose Linex loss with L(u) = exp(a · u) − a · u − 1, a < 0.

ssumption A.3.

i) For every j ∈ {1, . . . , J} and every value x in the support of Xj,t , RXj , the conditional density function fyt+1|Xj,t (·|x)
abbreviated to ft+1(·|x) in what follows) is continuous in yt+1 w.r.t. Lebesgue measure, uniformly bounded and bounded
way from zero.

ii) It holds that E
(Xj,t

4+ε
)

< ∞, where ε was defined in Assumption A.1. Moreover, for every model j ∈ {1, . . . , J}
hich can be written as in (1),

Hj(τ ) ≡ E
(
ft+1

(
X ′

j,tβ
†
j (τ )

⏐⏐Xj,t

)
Xj,tX ′

j,t

)
7 Even though one may of course ‘fix’ a lower bound to recover a length in the one-sided interval (0, τ ], this bound would be arbitrary and thus

nterfere with the idea of a relative forecast comparison as it is not clear how to scale the hits accordingly.
7
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s positive definite for every τ ∈ T .

iii) For every j ∈ {1, . . . , J} and every τ ∈ T , the parameter space of β†
j (τ ), denoted B, is compact. Moreover, assume

hat β†
j (τ ) as defined in (3) is uniquely identified for all τ ∈ T and lies in the interior of B.

iv) For every j ∈ {1, . . . , J} and every τ ∈ T , the parameter vector β†
j (τ ) defined in (3) satisfies:

E
(
Xj,t (1{yt+1 ≤ X ′

j,tβ
†
j (τ )} − τ )

)
= 0.

Assumption A.3(i)–(iv) are rather standard in the quantile regression literature and ensure consistency of the quantile
egression estimator β̂j,R(τ ) for β

†
j (τ ) as well as weak convergence of

√
R
(
β̂j(τ ) − β

†
j (τ )

)
to a Gaussian distribution (for example, Koenker and Xiao, 2006). Note also that A.3(i)–(ii) impose conditions on the
behaviour of ft+1(·|Xj,t ) over the support of Xj,t as well as on its moments as we are estimating the parameter vector
β

†
j (τ ) of the quantile regression model over the whole support of Xj,t . On the other hand, A.3(iv) is a quantile version

of the well-known orthogonality condition from ordinary least squares. In particular, it allows for misspecified models
where E

(
1{yt+1 ≤ X ′

j,tβ
†
j (τ )}|Xj,t

)
= τ does not necessarily hold with probability one, see for instance Kim and White

(2003). Finally, note that when one or more nonlinear location scale model(s) are used in the comparison, an additional
high-level assumption is required in that case (see supplementary material).

Finally, we impose a further regularity condition for the kernel used in the nonparametric estimation of conditional
coverage and the underlying density as well as for the corresponding bandwidth.

Assumption A.4.

(i) Let X denote a compact, non-empty, connected set, which lies in the interior of the support of Xt = {X1,t ∪ · · · ∪ XJ,t}.
Assume that the density fX (Xt ) is continuous w.r.t. Lebesgue measure and strictly positive on X and that the support of
Xt is not contained in any proper linear subspace of Rd almost surely.

(ii) Assume that the density of Xt , fX (·), admits r continuous partial derivatives on X , with r > d, which are uniformly
bounded on X . Moreover, for every y ∈ Ry, the support of yt+1, and x ∈ X , assume that Ft+1(y|x) admits r continuous
partial derivatives in y and x with r > d, which are all uniformly bounded on Ry and X .

(iii) The univariate kernel function K (u) is symmetric, has compact support, and satisfies
∫
K (u)du = 1,

∫
ulK (u)du = 0

or 0 < l ≤ (r − 1),
∫

|u2rK (u)|du < ∞.

Assumption A.5. Let P, R → ∞ and P/R → π with 0 < π < ∞. Assume that (i) Ph2r
→ 0 and (ii) Ph2d

→ ∞ for r > d,
where r is defined in Assumption A.4.

Assumption A.4 requires that Xt contains d predictors that are distinct almost surely and imposes conditions on the
smoothness of the conditional distribution of yt+1 given Xt that are standard in the nonparametric estimation literature.
Together with the bandwidth conditions in Assumption A.5 it allows for the use of empirical process results from Andrews
and Pollard (1994) for dependent data, and also ensures that:

sup
x∈X

⏐⏐̂fX (x) − fX (x)
⏐⏐ = op(1),

when f̂X (x) is a kernel estimator from (9). In addition, note that the condition Ph2d
→ ∞ with r > d from A.5 requires

the use of a fourth order kernel function in A.4 for d = 2, 3. This is needed for the analysis of a second order term in the
asymptotic expansion of the test statistic, which becomes relevant only in the degenerate case (see below). In a similar
spirit, the assumption that 0 < π < ∞ is used only to simplify the convergence rates of some of the asymptotic results,
and could be relaxed at the cost of more complex conditions on the relative rates at which P and R grow, see Theorem 1
and its discussion. Finally, note that part A.4(i), which restricts attention to a compact subset of the support of Xt can be
readily relaxed at the cost of using a trimmed estimator on some slowly expanding set and more complex arguments in
the proof (e.g., Andrews, 1995).

There are two distinct cases under H0 of equal expected predictive content, namely:

CASE I:

Pr (C1([τL, τU ];Xt ) = C2([τL, τU ];Xt )) < 1, (12)

CASE II:

Pr C ([τ , τ ];X ) = C ([τ , τ ];X ) = 1. (13)
( 1 L U t 2 L U t )

8
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To discuss the above cases in more detail, we parallel Clark and McCracken (2014), and say that models are overlapping
nder H0 if, for a given quantile level τ , their quantile predictions are identical (in population) with probability one,

i.e. qτ (ψ
†
1; X1,t ) = qτ (ψ

†
2; X2,t ) almost surely.8 Otherwise, we say that the models are strictly non-nested. With this

definition at hand, note that CASE I occurs under H0 when, for a given τL and τU , the quantile models are strictly non-
ested on X . CASE II, on the other hand, could arise in a variety of scenarios (see footnote 1 below). However, given that
e focus on predictions from linear quantile regression and nonlinear location scale models in this paper, CASE II arises
hen the two models are overlapping, i.e. qτ (ψ

†
1; X1,t ) = qτ (ψ

†
2; X2,t ) almost surely for the relevant τ . In fact, this latter

ituation can occur if both models are either correctly or incorrectly specified with respect to the common vector Xt . As
n illustrative example of CASE II with correctly specified models, consider for instance model 1, which is given by a linear
uantile regression model with predictors X1,t :

qτ (β
†
1; X1,t ) = β

†
0,1(τ ) + X ′

1,tβ
†
1(τ ),

hile the competitor model 2 is specified as a linear quantile regression model with different predictors X2,t :

qτ (β
†
2; X2,t ) = β

†
0,2(τ ) + X ′

2,tβ
†
2(τ ).

hese models are overlapping and correctly specified when X1,t and X2,t are irrelevant regressors in the actual DGP. That
s, assume that:

qτ (Ft ) = X ′

1,tβ1 + X ′

2,tβ2 + qτ (et+1), (14)

here qτ (et+1) is the τ -level quantile for some et+1 independent of X1,t and X2,t . It is immediate to see that when
β1 = β2 = 0 (assuming X1,t and X2,t are of the same dimension for simplicity), for both j = 1, 2 in this case:

Cj([τL, τU ];Xt ) = τU − τL

lmost surely whenever the models contain an intercept so that β
†
0,1(τ ) = β

†
0,2(τ ) = qτ (et+1). On the other hand, given that

t is assumed to contain only distinct predictors by A.4(i), for any non-zero values of β1 and β2 note that we will either
e under CASE I or under the alternative hypothesis. Finally, CASE II with misspecified models (i.e., where conditional
overage is equal a.s., but not equal to the nominal level) could arise if the quantile function in (14) contained a nonlinear
unction of yet another predictor independent of X1,t and X2,t , respectively, whose non-linearity is not picked up in the
linear specification (see the additional simulations in the supplementary material for an example).

We now formally establish the limiting distribution of ŜP,R(τL, τU ) and ŜP,R(τ ):

Theorem 1. Let Assumptions A.1–A.5 hold. Then:

(i) Under H0, in CASE I with Pr (C1((0, τ ];Xt ) = C2((0, τ ];Xt )|Xt ∈ X ) < 1:

ŜP,R(τL, τU )
d

→ G(τL, τU )

ŜP,R(τ )
d

→ G(τ ),

where G is a Gaussian process with variance kernel Ω (τL, τU ), or in the one-sided case, Ω (τ ), as defined in (28) in Appendix A.

(ii) Under H0, in CASE II:
(a) if either Pr (C1([τL, τU ];Xt ) = C2([τL, τU ];Xt )) = 1 with Cj([τL, τU ];Xt ) = τU − τL almost surely, or Pr (C1((0, τ ];Xt )

= C2((0, τ ];Xt )) = 1 with Cj((0, τ ];Xt ) = τ almost surely for j = 1, 2, then for any ∆ > 0:

lim
P,R→∞

Pr

(
|̂SP,R(τL, τU )| ≤ ∆

√
P
R

)
= 1

lim
P,R→∞

Pr

(
|̂SP,R(τ )| ≤ ∆

√
P
R

)
= 1.

(b) if either Pr (C1([τL, τU ];Xt ) = C2([τL, τU ];Xt )) = 1 with Pr
(
Cj([τL, τU ];Xt ) = τU − τL

)
< 1, or Pr (C1((0, τ ];Xt )

= C2((0, τ ];Xt )) = 1 with Pr
(
Cj((0, τ ];Xt ) = τ

)
< 1 for j = 1, 2, then:

ŜP,R(τL, τU )
p

→ 0

ŜP,R(τ )
p

→ 0.

8 Note that this definition comprises the strictly nested case when for instance a QAR(1) model is compared against a QAR(2) model, and both
models have equal predictive content under H .
0

9
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iii) Under HA, there exists some ε > 0 such that:

lim
P,R→∞

Pr
(

1
√
P

|̂SP,R(τL, τU )| > ε

)
= 1

lim
P,R→∞

Pr
(

1
√
P

|̂SP,R(τ )| > ε

)
= 1.

Theorem 1(i) establishes the asymptotic distribution under H0 in the non-overlapping CASE I. The proof of (i) reveals
that, besides the average mis-coverage of both models, two distinct terms that capture the overall estimation error of
models 1 and 2, respectively, also enter the asymptotic distribution of the statistic. This overall estimation error can be
split into one component that stems from the estimation of the nonparametric coverage and one that derives from the
estimation of the parametric quantile model.

On the other hand, Theorem 1(ii) can be further divided into subcases (a) and (b), respectively. Subcase (a) refers to a
scenario where coverage errors are identical almost surely (CASE II) and models are correctly specified with respect to Xt
so that coverage is equal to the nominal level. This can for instance arise when both models contain all relevant predictors,
but also include irrelevant ones as in the aforementioned example. In this case, the statistic converges to zero in probability
at the above specified rate. Technically speaking, this is because the first order derivative term in a second-order Taylor
expansion of the statistics (10) or (11) around the population coverage error Ej([τL, τU ];Xt ) or Ej((0, τ ];Xt ), respectively,
s equal to zero almost surely, while for any strictly convex loss function satisfying Assumption A.2, the second order
erm is not. In fact, since E1

(
[τL, τU ];Xj

)
= E2

(
[τL, τU ];Xj

)
= 0 a.s., we have by Assumption A.2 that L (0) = 0 as well as

(1)L(0) = 0, while ∇
(2)L(0) = C for some positive constant C , so that the second order term becomes the lead term, and

onverges to zero at the rate specified in Theorem 1(ii)–(a). Note that the condition 0 < π < ∞ from A.5 is not needed
or this result, but only serves the purpose to simplify the convergence rates in the statement, which would otherwise
epend on the relative behaviour of P and R in a more complex manner.
Similarly, subcase (b) in Theorem 1(ii) refers to a scenario where coverage errors are again identical almost surely, but

nlike in subcase (a) both models are misspecified so that for instance in the one-sided interval case Pr
(
Cj((0, τ ];Xt ) = τ

)
< 1, j = 1, 2. This practically more relevant situation for CASE II may arise when two models that overlap,
i.e. qτ (ψ

†
1(τ ); X1,t ) = qτ (ψ

†
2(τ ); X2,t ) almost surely, are actually misspecified, for instance because both models do not

capture the functional form of the DGP correctly.9 Also in this subcase (b), although the first order derivative of the
loss function is no longer zero with probability one, the statistic converges to zero in probability because of stochastic
equicontinuity and because parameter estimation bias vanishes at a rate faster than 1/

√
P .

Finally, note that the results of Theorem 1(i) and Theorem 1(ii) establish the asymptotic behaviour of the test statistic
for DGPs that fall either under CASE I or under CASE II with Cj([τL, τU ];Xt ) = τU − τL or Cj((0, τ ];Xt ) = τ with probability
one for j = 1, 2. In the next section, we will show that bootstrap critical values will provide a test of asymptotic size
α in the former case, and of asymptotic size zero in the latter. In principle, one could extend the set of DGPs by also
considering sequences of the form Pr (C1([τL, τU ];Xt ) = C2([τL, τU ];Xt )) = 1 − bP for some bP → 0 as P → ∞. This is,
however, not a trivial extension, and we leave it for future research.

3.3. Bootstrap critical values

We now suggest a wild bootstrap procedure in the spirit of the conditional p-value approach of Hansen (1996).10

Importantly, critical values based on our procedure are first order asymptotically valid, regardless of whether we are
under CASE I or II. For notational simplicity, we will focus on one-sided intervals (0, τ ] for the remainder of the paper.
The extension of the bootstrap statistic to two-sided intervals [τL, τU ] and to nonlinear location scale models can be found
n the supplementary material.

The wild bootstrap procedure is based on an asymptotic linear representation of the test statistic. More specifically,
or j = 1, 2, this representation depends on three distinct terms Aj,t (τ ), Bj,t (τ ), and Dj,t (τ ) defined in (24), (25), and (26)
n Appendix A. They respectively capture the contribution of the population coverage error, as well as the estimation
rror for the conditional coverage and that of the coefficients of the parametric linear quantile regression model.
orresponding estimators, which we label Âj,P,R,s(τ ), B̂j,P,R,s(τ ), and D̂j,P,R,s(τ ), j = 1, 2, respectively, can be constructed in
straightforward manner. The exact expressions of these terms can also be found in (29), (30) and (31) of Appendix A.

9 When quantile predictions are not model-based or the models and the data do not satisfy our assumptions, a second, rather pathological
scenario that could lead to equal, but incorrect coverage is when the conditional coverage functions are themselves flat almost surely. This situation
can for instance arise with extreme quantile predictions such that, using again the one sided case as an example, (conditional) coverage is either
zero or one with probability one.
10 Note that the use of subsampling based critical values, as in Angrist et al. (2006) or Escanciano and Velasco (2010) for instance, is not viable
n macroeconomic applications with small sample sizes, as in the case of GaR. On the other hand, as we discuss in the context of CAViaR models
n the supplementary material, when large samples of financial data are used, subsampling may be the preferred option to construct critical values.
10
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ence, we construct the bootstrap statistic as follows:

Ŝ∗

P,R(τ ) =
1

√
P

T−lP−1∑
t=R

εt

(t+lP∑
s=t

(̂
A1,P,R,s(τ ) − Â2,P,R,s(τ )

)
+
(̂
B1,P,R,s(τ ) − B̂2,P,R,s(τ )

))

+

√
P
R

R−lR−1∑
t=1

ηt

t+lR∑
s=t

(̂
D1,P,R,s(τ ) − D̂2,P,R,s(τ )

)
(15)

where εt and ηt are i.i.d. random variables independent of the data and drawn from distributions N(0, 1/lP ) and N(0, 1/lR),
respectively, satisfying E(εtηs) = 0 for all t, s. As noted in Corradi and Swanson (2002), the lag truncation parameters lR
and lP serve the same purpose as the block length in the block bootstrap, and account for time series dependence in the
data. In addition, note that εt and ηt are statistically independent to capture the independence of estimation error from
the parametric quantile model and of the remaining components due to the use of a fixed estimation scheme. This is no
longer the case with recursive estimation, as outlined in the supplementary material.

The logic underlying the wild bootstrap statistic Ŝ∗

P,R(τ ) is the following. In CASE I, conditional on the data, Ŝ∗

P,R(τ )
behaves as a zero-mean random normal variable with a variance that mimics a heteroskedasticity and autocorrelation
consistent (HAC) estimator of the main driving terms, namely the population coverage error component, and the terms
representing nonparametric conditional coverage as well as parametric quantile model estimation error.11 In fact, in the
pairwise comparison case we could base inference in principle also on the HAC estimator more directly without relying
on bootstrapped critical values. On the other hand, in the multiple comparison case in Section 4, the limiting distribution
is non-standard and thus we need to rely on bootstrap critical values.

In CASE II of equal conditional coverage on the other hand, a differentiation between the case of correctly and
incorrectly specified models is required: in the case of correctly specified models with coverage equal to the nominal
level, the first, second, and third term of (15), respectively converge to zero in probability. Importantly, however, we show
in Theorem 2(ii) below that for the case of correct conditional coverage (i.e., equal to the nominal level), the bootstrap
statistic converges to zero in probability at a rate which is slower than the actual sample statistic since lP , lR → ∞ as
T → ∞. This suggests that over-rejection is likely not an issue in practice. If instead lP and lR do not grow with the sample
size, we could avoid over-rejection by introducing an infinitesimal uniformity factor as in Andrews and Shi (2013). That
being said, the simulation exercise in Section 5 suggests that the distribution of the bootstrap statistic collapses slower
than the distribution of the sample statistic in CASE II even when lP = lR = 1. Heuristically, this is because the wild
bootstrap statistic is constructed using several additional estimated terms. Although such terms vanish at the same rate
as the statistic, in finite samples they introduce additional estimation noise so that the bootstrap distribution dominates
that of the sample statistic and thus prevents over rejection, at least in our extensive simulations.12

On the contrary, when models are misspecified and conditional coverage is not equal to the nominal level almost surely,
it still holds that Ĉ1,P,R (Xi, τ ) − Ĉ2,P,R (Xi, τ ) = op(1) and, when models are overlapping, ∥̂β1,R (τ ) − β̂2,R (τ ) ∥ = op(1)
since ∥β

†
1 (τ ) − β

†
2 (τ ) ∥ = 0. In this case, it can be shown that the third term of (15) still gives rise to an asymptotic

distribution, while the statistic converges in probability to zero so that the test controls size asymptotically. This is because
the bootstrap statistic is constructed using an asymptotic expansion for the contribution of parametric estimation error
in the non-overlapping CASE I, which does not collapse whenever X1,t and X2,t exhibit independent variation.

Turning to the construction of corresponding critical values, let c∗

B,P,R (α/2) and c∗

B,P,R (1 − α/2) denote the α/2 and
1 − α/2 critical values of the empirical distribution of the wild bootstrap statistic, based on B replications. The following
result summarizes the above discussion about the behaviour of the test under H0, and shows that it is consistent against
fixed alternatives:

Theorem 2. Let Assumptions A.1–A.5 hold. Also, as P, R, B → ∞, lR, lP → ∞, lP/
√
P → 0 and lR/

√
R → 0. Then:

(i) Under H0, in CASE I with Pr (C1((0, τ ];Xt ) = C2((0, τ ];Xt )|Xt ∈ X ) < 1:

lim
P,R,B→∞

Pr
(
c∗

B,P,R (α/2) < ŜP,R(τ ) < c∗

B,P,R (1 − α/2)
)

= 1 − α.

ii) Under H0, in CASE II:

lim
P,R,B→∞

Pr
(
c∗

B,P,R (α/2) < ŜP,R(τ ) < c∗

B,P,R (1 − α/2)
)

= 1.

iii) Under HA:

lim
P,R,B→∞

Pr
(
c∗

B,P,R (α/2) < ŜP,R(τ ) < c∗

B,P,R (1 − α/2)
)

= 0.

11 It is noteworthy that the term used to construct Âj,P,R,s(τ ), j = 1, 2, has been recentered to mimic the asymptotic variance also under the
lternative, see (29) in Appendix A. Otherwise, under the alternative when E ((L (E1 ((0, τ ] ;Xt )) − L (E2 ((0, τ ] ;Xt ))) 1{Xt ∈ X }) ̸= 0, the bootstrap
ariance would diverge at rate

√
lP , thus lowering the power.

12 On the other hand, as shown in the simulation exercises of Section 5 and the supplementary material, the choice of these parameters does
matter more in CASE I for the control of size at the nominal level.
11
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Theorem 2 establishes the first order validity of the block bootstrap critical values. In particular, we have a test of size
α in CASE I, and a test of size zero in CASE II.

3.4. Local power

The results from Theorems 1 and 2 suggest that the pairwise comparison test has asymptotic power against fixed
alternatives. In this subsection, we analyse its local power properties by considering a drifting sequence in the coverage
error differential. For simplicity, we comment on the two-sided case only in the proof and continue to focus on quantile
regression models exclusively since the arguments for location scale models are similar. Thus, we define the following
drifting sequence:(

L (E1 ((0, τ ];Xt)) +
δ1((0, τ ];Xt )

√
P

)
−

(
L (E2 ((0, τ ];Xt)) +

δ2((0, τ ];Xt )
√
P

)
or some (measurable) continuous functions δ1((0, τ ]; ·) and δ2((0, τ ]; ·). The sequence of local alternatives HA,P is given
by:

HA,P :E
(((

L (E1 ((0, τ ];Xt)) +
δ1((0, τ ];Xt )

√
P

)
−

(
L (E2 ((0, τ ];Xt)) +

δ2((0, τ ];Xt )
√
P

))
1{Xt ∈ X }

)
=

E ((δ1((0, τ ];Xt ) − δ2((0, τ ];Xt )) 1{Xt ∈ X })
√
P

≡
ζ (τ )
√
P

.

The next result establishes that the pairwise test for a single interval (0, τ ] has non-trivial power against the local
lternatives as defined under HA,P . For brevity, we state this result for CASE I only, and comment on CASE II below.

heorem 3. Let Assumptions A.1–A.5 hold, and ζ (τ ) ̸= 0. Then, under HA,P :

lim
P,R,B→∞

Pr
(̂
SP,R(τ ) > c∗

B,P,R (1 − α/2)
)

= GDF (ζ (τ ) − c (1 − α/2))

lim
P,R,B→∞

Pr
(̂
SP,R(τ ) < −c∗

B,P,R (1 − α/2)
)

= GDF (−ζ (τ ) − c (1 − α/2)) ,

here GDF (·) denotes the distribution function of the Gaussian process from Theorem 1(i) with variance Ω(τ ), and c(1−α/2) =

imP,R,B→∞ c∗

B,P,R(1 − α/2) is the corresponding (1 − α/2) critical value from the bootstrap empirical distribution.

Note that in CASE II with coverage equal to the nominal level on the other hand, we have that:

L (E1 ((0, τ ] ;Xt)) − L (E2 ((0, τ ] ;Xt)) = 0

lmost surely. Thus, we may define instead a sequence of ‘locally overlapping’ alternatives where:

Hov
A,P :

(
L
(
E1,P ((0, τ ] ;Xt)

)
− L

(
E2,P ((0, τ ] ;Xt)

))
1{Xt ∈ X } ≡

ς (τ ,Xt) 1{Xt ∈ X }
√
P

ith ς (τ ,Xt) 1{Xt ∈ X } ̸= 0 almost surely. Here, provided that:

p lim
P→∞

1
P

T∑
t=R+1

ς (τ ,Xt) 1{Xt ∈ X } ≡ ς (τ) ̸= 0,

e obtain that ŜP,R (τ ) = ς (τ) + op(1) ̸= 0, while the bootstrap statistic Ŝ∗

P,R (τ ) converges to zero in probability.
symptotic power against the local alternative in Hov

A,P in the case of correct nominal coverage is therefore guaranteed,
hile this does not necessarily hold for CASE II when models are misspecified.

. Multiple model & Interval comparison

So far our main results involve a model comparison of two models over a single interval. This section extends and
eneralizes the setting to consider the cases of pairwise model comparisons over multiple intervals and multiple models,
esting the pairwise comparison over multiple intervals or the multiple model comparison at a single interval as special
ases. Specifically, the extension to multiple intervals is useful if there is no established nominal level to use in prediction
ntervals such as in GaR or other forecasting applications (e.g. Clements, 2014; Wang and Wu, 2012). The extension to
ultiple models, on the other hand, is relevant in light of the increasing number of proposed models in the empirical VaR
nd GaR literature. The case of testing over both multiple models and multiple intervals can also accommodate a wide
ange of scenarios, as in our empirical application where we want compare multiple competing GaR models at a range of
ossible quantile levels.
12
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.1. Null hypothesis and statistic

Hereafter, let model 1 be the benchmark model given by qτ (ψ
†
1; X1,t ), out of total set of J models with the competitor

odels given by qτ (ψ
†
j ; Xj,t ) for j = 2, . . . , J . We compare the relative conditional coverage error of the latter models to

he benchmark over M intervals, (0, τi], i = 1, . . . ,M .13 The null hypothesis is that none of the competing models has
maller expected conditional coverage error than the benchmark at any of the intervals considered. The alternative is that
t least one competitor outperforms the benchmark for at least one interval. In other words, denoting Xj

t = {X1,t , Xj,t} as
the union of the conditioning set of the benchmark and model j, the null and alternative hypothesis can be written as:

HRC
0 : max

j=2,...,J
max

i=1,...,M
E
((

L
(
E1
(
(0, τi];X

j
t

))
− L

(
Ej
(
(0, τi];X

j
t

)))
1
{
Xj

t ∈ X
})

≤ 0

versus:

HRC
A : max

j=2,...,J
max

i=1,...,M
E
((

L
(
E1
(
(0, τi];X

j
t

))
− L

(
Ej
(
(0, τi];X

j
t

)))
1
{
Xj

t ∈ X
})

> 0.

Note that the above formulation of the null hypothesis in terms of weak inequalities is standard in comparison tests
of multiple models (e.g., White, 2000; Hansen, 2005), and differs from the null hypothesis based on an equality in the
pairwise case. Specifically, although a formulation with equalities is informative under the null hypothesis, it may not be
interpretable under the alternative when the benchmark is either beaten or beats at least a competitor model, and may
in fact also be rejected in a situation where some models beat the benchmark, while others do not.

The above hypothesis can be re-written as:

HRC
0 = ∩

J
j=2 ∩

M
i=1 HRC

0,i,j (16)

and:

HRC
A = ∪

J
j=2 ∪

M
i=1 HRC,c

0,i,j

with HRC,c
0,j,i denoting the complement of HRC

0,j,i, and:

HRC
0,i,j : E

((
L
(
E1
(
(0, τi];X

j
t

))
− L

(
Ej
(
(0, τi];X

j
t

)))
1
{
Xj

t ∈ X j
})

≤ 0.

As mentioned before, the general formulation of the null hypothesis with multiple models and intervals nests various
other hypotheses as special cases. For instance, setting J = 2, we may compare the relative conditional coverage error
of models 1 and 2 over M intervals, (0, τi], i = 1, . . . ,M . These intervals could arise when evaluating GaR predictions at
multiple quantile levels such as 10%, 20% and 30%. On the other hand, setting M = 1, we may also test the null that no
competing model has better predictive accuracy than the benchmark at a given interval in terms of expected conditional
coverage error, for a given loss function L(·). This type of comparison is useful in light of the recent GaR literature (for
instance Brownlees and Souza, 2021) where multiple possible models are evaluated for a single GaR quantile level and
corresponds to a standard Reality Check test (White, 2000).14

Since our composite null hypothesis consists of a finite number of weak inequalities, we can follow the set-up
of Andrews and Soares (2010). Specifically, since the number of moment weak inequalities is given by the product of
the number of competing models times the number of intervals, (J − 1) × M , the statistic reads as:

Ŝmax
P,R =

J∑
j=2

M∑
i=1

(
max

{
0, ŜP,R(τi; j)

})2
(17)

where:

ŜP,R(τi; j) =
1

√
P

T−1∑
t=R

(
L
(
Ê1,P,R

(
(0, τi];X

j
t

))
− L

(
Êj,P,R

(
(0, τi];X

j
t

)))
1
{
Xj

t ∈ X j
}

. (18)

Note that when using Ŝmax
P,R in (17), we consider only those intervals for which ŜP,R(τi; j) ≥ 0. The purpose of this trimming

is to consider only intervals where violation of the null hypothesis is observed and the corresponding population moment
E ((L (E1 ((0, τi];Xt)) − L (E2 ((0, τi];Xt))) 1 {Xt ∈ X }) is positive. In the next part we derive the limiting distribution of this
statistic.

13 The extension to two-sided intervals [τi,L, τi,U ] can again be found in the supplementary material.
14 One could also consider comparisons involving model combinations from the list of competitors as well as the individual models themselves.
13
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.2. Limiting distribution

We now establish the limiting behaviour of this test for multiple models and multiple intervals given in (18). For
implicity, we will again outline the case where the benchmark and the competitor models are linear quantile regression
odels. The extension to location scale models follows by identical arguments to before. We consider the following cases:

ASE I-RC: For at least one interval i ∈ {1, . . . ,M} and one model j ∈ {2, . . . , J}:

Pr
(
C1((0, τi];X

j
t ) = Cj((0, τi];X

j
t )
)

< 1.

CASE II-RC: For all i = 1, . . . ,M and j = 2, . . . , J:

Pr
(
C1((0, τi];X

j
t ) = Cj((0, τi];X

j
t )
)

= 1.

Hence, in CASE I-RC there is at least one model which does not overlap with the benchmark for at least one interval,
which may in fact arise if one competitor model is strictly non-nested for at least one interval. By contrast, in CASE II-RC,
all competing models overlap with the benchmark model over all intervals. As before, for each model comparison pair
j, the competitor and the benchmark can in principle either be misspecified or correctly specified with respect to the
relevant conditioning set, Xj

t .
Hereafter, let P denote the set of probability measures, P (= Pr), defined on the support of Xt such that Assump-

tions A.1, A.3 and A.4 hold, and let PRC
0 =

{
P ∈ P : HRC

0,P holds
}
denote the set of all DGPs under the null hypothesis.

Also, denote:

P I−RC
0 =

{
P ∈ P : HRC

0,P and CASE I-RC holds
}
,

as the set of null DGPs such that CASE I-RC holds. Similarly:

P IIa−RC
0 =

{
P ∈ P : HRC

0,P and CASE II-RC holds with C1((0, τi];X
j
t ) = τi a.s. for all j = 2, . . . , J

}
and:

P IIb−RC
0 =

{
P ∈ P : HRC

0,P and CASE II-RC holds with P
(
C1((0, τi];X

j
t ) = τi

)
< 1 for at least

one interval i ∈ {1, . . . ,M} and one model j ∈ {2, . . . , J}}

denote the set of null DGPs such that CASE II-RC with either C1((0, τi];X
j
t ) = τi a.s. for all j = 2, . . . , J or

P
(
C1((0, τi];X

j
t ) = τi

)
< 1 for at least one interval i ∈ {1, . . . ,M} and one model j ∈ {2, . . . , J} holds. Thus, PRC

0 is formed

by the union of the sets P I−RC
0 , P IIa−RC

0 , and P IIb−RC
0 , respectively. Below we will establish the validity of bootstrap critical

values uniformly over all DGPs in CASE I-RC and in CASE II-RC, respectively. Finally, denote PRC
A =

{
P ∈ P : HRC

A holds
}

the set of DGPs under the alternative hypothesis.
To establish the limiting distribution of Ŝmax

P,R , denote by V the asymptotic M(J − 1) × M(J − 1) dimensional variance–
covariance matrix for CASE I-RC, whose principal diagonal elements are vkk with k = (j − 2)M + i with i = 1, . . . ,M and
j = 2, . . . , J , and whose off-diagonal elements are given by vkk′ , with k′

= (j′ − 2)M + i′ and i′ ̸= i and/or j′ ̸= j (see (32)
and (33) in the Appendix A for an exact definition of vkk and vkk′ ).

We are now ready to study the limiting behaviour of the test statistic. That is, recalling the definition ŜP,R(τi; j) in (18),
we denote:⎛⎜⎝ ŜP,R,1

...

ŜP,R,M(J−1)

⎞⎟⎠ =

⎛⎜⎝ ŜP,R(τ1; 2)
...

ŜP,R(τM; J − 1)

⎞⎟⎠
so that Ŝmax

P,R can be written as:

Ŝmax
P,R =

(J−1)M∑
k=1

(
max

{
0, ŜP,R,k

})2
.

Also, for each k = (j − 2)M + i, i = 1, . . . ,M and j = 2, . . . , J , let ςk = limP→∞ µk,P with:

µk,P =
√
PEP

((
L
(
E1
(
(0, τi];X

j
t

))
− L

(
Ej
(
(0, τi];X

j
t

)))
1
{
Xj

t ∈ X j
})

(19)

nd note that, for a fixed P ∈ PRC
0 , we have either ςk = 0 or ςk = −∞, depending on whether µk,P = 0 or µk,P < 0,

respectively. The limiting behaviour of Ŝmax is given by the following theorem:
P,R

14
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heorem 4. Let Assumptions A.1–A.5 hold and let Zk denote the kth element of a M(J − 1)-dimensional zero mean normal
andom vector with variance–covariance matrix equal to V as defined in (32) and (33) in Appendix A. Assume that V is positive
emidefinite. Then:

i) Under HRC
0 , for a given P ∈ P I−RC

0 with Pr
(
C1((0, τi];X

j
t ) = Cj((0, τi];X

j
t )|X

j
t ∈ X

)
< 1 for at least one j ∈ {2, . . . , J} and

ne i ∈ {1, . . . ,M}:

Ŝmax
P,R

d
→

M(J−1)∑
k=1

(max {0, Zk + ςk})
2 ,

where Zk + ςk = −∞ when ςk = −∞.

(ii) Under HRC
0 :

(a) For a given P ∈ P IIa−RC
0 and any ∆ > 0:

lim
P,R→∞

P

(̂
Smax
P,R ≤ ∆

√
P
R

)
= 1.

(b) For a given P ∈ P IIb−RC
0 and any ∆ > 0:

Ŝmax
P,R

P
→ 0.

iii) Under HRC
A , there exists ε > 0, such that for a given P ∈ PRC

A

lim
P,R→1

P
(

1
√
P
Ŝmax
P,R > ε

)
= 1.

Theorem 4 provides the analogous results for the multiple intervals and models case as those in Theorem 1. Specifically,
under CASE I-RC the asymptotic distribution is driven by all non-slack models, and also reflects the two layers of
estimation error across all models. Notice, however, that the statements in Theorem 4 only hold for a fixed distribution
P ∈ P , while our goal is to make inference uniformly over all DGPs within the sets P I−RC

0 , P IIa−RC
0 , and P IIb−RC

0 , respectively.
Indeed, as we cannot consistently estimate ςk uniformly over P I−RC

0 , we now introduce the wild bootstrap statistic
which, conditional on the sample, properly mimics the limiting distribution of Ŝmax

P,R uniformly over all DGPs in the
respective null set. We then show that inference based on wild bootstrap critical values is asymptotically correct and non-
conservative whenever at least one moment condition holds with equality. Thus, recall the different components of the
bootstrap statistic Âj,t

(
τi,X

j
t

)
, B̂j,t

(
τi,X

j
t

)
, and D̂j,t (τi) from Section 3.3, where we make the dependence in Âj,t

(
τi,X

j
t

)
and B̂j,t

(
τi,X

j
t

)
on a specific conditioning set Xj

t now explicit, and suppress the dependence on P and R to avoid further

notational clutter. That is, given Âj,t

(
τi,X

j
t

)
, B̂j,t

(
τi,X

j
t

)
, and D̂j,t (τi) for each competitor model, j, and interval, i, we

define the bootstrap statistic for the pairwise comparison with the benchmark as:

Ŝ∗

P,R(τi; j) =
1

√
P

T−lP−1∑
t=R

εt

(t+lP∑
s=t

(̂
A1,s

(
τi,Xj

s

)
− Âj,s

(
τi,Xj

s

)
+ B̂1,s

(
τi,Xj

s

)
− B̂j,s

(
τi,Xj

s

)))

+

√
P
R

R−lR−1∑
t=1

ηt

(t+lR∑
s=t

(̂
D1,s (τi) − D̂j,s (τi)

))
where εt and ηt are as defined in Section 3.3. The bootstrap statistics for each pairwise comparison become:⎛⎜⎝ Ŝ∗

P,R,1
...

Ŝ∗

P,R,M(J−1)

⎞⎟⎠ =

⎛⎜⎝ Ŝ∗

P,R(τ1; 2)
...

Ŝ∗

P,R(τM; J − 1)

⎞⎟⎠
Finally, for the moment selection, we also need to construct a HAC estimator of the diagonal elements vkk of the

asymptotic variance. We denote this estimator by v̂kk,P,R, and refer the reader again to (34) for its exact definition. The
final bootstrap statistic for the test now reads as:

Ŝ∗max
P,R =

M(J−1)∑
k=1

(
max

{
0, Ŝ∗

P,R,k1
{̂
SP,R,k ≥ −

√
v̂kk,P,R · κP

}})2
with κP → ∞ as P → ∞. Thus, following Andrews and Soares (2010), the bootstrap statistic discards ‘‘poor’’ model
lternatives k which are clearly dominated by the benchmark. Specifically, whenever the event Ŝ < −

√
v̂ · κ
P,R,k kk,P,R P

15
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o
ccurs, it holds with probability one that:

max
{
0, Ŝ∗

P,R,11
{̂
SP,R,k ≥ −

√
v̂kk,P,R · κP

}}
= 0.

As a result, sufficiently negative empirical moment conditions do not contribute to the bootstrap statistic, and the wild
bootstrap statistic asymptotically eliminates inequalities that are too slack. This trimming procedure is common in the
superior predictive ability testing literature (e.g., Hansen, 2005), and helps to enhance the power properties of these tests
in finite samples. In this context, the fact that Â1j,t

(
τi,X

j
t

)
, which comprises of Â1,t

(
τi,X

j
t

)
and Âj,t

(
τi,X

j
t

)
as defined

in (29), is centred around its sample mean plays an additional role. In fact, it ensures that v̂kk,P,R converges to the ‘‘true’’
variance of the kth moment condition. Without recentering, v̂kk,P,R is an estimator of the second moment, and it would
diverge to infinity at rate

√
lP , whenever µk < 0. As a consequence, we could fail to eliminate (a subset of) slack moment

conditions.
Let c∗max

B,R,P,1−α be the (1 − α)-th critical values of the empirical distribution of Ŝ∗max
P,R based on B replications. We have:

Theorem 5. Let Assumptions A.1–A.5 hold and assume that V from Theorem 4 is positive semidefinite. Also, as P, R, B → ∞,
lR, lP → ∞, lP/

√
P → 0 and lR/

√
R → 0, κP

log log P → ∞ and κP/
√
P → 0. Then:

(i) Under HRC
0 , in CASE I-RC with Pr

(
C1((0, τi];X

j
t ) = Cj((0, τi];X

j
t )|X

j
t ∈ X

)
< 1 for at least one j ∈ {2, . . . , J},

lim sup
B,P,R→∞

sup
P∈P I−RC

0

P
(̂
Smax
P,R ≥ c∗max

B,R,P,1−α

)
≤ α

and if for some k, µk,P = 0, with µk,P as in (19),

lim sup
B,P,R→∞

sup
P∈P I−RC

0

P
(̂
Smax
P,R ≥ c∗max

B,R,P,1−α

)
= α.

(ii) Under HRC
0 , in CASE II-RC for k = a, b:

lim sup
B,P,R→∞

sup
P∈P IIk−RC

0

P
(̂
Smax
P,R ≥ c∗max

B,R,P,1−α

)
= 0.

(iii) Under HRC
A and a given P ∈ PRC

A :

lim
B,R,P→∞

P
(̂
Smax
P,R ≥ c∗max

B,R,P,1−α

)
= 1.

It is immediate to see from the statement in Theorem 5(i)–(ii) that wild bootstrap based critical values are asymptot-
ically valid uniformly over all DGPs within each case under HRC

0 . In other words, Theorem 5(i) establishes that the test
controls size at level α uniformly over P ∈ P I−RC

0 as P → ∞ when at least one moment is binding, and at level at most
α otherwise. On the other hand, Theorem 5(ii) shows that, regardless of whether P ∈ P IIa−RC

0 or P ∈ P IIb−RC
0 , we obtain

a test that is of asymptotic size zero. Moreover, we note that in CASE I-RC, whenever at least one model has the same
coverage error as the benchmark over at least one interval, then inference is no longer asymptotically conservative, and
wild bootstrap critical values provide a test with correct asymptotic size.15

Finally, note that comparisons across different forecasting horizons have become increasingly important in recent
years (e.g., Clark et al., 2020; Quaedvlieg, 2021). The bootstrap procedure developed in this section may indeed be
straightforwardly adapted to accommodate such a multi-horizon set-up, where the test is carried out simultaneously
across horizons s = 1, . . . , S. Formally, we may be interested in testing that none of the competing models has smaller
expected conditional coverage error at any of the intervals across all forecasting horizons against the alternative that there
exists at least one competitor model that outperforms the benchmark for at least one interval and one horizon. That is:

max
j=2,...,J

max
i=1,...,M

max
s=1,...,S

E
((

L
(
E1,s

(
(0, τi];X

j
t

))
− L

(
Ej,s
(
(0, τi];X

j
t

)))
1
{
Xj

t ∈ X
})

≤ 0

versus:

max
j=2,...,J

max
i=1,...,M

max
s=1,...,S

E
((

L
(
E1,s

(
(0, τi];X

j
t

))
− L

(
Ej,s
(
(0, τi];X

j
t

)))
1
{
Xj

t ∈ X
})

> 0,

where Ej,s
(
(0, τi];X

j
t

)
, j = 1, . . . , J , denotes the coverage error of model j for the interval (0, τi] at horizon s. The key point

is to use the same draws for εt and ηt across horizons s = 1, . . . , S in the construction of the wild bootstrap statistic. In
this way, the dependence among moment inequalities across forecasting horizons is properly captured and results akin
to Theorem 5 hold.

15 Note that based on the results of Theorems 4 and 5, a local power statement could be formulated in analogy to Theorem 3, though we omit
this for brevity reasons.
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. Monte Carlo simulation

In this section we run Monte Carlo simulations to explore the size and power of our tests in finite samples. We exploit
simple DGP for the target variable yt+1 which allows us to explore the results from the theory above for CASE I and II

under the null, and the alternative. The DGP is a linear model involving only two predictors X1,t and X2,t :

yt+1 = β1X1,t + β2X2,t + et+1. (20)

In order to make the simulations as realistic as possible, we allow yt+1 to have serial correlation as well as the possibility
that X1,t and X2,t are correlated, as is the case in most economic and financial applications. We therefore let X1,t and X2,t
follow autoregressive processes Xj,t = ρXj,t−1 + vj,t for j = 1, 2, so that yt+1 also has serial dependence through the
parameter ρ. We let the errors vj,t follow a multivariate normal distribution with variance equal to 1−ρ2 and covariance
equal to φ, so that they are allowed to be correlated by varying the parameter φ and both have an unconditional variance
equal to unity. In the baseline results the time dependence is set to ρ = 0.5 and there is no correlation among the Xj,t
variables (φ = 0) but we will also discuss the results with higher serial correlation (ρ = 0.7, 0.9) and correlated Xj,t
variables (φ = 0.25). The error term et+1 in (20) is drawn from a standard normal distribution and we will check the
robustness of the results to this error distribution.

We will first evaluate the performance of the pairwise model comparison test by making quantile predictions using
two quantile regression models (later we will introduce an additional model to assess the performance of the test with
multiple models). The first model is the benchmark and uses only X1,t , whereas the second model uses only X2,t . For
models j = 1, 2 we write this as:

qτ (β
†
j ; Xj,t ) = β

†
0j(τ ) + β

†
1j(τ )Xj,t , (21)

where β†
j =

(
β

†
0j(τ ), β

†
1j(τ )

)′

. This corresponds to the linear conditional quantile model (1) above. We estimate the
model parameters using the quantile regression estimator described in (4), which aligns this simulation set-up with our
theoretical results.

There will be three different specifications for the parameters (β1, β2) in the DGP in (20) which will allow us to assess
different properties of the tests:

DGP1: (β1, β2) = (1, 1)

DGP2: (β1, β2) = (0, 0)

DGP3: (β1, β2) = (0, 1)

In DGP1, both X1,t and X2,t are present in the conditional quantile function. This means that both of the single-variable
models are equally misspecified so we are in the non-degenerate CASE I under the null. On the other hand, in DGP2
neither X1,t nor X2,t are present in the conditional quantile function so both models are correctly specified and we are in
the overlapping CASE II under the null.16 Finally, in DGP3 only X2,t features in the conditional quantile function, so the
second model is correctly specified and the first is not. This final DGP allows us to assess the power of the test.

In the calculation of the test statistic, we will use the quadratic loss function L(x) = x2 for evaluation. We will trim
the variables according to the indicator 1{Xt ∈ X } in (11) using a 1% trimming rule for the lower and upper tail of each
variable. Regarding the sample sizes of the study, we set T ∈ {240, 480, 960} and use the fixed estimation scheme to
estimate the quantile regression coefficients β̂j,R(τ ). We set π = 1 where π = limT→∞ P/R as in Assumption A.5, so that
the estimation and evaluation windows are equal to P = {120, 240, 480}. For the bootstrap, we generate one bootstrap
draw over B = 1999 simulations using the warp speed method of Giacomini et al. (2013) and we will display results for
block lengths l ∈ {1, 2, 5}. For calculating the conditional coverage we use the Epanechnikov kernel and a rule-of-thumb
bandwidth.17 In computing the density term f̂t+1(·) in the bootstrap we use the Hall and Sheather (1988) bandwidth used
in a similar context by Qu (2008).18

We will also run a variety of robustness checks relative to this baseline set-up, in addition to the modifications of the
time dependence and correlation in the Xj,t variables mentioned above. Specifically, we will also look into the results to
compare: trimming versus no trimming in 1{Xt ∈ X }; the fourth-order versus second-order kernel; and Gaussian versus
t-distributed errors.

16 To explore the other subcase of Case II where we have overlapping models which are both incorrectly specified, we provide an additional DGP
and results which can be found in the supplementary material.
17 This rule-of-thumb uses the rate conditions depending on the order of the kernel as imposed by Assumption A.4. For the fourth-order kernel
we use a bandwidth of hP = KP−1/6 , setting the constant term K to allow roughly one third of observations to receive a non-zero weight. In practice
e tend to prefer the use of the second-order kernel, which uses a bandwidth rule hP = KP−1/3 , as it is more widely used in practice and gives
ery similar results to the fourth-order kernel. We will present results for both cases.
18 Specifically, this bandwidth is hP = 0.5P−1/3z2/3τ

[
1.5φ2(Φ−1(τ ))/((2Φ−1(τ ))2 + 1)

]1/3 where zτ satisfies Φ(zτ ) = 1− τ/2 and the scaling by 0.5
ensures that h ≈ 0.02 when τ = 0.1 and P = 120.
17
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Table 1
Rejection rates: Pairwise - single quantile level.
T = 240 DGP1 DGP2 DGP3

l = 1 τ = 0.1 0.0575 0.0150 0.0960
τ = 0.2 0.0815 0.0145 0.2726
τ = 0.3 0.0520 0.0150 0.5373

l = 2 τ = 0.1 0.0550 0.0150 0.0895
τ = 0.2 0.0605 0.0130 0.2901
τ = 0.3 0.0525 0.0140 0.5408

l = 5 τ = 0.1 0.0495 0.0140 0.0850
τ = 0.2 0.0465 0.0135 0.2551
τ = 0.3 0.0420 0.0145 0.4937

T = 480 DGP1 DGP2 DGP3

l = 1 τ = 0.1 0.0755 0.0085 0.2766
τ = 0.2 0.0825 0.0105 0.7484
τ = 0.3 0.0855 0.0170 0.9730

l = 2 τ = 0.1 0.0615 0.0105 0.2626
τ = 0.2 0.0890 0.0110 0.7249
τ = 0.3 0.0925 0.0175 0.9710

l = 5 τ = 0.1 0.0540 0.0115 0.2496
τ = 0.2 0.0720 0.0135 0.7834
τ = 0.3 0.0765 0.0170 0.9695

T = 960 DGP1 DGP2 DGP3

l = 1 τ = 0.1 0.0690 0.0095 0.6473
τ = 0.2 0.1011 0.0125 0.9895
τ = 0.3 0.1036 0.0155 1.0000

l = 2 τ = 0.1 0.0640 0.0100 0.5533
τ = 0.2 0.0895 0.0130 0.9890
τ = 0.3 0.0905 0.0165 1.0000

l = 5 τ = 0.1 0.0630 0.0110 0.5638
τ = 0.2 0.0770 0.0165 0.9865
τ = 0.3 0.0760 0.0195 1.0000

Notes: The cases of DGP1 through DGP3 correspond to (β1, β2) equal to (1, 1), (0, 0), and (0, 1) in (20).
In this pairwise model set-up we have the non-degenerate CASE I under DGP1, the overlapping CASE II
under DGP2 and we are under the alternative for DGP3.

5.1. Pairwise comparison - Single quantile level

We firstly explore the results of Theorems 1 and 2 by assessing the performance of the ŜP,R(τ ) statistic in (11) for the
pairwise model comparison context for a single τ level. In all simulations, our focus is on the one-sided interval case (0, τ ].
We will first discuss the performance of ŜP,R(τ ) for individual values from τ ∈ {0.1, 0.2, 0.3}, while in the next section
we will turn to the test which assesses models across multiple τ levels. The use of τ values smaller than the median is
in light of the GaR context where the primary focus is on the left tail of the distribution.

Table 1 displays the two-sided rejection rates for the pairwise test at the 10% significance level. DGP1 corresponds
to the non-degenerate CASE I under the null and Table 1 shows that we see rejection rates close to the nominal size,
as expected. The results are best with a truncation lag length of l = 1 which is due to the relatively low time series
dependence in the simulated data. The rejection rates decrease with l which mirrors the finding of Inoue (2001). Although
the test appears to be slightly undersized for the smallest sample size (T = 240, P = 120), with rejection rates around
5%–8% for l = 1, this improves as the sample size increases (T = 960, P = 480). Here we see rejection rates very close to
the nominal size especially for quantile levels τ = 0.2 and τ = 0.3.

Moving to DGP2, which corresponds to the overlapping models scenario, we observe rejection rates close to zero and
far below nominal size for all τ levels and truncation lag lengths. This is in line with Theorems 1 and 2 which show the
degeneracy of ŜP,R(τ ) in CASE II where the size of the test is expected to be zero.

Regarding the power of the test, the results for DGP3 in Table 1 show that the rejection rate increases towards unity
with the sample size. Especially in the case of quantile level τ = 0.3, which is furthest from the tail of the distribution, we
see good power properties of the test in medium sample sizes. The power rises from around 55% for the smallest sample
size (T = 240, P = 120) to above 95% when the sample size increases (T = 480, P = 240). When the sample size is very
low (T = 240, P = 120), the test has low power in the cases of τ = 0.1 and τ = 0.2, though this situation improves as
T increases.

We also performed several robustness checks relative to the baseline set-up, the results of which are displayed in the
supplementary material as Tables S1 to S9. In Tables S1 to S3 we repeat the analysis of Tables 1 to 3 but with a small sample
size of T = 120 implying a very small in-sample and out-of-sample window length of R = P = 60. Although size control
is still good, the power of the test obviously drops, falling to below 20% in the multiple models set-up. We would advise
caution when testing on sample sizes this small; a situation which might arise when quarterly GDP is used in countries
18
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Table 2
Rejection rates: Pairwise - multiple quantile levels.
T = 240 DGP1 DGP2 DGP3

l = 1 0.0640 0.0115 0.5853
l = 2 0.0640 0.0100 0.6088
l = 5 0.0555 0.0125 0.5633

T = 480 DGP1 DGP2 DGP3

l = 1 0.0965 0.0105 0.9785
l = 2 0.0905 0.0100 0.9745
l = 5 0.0790 0.0110 0.9745

T = 960 DGP1 DGP2 DGP3

l = 1 0.1016 0.0160 1.0000
l = 2 0.0770 0.0155 1.0000
l = 5 0.0790 0.0210 1.0000

Notes: Same as for Table 1.

with a short data history. On the other hand, our main simulations above show that samples with T = 240 observations
may already deliver reasonable power. In Tables S4 and S5 we increase the time series dependence parameter to ρ = 0.7
and ρ = 0.9. As expected, we find that larger truncation lag lengths like l = 10 or l = 20 are required for reasonable size
control. In Table S6 we allow correlation in the Xj,t variables with very similar results, finding that rejection rates typically
reduce slightly towards zero as compared to the baseline set-up. In Table S7 the trimming is set to zero instead of 1%,
and the results are very similar to the main results. Table S8 reports the results when the fourth-order Epanechnikov
kernel is used instead of the second-order. The results are broadly similar to the second-order kernel results in Table 1
above, despite a slightly worse performance due to the presence of negative kernel weights. Finally, in Table S9 we use
a Student’s-t distribution for the error term (rescaled to have unit variance) in place of the standard normal assumption.
These results are also in line with the main set-up, with size control being ensured in DGP1 with a larger truncation lag
length of l = 2.

5.2. Pairwise comparison - Multiple quantile levels

We now turn to the performance of the Ŝmax
P,R test in (17) when it is applied in the context of a pairwise comparison

across multiple quantiles. Here the null hypothesis is that model 1 has equal or smaller coverage error than model 2 across
all quantile levels τ ∈ {0.1, 0.2, 0.3}. Under DGP1 corresponding to CASE I-RC, the two models are equally misspecified
across all τ levels, so in this instance we are in the least favourable case under the null. The other results for DGP2 and
DGP3 will assess the overlapping CASE II-RC under the null and the power respectively. Results are again presented for
a significance level of 10%. We repeat all of the robustness checks from above which are available from the authors on
request.

The results in Table 2 show promising size properties in the least favourable case under the null (DGP1). Focussing
on the l = 1 results, we see rejection rates of 6.4%, 9.6% and 10.1% as we increase the sample size. These results show
improvement over the single quantile tests from the previous section. Most importantly, we find that the power of the
test (DGP3) is much greater than in the single quantile test. Notably, the power is roughly 60% for l = 1 at T = 240 and
this rises swiftly to unity with the sample size. This is in contrast to the previous section where power was as low as 10%
for τ = 0.1 in the single quantile level test in Table 1. For the overlapping case (DGP2) we see similar findings to the
previous section. In particular, the rejection rate is close to zero which is in line with Theorems 4 and 5.

5.3. Multiple model comparison - Multiple quantile levels

In addition to the two single-variable models used for the pairwise comparison results, we now introduce a third
model. This will enable us to assess the performance of the Ŝmax

P,R test in (17) for comparing multiple models (J = 3) at
multiple τ levels. Specifically, we will make predictions using a conditional quantile model which uses both predictors
Xt =

(
X1,t , X2,t

)′:
qτ (β†

;Xt ) = β
†
0 (τ ) + β

†
1 (τ )X1,t + β

†
2 (τ )X2,t . (22)

As the benchmark model, we retain the first model in (21) which uses only X1,t as a predictor. On introducing
the additional model, this set-up will assess different properties of the test under DGP1. Specifically, under DGP1 the
benchmark model is now dominated by the new model in (22) so we are under the alternative and not the null as in the
previous sections. Under DGP2, we have a similar case to the previous section as all three models overlapping and we are
in the degenerate CASE II-RC under the null. Under DGP3, the benchmark is dominated by both of the other models and
we are under the alternative.
19
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Table 3
Rejection rates: Multiple models - multiple quantile levels - benchmark X1,t .
T = 240 DGP1 DGP2 DGP3

l = 1 0.2436 0.0030 0.5923
l = 2 0.2281 0.0035 0.5763
l = 5 0.1846 0.0030 0.5583

T = 480 DGP1 DGP2 DGP3

l = 1 0.7589 0.0050 0.9740
l = 2 0.7059 0.0040 0.9780
l = 5 0.6963 0.0050 0.9710

T = 960 DGP1 DGP2 DGP3

l = 1 0.9965 0.0055 1.0000
l = 2 0.9960 0.0045 1.0000
l = 5 0.9945 0.0025 1.0000

Notes: The cases of DGP1 through DGP3 correspond to (β1, β2) equal to (1, 1), (0, 0), and
(0, 1) in (20). In this multiple model set-up with X1,t in the benchmark model and X2,t
and Xt being used in the others, the benchmark is worse than the Xt model under DGP1,
worse than both models under DGP3, and overlapping under DGP2.

Table 3 displays the rejection rates for this multiple model test. The rejection rates are found to be very close to zero
under DGP2 which is to be expected in light of the theory and the results of the previous sections. Under DGP1 and
DGP3 we see that the power of the test improves to unity with the sample size. The rejection rate is lower under DGP1
than DGP3 which reflects that under DGP1 the benchmark is only beaten by a single model, whereas under DGP3 the
benchmark is beaten by both of the other competing models.

In summary of all of the above simulation results, we find that the various versions of our test have good size and
power properties under different DGPs and samples sizes. While the power of the test can be somewhat low in small
samples when interest is in the pairwise model comparison at a single quantile level near the tail, such as τ = 0.1, this
situation is greatly improved when performing the pairwise test across different quantiles, even in small samples. The
tests also perform well when multiple models are under consideration.

6. Empirical application

In this section we apply our test to evaluate the out-of-sample specification of the recent GaR framework of Adrian et al.
(2019). The idea behind their approach is that economic conditions vary with financial conditions in the lower part of the
distribution, but not in the upper part. Their two-step method uses a quantile regression approach in which economic
activity, measured by real GDP growth, is regressed on a National Financial Conditions Index to obtain out-of-sample
forecasts. In this empirical application we aim to explore the robustness of this specification in terms of conditional
coverage, especially (i) by seeing whether models using other candidate predictors suggested by Brownlees and Souza
(2021) can provide more accurate predictions in terms of conditional coverage and (ii) assessing whether the quarterly
results are robust when economic activity is instead proxied by monthly industrial production growth, which is highly
correlated with real GDP growth but has many more available observations. This latter exercise is important as it is difficult
to perform robust inference in the traditional GaR context which uses short quarterly data spans.

6.1. Set-up and data

The models used in our application are an augmented version of the quantile autoregressive model of Koenker and
Xiao (2006) which has a linear quantile regression form matching our set-up and simulation sections. Specifically, we
use quantile regressions of future s-step ahead economic conditions19 (yt+s) on an autoregressive term (yt ) and a single
predictor (Xjt ) which is different across models j = 1, . . . , J:

qτ (β
†
j ; yt , Xjt ) = β

†
0j(τ ) + β

†
1j(τ )yt + β

†
2j(τ )Xjt . (23)

The economic conditions variable yt is either real GDP growth in the quarterly case or IP growth in the monthly case.
The benchmark model (which we refer to as ‘‘QAR(1)+NFCI’’) uses the Chicago Fed NFCI as in Adrian et al. (2019). We will
begin our analysis with a pairwise comparison (J = 2) where the competitor model (‘‘QAR(1)+SV’’) uses stock volatility
(SV), suggested by Brownlees and Souza (2021), which is proxied by the squared daily returns on the S&P500, averaged to
the quarterly or monthly frequency. In particular, note that if we view NFCI and SV as noisy predictors of some common

19 We use the forward growth rate for yt+s as in Brownlees and Souza (2021) though we also checked the results when using the cumulative
s-period growth as in Adrian et al. (2019). The results are quite similar, though the cumulative growth rate transformation has the drawback of
imparting a high degree of serial correlation onto the series.
20
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Fig. 1. Real GDP growth vs. Chicago Fed NFCI.

latent factor, say Xjt = Ft +ujt with j = 1, 2, where Ft denotes the common factor, while X1t and X2t are the observed NFCI
nd SV measures, respectively, a variety of scenarios might arise in principle. Specifically, provided that (i) each factor j
s relevant in the sense that Pr

(
β

†
0j(τ ) + β

†
1j(τ )yt + β

†
2j(τ )Xjt = β̃

†
0j(τ ) + β̃

†
1j(τ )yt

)
< 1, (ii) Var

(
ujt
)

> 0 for j = 1, 2, and
iii) Pr (u1t = u2t) < 1, we have that:

Pr
(
X ′

1,tβ
†
1(τ ) = X ′

2,tβ
†
2(τ )

)
< 1

nd thus models 1 and 2 do not overlap. Whether we are in CASE I under H0 or under the alternative hypothesis then
epends on the underlying DGPs. Similarly, if at least one of the above conditions (i)–(iii) fails to hold, then we are in
ASE II under H0.
The data for GDP, IP and NFCI are taken from the FRED Economic Data20 service whereas the S&P500 data for SV are

aken from Yahoo! Finance.21 The dataset runs from January 1971 to February 2023, which yields a quarterly sample size
f TQ = 208 for the GDP growth model and a monthly sample size of TM = 626 in the IP growth model. We will focus on
he one quarter ahead and one year ahead forecast horizons, as in Adrian et al. (2019), in other words sQ ∈ {1, 4} with
uarterly data or sM ∈ {3, 12} for the monthly case. Fig. 1 plots the quarterly real GDP growth rate against the NFCI and
V series, which confirms that the negative correlation between economic and financial conditions is more pronounced
uring lower-tail events in real GDP growth. It also highlights the pronounced drop and rebound of GDP growth in the
econd and third quarters of 2020 when the Covid-19 pandemic reached the U.S. This was mirrored by a single period
ncrease in SV in 2020Q2 though there was little significant impact on the NFCI.

Regarding the out-of-sample set-up, we use the fixed estimation scheme as outlined in the rest of the paper and
e set the quarterly evaluation window to be PQ = 120 so as to match the set-up used in the simulation section as
losely as possible. The equivalent monthly evaluation window is PM = 360. We therefore make quantile forecasts for
0 years spanning from the early 1990s to the start of 2023. The rest of the set-up is exactly as in the simulation section,
amely: quantile levels τ ∈ {0.1, 0.2, 0.3} will be used (first to assess the results of the single-quantile test across different
uantiles and then for the multiple quantile test), truncation lag lengths l ∈ {1, 2, 5} will be used with B = 1999 bootstrap
raws, the trimming fraction is set to 1%, the second-order Epanechnikov kernel is used and all of the bandwidth rules
re as described above.22

20 See: https://fred.stlouisfed.org/ [Last Accessed: 12/04/2023]; The FRED codes for GDP, IP and NFCI are A191RL1Q225SBEA, INDPRO and NFCI,
respectively.
21 See: https://finance.yahoo.com/quote/%5EGSPC/ [Last accessed: 12/04/2023].
22 In principle, it is possible to adopt a data-driven choice of the truncation lag length as in Inoue (2001), which is based on a simulation driven
response surface method (see p.170, Inoue, 2001). However, we do not pursue the approach here as the methodology is based on stylized simulations.
We prefer instead to present the results for a range of lag choices and check the sensitivity of the results in this regard.
21
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Table 4
QAR(1)+NFCI vs. QAR(1)+SV - Pairwise comparison - single quantile level.

Real GDP growth IP growth

sQ = 1 sQ = 4 sM = 3 sM = 12

Stat p-value Stat p-value Stat p-value Stat p-value

l = 1 τ = 0.1 0.4181 0.3132 −0.0407 0.1831 0.3813 0.3102 −0.0422 0.3162
τ = 0.2 0.5151 0.3742 0.0339 0.9235 0.5335 0.1841 0.2170 0.8904
τ = 0.3 0.9344 0.2861 0.1663 0.7524 0.8262 0.0760 0.3338 0.4662

l = 2 τ = 0.1 – 0.3302 – 0.2341 – 0.3592 – 0.3922
τ = 0.2 – 0.4142 – 0.9715 – 0.1781 – 0.8884
τ = 0.3 – 0.3392 – 0.7814 – 0.0750 – 0.4812

l = 5 τ = 0.1 – 0.3112 – 0.2931 – 0.3232 – 0.4602
τ = 0.2 – 0.4592 – 0.9365 – 0.2171 – 0.8894
τ = 0.3 – 0.3542 – 0.7664 – 0.1181 – 0.4922

Table 5
QAR(1)+NFCI versus QAR(1)+SV - Pairwise multiple quantile test.

Real GDP growth IP growth

sQ = 1 sQ = 4 sM = 3 sM = 12

Stat p-value Stat p-value Stat p-value Stat p-value

l = 1 1.3133 0.1621 0.0288 0.5058 1.1127 0.0525 0.1585 0.5858
l = 2 – 0.1806 – 0.5098 – 0.0600 – 0.5823
l = 5 – 0.2001 – 0.4897 – 0.0815 – 0.5968

6.2. Results: Pairwise comparison - Single quantile level

We first present the results for the pairwise test at a single quantile level, corresponding to the ŜP,R(τ ) statistic in (11).
he results are displayed in Table 4 which shows the test statistic (‘‘Stat’’) at the various quantile levels as well as the
wo-sided p-values calculated using different block lengths. We firstly note that, in terms of the bootstrap procedure, the
-values appear to be very stable across l. When quarterly real GDP growth is used to proxy economic conditions there are

no rejections of the null, showing that the QAR(1)+SV model does not improve over the benchmark QAR(1)+NFCI model
at any quantile level, neither for quarter-ahead nor year-ahead predictions.

However, when we change the economic activity variable to IP growth which allows us to greatly increase the sample
size, the results change somewhat. In the right panel of Table 4 we see that for one quarter ahead prediction (sM = 3)
here is some evidence at the 10% significance level (with a p-value of 7.6%) that the QAR(1)+SV model improves over
the QAR(1)+NFCI model at quantile level τ = 0.3 though not at the other quantile levels. This indicates that the NFCI
model may be reasonable in the far left tail of economic activity but not when interest is in a less extreme definition of
downside risk. There is still no evidence of improvement for the one year ahead (sM = 12) horizon at any quantile level.

Relative to the existing literature, our findings seem to align with the evidence of Brownlees and Souza (2021) who
find little statistically significant evidence of the QAR(1)+NFCI model being outperformed for real GDP growth. However,
the fact that the results change slightly when the sample size is increased and the dependent variable is IP growth can
potentially be explained by the power gains from using larger samples which we document in our simulations. It is
possible that existing GaR studies are unable to uncover robust evidence in favour of new models solely due to the choice
of quarterly data.

6.3. Results: Pairwise test - Multiple quantiles

We now extend the results from the previous section by performing the test which operates across multiple quantile
levels. This is a useful exercise as it is possible that rejections of the null do not occur when taking multiple quantile
levels into consideration, even if a rejection does occur in isolation at some specific quantile level. Table 5 displays the
test statistic in (17) as well as the one-sided p-values calculated across the different block lengths we consider.

The results are in line with the previous findings. In the case of real GDP growth there is no evidence that the
QAR(1)+NFCI model is outperformed when looking jointly over τ ∈ {0.1, 0.2, 0.3}. On the other hand, the results for
IP growth in the right panel of Table 5 show that the QAR(1)+NFCI model is outperformed by the QAR(1)+SV model for
the one quarter ahead horizon (sM = 3), almost with rejection at the 5% level. As in the previous section, this result could
be driven by the higher power of the test in the larger sample size that we have with monthly IP growth. Overall, there
is some suggestion that the baseline specification of Adrian et al. (2019) might be improved upon when the definition of
downside risk is extended to a wider set of quantiles in the lower tail of the distribution.
22
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Table 6
Multiple model, multiple quantile test.

Real GDP Growth IP Growth

sQ = 1 sQ = 4 sM = 3 sM = 12

Stat p-value Stat p-value Stat p-value Stat p-value

l = 1 1.8015 0.4132 0.0288 0.9585 2.3935 0.1076 0.1874 0.8264
l = 2 – 0.4012 – 0.9665 – 0.1246 – 0.8354
l = 5 – 0.4142 – 0.9470 – 0.1471 – 0.8489

6.4. Results: Multiple models - Multiple quantiles

We now check whether there are other candidate predictors which deliver further gains over the QAR(1)+SV method.
his will enable us to apply our test for multiple models and multiple quantiles using the most general version of the Ŝmax

P,R
statistic in (17). To do so, we consider a further set of three variables in addition to the NFCI and SV predictors, which
are those deemed most successful by the study of Brownlees and Souza (2021). This brings the total number of models
to J = 5. The additional variables we use are: the global real economic activity factor (GF) of the Federal Reserve Bank
of Dallas; a term spread (TS) equal to the 10-year treasury rate minus the 1-year rate; and house prices (HP) which we
proxy by the CPI of housing in order to allow for monthly analysis. All variables are taken from FRED and are available
at both the monthly and quarterly frequency.23 The test is carried out jointly across all models and all quantile levels
τ ∈ {0.1, 0.2, 0.3} as above.

The results, displayed in Table 6, are generally in line with the previous findings. In the case of real GDP growth, the
test statistic increases at sQ = 1 which is driven mostly by the QAR(1)+GF model, although the largest contribution is still
from QAR(1)+SV.24 Nevertheless, there is still no rejection of the null for real GDP growth, so there is no evidence that
any model improves over the QAR(1)+NFCI model at any quantile level.25 Similarly, the test statistic for IP growth also
rises most for the quarter ahead horizon sM = 3 due to the contribution of the QAR(1)+GF model while the effect of the
SV variable still dominates. The fact that the GF variable increases the test statistic makes sense given that it is cited as
one of the key GaR predictor variables in the study of Brownlees and Souza (2021). As in the previous set of results, the
most significant result comes for IP at sM = 3, though in this case there is not quite enough evidence to reject the null at
the 10% level with a p-value of 10.8% for l = 1. The overall conclusion would therefore have been slightly different had
we checked only the results with multiple models and not looked at the pairwise results.

7. Conclusion

This paper introduces tests for evaluating interval predictions from competing quantile models over different quantile
levels. We start with the baseline case of a pairwise comparison for a single quantile level, where we compare the
expected conditional coverage errors for some given loss function. We focus on coverage as this is the functional of
interest in the case of VaR and GaR, as defined by regulators or institutional bodies. Our test is capable of comparing
possibly (dynamically) misspecified and overlapping models, and is extended to cover cases which are of empirical
relevance: the comparison of multiple intervals, multiple models, and both multiple models and multiple intervals. An
extension to multiple forecast horizons is also outlined. The asymptotic properties of the tests are derived and a wild
bootstrap procedure developed, which provides first order valid inference even in cases where degeneracy occurs due to
the presence of nested or overlapping models.

The finite sample properties of the tests are explored in Monte Carlo simulations, which show overall good size and
power properties. We apply our method in backtesting the Adrian et al. (2019) quantile regression specification for GaR
prediction by exploring the possibility of financial predictors other than the NFCI in predicting risks to economic activity.
While the test does not reject the null of equal expected conditional coverage error loss for the GaR of real GDP growth,
when we use higher frequency monthly industrial production data, we find some evidence that the baseline NFCI model
can be beaten by other financial predictors at some quantile levels. Our results suggest that future studies should consider
using timelier measures of economic activity than real GDP in constructing GaR measures, as it is difficult to provide robust
model evaluation tests for predicting tail events in real output growth using small quarterly data spans. We also suggest
that GaR measures are evaluated over a range of quantile ranks as these tests are found to have better power properties
in simulations than those based on a single quantile level.

23 See: https://fred.stlouisfed.org/ [Last Accessed: 12/04/2023]. The FRED codes for GF, TS and HP are IGREA, DGS10 minus DGS1 and CPIHOSSL
respectively.
24 The individual test statistics for each j = 2, . . . , 5 are not presented but available on request.
25 In principle, in situations with no rejection of the null one might consider ranking models according to other statistics like the ‘‘length’’ of the
prediction as in Brownlees and Souza (2021). We find that this does not have a particularly meaningful interpretation in the one-sided interval case
we explore here. Additionally, when we computed such metrics for the various models, horizons and quantile levels under consideration, there does
not appear to be any model with uniformly ‘better’ length than another model.
23
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ppendix A. Asymptotic variance

For j = 1, 2, define the quantities:
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)
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(see supplementary material for the corre-

sponding definition in the location scale case), and Hj (τ ) defined in A.3(ii). The variance–covariance kernel in Theorem 1(i)
for the one-sided case is given by:
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here Ω(τ ) follows since:
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= 0

ue to the use of the fixed estimation scheme.

ppendix B. Bootstrap statistic

airwise Comparison: For j = 1, 2, the expressions Âj,P,R,t (τ ), B̂j,P,R,t (τ ), and D̂j,P,R,t (τ ) of the bootstrap statistic are defined
as follows:
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ultiple Models & Intervals: In the multiple model and interval case of Section 4, recall that V is an M(J −1)×M(J −1)
imensional matrix, whose principal diagonal elements are given by vkk, with k = (j − 2)M + i with i = 1, . . . ,M and
= 2, . . . , J:
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Finally, we also need to construct a HAC estimator of the diagonal elements vkk of the asymptotic variance. Thus,
et πs = 1 −

s
lP+1 where s = 1, . . . , lP is the lag truncation parameter, where we assume lP = lR for simplicity. In
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. Then, for k = (j − 2)M + i, j = 2, . . . , J , i = 1, . . . ,M we may construct the HAC estimator of vkk as:
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since in the fixed estimation scheme, the asymptotic covariance between the parametric estimation error and the other
components is zero.

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2023.105490.

References

Adrian, T., Boyarchenko, N., Giannone, D., 2019. Vulnerable growth. Amer. Econ. Rev. 109 (4), 1263–1289.
Andrews, D., 1995. Nonparametric kernel estimation for semiparametric models. Econom. Theory 11, 560–596.
Andrews, D., Pollard, D., 1994. An introduction to functional central limit theorems for dependent stochastic processes. Internat. Statist. Rev. 62 (1),

119–132.
Andrews, D., Shi, X., 2013. Inference based on conditional moment inequalities. Econometrica 81 (2), 609–666.
Andrews, D., Soares, G., 2010. Inference for parameters defined by moment inequalities using generalized moment selection. Econometrica 78,
119–157.

25

https://doi.org/10.1016/j.jeconom.2023.105490
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb1
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb2
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb3
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb3
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb3
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb4
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb5
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb5
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb5


V. Corradi, J. Fosten and D. Gutknecht Journal of Econometrics 236 (2023) 105490

A

B
C
C
C
C
C
C
D
E
E
E
G

G
G
G
G
G
H
H
H
H
I
K

K
K

L
M
M
M
P
P

Q
Q
R

S
V
W
W
W
Z

ngrist, J., Chernozhukov, V., Fernandez-Val, I., 2006. Quantile regression under misspecification, with an application to the U.S. wage structure.
Econometrica 74 (2), 539–563.

rownlees, C., Souza, A.B., 2021. Backtesting global growth-at-risk. J. Monetary Econ. 118, 312–330.
hristoffersen, P., 1998. Evaluating interval forecasts. Internat. Econom. Rev. 39 (4), 841–862.
lark, T., McCracken, M., 2001. Tests of equal forecast accuracy and encompassing forNested models. J. Econometrics 105 (1), 85–110.
lark, T., McCracken, M., 2014. Tests of equal forecast accuracy for overlapping models. J. Appl. Econometrics 29, 415–430.
lark, T., McCracken, M., Mertens, E., 2020. Modeling time-varying uncertainty of multiple-horizon forecast errors. Rev. Econ. Stat. 102 (1), 17–33.
lements, M.P., 2014. Forecast uncertainty - ex ante and ex post: U.S. inflation and output growth. J. Bus. Econom. Statist. 32 (2), 206–216.
orradi, V., Swanson, N., 2002. A consistent test for nonlinear out of sample predictive accuracy. J. Econometrics 110, 353–381.
iebold, F.X., Mariano, R.S., 1995. Comparing predictive accuracy. J. Bus. Econom. Statist. 13 (3), 253–263.
ngle, R., Manganelli, S., 2004. CAViaR: Conditional autoregressive value at risk by regression quantiles. J. Bus. Econom. Statist. 22 (4), 367–381.
scanciano, J.C., Olmo, J., 2010. Backtesting parametric value-at-risk with estimation risk. J. Bus. Econom. Statist. 28 (1), 36–51.
scanciano, J., Velasco, C., 2010. Specification tests of parametric dynamic conditional quantiles. J. Econometrics 159, 209–221.
iacomini, R., Politis, D.N., White, H., 2013. A warp-speed method for conducting Monte Carlo experiments involving bootstrap estimators. Econom.

Theory 29 (3), 567–589.
iacomini, R., White, H., 2006. Tests of conditional predictive ability. Econometrica 74 (6), 1545–1578.
neiting, T., 2011. Quantiles as optimal point predictors. Int. J. Forecast. 27, 197–207.
neiting, T., Raftery, A., 2007. Strictly proper scoring rules, prediction, and estimation. J. Amer. Statist. Assoc. 102 (477), 359–378.
onzalez-Rivera, G., Maldonado, J., Ruiz, E., 2019. Growth in stress. Int. J. Forecast. 35, 948–966.
ranger, C., 1999. Outline of forecast theory using generalized cost functions. Span. Econom. Rev. 1, 161–173.
all, P., Sheather, S.J., 1988. On the distribution of a studentized quantile. J. R. Stat. Soc. Ser. B Stat. Methodol. 50 (3), 381–391.
ansen, B., 1996. Inference when a nuisance parameter is not identified under the null hypothesis. Econometrica 64, 413–430.
ansen, P., 2005. A test for superior predictive ability. J. Bus. Econom. Statist. 23 (4), 365–380.
orvath, P., Li, J., Liao, Z., Patton, A., 2022. A consistent specification test for dynamic quantile models. Quant. Econ. 13, 125–151.
noue, A., 2001. Testing for distributional changes in time series. Econom. Theory 17, 156–187.
im, T.-H., White, H., 2003. Estimation, inference, and specification testing for possibly misspecified quantile regression. In: Fomby, T., Carter Hill, R.

(Eds.), Maximum Likelihood Estimation of Misspecified Models: Twenty Years Later. In: Advances in Econometrics, vol. 17, Emerald Group
Publishing Limited, Bingley, pp. 107–132.

oenker, R., Xiao, Z., 2006. Quantile autoregression. J. Amer. Statist. Assoc. 101 (475), 980–990.
oenker, R., Xiao, Z., 2009. Conditional quantile estimation for generalized autoregressive conditional heteroscedasticity models. J. Amer. Statist.

Assoc. 109 (488), 1696–1712.
i, J., Liao, Z., Quaedvlieg, R., 2022. Conditional superior predictive ability. Rev. Econom. Stud. 89, 843–875.
achado, J.A., Silva, J.S., 2019. Quantiles via moments. J. Econometrics 213 (1), 145–173.
anzan, S., 2015. Forecasting the distribution of economic variables in a data-rich environment. J. Bus. Econom. Statist. 33 (1), 144–164.
cCracken, M., 2020. Diverging tests of equal predictive ability. Econometrica 88, 1753–1754.
lagborg-Møller, M., Reichlin, L., Ricco, G., Hasenzagl, T., 2020. When is growth at risk? Technical report, BPEA Conference Draft, Spring.
rasad, A., Elekdag, S., Jeasakul, P., Lafarguette, R., Alter, A., Feng, A., Wang, C., 2019. Growth at Risk: Concept and Application in IMF Country

Surveillance. IMF Working Paper 19/36, International Monetary Fund.
u, Z., 2008. Testing for structural change in regression quantiles. J. Econometrics 146, 170–184.
uaedvlieg, R., 2021. Multi-horizon forecast comparison. J. Bus. Econom. Statist. 39 (1), 40–53.
eichlin, L., Ricco, G., Hasenzagl, T., 2020. Financial Variables as Predictors of Real Growth Vulnerability. Technical Report 05/2020, Deutsche

Bundesbank Working Paper.
hi, X., 2015. A nondegenerate Vuong test. Quant. Econ. 6, 85–121.
uong, Q., 1989. Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57, 307–333.
ang, J., Wu, J., 2012. The taylor rule and forecast intervals for exchange rates. J. Money Credit Bank. 44 (1), 103–144.
est, K.D., 1996. Asymptotic inference about predictive ability. Econometrica 64 (5), 1067–1084.
hite, H., 2000. A reality check for data snooping. Econometrica 68 (5), 1097–1126.
hu, Y., Timmermann, A., 2020. Can Two Forecasts Have the Same Conditional Expected Accuracy?. arXiv working paper, arXiv:2006.03238v1.
26

http://refhub.elsevier.com/S0304-4076(23)00206-3/sb6
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb6
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb6
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb7
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb8
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb9
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb10
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb11
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb12
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb13
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb14
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb15
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb16
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb17
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb18
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb18
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb18
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb19
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb20
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb21
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb22
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb23
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb24
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb25
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb26
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb27
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb28
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb29
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb29
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb29
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb29
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb29
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb30
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb31
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb31
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb31
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb32
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb33
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb34
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb35
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb36
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb37
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb37
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb37
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb38
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb39
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb40
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb40
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb40
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb41
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb42
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb43
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb44
http://refhub.elsevier.com/S0304-4076(23)00206-3/sb45
http://arxiv.org/abs/2006.03238v1

	Out-of-sample tests for conditional quantile coverage an application to Growth-at-Risk
	Introduction
	Set-Up
	Pairwise Comparison
	Null Hypothesis and Statistic
	Limiting Distribution
	Bootstrap Critical Values
	Local Power

	Multiple Model & Interval Comparison
	Null Hypothesis and Statistic
	Limiting Distribution

	Monte Carlo Simulation
	Pairwise Comparison - Single Quantile Level
	Pairwise Comparison - Multiple Quantile Levels
	Multiple Model Comparison - Multiple Quantile Levels

	Empirical Application
	Set-up and Data
	Results: Pairwise Comparison - Single Quantile Level
	Results: Pairwise Test - Multiple Quantiles
	Results: Multiple Models - Multiple Quantiles

	Conclusion
	Appendix A. Asymptotic Variance
	Appendix B. Bootstrap Statistic
	Appendix C. Supplementary data
	References


