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Abstract

This paper provides consistent information criteria for the selection of forecasting models

which use a subset of both the idiosyncratic and common factor components of a big dataset.

This hybrid model approach has been explored by recent empirical studies to relax the strictness

of pure factor-augmented model approximations, but no formal model selection procedures have

been developed. The main difference to previous factor-augmented model selection procedures is

that we must account for estimation error in the idiosyncratic component as well as the factors.

Our main contribution is to show the conditions required for selection consistency of a class

of information criteria which reflect this additional source of estimation error. We show that

existing factor-augmented model selection criteria are inconsistent in circumstances where N is

of larger order than
√
T , where N and T are the cross-section and time series dimensions of the

dataset respectively, and that the standard BIC is inconsistent regardless of the relationship

between N and T . We therefore propose a new set of information criteria which guarantee

selection consistency in the presence of estimated idiosyncratic components. The properties of

these new criteria are explored through a Monte Carlo simulation study. The paper concludes

with an empirical application to long-horizon exchange rate forecasting using a recently proposed

model with country-specific idiosyncratic components from a panel of global exchange rates.

JEL Classification: C13, C22, C38, C52, C53

Keywords: Forecasting, Factor model, model selection, information criteria, idiosyncratic

1 Introduction

This paper provides consistent model selection criteria in predictive regressions involving both the

common factors and the idiosyncratic components from a big dataset. The modelling environment

differs from the standard two-stage “diffusion index” approach of Stock and Watson (2002a,b),

where only the estimated factors are retained from the first-stage to be used as regressors in the
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second-stage forecasting model, and all remaining idiosyncratic information from the big dataset

is discarded. We argue that the pure factor approach may be an excessive approximation in cases

where a target variable has a strong relationship with a particular set of variables in the dataset.

As an example, we might specify a forecasting model for inflation by exploiting the idiosyncratic

variation of a small number unemployment variables as predicted by a Phillips curve model, and

also use the factors in order to pick up the ‘big data’ effect. Hybrid models of this form have

been considered as early as Stock and Watson (1999) and can provide benefits in terms of forecast

accuracy by performing significant data reduction and limiting the effect of the so-called “curse of

dimensionality”. Recent empirical studies such as Castle et al. (2013), Luciani (2014) and Engel

et al. (2015) have also used this type of hybrid model for macroeconomic forecasting. In the financial

econometrics literature, models involving the idiosyncratic component also arise in studies such as

Brownlees et al. (2015) which analyse networks in asset returns by using ‘de-factored’ log-prices

obtained by subtracting the common factor component of each asset return.

The objective of this paper is to provide information criteria for model selection in a second-

stage forecasting model which additionally uses the estimated idiosyncratic components; something

which has not been addressed in the existing literature to the best of our knowledge. There has,

however, been recent progress in research into model selection criteria in “pure” factor-augmented

models, which do not involve the idiosyncratic components. Bai and Ng (2009) proposed a boosting

approach to determine the number of autoregressive lags and factors which enter the forecasting

model. Other approaches include Groen and Kapetanios (2013), who propose modified Bayesian

and Hannan-Quinn type information criteria and Djogbenou (2016) who uses cross-validation.

Earlier research focussed on the first stage of this two-step process, for selecting the number of

factors present in the big dataset. The seminal paper of Bai and Ng (2002) showed how to modify

standard information criteria when both the cross-section (N) and time series dimension (T ) of

the dataset grow to infinity. Subsequently, Amengual and Watson (2007), Hallin and Lǐska (2007)

and Onatski (2010) have proposed different methods to tackle the same problem. However, none of

these approaches are able to deal with the case where both factors and idiosyncratic components

are estimated and used in the forecasting model. This yields new challenges which we must address.

The main issue which is new to this paper relative to the literature on pure factor-augmented

models, is that we additionally use estimates of the idiosyncratic components as forecast model

regressors. Our main contribution is to propose new information criteria for model selection which

take into account the new source of estimation error which results from the estimation of the

idiosyncratic component. We use a general class of information criteria with a penalty function

g (N,T ) which depends both on N and T . The main result is a theorem on selection consistency,

which shows that consistency only obtains for information criteria with a penalty satisfying the

condition min
{√

T ,N
}
g (N,T ) → ∞, when Principal Components is used for estimation. This

rate condition is a new finding in the literature, and is different to existing criteria for pure factor-

augmented models. The result is driven by a Lemma which shows that estimation error in the

idiosyncratic components vanishes at a rate min
{√

T ,N
}

, whereas the estimation error in the
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factors vanishes at a rate min {T,N}.1

This new rate condition carries several important implications. Firstly, it implies that existing

factor-augmented model selection procedures are inconsistent in cases where N is large relative to√
T for selecting models involving the estimated idiosyncratic components. Since it is quite natural

for N to be of similar order to T in macroeconomic forecasting, this inconsistency in not restricted

to trivial cases. Secondly, the result means that the standard Bayesian Information Criterion

(BIC), commonly used in time series applications, is inconsistent for any relative rate of increase

between N and T . These findings show that we must make modifications to standard information

criteria in order to get consistent model selection. We therefore propose a range of new criteria

using different functional forms whose properties are equivalent asymptotically but vary in finite

samples. We investigate these finite sample properties through a set of Monte Carlo experiments

which demonstrate the improvements of our methods relative to related criteria such as those of

Groen and Kapetanios (2013).

Our paper bears similarities to other econometric literatures of factor-augmented model spec-

ification, in addition to the aforementioned literature on pure factor-augmented models. Model

selection methods are closely related to model averaging methods such as Hansen (2007) and, for

the factor-augmented case, Cheng and Hansen (2015). While these model averaging methods are

somewhat more general as they nest the model selection methods used here,2 they are more com-

plex as they require the estimation of model weights, in addition to the estimation of both the

factor model and the factor-augmented forecasting model. The factor model approach we employ

also has similarities with the rapidly expanding econometric literature on ‘big data’ methods more

generally. The properties and estimation of competing data reduction methods has been compre-

hensively studied by De Mol et al. (2008) and more recently Carrasco and Rossi (2016). While a

comparison of competing big data methods is not the aim of this study, it is useful to keep in mind

that these comparisons would also change when introducing the idiosyncratic components to the

forecasting model.

We apply our new model selection criteria to the challenging but important empirical problem of

long-horizon exchange rate forecasting. The recent paper of Engel et al. (2015) proposes a factor-

based approach to exchange rate forecasting. They suggest to use the idiosyncratic component

from a global dataset of countries’ exchange rates as the ‘fundamental’ in a regression model for

a particular country’s exchange rate. Therefore their approach precisely matches the modelling

framework under which our methods apply. We extend their model to allow for cross-country

exchange rate spillovers, modelled by the idiosyncratic components, and use our new information

criteria to select between these spillover effects. Our results, applied to a range of OECD countries,

show that it is very difficult to out-perform a näıve no-change model; a result mirrored in the

majority of existing empirical evidence following the seminal work of Meese and Rogoff (1983b,a).

1The rate for factor estimation error was shown in Theorem 1 of Bai and Ng (2002), Lemmas B.1-B.3 of Bai (2003)
and Lemma A.1 of Bai and Ng (2006).

2Model selection is equivalent to model averaging, where the selected model receives a weight of one and all other
models receive a weight of zero.
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However, we also find that our model selection criteria select a non-trivial number of idiosyncratic

effects both in-sample and out-of-sample. This is in contrast to the standard BIC which is not

consistent and severely overfits the model by selecting the maximum possible number of variables

in many cases.

The rest of the paper is organized as follows. Section 2 provides the forecasting set-up and

motivates the use of idiosyncratic components alongside the factors. Section 3 introduces the class

of information criteria we use, and provides the new asymptotic rates for the penalty function which

are required for selection consistency. Section 4 proposes specific functional forms for the penalty

function which satisfy the conditions required for consistency, and compares them to existing in-

formation criteria. Section 5 provides a Monte Carlo analysis. Section 6 presents the empirical

application to exchange rate forecasting and Section 7 concludes the paper.

2 Set-up and Motivation

The broad interest of this study is in predictive regressions for a target variable yt+h when a large

set of N candidate predictor variables, Xt, are available. In the first stage of the two-step procedure

of Stock and Watson (2002a,b), we assume that the predictors permit the common factor structure:

Xt = ΛFt + ut (1)

where Ft is an unobserved r× 1 vector of common factors, Λ is an N × r matrix of factor loadings

and ut an N × 1 vector of idiosyncratic errors. In the theory part of this paper, in the same way

as related papers such as Cheng and Hansen (2015), we will assume that the number of factors,

r, is known. In practice, of course, r is not known to the applied researcher and can instead be

consistently estimated by the information criteria of Bai and Ng (2002). The unknown factors and

loadings can then be estimated by methods such as principal components (PCA) as in Stock and

Watson (2002a,b) and Bai and Ng (2002, 2006).3

In the second stage, we propose the general predictive regression which has the following form:

yt+h = β0′F 0
t + α0′u0

t + εt+h (2)

where F 0
t is an r0 × 1 vector which is a subset of the factors, Ft, so that r0 ≤ r. This allows for

situations either where yt+h is affected by all r factors, or where only some subset of the factors has

predictive ability for yt+h. Similarly, u0
t is a finite m0 × 1 subset of the idiosyncratic error vector

ut. The identity of F 0
t and u0

t is unknown and their selection is the main aim of this study. When

r0 + m0 << N , significant data reduction can improve predictions of yt+h by reducing the excess

variability caused by parameter uncertainty.4

3Other methods, such the maximum likelihood approach of Doz et al. (2011, 2012), could also be used to estimate
the factors but we focus on PCA in this paper.

4We could also specify Equation (2) to include a set of other ‘must-have’ non-factor regressors, Wt, as in Bai and
Ng (2006) but we omit these here for clarity.
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Forecasting models involving idiosyncratic components, where α0 6= 0 in Equation (2), are a

relatively recent development in the literature, with an increasing number of applications. Luciani

(2014) suggests that the use of additional idiosyncratic terms may be useful in forecasting due to

the effect of “pervasive shocks” which affect multiple variables. Castle et al. (2013) choose to look

at hybrid models involving factors and variables, and use the Autometrics routine to select between

alternative formulations. Engel et al. (2015) directly specify long-horizon exchange rate forecasting

models as a function of the idiosyncratic component from a factor model of international exchange

rates. Studies of financial asset networks such as that of Brownlees et al. (2015), mentioned above,

also use a similar structure to Equation (2), although they are not explicitly focussed on the use

of these equations in forecasting.

On the other hand, the “pure” factor-augmented approach, where α0 = 0 and only the factors

are used in forecasting, has been used extensively in the applied forecasting literature. When α0 = 0

and F 0
t is equal to the full factor vector Ft with no factors omitted, Equation (2) corresponds exactly

to the factor-augmented, or “diffusion index” model of Stock and Watson (2002a,b) and Bai and

Ng (2006). This model has been widely used in empirical studies; see Stock and Watson (2011)

for an overview. When α0 = 0 but F 0
t is a smaller subset of Ft, only some factors are used in

forecasting a given target variable. This type of model was motivated by Boivin and Ng (2006) in

the context of real versus nominal macroeconomic factors. As mentioned above, model selection

techniques have been proposed for the pure factor-augmented approach by Bai and Ng (2009) and

Groen and Kapetanios (2013), but not for models involving estimated idiosyncratic components.

In addition to the empirical motivation for pursuing the model in Equation (2), we can also

offer a simple analytical motivation for using this model. The specification of models involving the

idiosyncratic terms has been somewhat overlooked in the literature for the two-stage approach of

Stock and Watson (2002a,b). As a starting point, we let yt be a function of the observable variables

Xt, noting that economic theories propose relationships between observed economic variables rather

than the latent factors, Ft, which are merely used as a data reduction method and do not have a

direct interpretation. In this case, we use the factor model from Equation (1) simply as a way to

approximate Xt and obtain a low-dimensional model.

For this analytical example, the data generating process (DGP-X) for yt+h is known to be the

linear function of Xt, which we partition into X0
t and X1

t which are of dimension m0 × 1 and(
N −m0

)
× 1 respectively, where m0 is a finite integer as specified above.

(DGP-X) yt+h = α0′X0
t + α1′X1

t + et+h (3)

The reason we split Xt into these two components is that it allows the small set of variables X0 to

have a ‘large’ impact on yt+h through α0 whereas each element in the high-dimensional vector X1

has a ‘small’ impact individually, even though the aggregation of their impacts is non-negligible.

This can be related to the above example where the target variable yt+h is inflation, which is

predicted strongly by a small set of unemployment-type series, X0
t , and is lesser affected by the

remainder of the big dataset, X1
t .
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Now using the factor model, which we can correspondingly partition into X0
t = Λ0Ft + u0

t and

X1
t = Λ1Ft + u1

t , we can re-write DGP-X in Equation (3) into the alternative formulation:

(DGP-F) yt+h = β′Ft + α0′u0
t + α1′u1

t + et+h (4)

where β′ =
(
α0′Λ0 + α1′Λ1

)
. In the pure factor-augmented case, the methods of Stock and Watson

(2002a,b) have an overall regression error term vt+h = α0′u0
t + α1′u1

t + et+h and do not explicitly

include u0
t in the model. Note that both DGP-X and DGP-F are high dimensional as N → ∞ as

they have a number of variables of order N . As noted by Bai and Ng (2009), it is unwise to form

predictions using models involving all variables as the mean squared prediction error can be seen

to increase in N due to the effect of parameter estimation.

However, it may be preferable to obtain forecasts using small-scale models involving the pre-

dictors Ft and/or u0
t , which are both finite dimensional. We therefore use Equation (2) in making

h-step ahead forecasts. Assuming for simplicity that Ft and u0
t are known, for the pure factor model

case we have E (yT+h|FT ) = β̂′FT , whereas for the model including the idiosyncratic components

we have E
(
yT+h|FT , u

0
T

)
= β̂′FT + α̂0′u0

T . It can be shown that the difference in mean squared

forecast error (MSFE) between the two models is:

MSFE (yT+h|FT )−MSFE
(
yT+h|FT , u

0
T

)
=

E
[
α0′u0

Tu
0′
T α

0
]
−E

[
u0′
T

(
α̂0 − α0

) (
α̂0 − α0

)′
u0
T

]
(5)

which can be interpreted as the trade-off between omitting u0
t and incurring an unavoidable loss

in population, or including u0
t in the model and incurring additional parameter estimation error.

To give a simple analytical example of this expression, we note as in Bai and Ng (2009) that

T
(
α̂0 − α0

) (
α̂0 − α0

)′
is χ2

m0 with expectation m0 and, if we assume that the idiosyncratic errors

are homoskedastic and cross-sectionally uncorrelated with variance σ2
u and if the regression error

et+h has variance σ2
e , then this expression is approximately equal to:

σ2
uα

0′α0 − σ2
e

m0

T

Therefore, in cases where α0 is ‘large’, for example if α0
i = O (1) for i = 1, ...,m0, then we expect

that using the model with idiosyncratic components dominates the pure factor-augmented model

in terms of MSFE. On the other hand, if α0 is ‘small’ or even α0
i = 0, then there may be no gains

in using the additional idiosyncratic components.

Motivated by the empirical and analytical reasons for using the model in Equation (2), the rest

of this paper provides results on the optimal selection of the factors and idiosyncratic error terms

which enter these types of regression. To the best of our knowledge this is the first paper to look

at model selection in this context.
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3 Model Selection Criteria and Asymptotic Theory

3.1 Model Selection Criteria

This main difference between our study and previous work is that we additionally have to estimate

u0
t in Equation (2) as well as F 0

t . Using Principal Components Analysis (PCA) estimation as in

Stock and Watson (2002a,b) gives the following feasible analogue to the true model in Equation

(2):

yt+h = β0′F̂ 0
t + α0′û0′

t + ε̂t+h (6)

where the regression error ε̂t+h is distinguished from the error term εt+h in the infeasible regression

in Equation (2) which contains the latent regressors F 0
t and u0

t . The estimated factors F̂ 0
t are the

r0× 1 subset of the full vector of r estimated factors F̂ 0
t ⊆ F̂t, where the T × r matrix F̂ consists of

the r eigenvectors which correspond to the r largest eigenvalues of the T × T matrix XX ′, under

the identifying normalization F̂ ′F̂ /T = Ir. This yields the factor loading estimate Λ̂ = X ′F̂ /T .

Using both the factor estimates and the factor loadings estimates, along with Equation (1) yields

an estimator for each variable i in û0
t ⊆ ût which is equal to:

ûit = Xit − λ̂′iF̂t (7)

where λ̂i corresponds to the ith row of the estimated loadings matrix Λ̂. This gives the idiosyncratic

part of each variable which is orthogonal to the factors. In papers such as Brownlees et al. (2015),

ûit represents the ‘de-factored’ part of the financial asset return Xit.

The purpose of our study is to correctly identify the regressors, F̂ 0
t and û0′

t by searching over

different subsets of F̂t and ût. We will refer to a model specification i which uses the variables(
F̂ i
t , û

i
t

)
containing ri estimated factors and mi estimated idiosyncratic errors. This combination

yields the regression:

yt+h = βi′F̂ i
t + αi′ûit + εit+h (8)

The class of information criteria we use has a penalty function which depends on both the

sample size T and the number of variables N . The difference in this paper with respect to other

studies is that the information criterion is a function of estimated idiosyncratic errors as well as

factors. For the model i, the criterion to be minimized depends on the number of variables, ri and

mi, and the estimated sum of squared residuals in model (8):

IC
(
F̂ i, ûi

)
= ln

(
V
(
F̂ i, ûi

))
+ (ri +mi) g (N,T ) (9)

where:

V
(
F̂ i, ûi

)
=

1

T

T∑
t=1

(
yt+h − β̂i′F̂ i

t − α̂i′ûit

)2

In order to elaborate on the search procedure, there are a few remarks to make. Firstly,

in searching over all subsets of the factors, we note that the total number of r factors in Ft is
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typically small, and therefore determining the true subset of r0 factors F 0
t in Equation (2) only

requires searching over 2r combinations, which is computationally inexpensive. As mentioned

earlier, although r is unknown, it can be estimated in practice using the information criteria of Bai

and Ng (2002) in a first step, and then used as the maximum number of factors which we search

over in the second-stage forecasting model for yt+h. On the other hand, in selecting variables from

ut , 2N combinations may not be practical from a computational perspective and, as in standard

model selection procedures, we must first reduce the size of the model space over which we search.

In other words, we must choose a subset of mmax << N variables to search over.

The choice of this candidate set is a decision for the individual researcher. For example, we

could be guided by economic theory as in the above example of Stock and Watson (1999) who look

at inflation models involving both factors and employment-type series. Therefore we could perform

model selection over all r factors, and the subset of mmax idiosyncratic components relating to the

employment and unemployment series in the dataset. A more general way of generating a candidate

subset would be to use a device such as Forward Stepwise (FS) regression and search only over the

first mmax variables which survive this procedure. Forward Stepwise methods and other sequential

methods are surveyed extensively in the chapter of Ng (2013). The principle is to start out with an

empty model and add one variable at a time in a way which maximises the fit of the regression. We

do not claim to have an optimality result for this type of procedure in this paper, and acknowledge

that this has certain shortcomings, as mentioned by Ng (2013). However, since we use this method

only as a way to generate a candidate search set we expect it to perform relatively well, and this

expectation is confirmed later through Monte Carlo simulation. Future work may address this issue

using penalized regression techniques such as LASSO, but this is outside the scope of the current

paper.

3.2 Asymptotic Theory

In order to analyse the asymptotic behaviour of the class of information criteria described in

Equation (9), we first require some technical assumptions. After a description of these assumptions,

we will then show the main result of the paper which is a theorem providing conditions for the

selection consistency of these information criteria.

Assumption 1: The factors satisfy E‖Ft‖4 ≤M and 1
T

∑T
t=1 FtF

′
t →p ΣF > 0 as T →∞.

Assumption 2: The factor loadings are either deterministic such that ‖λi‖ ≤ M , or stochastic

such that E‖λi‖4 ≤M , and they satisfy 1
N Λ′Λ→

p
ΣΛ > 0 as N →∞.

Assumption 3: The idiosyncratic errors are such that: (i) E (uit) = 0 and E|uit|8 ≤ M

for any i and t, (ii) E (uitujs) = σij,ts with |σij,ts| < σ̄ij for all t and s, and |σij,ts| < τ̄ts

for any i and j, and 1
N

∑N
i,j=1 σ̄ij ≤ M , 1

T

∑T
s,t=1 τ̄ij ≤ M and 1

NT

∑
i,j,t,s=1 σ̄ij,ts ≤ M , (iii)

E| 1√
N

∑N
i=1 (uisuit − E (uisuit)) |4 ≤M for all t and s.
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Assumption 4: The variables {λi}, {Ft} and {uit} are three mutually independent groups, al-

though dependence within each group is allowed.

Assumption 5: The regression errors satisfy: (i) E (εt+h|Ft) = 0 for h > 0 where Ft =

σ (yt, Ft, ut, yt−1, Ft−1, ut−1, ...) and E
(
ε4
t+h

)
≤M , (ii) E| 1√

TN

∑T
t=1

∑N
i=1 εt+h (uisuit − E (uisuit)) |2

≤ M for each s and for h > 0, (iii) E‖ 1√
NT

∑T
t=1

∑N
i=1 λiuitεt+h‖2 ≤ M with E (λiuitεt+h) = 0

for any i and t, and (iv) 1√
T

∑T
t=1 Ztεt+h →

d
N (0,Ω) where Zt =

[
F 0
t , u

0
t

]
.

Assumptions 1-3 are standard in the literature of factor-augmented forecasting models for en-

suring the existence of r factors, and allowing for heteroskedasticity and limited dependence in

the idiosyncratic errors. These assumptions coincide with those of Bai and Ng (2006), with the

exception of their Assumption C4 which they require to derive the asymptotic distribution of the

factors, which is not required in this paper. Assumption 4 requires mutual independence of λi, Ft

and uit as in Bai and Ng (2006), though can be readily replaced with weaker assumptions along

the lines of Gonçalves and Perron (2014). Finally, Assumption 5 follows Cheng and Hansen (2015)

in placing standard moment restriction on the factor-augmented model, in this case modified to

include the idiosyncratic components.

Selection consistency occurs when the probability limits of the generated regressors span the

same space as the true factors and idiosyncratic errors F 0
t and u0

t . For the factors, it is well known

that the Principal Components estimates converge to a particular rotation of the true factors H0F 0
t ,

as shown by Bai and Ng (2002). On the other hand, the estimates of the idiosyncratic errors ûit

are consistent for the true uit without rotation.

The following theorem shows the conditions on g (N,T ) required for consistency of selection:

Theorem 1. Let Assumptions 1-5 hold and let the factors and factor loadings be estimated by

Principal Components. For two models i and j, if model i corresponds to the true model such that

the probability limit of
(
F̂ i, ûi

)
is
(
H0F 0

t , u
0
t

)
for all t, and for model j one or both of F̂ j

t and ûjt
has different probability limit, then:

lim
N,T→∞

Pr
(
IC
(
F̂ j , ûj

)
< IC

(
F̂ i, ûi

))
= 0

as long as (i) g (N,T )→ 0 and (ii) min
{√

T ,N
}
g (N,T )→∞ as N,T →∞.

The proof of this result and other required results can be found in the separate Online Ap-

pendix. The key difference of this result relative to previous information criteria is that Condition

(ii) requires that min
{√

T ,N
}
g (N,T ) → ∞ rather than min {T,N} g (N,T ) → ∞, which was

the condition required in pure factor model studies such as Bai and Ng (2009) and Groen and

Kapetanios (2013).5 The cause of this difference is a result which can be seen in Lemma 1 in

5Condition (i) is standard for information criteria in ensuring that inflation in V (.) due to incorrect model
specification is always larger than the penalty g (N,T ). We therefore do not discuss this condition further.
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the Online Appendix. This Lemma shows that the product of the estimation error in the idiosyn-

cratic component, (ûit − uit), with the factors vanishes at the rate min
{√

T ,N
}

, rather than the

min {T,N} rate obtained for the factor estimation error in previous studies.

The main implication of this result is that existing information criteria used in previous studies

do not meet the requirements in Condition (ii) for consistent model selection, and should therefore

not be used in specifying models which take this form. In particular, even model selection criteria

which are modified to allow for factor estimation error are inconsistent as they only take the

min {T,N} consistency rate of the factors into account. These criteria are subsequently inconsistent

in all cases where
√
T is of smaller order than N ; a scenario which can happen quite readily in

macroeconomic datasets where the panel dimensions are roughly the same. As will be shown in

the next section, information criteria such as those in Groen and Kapetanios (2013), do not satisfy

Condition (ii) required by Theorem 1 which leads to inconsistent model selection. It is also useful to

note that, while this result holds for the consistency rates resulting from the Principal Components

factor estimates, in the same way as Groen and Kapetanios (2013) the second condition can be

modified to reflect the consistency rates of other factor model estimators such as the maximum

likelihood method of Doz et al. (2011, 2012). The relative performance of our criteria to other

criteria will be similar after applying any modifications to these consistency rates.

In specifying Equation (2) as a function of both F 0
t and u0

t , it was implicitly assumed that both

the factors and idiosyncratic components are relevant in the DGP for yt+h. While the result of

Theorem 1 still holds when either α0 = 0 or β0 = 0, there is an important further remark to make

about the latter case where β0 = 0 and the factors are irrelevant in the true DGP for yt+h:

Remark 1. In the case where β0 = 0 and the factors are irrelevant in the true DGP for yt+h, then

the results of Theorem 1 still hold, but it is possible to replace Condition (ii) with the following

modified condition: (ii’) min {T,N} g (N,T )→∞ as N,T →∞.

This remark shows that, in the eventuality that the factors do not appear in the true DGP

for yt+h, then we have the same conditions required on the penalty function as in the pure factor

augmented case.6 This would suggest that if it is known a priori that β0 = 0, then we may use

the model selection methods of Bai and Ng (2009) and Groen and Kapetanios (2013), even though

we are using the estimated idiosyncratic components in the model. This could, in theory, lead to

some finite sample improvements. However, given that it is generally not known a priori whether

β0 = 0 in practice, and since Condition (ii) in Theorem 1 is sufficient for Condition (ii’) in Remark

1 in that min
{√

T ,N
}
g (N,T ) → ∞ implies min {T,N} g (N,T ) → ∞, it is more reliable to use

information criteria which satisfy Condition (ii) rather than Condition (ii’).

In the next section we propose a new set of information criteria which satisfy Conditions (i)

and (ii) of Theorem 1 and compare these to existing information criteria which we show to be

inconsistent.

6We thank an anonymous referee for this helpful comment.
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4 Information Criteria

In satisfying the conditions imposed on the penalty function g (N,T ) by Theorem 1, we propose

several different information criteria based both on a Mallows-type form and a Hannan-Quinn

form. The penalty functions we propose make use of the fact that max
{

1√
T
, 1
N

}
≈
√
T+N√
TN

. Since

we ensure that all of the criteria satisfy both Conditions (i) and (ii) of Theorem 1, they are all

consistent and therefore equivalent asymptotically. However, their performance may differ in finite

samples. These finite sample properties will be assessed later through Monte Carlo simulations.

The new information criteria are as follows:

IC1

(
F̂ i, ûi

)
= ln

(
V
(
F̂ i, ûi

))
+ (ri +mi) ln

( √
TN√
T +N

)(√
T +N√
TN

)

IC2

(
F̂ i, ûi

)
= ln

(
V
(
F̂ i, ûi

))
+ (ri +mi) ln

(
min

{√
T ,N

})(√T +N√
TN

)

IC3

(
F̂ i, ûi

)
= ln

(
V
(
F̂ i, ûi

))
+ (ri +mi)

ln
(

min
{√

T ,N
})

min
{√

T ,N
}

HQ1

(
F̂ i, ûi

)
= ln

(
V
(
F̂ i, ûi

))
+ 2 (ri +mi) ln ln

( √
TN√
T +N

)(√
T +N√
TN

)

HQ2

(
F̂ i, ûi

)
= ln

(
V
(
F̂ i, ûi

))
+ 2 (ri +mi) ln ln

(
min

{√
T ,N

})(√T +N√
TN

)

HQ3

(
F̂ i, ûi

)
= ln

(
V
(
F̂ i, ûi

))
+ 2 (ri +mi)

ln ln
(

min
{√

T ,N
})

min
{√

T ,N
}

These criteria clearly satisfy both Conditions (i) and (ii) of Theorem 1. In comparing these criteria

to previous literature, we firstly note that the penalty functions used in IC1, IC2 and IC3 criteria

are similar in nature to those in Bai and Ng (2002). However, as the information criteria of Bai

and Ng (2002) were for selecting the number of factors in the first-stage factor model and not

in the second-stage forecasting regression, we will not make a direct comparison of our results to

theirs. The Hannan-Quinn criteria HQ1, HQ2 and HQ3 are similar in spirit to those in Groen

and Kapetanios (2013). As such, we will now discuss the differences of our criteria to those, with

particular reference to the conditions for selection consistency shown in Theorem 1.

The BICM and HQICM criteria of Groen and Kapetanios (2013) were proposed for the case

of pure factor-augmented model selection, with no estimated idiosyncratic components.7 Their

information criteria, applied to the forecasting model in Equation (2), are as follows:

BICM
(
F̂ i, ûi

)
= ln

(
V
(
F̂ i, ûi

))
+ (ri +mi) ln (T )

(
T +N

TN

)
7In their paper they scale the criteria by T whereas in this paper we follow more closely the specifications of Bai

and Ng (2002).
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HQICM
(
F̂ i, ûi

)
= ln

(
V
(
F̂ i, ûi

))
+ 2 (ri +mi) ln ln (T )

(
T +N

TN

)
While both of these criteria have g (N,T )→ 0 and therefore pass our Condition (i), they both fail

Condition (ii) in cases where
√
T is of smaller order than N , which includes cases such as that in

which N = T as N,T → ∞. This means that in finite samples, panels where N is of similar or

larger order than
√
T , we expect our proposed criteria to provide significant improvements over

both of the methods proposed by Groen and Kapetanios (2013). On the other hand, in the case of

Remark 1, where the factors are not relevant for yt+h, Condition (ii’) coincides with the condition

required for consistency in Groen and Kapetanios (2013), and the BICM and HQICM criteria

are consistent.

It is also useful to compare our criteria to the standard AIC and BIC criteria which are

commonly used in time series applications:

AIC
(
F̂ i, ûi

)
= ln

(
V
(
F̂ i, ûi

))
+ (ri +mi)

2

T

BIC
(
F̂ i, ûi

)
= ln

(
V
(
F̂ i, ûi

))
+ (ri +mi)

ln (T )

T

Both the AIC and the BIC also fulfil Condition (i) as g (N,T )→ 0 but they both fail Condition

(ii) for all configurations of N and T and are therefore inconsistent.8 This result is somewhat

alarming as the vast majority of empirical forecasting studies tend to use the BIC for model

selection. In our simulations, we therefore expect there to be overparameterization in all Monte

Carlo specifications of N and T for these criteria. This result is unusual relative to the pure factor-

augmented approach of Groen and Kapetanios (2013) as in that set-up the BIC is still consistent

in cases where N << T . In our case, the presence of the estimated idiosyncratic components drives

inconsistency in the BIC, and we must use the modified the penalty functions proposed above.

5 Monte Carlo

5.1 Data Generating Process

In this section we specify the Monte Carlo Data Generating Processes (DGPs) which we will use

to obtain results on the finite sample performance of the information criteria proposed above. We

follow the structure proposed in Section 2, where we obtain the forecasting model in Equation (2)

first by specifying a DGP for yt+h as a function of Xt, as in DGP-X in Equation (3), and then

by substituting in the factor model in Equation (1) for Xt. This allows us to mimic the situation

described above, where the true DGP for the variable of interest is related with different strength

to the observable variables, Xt, and with the factors being a purely statistical device for data

8In a related paper, Carrasco and Rossi (2016) note that their cross-validation and Mallows-type criteria are
AIC-type criteria and would also be inconsistent in this setting.
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reduction. This is the same approach as taken by Groen and Kapetanios (2013). Specifically:

yt = α0′X0
t + α1′X1

t +
√
θεt (10)

Xt =
1√
r

ΛFt + ut (11)

where X0
t and X1

t are sub-vectors of Xt of dimension m0×1 and
(
N −m0

)
×1 respectively. Splitting

Xt in this way enables us to specify ‘large’ values for the coefficients α0 and ‘small’ values for the

coefficients α1 so that we arrive at the forecasting model of Equation (2):

yt =
1√
r

(
α0′Λ0 + α1′Λ1

)
Ft + α0′u0

t︸ ︷︷ ︸
Explained

+
(
α1′u1

t +
√
θεt

)
︸ ︷︷ ︸

Unexplained

We let the ‘large’ and ‘small’ coefficients be α0 = 1m0×1 and α1 = 1(N−m0)×1/
√
N −m0.9 The

aim of the model selection is therefore to include the first m0 idiosyncratic components in the

model as they have a large impact on yt, with the remaining negligible error terms u1
t entering

the unexplained part of the regression. This is unlike in Groen and Kapetanios (2013) where the

unexplained part of the pure factor-augmented model contains all N idiosyncratic errors. No a

priori knowledge is assumed of the split between u0
t and u1

t ; as explained in Section 3, a candidate

search set to uncover u0
t is first specified using Forward Stepwise regression.

The regression errors εt are drawn such that εt ∼ i.i.d.N (0, 1). The idiosyncratic errors are

also drawn from a normal distribution, but the variance differs between the first m0 variables and

the remaining variables, with uit ∼ i.i.d.N (0,K) for i ≤ m0 and uit ∼ i.i.d.N (0, 1) for i > m0.

Finally, the factor loadings are drawn with a non-zero mean such that Λ ∼ i.i.d.N (1, 1) and the

factors are Ft ∼ i.i.d.N (0, 1). The rescaling by 1/
√
r in Equation (11) ensures that the variance of

Xit is K for i ≤ m0 and 1 for i > m0. We then choose the parameters K and θ to fix the signal to

noise ratio in Equation (10), and also to equate the signal to noise ratio between Ft and u0
t .

Given the distributions of Λ, F , u and ε, the overall regression R2 is:

R2 = 1− α1′α1 + θ

α0′α0 + α1′α1 +Kα0′α0 + α1′α1 + θ

= 1− 1 + θ

m0 + 1 +Km0 + 1 + θ

We therefore set K =
(
m0 + 1

)
/m0 to equate the variation of yt explained by Ft and u0

t and we

set θ so that R2 = 1/2 which requires that θ = 1 + 2m0.

For the sample sizes, we consider a fixed set of values for the time series dimension corresponding

to T = 50, 100, 200, 400. For the cross section dimension we consider different asymptotic rules

corresponding to N = c1T and N = c2

√
T . These two particular asymptotic set-ups are chosen

9Therefore when N = 50 and m0 = 1 the coefficient on the first variable is 7 times the size of the remaining
coefficients.
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because, in the case where N = c1T , as mentioned in Section 4, we expect consistent model selection

only for the new information criteria proposed in this paper, although in finite samples the pure

factor augmented model criteria of Groen and Kapetanios (2013) may perform reasonably when N

is small. When N = c2

√
T , we expect inconsistency of the AIC and the BIC, though the criteria

of Groen and Kapetanios (2013) should be consistent along with those suggested in this paper.

We therefore select 2 different levels of c1 and c2 which fix the level of N equal to 20 and 50

when T = 50. We call these the “Small N” and “Large N” scenarios:10

Table 1: Scenarios for Sample Sizes of T and N

“Small N” “Large N”

Scenario: 1 2 3 4

T N = 0.4T N = 2.83
√
T N = T N = 7.07

√
T

50 20 20 50 50
100 40 28 100 71
200 80 40 200 100
400 160 57 400 141

Notes: The coefficients multiplying T and
√
T in the expressions for N are set so that N = 20, 50 when

T = 20 in the “Small” and “Large” scenarios. Note that 2.83 ≈ 20/
√

50 and 7.07 ≈ 50/
√

50.

We are interested in two aspects of the results: that the correct number of variables are selected,

and that the identity of their selection is correct, both for factors and idiosyncratic errors. From

the results in Theorem 1 we expect that the AIC and BIC criteria overestimate r0 and m0 for

all combinations of T and N and that the MBIC and HQICM of Groen and Kapetanios (2013)

overestimate in cases where T << N .

In order to assess the number of selected variables, we will use the average number of selected

idiosyncratic components and factors, m̂0 and r̂, over B = 1000 Monte Carlo replications. To assess

variable selection, we use a mean squared deviation (MSD) statistic. If we denote ŜF and Ŝu as

the r × 1 and N × 1 binary selection vectors of 1’s and 0’s which correspond to the minimization

of a given criterion, and SF
0 and Su

0 are the true inclusion vectors according to the data generating

process in Equation (10) then the MSD statistics for F and u are:

MSDF =
1

B

B∑
b=1

(
ŜF
b − SF

0

)′ (
ŜF
b − SF

0

)
(12)

MSDu =
1

B

B∑
b=1

(
Ŝu
b − Su

0

)′ (
Ŝu
b − Su

0

)
(13)

where b indexes the Monte Carlo replication. Values of MSD equal to zero therefore represent

10These combinations of N and T are typical of many of the types of dataset commonly used in applied forecasting
studies. Further results for other combinations of sample size are available upon request.
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perfect model selection, whereas large values of MSD represent poor model selection.

In the following section we document the results for the scenario where r = 1 and we let

m0 = 1, 2. In practice for the simulations, the BIC3 criterion of Bai and Ng (2002) is used to

estimate the number of factors present in the first stage and to obtain the estimated idiosyncratic

components. In the forecasting equation, however, we search over a maximum possible set of

rmax = 5 factors and mmax = 5 idiosyncratic errors in order to allow the possibility of over-

selection of redundant factors. The largest model we consider in the search procedure therefore

contains 10 variables.

5.2 Results

Figures 1 to 4 show the number of chosen idiosyncratic errors, m̂0, and factors, r̂, averaged across

the 1,000 Monte Carlo replications for the 2 specifications of r = 1 and m0 = 1, 2. The results for

the Mean Squared Deviation statistics MSDu and MSDF for the same parameter configurations,

along with the results for further parameter values, can be found in the separate Online Appendix.

[Display Figures 1 to 4 here]

The results clearly demonstrate the selection consistency of the newly proposed information

criteria IC1, IC2, IC3, HQ1, HQ2 and HQ3. There are a few key features of the results to highlight

in particular. Firstly, consistency occurs over all different combinations of N and T considered in

Scenarios 1 through 4. This is unlike the cases of the AIC and BIC which display inconsistent

model selection in all configurations, and theBICM andHQICM criteria of Groen and Kapetanios

(2013), where overfitting occurs in the cases where N is large relative to T . Secondly, while the

new criteria behave the same way asymptotically, it appears from these results that the Hannan-

Quinn type criteria perform better than IC1, IC2 and IC3, with HQ3 having the best finite sample

performance with MSD figures closest to 0, as can be seen in the Online Appendix. Thirdly, all

six new criteria have particularly strong selective power with respect to the factors, even for very

low T and N . This is in contrast to the BICM and HQICM criteria when N is large. Finally,

we see that as the number of idiosyncratic terms m0 increases from 1 to 2, selection worsens and

the criteria become more conservative. This is another fairly standard result, although the HQ3

criteria still appears to perform well when the panel dimensions are reasonable.

Turning to the other information criteria, as mentioned above, we can see that both the AIC

and BIC in Figures 1 to 4 overfit the model for all values of N and T , both for the selection

of factors and variables. In many cases the number of selected factors and variables is close to

the maximum number considered in the search procedure which is 5. This result is unsurprising

for the AIC which is known to be inconsistent in all standard set-ups. The result for the BIC,

as mentioned before, is somewhat unusual as in the pure-factor augmented set-up of Bai and Ng

(2009) and Groen and Kapetanios (2013), where the search takes place only over factor estimates,

the BIC is consistent for N << T . In our set-up the BIC is inconsistent in all cases; a result

which is due to the search over additional estimates of the idiosyncratic error terms.
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The results for the BICM and HQICM criteria of Groen and Kapetanios (2013) illustrate the

property shown in the previous section, that these criteria for pure factor-augmented models are

only consistent for cases where N is small relative to
√
T . This can be seen from Scenarios 1 and 2

in Figures 1 to 4 which correspond to the “Small N” scenario, in which the BICM and HQICM

perform reasonably. However, in the cases of “Large N” the inconsistency of these criteria under

Scenarios 3 is clear, indicating that care must be exercised if applying these criteria when estimated

idiosyncratic components are used in the model. Even in Scenario 4, where we expect BICM and

HQICM to give consistent model selection, their finite sample performance tends to be worse than

the new criteria IC1 to HQ3.

Finally, we also ran a set of results where m0 = 0 in order to mimic the situation where we

incorrectly search over idiosyncratic components when the true DGP is, in fact, the pure factor-

augmented model.11 These results, displayed in the Online Appendix, show that our criteria

remain successful at estimating m0 = 0. Although performance is slightly worse than the cases

where m0 > 0, particularly for Scenario 2, our criteria perform significantly better than the other

criteria we use for comparison.

6 Empirical Application: Long-Horizon Exchange Rate Modelling

In this section we provide an empirical application of these model selection procedures in a very

challenging predictive environment: long-horizon exchange rate modelling. We extend a recent

approach of Engel et al. (2015) who suggest to predict exchange rate growth using the idiosyn-

cratic component from a factor model of countries’ exchange rates. This model provides a natural

application for evaluating our new consistent model selection criteria.

6.1 Introduction and Background

Since the seminal work of Meese and Rogoff (1983b,a), there has been growing interest in the

predictive ability of log exchange rates over long forecast horizons. There have been many sub-

sequent empirical studies looking to relate the growth of exchange rates at different horizons to

macroeconomic ‘fundamentals’. These approaches are comprehensively surveyed in Rossi (2013).

The standard empirical approach in the literature tends to follow that of Mark (1995) and Kilian

(1999) in specifying regression models such as:

si,t+h − sit = µ+ β (sit − zit) + εi,t+h (14)

where sit is the logarithm of the exchange rate of country i, usually relative to the U.S. dollar ($),

and zit is some measure of central tendency for sit, or ‘fundamental’. Various different fundamentals

have been considered for zit in the literature, corresponding to different macroeconomic models of

11We thank an anonymous referee for the suggestion to explore this further.
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exchange rates. The most commonly used fundamentals are variables such as trade balances,

inflation, income and money supply.

Recently, the paper of Engel et al. (2015) moved away from the standard set of fundamentals

used in the literature. They suggest to use a factor model for a panel of global exchange rates

relative to the U.S. dollar ($), denoted st = ΛFt + ut, and to use the common component for

each country i = 1, ..., N in place of the fundamental. In other words, they suggest to replace zit

with λ′iFt, where λi is the factor loading vector for country i, corresponding to the ith row of Λ.

Having estimated Λ and Ft, for a given country i they use the estimated idiosyncratic component

ûit = sit− λ̂′iF̂t and substitute this directly into the forecasting Equation (14) in place of (sit − zit).
Therefore their model has exactly the same form of regression model which is the focus of this

paper. Our proposed information criteria may therefore be used to select between alternative

specifications.

In this application we choose to go one step further than Engel et al. (2015) and use the full set of

(cross-country) idiosyncratic errors to allow for potential exchange rate spillover effects from other

economies, all relative to the common factor in the panel of exchange rates. Empirical studies

into exchange rate spillover in both mean and variance has been considered by papers such as

Hong (2001) and others. These spillover effects, if present, will be selected using the information

criteria proposed in this paper. We therefore combine the literatures of long-horizon exchange rate

forecasting, factor models and exchange rate spillovers.

Specifically, in the next section we will look at in-sample model selection in a baseline regression

which takes the following form:

si,t+h − sit = µ+ αiûit +
∑
j 6=i

αj ûjt + εi,t+h (15)

where ûit is the domestic idiosyncratic error as in Engel et al. (2015), whereas ûjt, for j 6= i, is the

exchange rate spillover effect new to this paper. Therefore, when αj = 0, Equation (15) corresponds

exactly to the specification of Engel et al. (2015). We will also perform some robustness checks

involving interactions of the idiosyncratic components with recession dummy variables.

In the last section, we will perform an analysis of this forecasting model in a pseudo out-

of-sample forecasting context. The evidence on out-of-sample predictive ability of long-horizon

exchange rate models is very mixed in the literature. The assertion of Meese and Rogoff (1983b,a)

was that no model could outperform the näıve no-change benchmark model. Since their work, there

has been a great many papers attempting to overturn this result, for example Mark (1995). The

paper of McCracken and Sapp (2005) also suggested that, using a range of different models and a

range of predictive ability test statistics, there is some positive evidence of beating the no-change

forecasting model. In addition to model (15), we will explore different model specifications using a

larger model which also includes a macroeconomic fundamental:

si,t+h − sit = µ+ αiûit +
∑
j 6=i

αj ûjt + β (sit − zit) + εi,t+h (16)
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For the macroeconomic fundamental, zit, we will use the PPP model since this outperforms other

models such as Taylor-rules in Engel et al. (2015). In light of previous empirical evidence, we are

not too hopeful of very positive results from an out-of-sample perspective. However, it will be useful

to see how parsimonious our model selection procedures are in a pseudo out-of-sample setting.

6.2 Data and Estimation

To form the factor dataset, we choose the same countries as used in Engel et al. (2015). We use

monthly, rather than quarterly, data for the average closing exchange rate of 18 OECD countries

plus the Eurozone relative to the U.S. Dollar over the time period August 1988 to May 2015. The

data we use to construct the price level differential for the PPP model is the Consumer Price

Index (CPI), which is available at a monthly level for all countries except for Australia. All data

is extracted from the Haver Analytics databases USECON, G10 and EMERGE.12 We split the

sample at the end of 1998 and will perform the analysis for the pre- and post-Euro sub samples.

The countries are listed in Table 2.

Table 2: List of countries in the dataset, split by pre-Euro and post-Euro sub-samples with cut-off
date December 1998.

Period Countries

Pre-Euro

Australia (AUS), Austria (AUT), Belgium (BEL), Canada (CAN), Denmark
(DNK), Finland (FIN), France (FRA), Germany (DEU), Italy (ITA), Japan
(JPN), Korea (KOR), Netherlands (NLD), Norway (NOR), Spain (ESP), Swe-
den (SWE), Switzerland (CHE), United Kingdom (GBR)

Post-Euro
Australia (AUS), Canada (CAN), Denmark (DNK), Europe (EUR), Japan
(JPN), Korea (KOR), Norway (NOR), Sweden (SWE), Switzerland (CHE),
United Kingdom (GBR)

This means that for the pre-Euro sub-sample the dataset is of size T = 197, N = 17 and for the

post-Euro sub-sample we have T = 137, N = 10. We will look at the monthly forecast horizons

h = 1, 3, 6, 9, 12, 18, 24, which is similar to other studies such as McCracken and Sapp (2005) and

Engel et al. (2015) who use quarterly data and a horizon of 2 or 3 years.

In the first-stage factor model, we estimate the factors and idiosyncratic components by Prin-

cipal Components, and let the number factors be estimated by the BIC3 criterion of Bai and Ng

(2002). This is in contrast to Engel et al. (2015) who fix an arbitrary number of factors such as

r = 2, and compare the results to other factor specifications.13 In this paper we prefer to use a

consistent criterion to select the number of factors, as under-estimation of r can cause the idiosyn-

cratic errors to be incorrectly correlated, which would invalidate the results of our model selection

procedures.

12Data accessed 18th June 2015. We thank Now-Casting Economics Ltd. for access to this data source.
13In an earlier version of the paper, we presented similar results which held the number of factors fixed throughout

the study. These results are available upon request.
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In the second stage model, Equation (15), we will perform model selection using our proposed

HQ3 criterion up to a maximum possible number of mmax = 5 idiosyncratic error spillover com-

ponents. An important remark to make is that the model approach of Engel et al. (2015) makes

use of only the idiosyncratic components, which appears to impose that the factors themselves do

not appear in the DGP for the log exchange rate growth; a situation mentioned in Remark 1. As

mentioned in Section 3, we prefer to use the HQ3 criterion from this paper rather than one of the

criteria of Groen and Kapetanios (2013) as it provides consistent model selection regardless of the

unknown DGP or sample size. However, we will also run checks to see whether our results are

different to the results when using other selection criteria.

6.3 In-Sample Model Selection Results

We first present the model selection results using all available data in both the pre- and post-

Euro sub-samples. Our interest is whether the new model selection criteria select any spillover

idiosyncratic components ûjt in model (15) over and above the domestic idiosyncratic component

ûit. There are several reasons why we may expect very few additional variables to be chosen.

Firstly, the sample size is small in the cross section dimension, N , for which we know our selection

criteria can be slightly conservative. Secondly, we know from previous evidence that additional

variables tend to have weak predictive power over and above the “no-change” benchmark, which

may mean that few additional variables will be selected.

Tables 3 and 4 present the model selection results for the spillover effects in the pre- and post-

Euro sub-samples respectively. We present only the results for the h = 1 and h = 12 horizons for

brevity. There are several key features to highlight from these results. The most surprising result is

that, particularly in the pre-Euro era which includes the major European economies, the consistent

HQ3 criterion displays a non-trivial selection of spillover effects for the h = 12 horizon. In most

cases there are between 1 and 3 spillover effects chosen. This is contrary to the intuition that the

model selection criterion would be over-conservative, both because of the small sample size, and

because of the harsh predictive environment. In many cases, the selected spillover effects also have

some reasonable interpretation, even though there is no theoretical model of spillovers in place. For

example, we see linkages between the major European economies such as Austria and Switzerland,

and the Scandinavian countries. However, due to the small panel we consider, the results should

also be treated with caution. For example, the countries with the most number of idiosyncratic

components selected are Canada and Korea which are somewhat isolated within our sample and, as

such, the model selection criterion appears to deliver spillovers which may not be deemed sensible.

This gives motivation for a more extensive study involving a larger panel of global economies.

In the post-Euro era, however, much fewer spillover effects are chosen at the h = 12 horizon by

the consistent HQ3 criterion. This may be in some part due to the small number of countries in this

sub-sample, N = 10. This is a number smaller than we considered in the Monte Carlo simulations,

and is likely to have quite conservative model selection. The other main features of the results are

that, at the short h = 1, there are no spillover effects chosen by the HQ3 criterion. This is in line
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Table 3: In-Sample Model Selection Results: 1988-1998 pre-Euro era.

Selection Criterion: HQ3

h = 1 h = 12

Countries (m̂) Countries (m̂)

AUS - (0) CHE (1)
AUT - (0) - (0)
BEL - (0) DNK (1)
CAN - (0) FIN, ESP, BEL (3)
DNK - (0) BEL (1)
FIN - (0) - (0)
FRA - (0) NOR (1)
DEU - (0) - (0)
ITA - (0) FIN, CAN (2)
JPN - (0) ITA, BEL (2)
KOR - (0) DNK, ESP, CHE (3)
NLD - (0) - (0)
NOR - (0) DNK (1)
ESP - (0) FIN (1)
SWE - (0) FIN, ESP (2)
CHE - (0) - (0)
GBR - (0) FIN (1)

Selection Criterion: BIC

h = 1 h = 12

Countries (m̂) Countries (m̂)

AUS CHE (1) CHE, ITA, FIN, BEL, ESP (5)
AUT CAN, BEL, DNK (3) NOR, DNK, BEL, FIN (4)
BEL DNK, JPN (2) DNK, NOR (2)
CAN SWE, GBR, FRA (3) FIN, ITA, ESP, BEL (4)
DNK JPN, BEL (2) NOR, FIN, CHE (3)
FIN ITA (1) SWE, ITA (2)
FRA DNK, JPN, BEL (3) NOR, DNK, FIN, CHE (4)
DEU BEL, CAN, DNK (3) NOR, DNK, FIN, BEL (4)
ITA NOR, FIN (2) FIN, CAN (2)
JPN ITA (1) ITA, BEL (2)
KOR ITA, FIN (2) DNK, ESP, CHE, SWE, JPN (5)
NLD CAN, BEL, DNK (3) NOR, DNK, BEL (3)
NOR CAN (1) DNK, FIN, CHE, ITA (4)
ESP FIN, BEL, DNK, JPN (4) FIN, DEU, ITA, GBR (4)
SWE CHE (1) FIN, ITA, ESP (3)
CHE BEL, FIN, ITA (3) NOR, DNK, FIN (3)
GBR AUS, SWE (2) FIN, FRA (2)

Notes: For each country, the column “Countries (m̂)” displays the identity of selected spillover countries,

and the number of these selected countries in parentheses. Model selection is performed using the HQ3

criterion (upper panel) and BIC criterion (lower panel). The results are displayed only for the horizons

h = 1 and h = 12, with other results available upon request.

20



Table 4: In-Sample Model Selection Results: 1999-2015 post-Euro era.

Selection Criterion: HQ3

h = 1 h = 12

Countries (m̂) Countries (m̂)

AUS - (0) SWE (1)
CAN - (0) SWE (1)
DNK - (0) SWE (1)
EUR - (0) SWE (1)
JPN - (0) - (0)
KOR - (0) - (0)
NOR - (0) SWE (1)
SWE - (0) - (0)
CHE - (0) CAN (1)
GBR - (0) - (0)

Selection Criterion: BIC

h = 1 h = 12

Countries (m̂) Countries (m̂)

AUS - (0) SWE, CHE (2)
CAN SWE (1) SWE (1)
DNK CAN (1) NOR, CAN, CHE, EUR (4)
EUR CAN (1) SWE, NOR, CAN (3)
JPN CAN (1) SWE, AUS, GBR (3)
KOR - (0) CHE, NOR, SWE, AUS (4)
NOR - (0) SWE, KOR (2)
SWE NOR (1) NOR, AUS, CHE (3)
CHE CAN (1) JPN, SWE, EUR (3)
GBR - (0) SWE, CHE (2)

Notes: For each country, the column “Countries (m̂)” displays the identity of selected spillover countries,

and the number of these selected countries in parentheses. Model selection is performed using the HQ3

criterion (upper panel) and BIC criterion (lower panel). The results are displayed only for the horizons

h = 1 and h = 12, with other results available upon request.

with the assertion of Mark (1995), and many others, that predictive ability of exchange rates at

short horizons is likely to be low.

The results of model selection performed by the standard BIC criterion, seen in the lower

panels of Tables 3 and 4, show that much larger models are selected for all countries, both pre-

and post-Euro. This result was expected from the theory in section 3 which showed the BIC to be

inconsistent, and confirms that it is unwise to rely on these standard selection criteria in empirical

studies using the idiosyncratic components estimated from a factor model.

In order to explore the sensitivity of these results we ran some additional results, all of which

can be found in the Online Appendix to this paper. We firstly repeated the exercise using the
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HQICM criterion of Groen and Kapetanios (2013) rather than the HQ3 criterion of this paper.

Since both criteria are consistent, they should select a similar number of idiosyncratic components.

The results in the Online Appendix, indeed, show that very similar results obtain when using the

HQICM criterion, with slightly more conservative selection in the post-Euro sub-sample.

Another set of results looked at whether the spillover effects had more of an impact during

recessions. Since we use a panel of different countries, rather than using individual countries’

recession dates, we used the dates for global recessions identified by the International Monetary

Fund (IMF), the last four of which have been in 1975, 1982, 1991 and 2009.14 These dates are used

to create a global dummy variable Dt, equal to 1 in global recession and 0 otherwise, to augment

Equation (15) as follows:

si,t+h − sit = µ1 + µ2Dt + α1iûit + α2iûitDt +
∑
j 6=i

α1j ûjt +
∑
j 6=i

α2j ûjtDt + εi,t+h (17)

The results in the Online Appendix show that the baseline results from Tables 3 and 4 do not

change when we search over the new recession interaction terms. This firstly indicates that there

does not appear to be an additional spillover effect during global recession and, secondly, that the

new information criteria are robust to the inclusion of additional variables. On the other hand,

the inconsistent BIC criterion continues to overfit the model and, indeed, selects some of the new

recession interaction terms for some countries. This highlights that the standard BIC is not a

reliable model selection device in these circumstances.

6.4 Pseudo Out-of-Sample Results

In order to assess the out-of-sample performance of the models in Equations (15) and (16), we

undertake a pseudo out-of-sample forecasting experiment. For the pre- and post-Euro sub-samples,

we denote the total sample size as T+h and split the sample into an ‘in-sample’ and ‘out-of-sample’

portion T = R + P − 1, having lagged the regressors h periods for the direct forecasting scheme.

We proceed to form P out-of-sample forecasts by rolling through the sample with a rolling window

length R, starting with the first R observations of the sub-sample. In every rolling window, we re-

estimate the factors and idiosyncratic components from the first-stage model, selecting the number

of factors each time by the BIC3 criterion of Bai and Ng (2002). Then in the second-stage we

perform model selection using the HQ3 criterion and estimate the parameters of the model by OLS

before making the h-step ahead forecast.

This pseudo out-of-sample procedure yields a string of P forecast errors which, for the larger

model in Equation (16), can be written for each country i as:

ε̂i,t+h = (si,t+h − sit)−

µ̂t + α̂itû
(t)
it +

∑
j 6=i

α̂jtû
(t)
jt + β̂t (sit − zit)

 (18)

14See Box 1.1 of the April 2009 World Economic Outlook: http://www.imf.org/external/pubs/ft/weo/2009/01/pdf/
text.pdf [Last accessed: 09/09/2016].
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for all t = R, ..., T , where the estimated parameters µ̂t, β̂t, α̂it, α̂jt are the OLS estimators using

the rolling window of data from t−R+ 1, ..., t, and the idiosyncratic errors û
(t)
it and spillovers û

(t)
jt

are superscripted by t as they have also been estimated by Principal Components using the same

rolling window of the data.

The competitor model is the no-change forecast, which gives rise to the P forecast errors:

ε̂NC
i,t+h = (si,t+h − sit)− 0 (19)

for all t = R, ..., T . For a country i, we will compare the two sets of forecasts in the expressions

(18) and (19) using the Relative Root Mean Squared Forecast Error (RMSFE) statistic:

RMSFEi =

1
P

∑T
t=R

√
ε̂2
i,t+h

1
P

∑T
t=R

√
(ε̂NC

i,t+h)2
(20)

Therefore, a value greater than 1 implies that the no-change benchmark outperforms the exchange

rate model, whereas a value less than 1 implies that the exchange rate model improves over the no-

change benchmark. In the results, rather than present individual statistics by country and model,

we instead look at the median RMSFE statistic across countries, in a similar way to Engel et al.

(2015).15 We will check whether the root MSFE of the model is significantly different from the

no-change benchmark using the conditional predictive ability testing approach of Giacomini and

White (2006). This is appropriate to use here as it allows the comparison of ‘forecasting methods’

and not ‘forecasting models,’ whereas the standard Diebold-Mariano test would require all the

models to have a fixed number of parameters in every rolling window.

Table 5 displays the results for four versions of the model in Equation (16) relative to the no-

change benchmark. The first version uses only the domestic idiosyncratic component and omits the

PPP and spillover terms by setting β = 0 and all αj = 0. The second version omits the PPP term

by setting β = 0, thus corresponding to the model in Equation (15). The third omits the spillover

effects by setting all αj = 0, and the final version is the full unrestricted model in Equation (16).

The results in Table 5 to a large extent confirm the results of other studies: that it is very

difficult to beat the no-change model in out-of-sample prediction. The median RMSFE is above

1 in most cases, except for at the largest forecast horizons. This is consistent with the findings

of Mark (1995), that predictive ability should increase with horizon. On the other hand, purely

from a qualitative point of view, we can see that the addition of spillover effects tends to reduce

the median RMSFE in many cases, both when they are added to the “ûit only” model and also

when added to the “ûit + PPP” model. In the pre-Euro sub-sample, the best model in terms of

the #(RMSFE<1) statistic is the “ûit + ûjt” model for horizons up to h = 12. At the longest

horizons, however, the models including the PPP variable appear to dominate, which indicates

that the macroeconomic fundamentals have more forecasting power at longer horizons. However,

15Results for the individual countries are available on request from the author.
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Table 5: Pseudo Out-of-Sample Forecasting Results.

Pre-Euro

h = 1 h = 3 h = 6 h = 9 h = 12 h = 18 h = 24

ûi only Median RMSFE 1.03 1.12 1.14 1.07 1.09 1.13 1.19
#(RMSFE<1) 4 2 2 3 3 0 0

ûi + ûj Median RMSFE 1.07 1.01 1.10 0.99 1.05 1.14 1.20
#(RMSFE<1) 6 7 3 8 3 0 0

Median m̂ 0.23 0.64 0.22 0.20 0.08 0.07 0.18
ûi + PPP Median RMSFE 1.04 1.24 1.39 1.30 1.44 1.08 0.95

#(RMSFE<1) 2 0 0 1 2 6 10
ûi + PPP + ûj Median RMSFE 1.09 1.13 1.27 1.22 1.30 1.08 0.92

#(RMSFE<1) 4 1 1 1 1 6 9
Median m̂ 0.27 1.14 0.65 0.42 0.51 0.76 0.83

Post-Euro

h = 1 h = 3 h = 6 h = 9 h = 12 h = 18 h = 24

ûi only Median RMSFE 1.05 1.10 1.15 1.10 1.14 1.31 1.40
#(RMSFE<1) 3 1 1 0 0 1 1

ûi + ûj Median RMSFE 1.05 1.09 1.10 1.09 1.15 1.25 1.36
#(RMSFE<1) 3 0 1 0 0 1 1

Median m̂ 0.00 0.03 0.16 0.19 0.02 0.18 0.17
ûi + PPP Median RMSFE 1.04 1.10 1.12 1.14 1.21 1.10 1.04

#(RMSFE<1) 3 1 0 0 0 2 3
ûi + PPP + ûj Median RMSFE 1.04 1.10 1.12 1.04 1.02 1.01 1.12

#(RMSFE<1) 3 0 2 4 3 4 2
Median m̂ 0.00 0.05 0.45 0.31 0.22 0.71 0.75

Notes: The Median RMSFE statistic is the median of the individual countries’ relative mean squared

forecast error statistic of the model relative to the no-change benchmark. The median is taken over N = 17

countries in the Pre-Euro panel and N = 10 countries for post-Euro. The #(RMSFE<1) statistic counts

the number of countries for which the RMSFE is less than 1, where the model has lower MSFE than the

no-change benchmark.

the evidence from the Giacomini and White (2006) test somewhat diminishes these results, as only

a handful of results are statistically significantly in favour of the exchange rate model over the

no-change benchmark at the 10% level, and no results are significant at the 5% level.

Purely from a model selection point of view, which is the main purpose of this paper, we

can see that the HQ3 criterion selects a small although non-trivial amount of spillover effects on

average. The Median m̂ statistic takes the median of all countries’ number of selected spillover

effects, averaged over all pseudo out-of-sample observations. From this we can see that the number

of chosen idiosyncratic components tends to increase over the forecast horizon, indicating that the
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explanatory power of these variables tends to be for longer-term prediction. The numbers are quite

conservative, typically showing that between 0 and 1 idiosyncratic spillover terms are selected on

average.16 In a similar way to the in-sample results, there are fewer spillover terms selected in the

post-Euro sub-sample relative to pre-Euro.

7 Conclusion

In this paper we have proposed information criteria for performing model selection in regressions

involving both estimated factors and idiosyncratic components. Our main contribution is a the-

orem on selection consistency which shows that new conditions are required for consistent model

selection, which render existing model selection criteria inconsistent in this set-up. Specifically,

using Principal Components, we show that estimation error in the idiosyncratic component van-

ishes at a rate min
{√

T ,N
}

, whereas factor estimation error vanishes at a rate min {T,N}. This

implies that even criteria such as those of Bai and Ng (2009) and Groen and Kapetanios (2013),

which account for factor estimation error, are inconsistent in cases where N is of larger order than√
T . Furthermore, standard information criteria such as the BIC, which is used in many empirical

forecasting applications, is inconsistent regardless of the sample size. These should not be used to

specify models involving factors and idiosyncratic components.

We therefore propose a new set of information criteria which satisfy the conditions required

for consistency and take the estimation error in the idiosyncratic component into account. We

show that these new criteria perform well in Monte Carlo simulations, relative to the existing

information criteria which severely overfit the models in some or all configurations of N and T . We

illustrate these model selection methods with an empirical application to forecasting exchange rates,

extending the recent model of Engel et al. (2015) to allow for exchange rate spillover effects. We

find that our methods select a non-zero amount of spillover effects, even in a challenging predictive

environment when the models do not perform much better than a no-change benchmark. Future

work can look at penalized LASSO-type regression for selection of these models. This was proposed

without formal justification by the empirical study of Luciani (2014). Formal results using penalized

regressions would provide a useful alternative to the information criteria proposed in this paper.
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8 Figures in the Text

Figure 1: Average number of selected idiosyncratic components (m̂0) for different information
criteria over 1,000 Monte Carlo replications when the true r = 1 and m0 = 1
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Notes: The horizontal dashed line represents the true number of idiosyncratic components m0 = 1. Sce-

narios 1-4 are described in Section 5.1 and each of the information criteria are described in Section 4.
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Figure 2: Average number of selected idiosyncratic components (m̂0) for different information
criteria over 1,000 Monte Carlo replications when the true r = 1 and m0 = 2
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Notes: The horizontal dashed line represents the true number of idiosyncratic components m0 = 2. Sce-

narios 1-4 are described in Section 5.1 and each of the information criteria are described in Section 4.

Figure 3: Average number of selected factors (r̂) for different information criteria over 1,000
Monte Carlo replications when the true r = 1 and m0 = 1
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Notes: The horizontal dashed line represents the true number of factors r = 1. Scenarios 1-4 are described

in Section 5.1 and each of the information criteria are described in Section 4.
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Figure 4: Average number of selected factors (r̂) for different information criteria over 1,000
Monte Carlo replications when the true r = 1 and m0 = 2
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Notes: The horizontal dashed line represents the true number of factors r = 1. Scenarios 1-4 are described

in Section 5.1 and each of the information criteria are described in Section 4.
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