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A B S T R A C T

We present a novel approach to understanding space use by moving entities based on
repeated patterns of place visits and transitions. Our approach represents trajectories as
text documents consisting of sequences of place visits or transitions and applies topic
modelling to the corpus of these documents. The resulting topics represent combina-
tions of places or transitions, respectively, that repeatedly co-occur in trips. Visualisa-
tion of the results in the spatial context reveals the regions of place connectivity through
movements and the major channels used to traverse the space. This enables under-
standing of the use of space as a medium for movement. We compare the possibilities
provided by topic modelling to alternative approaches exploiting a numeric measure of
pairwise connectedness. We have extensively explored the potential of utilising topic
modelling by applying our approach to multiple real-world movement data sets with
different data collection procedures and varying spatial and temporal properties: GPS
road traffic of cars, unconstrained movement on a football pitch, and episodic movement
data reflecting social media posting events. The approach successfully demonstrated
the ability to uncover meaningful patterns and interesting insights. We thoroughly dis-
cuss different aspects of the approach and share the knowledge and experience we have
gained with people who might be potentially interested in analysing movement data by
means of topic modelling methods.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction1

Understanding how people, vehicles, or animals utilise space2

as they move through different environments is important for3

various applications, such as urban planning, transportation4

management, wildlife conservation, and many others. Analy-5

sis of movement data plays a crucial role in uncovering patterns6

and trends in space use.7

Generally, analysis of movement data can concentrate on8

three core dimensions: the moving entities, the spatial realms9

they traverse, and the temporal dynamics of their motion [1].10

∗Corresponding author:
e-mail: gennady.andrienko.1@city.ac.uk (Gennady Andrienko)

The selection of analytical methods is contingent upon the di- 11

mension of interest. In this paper, we focus on the spatial di- 12

mension, with a primary objective to reveal interconnections 13

between areas in the underlying space through the trajectories 14

of moving objects traversing them. To accomplish this, we ex- 15

plore the applicability and analytical potential of topic mod- 16

elling techniques. 17

Traditionally, places are characterised according to points of 18

interest they include, events that happened in places, or cate- 19

gories of moving objects visiting them, taking into account the 20

timing of visits [2]. In this work we characterise places accord- 21

ing to their connectivity to (or accessibility from) other places, 22

as inferred from trajectories. Analysis of connectivity between 23

places and accessibility of places is an important task in ur- 24

ban planning, transportation systems, animal ecology and ge- 25

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag
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ographical analysis (e.g., [3, 4]). Traditional approaches have1

primarily focused on physical infrastructure, landscape, habi-2

tat fragmentation, and distance-based measures to understand3

connections between locations. However, in recent years, there4

has been a growing recognition that connectivity encompasses5

more than just physical proximity.6

A novel approach gaining prominence is to examine link-7

ages between places based on the trajectories that traverse these8

places (e.g., [5, 6]). This new approach offers several advan-9

tages over traditional methods. By considering trajectories in-10

stead of solely relying on distances or pathway topology, it11

provides a more comprehensive understanding of how places12

are interconnected. Trajectories capture the movement patterns13

and flows of people, animals, goods, and information, thereby14

uncovering hidden connections and interdependencies between15

places. By analysing common trajectories, researchers can gain16

insights into the functional relationships and shared character-17

istics of different locations. This approach aligns with the in-18

creasing availability of large-scale mobility data and advance-19

ments in data analysis techniques.20

There are two aspects of space use by moving objects: which21

places are visited and how the objects proceed from place to22

place. Respectively, our problem statement includes two major23

questions addressing these aspects.24

Problem statement. Given a set of discrete places and a set of25

trajectories of moving entities that visited these places, answer26

the following questions:27

1. What groups of places are highly interconnected as evi-28

denced by frequent co-appearance in trajectories of enti-29

ties visiting them?30

2. What are the primary transitions taken by the entities as31

they move from one place to another and so connect the32

places?33

To answer these questions, we represent trajectory data in34

two complementary ways: as a list of visited places (to ad-35

dress question 1) and as a list of moves (transitions) between the36

places (to address question 2). Using these representations, we37

investigate and compare two distinct approaches to analysing38

interconnections among places or among transitions. The first39

approach relies on a numerical measure that assesses the ex-40

tent of linkage between places or transitions based on their co-41

occurrence in the same trajectories. Subsequently, this measure42

is employed in embedding and clustering techniques. In con-43

trast, the second approach treats the lists of places or transi-44

tions as textual documents. These document-like lists can be45

subjected to analysis using topic modelling methods. An ad-46

vantage of the second approach is its capacity to uncover com-47

plex structures beyond pairwise relationships, revealing inter-48

connected patterns composed of multiple places or transition49

links.50

An early version of this work was initially presented at the51

EuroVA 2023 workshop [7]. The workshop contribution is52

reiterated in Section 4.3 of the current paper. Subsequently,53

we undertook a more comprehensive exploration of the abili-54

ties of topic modelling in analysing space use and connectiv-55

ity. In parallel, we conducted a comparative evaluation of this56

approach with the use of a quantitative measures of place in- 57

terconnectivity within embedding and clustering methods. We 58

also extended the scope of our investigation beyond network- 59

constrained trajectories to movement data with different prop- 60

erties. Here we report our case studies on applying topic mod- 61

elling to episodic trajectories derived from georeferenced social 62

media posts and the unconstrained movements of a ball during 63

a football game. We also provide an extensive discussion of 64

the practical strengths and limitations of employing topic mod- 65

elling as a tool for spatial analysis using movement data. 66

Contribution. The primary contribution of this paper lies in 67

the presentation of a novel approach to analysing space use by 68

moving entities. The presentation includes a demonstration of 69

the capabilities of the approach in application to three distinct 70

examples, an empirical comparison with widely used analysis 71

strategies employing embedding or clustering methods, and an 72

extensive discussion covering various aspects of our approach. 73

In the following Section 2, we introduce the key concepts 74

that are necessary for presenting our approach. After consider- 75

ing the related work in Section 3, we introduce in Section 4 our 76

approach on a previously studied mobility data set with known 77

properties and compare it with applications of embedding and 78

clustering to the same data (Section 4.2). Next, we present two 79

use cases where we apply the approach to two real-world data 80

sets of human mobility expressed through social media activity 81

(Section 5) and analysis of football tactics based on ball move- 82

ment trajectories (Section 6). Section 7 with a detailed discus- 83

sion of our approach and lessons learnt concludes the paper. 84

2. Background 85

Regardless of the methods used for collecting movement 86

data, these data sets typically consist of records that include 87

four elements: the entity in motion, spatial position, time, and 88

(optionally) associated attributes [1, 8]. The three fundamen- 89

tal dimensions in movement data analysis are the population of 90

moving entities, the spatial dimension, and time. Consequently, 91

the analysis of movement data can center on one of these essen- 92

tial dimensions while considering the others. In this research, 93

our primary focus is on the spatial dimension as it relates to the 94

movement of objects. 95

2.1. Discretised representation of space 96

Many analytical approaches for movement data treat space as 97

a collection of discrete relevant places. When these places are 98

not predefined by the application, they can be identified from 99

the available movement data. For instance, clusters of locations 100

corresponding to specific movement events like stops, turns, or 101

speed reductions can define these relevant places. Alternatively, 102

spaces can be divided into compartments, ensuring the division 103

is fine enough to capture significant variations in space utilisa- 104

tion at the desired level of detail while still being manageable. 105

Various methods can be employed for spatial division. Some 106

rely on pre-existing geographical or administrative boundaries, 107

while others divide space based on specific geographical objects 108

such as street segments or intersections. Divisions into equally- 109

sized rectangles or hexagonal grids are also quite common. 110
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In many of our research activities we utilise data-driven tes-1

sellation dividing space into places using Voronoi polygons.2

These polygons are defined based on the proximity of locations3

to specific seeds, such as centres of dense spatial clusters of4

distinctive points from the movement trajectories [9]. This di-5

vision can be adjusted to attain the desired level of detail while6

retaining essential spatial information. Notably, our empirical7

findings demonstrate that altering the level of spatial abstrac-8

tion in representing vehicle traffic retains crucial relationships9

between traffic volume and movement speed [10].10

2.2. Properties of movement data11

It is important to note that, depending on factors like the12

movement environment, the characteristics of moving objects,13

the physics of movement, and the methods of data collection,14

movement trajectories need to be treated in one of two distinct15

ways: as quasi-continuous or as episodic [11]. The primary dis-16

tinction between these categories lies in the feasibility of recon-17

structing the movements that occurred between recorded posi-18

tions. Quasi-continuous data allow for the interpolation of in-19

termediate positions between sequential data points, effectively20

filling in gaps between them. In the case of episodic data, se-21

quentially recorded positions may be temporally and/or spa-22

tially distant from each other, making it impossible to make23

valid inferences about the intermediate movements.24

This differentiation has important implications for place-25

based data analysis, particularly when trajectories are trans-26

formed into sequences of visited places and transitions between27

them. In quasi-continuous data, consecutive places in these se-28

quences are typically spatial neighbours. In situations where29

an occasional gap occurs in the trajectory, interpolation can30

be used to estimate the movement between non-neighbouring31

places by identifying an optimal path (e.g., the shortest path)32

between them. Conversely, for episodic data, one must refrain33

from attempting interpolation or reconstruction of the complete34

place sequence, as well as from interpreting the data as se-35

quences of direct transitions between the places.36

Another relevant distinction is between trajectories reflect-37

ing network-constrained and free movements. In network-38

constrained trajectories, like those of vehicles on roads, one39

can expect a large number of repeated subsequences of vis-40

ited places, since moving entities tend to follow similar routes.41

Unconstrained trajectories, on the other hand, are much more42

varied. If the division of the underlying space is overly fine,43

the resulting place sequences from these trajectories may lack44

the necessary similarity to reveal common movement patterns45

throughout the space. Furthermore, data-driven space tessella-46

tion can yield results that may appear arbitrary and challenging47

to interpret. In such cases, opting for a regular grid or a division48

based on domain-specific spatial semantics might offer a more49

straightforward and meaningful representation.50

2.3. Topic modelling51

Topic modelling is a method for discovering abstract themes52

or topics in a collection of documents [12]. It is widely used53

in text mining as a tool for uncovering hidden structures in54

text data. The two most commonly used methods are Latent55

Dirichlet Allocation (LDA) [13] and Non-negative Matrix Fac- 56

torisation (NMF) [14]. Beyond text analysis, topic modelling 57

methods can be applied to abstract documents where “terms” 58

are labels or identifiers representing objects of any nature, for 59

instance, nucleotides in DNA [15]. 60

Topic modelling treats each text document as a combination 61

of terms. It finds groups of documents containing similar terms 62

and groups of terms occurring in similar documents. These 63

groups of terms are called topics. The output of an algorithm 64

consists of two matrices. The first matrix provides a definition 65

of each topic in the form of a multidimensional vector of term 66

weights expressing the importance of each term for the topic. 67

The group of terms having high weights is supposed to express 68

the meaning of the topic, which can be understood by a human, 69

while formally a topic is merely a distribution of weights over 70

the set of all terms. The second matrix represents the content 71

of each document as a combination of weights of the topics. In 72

our work, we mostly use the topic-term matrix. 73

Topic modelling considers each document as a bag of terms, 74

disregarding the word order. However, it is possible to define 75

terms as ordered pairs of words that appear in documents one 76

after another [16]. This approach increases the size of the vo- 77

cabulary, but it can provide more useful results when the word 78

order is important. 79

3. Related work 80

In this section, we review the related work on the topics of 81

space use exploration, utilisation of space embedding and clus- 82

tering techniques in visual analytics, utilisation of topic mod- 83

elling, particularly, for non-textual data, and visualisation tech- 84

niques included in our analysis workflows. 85

3.1. Visualisation and analysis of space use 86

Trajectory data analysis is an important topic of research in 87

data management [17], data mining [18, 19] and visual ana- 88

lytics [1]. Among various applications, trajectories of mov- 89

ing objects are studied for identifying meaningful places in 90

the space and evaluating their interconnections. Analysis of 91

place connectivity finds application in diverse domains, includ- 92

ing transportation [20, 21] and animal ecology [8], which tend 93

to develop their specific methods. In transportation, there are 94

studies focusing on movements between selected locations, the 95

assessment of connectivity for specific places like transporta- 96

tion hubs or residential districts, and the analysis of accessibil- 97

ity to particular classes of locations. Examples include com- 98

puting isochrones of travel times to the nearest hospital [22] 99

and generating a visual overview of a train line’s daily sched- 100

ule [23]. Several approaches are proposed for understand- 101

ing origin-destination flows, frequently involving exploration 102

of connections from a chosen origin or to a given destination 103

through multiple maps [24] or map-like representations like OD 104

maps [25]. 105

Research on connectivity of places in animal ecology is fo- 106

cused on understanding how animals move across landscapes 107

and interact with their environment. Landscape connectivity 108

is defined as the movement of organisms and materials among 109
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patches on landscapes, and functional connectivity is defined as1

the connectivity of a landscape from the perspective of a focal2

organism [26]. Review [27] provides an overview of landscape3

connectivity analysis techniques, genetic connectivity, and the4

implications of habitat fragmentation for conservation and man-5

agement.6

Among generic techniques for movement data analysis, clus-7

tering of trajectories by proximity of origins and/or destinations8

and by similarity of the routes [28, 1] can provide some insights9

into the extent of connections between different places through10

movement. However, it’s important to note that this approach11

may lead to significant underestimation of connectedness, as it12

does not capture the diversity of trajectories that traverse the13

same groups of places but do not fit within the same cluster.14

Human movement can be represented as a network (graph)15

with nodes corresponding to the places and links to aggre-16

gated transitions between the places. This enables application17

of graphs analysis methods, in particular, node clustering and18

community detection, to analyse place interconnections. Thus,19

Rinzivillo et al. [29] extract relevant clusters of nodes and map20

then back onto the territory, finding a good match with the ex-21

isting administrative borders. A downside of this method is that22

it divides the places into disjoint groups and does not reveal23

connections between the groups. Brilhante et al. [30] use com-24

munity detection [31] to find groups of points of interest that25

are highly connected by the mobility of the individuals. Due26

to the existence of community detection algorithms capable to27

find overlapping communities of graph nodes [32], overlapping28

groups of interconnected places can be discovered. However,29

the algorithms have been criticised for missing important struc-30

tural properties of the communities, particularly, the member-31

ships of the nodes. Besides, the problem of effective visualisa-32

tion of the results in the spatial context has not been properly33

addressed.34

As an alternative to the graph-based community detection,35

we investigated the potential of topic modelling techniques,36

which do not group places or links directly but express their37

relatedness through vectors of topic weights.38

3.2. Embedding and clustering in visual analytics39

Dimensionality reduction [33] and cluster analysis [34] are40

commonly utilised techniques in visual analytics [35, 36] for41

handling various types of complex data. Particularly, dimen-42

sionality reduction is often employed to embed data instances43

in a two-dimensional abstract space, facilitating visualisation44

through scatterplots . In this role, dimensionality reduction is45

called space embedding [37], as well as multidimensional pro-46

jection or, simply, projection [38, 39]. Both embedding and47

clustering are used to explore similarities between data items48

and find groups of similar items by employing numeric mea-49

sures of pairwise similarity [40], also called distance functions.50

A large variety of similarity measures have been proposed for51

different data types, including numeric and binary [41], categor-52

ical [42], sequential [43], geo-spatial [44], and temporal data53

[45]. Despite the availability of numerous similarity measures,54

it may be necessary to develop a specialised distance function to55

capture specific notions of similarity. In our work, we have im-56

plemented a custom function to measure the similarity between 57

places based on the number of trajectories connecting them. 58

3.3. Topic modelling in visual analytics 59

Topic modelling methods are very sensitive to their parame- 60

ters such as the desired number of topics, frequency of words 61

to be considered or ignored by the method, initialisation proce- 62

dure, just to name a few issues. There exist sophisticated visual 63

analytics tools for user-steerable topic model optimisation, for 64

example [46, 47]. 65

Beyond analysing texts in natural languages, topic modelling 66

methods have been successfully applied to different types of 67

data, for example, DNA codes [15], software repositories [48], 68

user activities in interaction with software systems [47], and 69

multivariate time series [49]. These examples demonstrate the 70

versatility of the topic modelling methods. 71

Works on applying topic modelling to movement data, 72

namely, taxi trajectories, have been reported in papers by Chu 73

et al [50] and Liu et al [51], respectively. Both papers construct 74

a vocabulary from street segments and their ordered pairs, with 75

the goal of finding patterns in the trajectories and focusing on 76

the moving objects. Our work expands on these ideas with a 77

different goal: finding patterns in space, understanding space 78

structure in terms of place interconnections, and revealing how 79

the space is used by movers. 80

3.4. Visualisation techniques involved in our approach 81

To visualise topic modelling results for places, we create 82

maps with pie charts positioned at the locations of the places. 83

Although pie charts tend to have bad reputation since the exper- 84

imental study conducted by Cleveland and McGill [52], there 85

have been other studies showing that pie charts can be superior 86

to other representations in tasks on estimating proportions [53]. 87

It is important to note that all experiments evaluated the accu- 88

racy of assessing elementary values, whereas this task has low 89

relevance in maps intended to provide an overview and enable 90

detection of spatial patterns. Unfortunately, we are not aware 91

of any studies on perception of maps with multiple pie charts, 92

although such representations are quite popular in cartography 93

since the pioneering works by Charles Minard [54]. 94

Another technique that we use is similarity-based assignment 95

of colours to data items obtained by means of a 2D embed- 96

ding with a continuous colour scale spread over the embed- 97

ding space. The items receive the colours corresponding to 98

their positions in the embedding. Properties of different two- 99

dimensional colour scales that can be used for this purpose have 100

been discussed and compared by Bernard et al. [55]. We rou- 101

tinely use this technique over many years to assign colours to 102

clusters (e.g., [56]), but it can be applied to any kind of data 103

items given a measure of similarity between them. For instance, 104

this technique was applied to value combinations from multi- 105

variate time series [57, 58]. Notably, the use of embedding for 106

assigning colours to data is not discussed in a recently published 107

survey on the use of embeddings in visual analytics [37]. 108
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Fig. 1. Trajectories of cars (left) and a result of data-driven tessellation of
the territory (right).

4. Approaches1

As previously mentioned, we investigated and compared two2

distinct approaches to analysing space use by moving entities.3

In one approach, we employed space embedding and clustering4

techniques utilising a numeric measure of pairwise similarity5

between places derived from the trajectories connecting them.6

The other approach leveraged topic modelling. Our rationale7

for juxtaposing topic modelling with embedding and clustering8

stemmed from the widespread use of the latter two methodolo-9

gies in visual analytics for exploring and analysing various data10

types, given their universal applicability to any data for which a11

numeric measure of similarity can be chosen or defined. Con-12

versely, the potential of topic modelling for non-textual data13

remains relatively unexplored.14

In this section, we outline both methodologies utilising a15

dataset capturing the movement of 17,000 cars in Milan over a16

one-week period, totaling approximately 2,000,000 positional17

records (Fig. 1, left). This data set has been extensively anal-18

ysed in multiple previous studies (e.g., in [1, 9]), so the major19

patterns in the data are already known. This provides us with20

a valuable opportunity to validate our new findings against the21

earlier extracted knowledge.22

4.1. Representation of trajectories23

As mentioned in Section 2, our analysis relies on represent-24

ing space as a discrete set of places. When the places are not25

predefined, we divide continuous space into compartments by26

means of data-driven tessellation [9]. The method allows ad-27

justing the sizes of the compartments so as to obtain a set of28

places that is sufficiently big for uncovering essential differ-29

ences in space use at a desired level of abstraction but not so30

large that it becomes unwieldy. For our running example of31

Milan traffic, we target at compartments of about 1km radius32

based on the size of the city and structure of its road network.33

After cleaning the trajectory data and dividing them into 51, 49834

trips, we applied the tessellation algorithm and obtained 45135

polygons (Fig. 1, right), 385 of those were crossed by the tra-36

jectories. We also obtained 2156 directed links between the37

polygons that emerged due to the transitions made by the mov-38

ing entities. In the following, we shall use the term transition39

link or, in short, link, to refer to links between places that result 40

from transitions. 41

The polygons form our set of places p1, p2, ..., p385. Each 42

trajectory ti that starts in place pt0
i

and ends in place ptNi
i

re- 43

ceives two complementary representations suitable for finding 44

answers to the questions 1 and 2, respectively, formulated in the 45

problem statement (Section 1): 46

1. List of visited places: pt1
i
, pt2

i
, ..., ptNi

i
47

2. List of transition links between the places: pt1
i
→ 48

pt2
i
, pt2

i
→ pt3

i
, ..., ptNi−1

i
→ ptNi

i
49

In our investigation, we employ these two representations 50

in two distinct approaches: (1) utilising a suitable measure of 51

place similarity for embedding and clustering, referred to as ap- 52

proach S (or S-approach), and (2) employing topic modelling, 53

referred to as approach T (or T-approach). 54

4.2. Approach S: Utilising a co-visiting similarity measure 55

We define a measure of similarity between two places A, B
based on the number of trajectories that visited both places. The
measure is expressed as a distance function (i.e., zero corre-
sponds to the highest possible similarity) computed as follows
(Equation 1):

DA,B = 1 −
|T A ∩ T B|

|T A ∪ T B|
(1)

T A and T B denote the subsets of trajectories that visited the 56

places A and B, respectively. As can be seen, the distance equals 57

0 when T A and T B coincide and 1 when they are disjoint. The 58

same formula is used to compute co-visiting-based distances 59

between transition links. 60

Once a matrix of pairwise distances between places and/or 61

links has been computed, analytical techniques involving em- 62

bedding or clustering can be applied to the matrix. Let’s begin 63

with representing the data as lists of visited places. We experi- 64

mented with several embedding methods, including MDS [59] 65

and t-SNE [60], which yielded consistent outcomes. A com- 66

prehensive comparison of different techniques (see ) is beyond 67

the scope of our paper. Interested readers can be referred to 68

the survey by Ayesha et al. [61]. We present the results of the 69

t-SNE embedding in Fig. 2: the embedding space with points 70

representing the places (top left), colour-coded representation 71

of the space using a radial colour map (top right), and the use of 72

the embedding-based colours in the geographic map of places 73

(bottom). This technique effectively assigns similar colours to 74

places that have small distances between them, as determined 75

by the distance matrix. Examining the map reveals distinct pat- 76

terns that align with specific geographical features, including 77

the belt road, highways, major radial roads, the city center, and 78

its outskirts. 79

Another way of utilising a distance matrix in analysis is to 80

apply clustering methods that permit this type of input. Not 81

all methods are suitable; thus, the popular k-means requires 82

data representation in the form of multidimensional vectors. 83

In our example, we employ density-based clustering using OP- 84

TICS [62]. The results displayed in Fig. 3 are consistent with 85
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Fig. 2. t-SNE embedding of places using co-visiting-based distance matrix
(top left). A 2D colour map is applied to the embedding (top right), and the
colours are used for painting places on he map (bottom).

Fig. 3. Clustering of places by Optics: reachability plot (top) indicating
clusters, map (bottom left) and legend (bottom right). The noise (labelled
-1 in the legend) is shown in grey while the other colours correspond to
clusters.

the findings from the t-SNE embedding. Notably, we can iden-1

tify clusters that correspond to major components of the road2

network, effectively reflecting the overall urban structure. The3

Fig. 4. t-SNE embedding of 2156 transition links using pairwise similarity
distance matrix (top left). A 2D colour map is applied to the embedding
(top right), and the colours are used for painting the half-arrow symbols
representing the links on the map (bottom).

Fig. 5. Clustering of links by Optics: reachability plot (top) indicating
clusters, map (bottom left) and legend (bottom right).

shape of the reachability plot (Fig. 3, top) indicates the pres- 4

ence of hierarchical clusters, as was explained by the authors of 5

the method [62]. Nonetheless, even minor adjustments to the 6

clustering parameters lead to significant alterations in the re- 7

sulting clusters. A slight reduction of the neighbourhood radius 8
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can cause the division of certain clusters, while others vanish1

because their members no longer meet the necessary neighbour2

count. Additionally, a considerable part of the city falls within3

the noise category (represented by grey colouring), signifying4

that these places do not fit in dense neighbourhoods of other5

places defined by the parameters of the method. This, however,6

does not necessarily mean their high dissimilarity to others.7

Figures 4 and 5 demonstrate the results of applying embed-8

ding and density-based clustering, respectively, to a distance9

matrix comprising pairwise distances between 2156 transition10

links. The transition links are represented on maps by flow sym-11

bols in the shape of half-arrow, as suggested by Tobler [63]. In12

both the embedding and clustering processes, links associated13

with significant segments of the road network were grouped to-14

gether, while the majority of minor links connected to a limited15

number of trajectories remained unclustered.16

Our experiments have shown that the S-approach can result17

in creating visualisations that exhibit meaningful spatial pat-18

terns. In our running example, the visible patterns align with19

our knowledge derived from earlier analyses. However, there20

are several disadvantages. First of all, the results of applying21

both classes of techniques are highly sensitive to parameter set-22

tings. Thus, altering the perplexity in t-SNE or choosing an-23

other embedding method changes the distribution of the places24

in the embedding space, which, in turn, changes the colouring25

and, hence, the visual patterns on the cartographic map. Simi-26

larly, adjusting the thresholds determining the neighbourhoods27

in OPTICS results in a different division of the set of places into28

clusters and noise, which may be difficult to compare with the29

previously obtained outcomes.30

Besides, the results of embedding techniques are charac-31

terised by very high stress indicating substantial distortions of32

the distances in the produced 2D output. Another limitation33

of embedding is that patterns are constructed only in the mind34

of an observer lacking an explicit representation that could be35

used in the further analysis process. On the other hand, clus-36

tering methods produce tangible results, namely, cluster mem-37

berships, but they divide data into disjoint groups and miss any38

relationships between them. The noted limitations raise a need39

in finding other approaches to studying place connectivity. To40

address this need, we explore the possible uses of topic mod-41

elling techniques.42

4.3. Approach T: Applying topic modelling43

Here we introduce our novel approach T, in which topic mod-44

elling is applied to trajectories treated as documents.45

4.3.1. General ideas46

As noted in Sections 2 and 3.3, topic modelling methods are47

applicable to abstract “documents” where “terms” can be la-48

bels of objects of any kind. In our work, terms are identifiers49

of either places in space or directed links (i.e., ordered pairs50

of places) representing possible transitions between places. A51

trajectory transformed to a sequence of visited places or transi-52

tions (Section 4.1) is treated as a document consisting of words53

pt1
i
, pt2

i
, ..., ptNi

i
or of words pt1

i
→ pt2

i
, pt2

i
→ pt3

i
, ..., ptNi−1

i
→54

ptNi
i

. The set of trajectories in our running example is consid- 55

ered as a corpus consisting of 51, 498 documents. 56

When topic modelling is applied to trajectories represented 57

as combinations of visited places, the resulting topics are distri- 58

butions of weights over the set of all places. From the perspec- 59

tive of the topic modelling algorithm, places are merely distinct 60

terms. However, we can take into account the spatial positions 61

of the places and thus treat each topic as a spatial distribution 62

of weights. The places with high weights constitute the core of 63

the topic. The topic tells us that these places tend to be used 64

conjointly in multiple trajectories, which is a particular pattern 65

of space use. 66

Similarly, when topic modelling is applied to trajectories rep- 67

resented as combinations of transitions between places, each re- 68

sulting topic is a distribution of weights over the set of all links. 69

It can be treated as a directed weighted graph with vertices cor- 70

responding to the places and weighted edges to the transition 71

links. In the spatial context, the topic core is a particular spatial 72

configuration of places and transition links which shows how 73

the places are interconnected. 74

4.3.2. Topic modelling in application to places 75

Let’s start with the representation in the form of the lists of 76

places. The vocabulary of the document corpus consist in this 77

case of 385 distinct terms, each corresponding to one place. 78

In text mining, a corpus with such characteristics is consid- 79

ered as a suitable subject for applying topic modelling meth- 80

ods. Taking into account that the documents are rather short, 81

and the vocabulary is not very extensive, it appears preferable 82

to apply NMF [14] instead of more popular LDA [13]. NMF 83

was found to perform better than other methods in comparative 84

studies involving analysis of short texts, such as posts in social 85

media [12]. 86

It is known [64, 65] that the results of topic modelling can 87

vary significantly based on the number of topics desired. To 88

determine a suitable number of topics, we use an ensemble ap- 89

proach as described by Chen et al. [47]. This involves running 90

NMF multiple times within a specified range of target parame- 91

ters, combining all obtained topics into one table, and reducing 92

the dimensionality of the topics using t-SNE [60]. The number 93

of well separated groups of points observed in the embedding 94

space indicates the number of stable topics existing in the data. 95

Figure 6, top, shows an embedding of the NMF outputs from 96

11 iterations for the target number of topics ranging from 15 to 97

25. Strong clustering of topics is observed, indicating consis- 98

tent results with only slight variations. Based on the number 99

of well-separated groups of points, we conclude that the distri- 100

bution can be appropriately represented by 21 topics (Fig. 6). 101

We are aware that t-SNE and other dimensionality reduction 102

methods are quite sensitive to hyperparameter settings [65]. To 103

validate the number of topics, we performed sensitivity analy- 104

sis by varying the perplexity value, and found that the results 105

remain stable. 106

A single run of a topic modelling method generates two out- 107

put matrices: topic-term and document-topic. The first ma- 108

trix represents 21 topics by assigning non-negative weights to 109

each of the 385 terms (places). The second matrix assigns non- 110
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Fig. 6. t-SNE embedding of NMF outputs of 11 runs (in grey); the results
of the run that creates 21 topics is marked in black.

negative weights of the 21 topics to each of the 51, 498 docu-1

ments, i.e., trajectories. These weights reflect the strength of2

the association of each term or document with the topic.3

To interpret the acquired topics, it is necessary to study their4

distribution over the set of terms. As the terms represent places5

in our case, each topic can be expressed as a geographic dis-6

tribution of the weights associated with the places. The spatial7

distributions of all topics are shown in the small multiple choro-8

pleth maps in Fig. 7. We see that each topic has a spatially9

compact core consisting of places with high topic weights rep-10

resented by darker shading. The core is usually associated with11

components of the transportation infrastructure. One topic has12

the core in the city centre. The core is surrounded by adjacent13

places with lower topic weights representing the “catchment re-14

gions” of the respective infrastructure features. There are also15

spatially scattered distant places that are weakly associated with16

the topic. Since their topic weights are low, they can rather be17

considered as noise than a part of the spatial pattern.18

One place may be associated with multiple topics, while the19

strengths of the associations usually differ. In Fig. 8, each place20

is coloured according to the dominant topic assigned to it, i.e.,21

the topic having the highest weight. We see how the dominant22

topics divide the territory into regions, such that connectedness23

of the places within the regions is stronger than between the re-24

gions. It is important to note that the colours assigned to the top-25

ics indicate the similarity of the topics based on the closeness of26

their vectors of the term weights. To assign these colours, the27

set of 21 topics described by the vectors of 385 term weights is28

projected onto a 2D space using one of existing dimensionality29

reduction methods, namely, MDS [59]. The positions in this30

space are colour-coded using the Cube Diagonal Cut B-C-Y-R31

colour map [55, 66]. We stress the need of using different em-32

bedding methods for different purposes. The neighbourhood-33

preserving t-SNE is used for selecting the optimal number of34

topics, while the better preserving long distances MDS is used35

for assigning colours to topics.36

Places having sufficiently high weights of two or more top-37

ics can be considered as connectors between the spatial regions38

represented by the topics. It is hard to identify such connectors39

by examining the small multiples display, where each topic is 40

shown separately from the others. Hence, we need to visualise 41

the topics on a single map in such a way that the combinations 42

of the topic weights in the places can be seen. The map with 43

pie charts demonstrated in Fig. 9 serves this purpose. We see 44

that some individual places, as well as larger contiguous groups 45

of places, are primarily linked to a single topic, and we also 46

observe areas comprised of places that exhibit a combination 47

of two or more topics. These areas show us where and how 48

strongly the connectivity regions revealed by the dominant top- 49

ics are interlinked with other (typically adjacent) regions. This 50

kind of result, i.e., division into overlapping regions, cannot be 51

obtained by means of clustering. The capability of producing 52

such results is an indubitable strength of topic modelling. 53

4.3.3. Topic modelling in application to links 54

We have also applied NMF to the representation of the data 55

set as a corpus of documents composed from the vocabulary 56

consisting of 2, 156 distinct terms representing the directed 57

transition links between the places pi → p j. The iterative ex- 58

ecution of NMF with setting the number of topics to values in 59

the range from 20 to 35 followed by visual exploration of the 60

embedding space suggested acquiring 30 topics. We obtain two 61

matrices, one with non-negative term weights for the topics and 62

another with non-negative topics weights for the documents. 63

Based on the first matrix, each topic consists of a combination 64

of directed links with non-zero weights. It can be considered 65

as a directed weighted graph with spatially anchored nodes (= 66

places). Such a graph can be represented visually by a node-link 67

diagram whose layout is determined by the spatial positions of 68

the nodes. 69

As an example, the graph representing one selected topic is 70

shown in Fig. 10. The links are represented by white curved 71

lines with the curvature increasing in the link direction and 72

the width proportional to the topic weight. The representation 73

of links by curved lines follows the established practices, e.g., 74

[67, 68]. For choosing between the representations by straight 75

arrows (as in Figs. 4 and 5) and by curved lines, we com- 76

pare two variants of the flow maps regarding the display clarity, 77

amount of visual clutter, and aesthetics of the appearance. 78

In the background of the map in Fig. 10, the black lines 79

represent the trajectories that contributed to defining the topic, 80

i.e., whose having non-zero weights of the topic. Since the 81

trajectories are quasi-continuous, the links connect neighbour- 82

ing places. Like in the topics composed of places, there is a 83

topic “core” consisting of links with high weights. These high 84

weighted links form a connected component of the graph. There 85

are also spatially scattered links with low weights, which may 86

rather be treated as noise than as significant components of the 87

topic. 88

From the perspective of movement, the core of a link topic 89

can be considered as a major pathway for travelling through the 90

space. The system of links connected to the core show the ways 91

that connect this pathway with the places in the surrounding 92

territory. Different pathways existing in Milan with their satel- 93

lite link systems can be seen in the small multiples display in 94

Fig. 11, which shows the spatial graphs for all 30 link topics. 95
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Fig. 7. Spatial distributions of 21 place visiting topics are shown by small multiples. The darkness of the shading is proportional to the topic weight for a
given place; white corresponds to zero weights.

Fig. 8. Colouring of the places represents the topics having the highest
weights for the places. The colours are assigned to the topics according to
the topics’ positions in an MDS embedding using the 2D Cube Diagonal
Cut B-C-Y-R colour map.

The links with low topic weights are drawn with low opacity,1

which makes the topic cores more prominent.2

To see all major pathways in a single map, we paint the links3

in unique colours assigned to the topics, as shown in Fig. 12.4

Assuming that a topic core consists of links for which this topic5

has the highest weight, the colouring according to the dominant6

topic fully represents the topic cores, i.e., the major pathways,7

whereas the satellite link systems get truncated and intertwined8

with other link systems. Hence, such a map is mostly suitable9

for observing the major pathways and their spatial relationships.10

Thus, we see that many of them have counterparts going in the11

opposite direction. By comparing the map in Fig. 12 with the 12

maps in Fig. 8 and Fig. 9, we note that there is a correspondence 13

between the major pathways and the connectivity regions. 14

Hence, the place-based and link-based topic modelling pro- 15

duce consistent results. Both place-based and link-based topics 16

reveal similar connectivity regions and catchment areas of ma- 17

jor road network elements. Additionally, the link-based topics 18

reveal the major pathways with satellite systems of connecting 19

links, which are used for travelling through and between the 20

connectivity regions. 21

4.3.4. General notes 22

We used the Milan data example to introduce the novel ap- 23

proach T, the essence of which is application of topic mod- 24

elling to specially represented trajectories followed by visual 25

exploration and interpretation of the topics. The presented 26

analysis demonstrates that the T-approach can work well when 27

applied to quasi-continuous trajectories reflecting movements 28

constrained by a transportation network. As explained in Sec- 29

tion 2, such data entail strong connectedness of neighbour- 30

ing places and frequent occurrence of same or similar routes. 31

Therefore, the result of applying the T-approach includes con- 32

tiguous regions of connectivity and unbroken pathways sur- 33

rounded by systems of connected weaker links. However, it 34

would be wrong to believe that similar types of findings can be 35

obtained regardless of data and movement properties. To inves- 36

tigate the capabilities and possible limitations of the T-approach 37

more comprehensively, we apply it to data with different char- 38

acteristics and to free movements. 39
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Fig. 9. The combinations of the NMF weights of the topics for the places
are represented by pie charts. The pie sectors corresponding to the topics
are painted in the same colours assigned to the topics as in Fig. 8.

5. Case study 1: Application to episodic movement data1

The data set consists of trajectories of Twitter users con-2

structed from their geo-located Twitter messages posted on the3

territory of Greater London in the time frame from 05.11.20124

till 25.09.2013. For the analysis, we selected 40,246 trajectories5

(consisting in total of 15,246,565 points) with the minimal du-6

ration of 30 days, which are likely to be created by residents or7

frequent visitors of Greater London. This subset was analysed8

in an earlier paper [69]. The trajectories are shown on a map9

in Fig. 13. Using the data-driven tessellation method, where10

we set the desired place radius to be about 3 km, we obtained11

450 places and 93,542 transition links, 29.2% of which were12

used only once, and 98.25% (91,905) are links between non-13

neighbouring places. Such links appear due to the absence of14

recorded visits of the Twitter users in intermediate places.15

Our previous analysis [69] revealed high correspondence be-16

tween the spatial patterns of the Twitter users’ mobility and the17

topology of the transportation network of Greater London, with18

strong radial flows from the peripheral areas to the city centre19

and back. We expect to detect similar patterns by means of topic20

modelling, and we also want to see whether it will give us any21

additional information.22

To select a suitable number of topics for the places, we iter-23

atively run NMF with setting the parameter value in the range24

from 15 to 35. In a common projection of all resulting topics,25

we observe that the result with 27 topics is the best in terms of26

representing the topic distribution in the projection space. In27

Fig. 14, top, the dominant topics of the places are represented28

Fig. 10. One example topic is visualised as a node-link diagram with the
nodes anchored in the space. The visibility of the nodes is reduced. The
links are represented by curved white-coloured lines with the widths pro-
portional to the weights of the topic for the links. In the background, 1,332
trajectories having non-zero weights of the topic are represented by black-
coloured lines.

by place colouring and the compositions of the topic weights 29

by pie charts. We see that the pie chart sizes in the city centre 30

are much larger than on the remaining territory, and the sizes 31

decrease in the directions from the centre to the periphery. This 32

aligns with the spatial distribution of the place visits counts. 33

Consistent with the previous analysis, the application of the 34

topic modelling reveals the central-radial structure of the Twit- 35

ter users’ mobility. There are areas of dominance of different 36

topics extending radially from the centre to the periphery, and 37

there is little intersection between neighbouring areas. A promi- 38

nent exception is the area of the Heathrow airport on the west of 39

the city, which is covered by three places containing relatively 40

big pies composed of many differently coloured sectors, which 41

indicate connectedness of these places with many different ar- 42

eas. Opposite to this, there are many places in the centre where 43

the charts appear as large unicoloured circles. This kind of ap- 44

pearance means that a place is either very weakly connected to 45

places from other areas or all connections have equal strengths 46

and thus do not contribute to the definition of the topic associ- 47

ated with this place. 48

Additional understanding can be gained from the small mul- 49

tiples display in the upper part of Fig. 15 presenting the spa- 50

tial distributions of the individual topics. The topic weights 51

for the places are represented by proportional areas of circle 52

symbols. We see two kinds of distributions: (1) large groups 53

of neighbouring places with “cores” formed by places with 54

higher weights, plus multiple disjoint places with very low topic 55

weights scattered over the territory, and (2) one place with very 56

high weight in the centre and many extremely scattered places 57

with very low weights. The distributions of the first kind cor- 58
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Fig. 11. Small multiples with 30 move topics represented as spatial node-
link diagrams.

Fig. 12. Transition links coloured according to the dominant topics.

respond to the areas stretching radially from the centre to the1

periphery that we have seen in Fig. 14, top. The distributions2

of the second kind show that places in the centre have relation-3

ships with many places over the entire territory, but most of4

these relationships are weak, with a few exceptions. In partic-5

ular, the area of Heathrow contains slightly larger circles than6

in the majority of places in many of the small maps. It can also7

Fig. 13. Episodic trajectories of resident Twitter users in London. The tra-
jectories are rendered with about 99% transparency.

Fig. 14. Top: Spatial distribution of 27 place-based topics. The places are
coloured according to the dominant topics. Pie charts show the compo-
sition of the topic weights. Bottom: 30 topics obtained for the transition
links are represented by colouring the links according to their dominant
topics. The links with the dominant topic weights below 0.001 are omitted.
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Fig. 15. Small multiples show the spatial distributions of the individual place-based (top) and link-based (bottom) topics.
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be noticed that in some maps the places with low weights (i.e.,1

small circles) are aligned along radial streets.2

It should be admitted that any individual topic with such3

highly scattered spatial distribution where most of the places4

have very low topic weights is not very interesting by itself. We5

need to consider all these topics together to make the general6

observation that places in the city centre have relationships with7

the whole surrounding territory. If it is planned to involve the8

results of topic modelling in subsequent analysis, it may be ap-9

propriate to aggregate all these topics in a single topic, similarly10

to what we did in another work [49].11

To verify and complement the observations made using the12

place-based topics, we also apply NMF to the lists of transition13

links. We set the number of topics to 30, which is slightly more14

than the number of the place-based topics. We avoid creating15

too many topics, which will require much effort to consider and16

interpret. Besides, the result obtained for the places showed us17

that some topics may be excessively fine and provide low level18

of abstraction.19

The results of the link-based topic modelling are presented in20

the lower parts of Fig. 14 and Fig. 15, so that they can be com-21

pared with the place-based topics. In Fig. 14, the curved lines22

representing the links are painted in the colours of the dominant23

topics. Like for the places, see spatial clusters of uniformly24

coloured links stretching in different directions from the cen-25

tre to the periphery. This spatial pattern is also consistent with26

what was uncovered in the previous study [69]. There are no27

prominent differences between the line widths representing the28

topic weights, which shows that the weights are approximately29

equal and low.30

Complementing the patterns perceived from the map of the31

dominant topics, the small multiples in Fig. 15, bottom, tell us32

that, apart from the radial configurations of related links, there33

are configurations composed of many links clustered in the cen-34

tre and weak connections between the centre and more distant35

areas. These patterns, like the patterns of type 2 for the place-36

based topics, tell us about high interconnectedness of the places37

in the centre and multitude of links between the centre and dif-38

ferent places throughout the city. Again, each of these topics by39

itself is not highly useful; they need to be considered in combi-40

nation.41

In this case study, the link-based topic modelling does not42

distinguish pathways going in opposite directions. This can be43

attributed to the fact that each city resident’s mobility over an44

extended period is considered as a single trajectory, which is ex-45

pected to encompass routine patterns involving repetitive move-46

ments in opposite directions (e.g., home to work and work to47

home). The detection of unidirectional patterns would require48

dividing such trajectories into individual trips. However, due to49

the nature of social media data, most trips would be represented50

by only a few positions, making pattern detection challenging.51

This case study demonstrates that, despite the challenging52

properties of episodic movement data, it is possible to uncover53

meaningful patterns of movement through the space, while the54

types of patterns significantly differ from what we have seen55

in the case of quasi-continuous trajectories constrained by the56

transportation network. In the next case study, we apply topic57

Fig. 16. Left: Fragments of the ball trajectory under the possession of two
teams mapped onto a coordinate system where the pitch is oriented verti-
cally and the upward direction is the direction of the attacks. Right: Divi-
sion of the football pitch into zones.

modelling to quasi-continuous unconstrained trajectories. 58

6. Case study 2: Application to unconstrained movement 59

(football) 60

In this case study, we apply topic modelling to data repre- 61

senting movements of the ball in a football game. The goal of 62

the analysis is to uncover different patterns of progressing the 63

ball towards the opponents’ goal. From the entire trajectory of 64

the ball, we exclude the time intervals when the ball was out of 65

play and divide the remaining parts of the trajectory into 454 66

(=230+224) fragments corresponding to the possession by the 67

two teams. Next, we transform the data to a uniform coordinate 68

system with the vertical axis oriented in the attack direction, as 69

shown in Fig. 16, i.e., the attacked goal is on the top regard- 70

less of which team possesses the ball. We apply one of existing 71

schemes of dividing the pitch into tactical zones [70], namely, 72

in two halves (called low and high), five lanes (left and right 73

channels, left and right half-spaces, and central lane), and two 74

penalty boxes, as shown on the right of Fig. 16. We want to find 75

out how the teams use these zones to progress the ball towards 76

the goal of their opponents. For this purpose, we consider se- 77

quences of ball transitions between the zones using only those 78

trajectory fragments that make at least two transitions. There 79

are 229 (=102+127) such fragments making in total 1,715 tran- 80

sitions. The transitions are represented by terms having the for- 81

mat Zi Z j, where Zi and Z j are identifiers of two pitch zones. 82

The overall “vocabulary” consists of 60 distinct terms. 83

We apply NMF to the transition sequences. To decide on the 84

number of topics to derive, we run NMF iteratively setting the 85

desired number of topics to values from 5 to 25 and obtain 315 86

topics in total. We then apply dimensionality reduction to the 87

term weights vectors of the topics to put them in a common 2D 88

embedding space. In the embedding plot, we see 14 relatively 89

dense clusters of points suggesting the existence of 14 topics 90

that remain stable across many runs. 91
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To visualise the results of topic modelling, we use small mul-1

tiple displays containing maps of two types: flow maps (Fig. 17,2

left) and trajectory maps (Fig. 17, right). Each small map rep-3

resents one topic. Flow maps portray aggregated transitions be-4

tween the zones. The transitions are represented by flow sym-5

bols in the shape of half-arrow, as suggested by Tobler [63].6

The widths of the symbols are proportional to the weights of7

the transitions in the topic represented on the map. In trajectory8

maps, fragments of the ball trajectory are represented by lines9

with widths proportional to the topic weights. When the weight10

equals zero, the trajectory is not visible. The lines are coloured11

in yellow and red according to the ball possession by two teams.12

As mentioned earlier (Section 5), the number of derived top-13

ics influences the degree of abstraction of the patterns that can14

be observed. This can be clearly seen in Fig. 17, which presents,15

from top to bottom, results of deriving 8, 10, and 14 topics.16

When we consider the flow maps on the left of Fig. 17 focus-17

ing our attention on the prominent (i.e., sufficiently thick and18

bright) flow symbols, we see that the more topics we derive, the19

smaller are the groups of links having high weights in the same20

topic. These smaller groups of links manifest finer patterns of21

ball movements, whereas the larger groups visible in the result22

with 8 topics reveal patterns of a larger spatial scale.23

While the flow maps show the patterns in an abstract and24

schematic manner, the trajectory maps on the right of Fig. 1725

give us complementary information. First, we see the geomet-26

ric shapes of the trajectories contributing to the topics. Sec-27

ond, we can estimate and compare the amounts of trajectories28

contributing to different topics. In particular, we see that some29

of the 14 topics presented in the lower part of the figure come30

from quite a small number of trajectories. Third, we can com-31

pare the tactics of two teams in terms of choosing the ways to32

move the ball. Thus, we see that the “red” team often moved33

the ball through the central channel to the upper left half-space,34

whereas the “yellow” team almost never used this pattern. The35

“yellow” team often moved the ball starting from their goal,36

while this was rarely done by the “red” team. The “yellow”37

team made more movements across the pitch in the lower half38

and the “red” team had more such movements in the upper half39

of the pitch.40

In this case study, topic modelling was helpful, first, for ob-41

taining an abstracted view of the movement as a combination42

of several general patterns and, second, for revealing groups of43

similar trajectories in terms of progressing the ball through the44

pitch zones.45

7. Discussion46

The strategic goal of our work was to thoroughly investigate47

the potential of applying topic modelling to movement data for48

studying particular aspects of space use, the ways to do this49

and to visualise the results, the meanings of the results, and the50

problems that may arise in order to present the knowledge and51

experience we gained to other researchers and practitioners, so52

that they can be aware of the existing possibilities and know53

how to make use of them. In the following, we discuss different54

aspects of our approach, share our experiences, heuristics, and55

lessons learned, and, where possible, give recommendations for 56

those who would like to use the approach T or parts of it. 57

Analysis goals and interpretation of topics. Topic modelling 58

can be applied to two representations of the same trajectories: 59

as lists of visited places and as lists of transitions between the 60

places. These two ways of application are oriented to differ- 61

ent analysis goals. Lists of places are used when the goal is 62

to see what connectivity regions exist in the space (question 1 63

in the problem statement). A place-based topic represents a re- 64

gion consisting of interconnected places, such that places within 65

the region have predominantly stronger relationships than those 66

with places from other regions. However, two or more regions 67

may have some places in common indicating relationships be- 68

tween the regions. So, place-based topic modelling reveals re- 69

gions of high internal connectivity as well as connections be- 70

tween them. Generally, the regions may be spatially discontin- 71

uous, as in the case study with episodic trajectories. 72

Topic modelling is applied to lists of transitions when the 73

goal is to reveal major pathways by which moving entities tra- 74

verse the space (question 2 in the problem statement). How- 75

ever, this goal can be achieved only when the trajectories are 76

quasi-continuous, so that each trajectory consists of transitions 77

between neighbouring places. In a case of episodic data, topic 78

modelling is used to find groups of transitions that tend to co- 79

occur in multiple trajectories. A topic in this case is a spatial 80

configuration of weighted links. The places connected by the 81

links can also be considered as parts of this configuration, which 82

can be thus treated as a spatial graph, or network. Hence, link- 83

based topic modelling can reveal spatial connectivity networks, 84

which show not only groups of interconnected places but also 85

how they are interconnected. However, connectivity networks 86

do not explicitly represent the relative importance of the places 87

they include. At the end of this section we shall outline a pos- 88

sible research direction towards overcoming this limitation. 89

In one analysis process, either one of the two goals or both 90

may be pursued. In the latter case, it is reasonable to begin with 91

obtaining and analysing place-based topics, i.e., connectivity 92

regions. As we discuss later on, this usually gives a hint of how 93

many link-based topics may be needed to reveal the movement 94

patterns leading to the formation of these regions. 95

Preparation of data. Our approach relies on a representation 96

of space as a discrete set of places, so that trajectories can be 97

transformed to lists of visited places and/or list of transitions 98

between the places, depending on the question that needs to be 99

answered (see the problem statement in Section 1). The set of 100

suitable places can be determined by the application domain 101

and analysis goals. For applications where there are no prede- 102

fined places or domain-specific ways to define places, we sug- 103

gest to identify and delineate relevant places by applying our 104

data-driven tessellation algorithm [9] or its extension [71] to 105

the available movement data. A useful feature of the algorithm 106

is the possibility to adjust the spatial extents of the resulting 107

places to the desired level of spatial abstraction [10]. 108

Before applying topic modelling to lists of places or transi- 109

tions, it makes sense to filter out the lists consisting of a single 110

element, i.e., only one place or only one transition. Such data 111
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8 topics

10 topics

14 topics

Fig. 17. Small multiples showing results of topic modelling obtained by means of NMF with setting the number of topics to 8 (top), 10 (center), and 14
(bottom). Each of the small maps corresponds to one topic. On the left, the topics are presented on flow maps where half-arrow symbols (as suggested by
Tobler [63]) represent aggregated movements of the ball between the pitch zones. The widths of the symbols are proportional to the topic weights for the
movements. On the right, the lines represent fragments of the ball trajectory corresponding to ball possession by two teams, which is signified by yellow or
red colour. Line widths are proportional to the topic weights for the trajectory fragments.
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are useless for the analysis, as they can not contribute to quan-1

tifying relationships between places or between links, respec-2

tively.3

Choosing the topic modelling method. Numerous existing4

topic modelling methods have been discussed and compared5

in surveys, such as [12]. However, in all comparative stud-6

ies, different algorithms have been applied to texts in natural7

languages. Therefore, the results of these studies may not read-8

ily translate to other types of data. Non-Negative Matrix Fac-9

torisation (NMF) [14] has demonstrated superior effectiveness10

over other methods when applied to short documents [72, 73].11

Our proposed approach involves transforming trajectories into12

a form akin to short ’documents,’ suggesting that NMF may be13

considered as a potentially suitable choice.14

Advantages of NMF stem from its enforcement of non-15

negativity and sparsity constraints, facilitating the capture of16

local structures within the data. This characteristic makes the17

method apt for deriving interpretable topics from short docu-18

ments with limited context. Since these constraints are not ex-19

clusive to text data, we anticipate that NMF will exhibit simi-20

lar capabilities when applied to abstract “documents”, aligning21

well with our application where local structures are of interest.22

Additionally, another compelling reason for preferring NMF23

is its the deterministic nature. This characteristic ensures that24

running the method with different parameter settings, partic-25

ularly, the number of topics to derive, yields more consistent26

results compared to probabilistic methods like LDA [13]. Such27

consistency is beneficial for the effective implementation of our28

method for determining the optimal number of topics.29

Choosing the number of topics. As the suitable number of top-30

ics is usually not known in advance, it is necessary to consider31

several variants of parameter setting in order to make a reason-32

able choice. One way is to automatically run topic modelling33

multiple times with setting the number of topics to consecu-34

tive values from a specified range, represent all topics so ob-35

tained by positions in a common 2D embedding space, and find36

out which of the results of the individual runs represents suf-37

ficiently well the distribution of the points in the embedding38

space, as illustrated in Fig. 6. This approach is suitable when39

the “vocabulary” (i.e., the total number of places or links) is40

not very large. Otherwise, the high dimensionality of the term41

weight vectors defining the topics creates a large data volume in42

which the topics are distributed very sparsely, so that there is lit-43

tle difference between their pairwise distances [74, 75, 76]. The44

result of projecting this distribution to low-dimensional space is45

therefore unreliable. Another problem that iterative running of46

topic modelling for obtaining different numbers of topics takes47

quite long time when the vocabulary is large, which may be48

unsuitable for interactive exploration.49

We practice the following heuristic approach. As the set of50

places is usually not very large (due to the possibility to regu-51

late it through the parameter of the data-driven tessellation al-52

gorithm), we use the iteration-embedding procedure to choose53

a suitable number of place-based topics. Visual exploration and54

comparison of the spatial distributions of the chosen number of55

topics allows us to estimate how many link-based topics may be56

sufficient for uncovering relevant movement patterns involved 57

in the formation of these distributions. It is important to take 58

into account properties of the data, which may or may not al- 59

low detection of directional patterns, i.e., pathways through se- 60

quences of places. Our experiments show that such patterns 61

can be extracted from quasi-continuous, especially network- 62

constrained trajectories (as in Section 4). In such a case, a 63

reasonable number of link-based topics to obtain should be 64

from 1.5 to 2 times more than the number of expressive, well- 65

distinguishable place-based topics. If the data are not suitable 66

for detection of directional patterns, as in Section 5, the number 67

of link-bases topics can be roughly the same as the number of 68

place-based topics. 69

In any case, it is not enough to consider just one result with 70

a particular number of topics, but it is necessary to compare it 71

with what can be obtained when the number of topics is slightly 72

lower and when it is slightly higher. Taking a lower number of 73

topics may eliminate uninteresting “weak” topics having low 74

support (i.e., the number of trajectories with high weights of 75

these topics) and/or low weights of all terms (i.e., places or 76

links). Taking a higher number of topics may reveal additional 77

interesting patterns deserving attention. 78

The desired number of topics also depends on the scale and 79

degree of abstraction of the spatial patterns one wishes to un- 80

cover. A large number leads to fine topics combining few places 81

or links, whereas a smaller number leads to larger spatial con- 82

figurations involving more elements. We demonstrated the im- 83

pact of the chosen topic number in Section 6. 84

Returning back to the use of 2D embedding for determining a 85

suitable number of topics, it is necessary to note that the appear- 86

ance of the topic distribution in the embedding space greatly 87

depends on the chosen embedding algorithm and its parame- 88

ter settings. We use the neighbourhood-preserving algorithm 89

t-SNE [60], which strives to put very similar items (i.e., near- 90

est neighbours) close to each other in the embedding space but 91

does not care about faithful representation of larger pairwise 92

distances. This strategy is fit for the purpose of finding groups 93

of very similar topics that have come from different runs, while 94

the distances between the groups are not important. The pa- 95

rameter “perplexity” of t-SNE regulates the number of nearest 96

neighbours to consider for each item. For the purpose of finding 97

dense groups of of similar topics, the perplexity should be set to 98

a low value. We usually try out several values in the range from 99

5 to 15, depending on the number of runs from which we take 100

the topics, and use the embedding with the clearest grouping. 101

Comparison with approach S. We juxtaposed our novel ap- 102

proach T with an adaptation of the common approach S. The 103

latter involves employing 2D space embedding (projection) or 104

clustering after selecting or defining a suitable measure of sim- 105

ilarity between data items. In our applications, these data items 106

represent places or transitions between places, and the similar- 107

ity measure is tailored to reflect the strength of their connected- 108

ness based on co-occurrences in the same trajectories. 109

Our comparison revealed several advantages of approach T. 110

Firstly, unlike space embedding, topic modelling generates tan- 111

gible outcomes suitable not only for visual exploration but also 112

for further analysis, such as application of machine learning 113
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methods. Although clustering also yields tangible results in the1

form of groups of similar places or transitions, these outcomes2

may not be well-suited for application in other computational3

analysis methods, as the groups lack explicit differentiation by4

numeric features.5

Secondly, compared to clustering, which divides the data into6

disjoint and unrelated groups, topic modelling provides a more7

nuanced characterisation by capturing not only groups of highly8

interconnected places or transitions but also connections be-9

tween the groups.10

Thirdly, while both S- and T-approaches are sensitive to pa-11

rameter settings, the parameter sensitivity of the T-approach can12

be mitigated by applying the proposed method for selecting an13

optimal number of topics, as discussed earlier.14

Relation to network analysis methods. In Section 4.3.3, we15

have mentioned that each topic obtained from the link-based16

representation of trajectories can be treated as a directed17

weighted graph, where the vertices correspond to places, edges18

to transition links, and edge weights are the weights of the links19

in the topic. While such graphs offer potential for further anal-20

ysis using network analysis methods [77], it’s important to note21

that these methods focus primarily on binary connections be-22

tween graph vertices. This differs from a holistic treatment of23

a topic, which represents more complex relationships involving24

multiple places and transition links.25

Alternatively, network analysis methods can be applied based26

on pairwise measures of place or link similarity derived from27

their co-occurrence in the same trajectories, such as the distance28

function introduced in Section 4.2. Here, places or links serve29

as the graph vertices, and the values of the similarity measure30

serve as the weights of the edges. However, since this represen-31

tation captures only pairwise connections, the results of apply-32

ing network analysis methods may not carry the same semantics33

as those of topic modelling. For instance, a network analysis34

method might identify a community of highly connected nodes35

A, B, and C. Yet, there may be no trajectory in the dataset vis-36

iting all three nodes. In contrast, a topic with high weights on37

nodes A, B, and C indicates that all three nodes frequently ap-38

pear in the same trajectories.39

Limitations. Major limitations and problematic aspects of the40

approach arise from two factors: first, the necessity to repre-41

sent the spatial component of the data in a discrete manner,42

which may introduce artificial boundaries and distort patterns43

and, second, the inability of topic modelling to take into ac-44

count the spatial neighbourhood and topological relationships45

between places and between links. For a topic modelling al-46

gorithm, two neighbouring places or two links with a common47

origin are just two distinct “terms”. The algorithm may find out48

that they are somehow related only if they both often occur in49

the same trajectories. This may not be a big problem for quasi-50

continuous trajectories where consecutively visited places are51

spatial neighbours and, hence, the spatial relationships are rep-52

resented well enough by the co-occurrence relationships. How-53

ever, it may be quite different for episodic trajectories, as can be54

seen in Section 5. The consequence of the ignorance of the spa-55

tial relationships was the derivation of “excessive” topics, i.e.,56

multiple topics with very similar spatial distributions. While 57

their similarity is obvious to a human analyst, they are very dis- 58

similar for the algorithm, since their cores consist of distinct 59

groups of places or links. 60

We encountered a similar problem in an earlier work, where 61

we applied topic modelling to symbolically encoded discretised 62

time series [49]. Currently, we do not know any way to solve 63

such problems algorithmically. What can be done is interactive 64

aggregation of similar topics and the use of the integrated topics 65

in the further analysis, as we did for the time series. 66

Relation to previous works. To a large extent, out research was 67

inspired by prior works [50, 51], where topic modelling was 68

applied to trajectories represented as sets of traversed streets. 69

The aim of the analysis was to detect frequently taken routes. 70

Unlike in these works, our primary focus is the space viewed 71

as a system of places visited by moving entities. The aim of 72

the analysis is to understand how the places are interlinked by 73

the movements between them and what kinds of spatial struc- 74

tures are formed by the places and links. For this purpose, we 75

consider topics as spatial distributions and strive to find inter- 76

pretable patterns in these distributions. 77

Extending the research scope compared to the prior works, 78

we considered different types of trajectories: quasi-continuous 79

and episodic, network-constrained and unconstrained. We com- 80

pared the approach involving topic modelling with an alter- 81

native approach involving embedding of places according to 82

the strengths of their pairwise associations derived from co- 83

occurrences in the same trajectories. We also proposed visu- 84

alisation methods for representing topic modelling results on 85

maps and investigated how the visual representations facilitate 86

interpretation of the topics. 87

Following the prior works, our study confirms that topic 88

modelling is a powerful analytical instrument for analysis of 89

movement data. Dual representation of trajectories as place vis- 90

its and as transitions allows considering space use from differ- 91

ent perspectives, opening new opportunities for discovering and 92

relating patterns of different types [78]. 93

Directions for future research. In the current approach, topic 94

modelling is applied independently to the places and to the 95

links for obtaining different kinds of information. There is no 96

formal way to match place-based and link-based topics; it can 97

only be done through visual exploration based on noticed sim- 98

ilarities between the spatial distributions. However, it can be 99

taken into account that terms representing links include place 100

identifiers; hence, topics obtained from lists of links implicitly 101

refer to the places connected by the links. This gives an op- 102

portunity to assess the importance of the places for each of the 103

link-based topics. A simple approach is to compute the weights 104

of the places by applying some aggregation operator, such as 105

maximum or sum, to the weights of the incoming and outgo- 106

ing links. Besides, since the link-based topics can be treated 107

as spatial graphs, it is also possible to assess the place impor- 108

tance using the existing measures of graph node centrality [79], 109

particularly, the ones specifically devised for edge-weighted di- 110

rected networks [80, 81]. While these ideas are easy to imple- 111

ment technically, research is required to understand how each 112
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measure should be interpreted in the context of a link-based1

topic.2

Our approach can be extended to analysing changes in space3

use over time. To do this, it is necessary to break down the se-4

quences of place visits and transitions into subsequences cor-5

responding to different time periods and compute the topic6

weights for these subsequences based on the occurring terms.7

8. Conclusion8

We have devised, implemented and tested an approach to un-9

covering and analysing patterns of utilising space as medium10

for movement. The core of the approach is application of topic11

modelling techniques to trajectories transformed to lists of vis-12

ited places and lists of transitions between the places. We in-13

vestigated the potential of the approach using data sets with dif-14

ferent properties. It has demonstrated its capability to reveal15

several types of patterns: regions of high internal connectiv-16

ity, areas where different regions interconnect, major pathways17

of moving through the space, activity centres and their con-18

nections to surrounding areas. We described the workflow of19

the movement data analysis employing our approach and de-20

veloped recommendations for applying it to different kinds of21

movement data. Overall, we can conclude that application of22

topic modelling to movement data provides useful new, previ-23

ously unexplored possibilities for analysing movement as a spa-24

tial phenomenon at a desired level of spatial abstraction, which25

can promote insights into the spatial structure of the movement26

and its relationships with the underlying space.27
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