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Abstract

Different notions of fairness and discrimination have been extensively discussed in
the machine learning and insurance pricing literatures. As not all fairness criteria
can be concurrently satisfied, it is important to develop metrics that allow the assess-
ment of materiality of discriminatory effects and the trade-offs between various criteria.
Methods from sensitivity analysis have been deployed for the measurement of demo-
graphic unfairness, that is, the statistical dependence of risk predictions on protected
attributes. We produce a sensitivity-based measure for the different phenomenon of
proxy discrimination, referring to the implicit inference of protected attributes from
other covariates. For this, we first define a set of admissible prices that avoid proxy
discrimination. Then, the measure is defined as the normalised L2-distance of a price
from the closest element in that set. Furthermore, we consider the attribution of the
proxy discrimination measure to individual (or subsets of) covariates and investigate
how properties of the data generating process are reflected in those metrics. Finally,
we build on the global (i.e., portfolio-wide) measures of demographic unfairness and
proxy discrimination to propose local (i.e., policyholder-specific) measures, which allow
a fine-grained understanding of discriminatory effects across a collective of policyhold-
ers.

Keywords: Proxy discrimination, demographic parity, global sensitivity analysis, insurance
pricing, algorithmic fairness.

1 Introduction

Questions of fairness and discrimination have become central to the wider machine learning
literature (Barocas & Selbst 2016, Mehrabi et al. 2021) and, more specifically, the literature
on insurance pricing (Lindholm et al. 2022, Frees & Huang 2023, Charpentier 2024). The
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salience of these questions has increased with the rise of artificial intelligence and advanced
predictive analytics, as seen by the regulatory attention directed towards the topic (e.g.,
EIOPA 2021, MAS 2022)

A variety of criteria have been formulated, which insurance prices should satisfy in or-
der to be considered fair (Charpentier 2024, Xin & Huang 2024). On the one hand, group
fairness criteria interrogate the statistical relationship between claims, prices, and protected
attributes such as gender or ethnicity; these criteria are typically formulated via (conditional)
independence statements. On the other hand, individual fairness criteria focus on whether
insurance policyholders with similar risk profiles are treated similarly, i.e., are quoted com-
parable premiums. Here different fairness criteria arise from different notions of similarity
and information restrictions, e.g., not using gender or ethnicity as a rating factor. Hence, in
an insurance setting, while group fairness criteria consider the outcome of a pricing strategy,
individual fairness notions revolve more around the way that these prices were generated.
Furthermore, as part of the rich literature on fairness and discrimination, an understanding
has developed that such criteria are not necessarily consistent with each other and can even
be mutually exclusive (Kleinberg et al. 2016, Lindholm et al. 2024).

Within that context, the need emerges to construct metrics for different forms of discrim-
ination and unfairness: one does not just need to know whether such phenomena take place
within a particular insurance portfolio, but also whether the effects are material enough to
justify concern and eventual action. Hence, measuring the materiality of discriminatory ef-
fects is a key ingredient of eventual regulatory action, in order to move from broad principles
(EIOPA 2021) to binding regulations. Furthermore, the potential incompatibility of differ-
ent fairness notions means that one cannot require for all of them to hold at the same time.
Regardless of which notions of fairness are prioritised, this creates the need to monitor many
aspects of possible unfairness and measure the respective trade-offs, including those arising
from any (mandated or otherwise) price adjustment; for a wide discussion see the sequence
of white papers by the Monetary Authority of Singapore (MAS 2022).

Here we develop measures for two distinct phenomena, demographic unfairness and proxy
discrimination, with a clear emphasis on the latter. Demographic unfairness relates to viola-
tions of demographic parity, that is, the requirement that prices are statistically independent
of policyholders’ protected attributes. While the applicability of this particular group fair-
ness notion in insurance has been criticised (Lindholm et al. 2024), we consider it for two
reasons: first, because it is easy to explain and politically salient, therefore a potential source
of reputational risk for insurers (e.g., Cook et al. 2022); and second because it helps with
introducing the construction of the measures we are using. The notion of proxy discrimina-
tion builds on the understanding that some policyholder attributes, like gender or ethnicity,
should not be used to calculate the price for individual policyholders, as this would con-
stitute direct discrimination. Based on that premise, it is additionally desirable to avoid
the effective proxying of protected attributes by other variables (e.g., car engine size, postal
code) that are correlated to them. A wide range of conceptualisations of proxy discrimina-
tion exist (Tschantz 2022), with the causal structure of covariates often taking centre stage
(Araiza Iturria et al. 2024, Côté et al. 2024). Here we take a view of proxy discrimination
as a form of omitted variable bias, which is not contingent on assumptions of causality, but
focuses on the indirect inference of protected attributes from other covariates, in the sense
of Lindholm et al. (2022, 2023, 2024).
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The measures of discrimination we develop are based on methods from Global Sensitivity
Analysis, originating in the work of Sobol’ (2001) and having been deeply studied by a variety
of authors (e.g., Saltelli et al. 2008, 2010, Owen 2014, Borgonovo & Plischke 2016, Owen &
Prieur 2017). Sensitivity analysis is deployed to provide insight into complex computational
models, evaluate the relative importance of model inputs and identify model vulnerabilities;
for applications specifically to insurance risk portfolios and insurance regulation, see respec-
tively Rabitti & Borgonovo (2020), Vallarino et al. (2024) and Borgonovo et al. (2024). The
variable importance metrics used in sensitivity analysis can thus be suitable tools for evaluat-
ing the direct and indirect impact of protected attributes on insurance prices. This is already
recognised in the work of Bénesse et al. (2022) who provide sensitivity-based measures for a
variety of fairness criteria, though, to our knowledge, applications of sensitivity analysis to
the problem of measuring proxy discrimination are currently lacking in the literature (a very
brief discussion is given in Hiabu et al. (2023)).

In Section 2 we formally introduce the ideas of demographic unfairness and proxy discrim-
ination. Specifically, in Sections 2.3 and 2.4 we define, respectively, measures of demographic
unfairness and proxy discrimination and discuss their properties. The former is already found
in Bénesse et al. (2022) and we only deal with it briefly. The measure of proxy discrimination
is to our knowledge new and can be understood as the distance between any given price and
the closest element in a set of prices that avoid proxy discrimination. This set of admissible
prices arises as a convex combination of the discrimination-free prices in Lindholm et al.
(2022) and constant prices that do not depend on any policyholder characteristics. This
idea is operationalised through a constrained regression of the price on best-estimate prices,
calculated using different scenarios regarding the value of a protected attribute. The measure
of proxy discrimination takes values between 0 and 1 for an insurance portfolio and can be
evaluated for any system of prices, without reference to how these were calculated. As a
result it lends itself to empirical evaluation and price auditing. We note that the process of
identifying the closest element in the set of proxy-discrimination-free prices generally relies
of knowledge of the joint distribution of protected characteristics and other covariates. As a
result, using that element as an adjusted price could be problematic, as it would violate the
stringent conditions of Lindholm et al. (2024).

While a global measure of proxy discrimination for a portfolio is useful, it is also necessary
to understand which covariates are the sources for such discrimination. In Section 2.5, we
discuss how to attribute the measure of proxy discrimination to covariates. Given that the
measure is a result of an L2-projection, this can be achieved by a simple adaptation of the
variance-based Sobol’ and total sensitivity indices (Saltelli et al. 2008).

In Section 3.1, we introduce some standard properties of the underlying data generating
process and explain how the sensitivity measures respond to such properties. Subsequently,
in Sections 3.2 and 3.3 we introduce, respectively, local measures of demographic unfairness
and proxy discrimination. These measures are evaluated for individual policies and allow a
more fine-grained understanding and visualisation of the way in which discriminatory effects
may arise in a portfolio. The local measures we propose are simply given by the price of a
policy minus a benchmark price that is free of the particular type of unfairness considered.
For the case of demographic unfairness, the benchmark price comes from an Output Optimal
Transport transformation of the portfolio’s prices (Lindholm et al. 2024, Charpentier 2024).
For the case of proxy discrimination, the benchmark is given by the closest element in the
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set of prices that avoid proxy discrimination.
Finally, we conclude with Section 4, where we briefly discuss various important aspects of

the problem not fully addressed by the definition of the measures of demographic unfairness
and proxy discrimination, namely: the differences in the notion of proxy discrimination of
Lindholm et al. (2024) with the current paper; questions of whether evaluation should be
under a portfolio or market distribution; the impact of model uncertainty; and the calculation
of proxy discrimination for the prices actually charged to policyholders, which are generally
different to pure risk predictions.

2 Measures of proxy discrimination and demographic

unfairness

2.1 Setup and notation

We work on a probability space (Ω,F ,P), with P the real-world probability measure. On that
space we consider the random vector (Y,X, D). The random variable Y represents a loss
(or loss frequency), to be predicted based on covariates (X, D). Of these, X captures non-
protected covariates (non-discriminatory characteristics), whileD reflects a protected attribute
(discriminatory or sensitive characteristic). The variability of (X, D) under P represents
portfolio heterogeneity, while the variability of Y conditional on {X = x, D = d} reflects
loss uncertainty for a policyholder with known features (x, d). We will assume throughout
that D is discrete and finite, taking values in the set D.

Throughout, for a generic random variable Z, we represent its distribution function by
P(z); the conditional distribution of Z given W = w is denoted accordingly by P(z|w). In
the case of absolutely continuous random variables Z, probability density functions are given
by dP(z)/dz. In the case of discrete Z we have probability weights P(z) = P(Z = z) > 0.

2.2 Pricing functions and discriminatory effects

We define the best-estimate price as

µ(x, d) := E[Y | X = x, D = d], (1)

such that µ(x, d) is the optimal (in L2-norm) prediction of the loss Y for a policyholder with
features (x, d).

Best-estimate prices have discriminatory effects because of their direct dependence on
protected characteristics D. The most straightforward way of correcting for such direct
discrimination, is to calculate insurance prices without including the information D as a
covariate for prediction of Y . The resulting conditional expectation based only on non-
protected characteristics X is termed the unawareness price and is defined by

µ(x) := E[Y | X = x]. (2)

Nonetheless, the unawareness price may still have discriminatory effects, arising from the
potential dependence between the random vectors X and D. We note that such dependence
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need not have a causal source, but just be a feature of a particular portfolio of insurance
policies, e.g., when female and male policyholders have different age distributions.

Out of many different notions of unfairness or discrimination we focus on two complemen-
tary perspectives on the impact of the dependence of protected attributes and non-protected
covariates. First, given such dependence it will generally hold that µ(X) is also dependent
on D. This means that insurance prices may vary across demographic groups, such that for
some d ̸= d′, d, d′ ∈ D, we have that E[µ(X) | D = d] ̸= E[µ(X) | D = d′]. For short, we
call such insurance prices demographically unfair.

Second, removing D from the set of covariates does not imply that these are not used
indirectly in pricing. A concern is that, if D can be partially predicted from X, it is possible
that insurance prices, derived with the aim of maximising predictive accuracy, implicitly use
X to infer D. In fact, by observing that we can write unawareness prices as

µ(x) =
∑
d∈D

µ(x, d)P(d | x), (3)

it becomes clear that unawareness prices do indeed rely on implicit inference of D from X,
via the conditional probability P(d | x) used in averaging over best-estimates. We say that
prices utilising such inference of protected characteristics are subject to proxy discrimination.

2.3 Measuring demographic unfairness

We now put the previous ideas on a more formal footing, which applies to a general pricing
functional X 7→ π(X). We start with the well-known idea of demographic parity.

Definition 1. The pricing functional X 7→ π(X) satisfies demographic parity with respect to
P(X, D), if the random variable π(X) is independent of D under P. If π violates demographic
parity, we say that it is demographically unfair.

Note that independence of X and D is a sufficient but not a necessary condition for
demographic parity. Furthermore, establishing that a pricing functional π is demographically
unfair does not necessarily mean that the resulting impact is substantial. To understand
the materiality of unfairness, one can visualise the changes in (empirical estimates of) the
conditional density of (π(X)|D = d) across demographic groups d ∈ D. Sometimes though,
a simple numerical metric is useful. We now present such a metric, following Bénesse et al.
(2022) who apply ideas from sensitivity analysis to evaluate various concepts of algorithmic
(un)fairness.

Definition 2. The demographic unfairness metric UF is defined as

UF(π) =
Var(E[π(X) | D])

Var(π(X))
, (4)

with the convention that if Var(π(X)) = 0, then UF(π) = 0.

The rationale for the construction (4) is well established in the different context of Global
Sensitivity Analysis and the metric is known as a Sobol’ Index (e.g. Sobol’ 2001, Saltelli
et al. 2008). Its interpretation follows from the decomposition Var(π(X)) = Var(E[π(X) |
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D])+E[Var(π(X) | D)], where the term standing as numerator in (4) represents the amount
of variation in π(X) attributable to the protected variable D.

In (4), we suppress the dependence of the metric on P(X, D). The unfairness metric
reflects demographic disparities by representing the variability of average prices across de-
mographic groups as a portion of the overall variance of prices. These demographic properties
are reflected by P(X, D), which can be a population distribution, reflecting the interdepen-
dence of covariates across a society. However, P(X, D) can also be the distribution of covari-
ates within a specific insurance portfolio; in that case it may reflect to a lesser extent some
widely applicably demographic realities and more the structure of an individual portfolio,
which can differ across insurers. We return to this point in Section 4.2.

The following easily derived properties are stated without proof.

Proposition 1. The unfairness metric UF satisfies the following properties.

i) 0 ≤ UF(π) ≤ 1. Furthermore, for all a, b ∈ R it holds that UF(a+ bπ) = UF(π).

ii) If π satisfies demographic parity with respect to P(X, D), then UF(π) = 0.

iii) If σ(π(X)) ⊆ σ(D), i.e., π(X) is D-measurable, then UF(π) = 1.

Example 1. Let D ∈ {0, 1}, X ∼ U(0, 1) and P(D = 1|X) = E[D | X] = X. This implies
P(D = 1) = 1

2
. Assume that the best-estimate price is

µ(X,D) =
1

2
+X +D,

which includes a fixed cost. In this model there is the potential for demographic unfairness,
since (X,D) are dependent. The unawareness price equals

µ(X) = E
[
1

2
+X +D

∣∣∣∣ X

]
=

1

2
+ 2X.

Straightforward calculations lead to

E[µ(X) | D = 0] =
1

2
+ 2E[X | D = 0] =

1

2
+

2

3
,

E[µ(X) | D = 1] =
1

2
+ 2E[X | D = 1] =

1

2
+

4

3
.

It then follows that Var(E[X | D]) = 1/36. Hence, if the unawareness price is used, the
average premium for D = 0 is different compared to D = 1. Consequently demographic
unfairness arises. We can quantify this effect via the UF metric:

UF =
Var(E[1/2 + 2X | D])

Var(1/2 + 2X)
=

Var(E[X | D])

Var(X)
=

1

3
> 0.

■
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2.4 Defining and quantifying proxy discrimination

We now turn our attention to the measurement of proxy discrimination. Here the situation
is different, compared to unfairness. While violations of demographic parity relate to the
statistical properties of the pricing functional, the issue of proxy discrimination arises from
the way that the pricing functional is constructed. Recall that the best-estimate prices
µ(X, D) are not used, as they would give rise to direct discrimination and some other pricing
functional π(X) must be used instead. Effectively this corresponds to merging rating classes
with the same non-protected profile {X = x} but different protected characteristics {D = d}.
Hence, one can calculate the price in each of those new classes as a weighted average over
d of the corresponding costs µ(x, d). Thus, pricing relates to reallocating the claims costs
µ(x, d), following the removal of the explanatory effect of D. To avoid proxy discrimination
– unlike the situation of unawareness prices (3) – the weights used should not depend on x.

To address this issue, Lindholm et al. (2022) suggest the pricing formula

h∗(X) =
∑
d∈D

µ(X, d)P∗(d), (5)

for some distribution P∗(d) on D. Here, we build on Lindholm et al. (2022), to construct
an expanded set of admissible pricing functionals that we consider to be free from proxy
discrimination. We argue that a constant price π(X) ≡ π that does not depend on the
covariates X cannot proxy-discriminate, as it does not discriminate between policyholders
in any sense. Consequently, we would not like to ex ante exclude convex combinations of the
form

(1− α)π + αh∗(X), α ∈ [0, 1], (6)

from our admissible set of prices. Comparing with equation (5), this means that we both
allow for an additive constant offset and also that the weights vd := αP∗(d) that are applied
on the best-estimate prices µ(X, d) may sum to less than 1.

Proxy discrimination is now defined with the above arguments in mind. Define the set
V := {v ∈ [0, 1]|D| :

∑
d∈D vd ≤ 1}.

Definition 3. The pricing functional X 7→ π(X) avoids proxy discrimination with respect
to µ(X, D), if for P-almost every X we can write

π(X) = c+
∑
d∈D

µ(X, d)vd, (7)

for some c ∈ R and v ∈ V that do not depend on X. If π does not have that structure, we
say that it is proxy-discriminatory.

Following Definition 3, we can now define a measure of proxy discrimination.

Definition 4. The proxy discrimination metric PD is defined as

PD(π) =
minc∈R, v∈V E

[(
π(X)− c−

∑
d∈D µ(X, d)vd

)2]
Var(π(X))

, (8)

with the convention that if Var(π(X)) = 0, then PD(π) = 0.
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The metric PD quantifies the extent to which a pricing functional cannot be expressed
as a weighted average of best-estimate cost terms µ(x, d), allowing also for a fixed cost term.
Note that the presence of the intercept c, even with the constraints on v, ensures that any
solution (c∗,v∗) of the regression problem (8), satisfies E

[
π(X)− c∗ −

∑
d∈D µ(X, d)v∗d

]
= 0.

(We note that even though c∗,v∗ need not be unique, the quantity c∗ +
∑

d∈D µ(X, d)v∗d is.)
Hence, we can explicitly solve for c and express the numerator of (8) as

min
v∈V

E

(π(X)− E[π(X)]−
∑
d∈D

(
µ(X, d)− E[µ(X, d)]

)
vd

)2
 .

Consequently we can write

PD(π) =
Var

(
π(X)−

∑
d∈D µ(X, d)v∗d

)
Var(π(X))

(9)

and PD(π) can be understood as one minus the coefficient of determination for the con-
strained regression of π(X) on µ(X, d), d ∈ D.

The quantity π∗(X) := c∗+
∑

d∈D µ(X, d)v∗d can be understood as the closest element to
π(X) in the set of prices that are free from proxy discrimination. We do not specifically sug-
gest π∗(X) as a suitable price correction for π(X), since adopting such a practice would be
inconsistent with the requirements on avoiding proxy discrimination, as formulated by Lind-
holm et al. (2024), given the optimal (c∗,v∗) generally will depend on the joint distribution
of (X, D). We return to this point in the discussion of Section 4.1.

Again, simple properties of the metric can be stated.

Proposition 2. The proxy discrimination metric PD satisfies the following properties.

i) 0 ≤ PD(π) ≤ 1. Furthermore, for all a ∈ R, b ∈ R+ it holds that PD(a+ bπ) = PD(π).

ii) If π avoids proxy discrimination with respect to µ(X, D), then PD(π) = 0.

iii) If π(X) is uncorrelated with µ(X, d) for all d ∈ D, then PD(µ) = 1.

Proof. Parts i) and ii) are immediate.
For iii), uncorrelatedness implies that in the regression (8) we have v∗d = 0 for all d ∈ D

and c∗ = E[π(X)]. Consequently

min
c∈R, v∈V

E

(π(X)− c−
∑
d∈D

µ(X, d)vd

)2
 = Var(π(X)).

Parts i)-ii) of Proposition 2 show that PD is an interpretable metric for proxy discrim-
ination, while part iii) describes a situation where proxy discrimination is maximal: the
insurance prices are not at all explained by claim costs and, thus, any discrimination they
achieve between policyholders must be undesirable.

In the definition of the proxy discrimination metric (8) we constrained the weights v to be
less than one. The reason for this is that higher weights on terms µ(X, d) may also produce
proxying effects, as the next example shows.
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Example 2. We continue with the simple model of Example 1. In that model we expect
the unawareness price to be subject to proxy discrimination, as (X,D) are dependent and
the best-estimate prices are sensitive in D. Let us evaluate the numerator of (8), for π(X) =
µ(X) = 1

2
+ 2X. We have that

µ(X)− c−
∑

d∈{0,1}

µ(X, d)vd =
1

2
+ 2X − c−

(
1

2
+X

)
v0 −

(
3

2
+X

)
v1

= (2− v0 − v1)X − c− 1

2
(v0 + 3v1 − 1).

Since c can be chosen to remove the bias for any choices of v0, v1, we have that

E

µ(X)− c∗ −
∑

d∈{0,1}

µ(X, d)v∗d

2 = (2− v∗0 − v∗1)
2Var(X).

From this it is clear that the minimum is achieved by v∗0 + v∗1 = 1. Hence, the proxy
discrimination metric (8) becomes

PD(µ) =
Var(X)

Var(1/2 + 2X)
=

1

4
.

We now consider the alternative price π(X) = 3X, noting that it agrees on average
with the unawareness price, i.e., E[µ(X)] = E[π(X)] = 3/2. This price penalises further
policyholders with X close to 1, which we know are more likely to satisfy D = 1. Hence,
we expect the price to proxy-discriminate even more than µ(X); moreover this will be in
a gratuitous way, as the increased level of proxy discrimination does not benefit prediction
accuracy. Let us now calculate PD(π). Using similar arguments as above, it follows that

E

π(X)− c∗ −
∑

d∈{0,1}

µ(X, d)v∗d

2 = Var(2X).

Then,

PD(π) =
Var(2X)

Var(3X)
=

4

9
>

1

4
= PD(µ),

such that the increase in the degree of proxy discrimination is reflected in our metric.
Finally, any price that is free of proxy discrimination according to Definition 3 will, for

some c ∈ R, v ∈ V , take the form

µ∗(X) = c+ v0µ(X, 0) + v1µ(X, 1)

= c+ v0

(
1

2
+X

)
+ v1

(
3

2
+X

)
= c+

1

2
(v0 + 3v1) + (v0 + v1)X.

9



This allows for different choices of prices that avoid proxy discrimination. For example

µ∗
1(X) := 1 +X (v0 + v1 = 1), or

µ∗
2(X) :=

5

4
+

1

2
X (v0 + v1 = 1/2),

where E[µ∗
1(X)] = E[µ∗

2(X)] = E[µ(X)]. For the price µ∗
2(X) by choosing v0+v1 < 1 we have

a decreased sensitivity to claim costs and we compensate by a higher flat premium part c.
However, this does not manifest in a reduction of demographic unfairness, since

UF(µ∗
1) =

Var(E[1 +X | D])

Var(1 +X)
=

1

3
,

UF(µ∗
2) =

Var(E[1.25 + 0.5X | D])

Var(1.25 + 0.5X)
=

1

3
,

such that UF(µ∗
1) = UF(µ∗

2) = UF(µ). A key observation here is that µ∗
2(X) has a lower

variance, as it is less able to differentiate between policyholders and therefore provides less
accurate predictions of claim costs Y . However, demographic unfairness is quantified by the
UF metric as a percentage of the variance of prices, i.e., with reference to a given pricing
functional’s potential to differentiating between risk profiles.

■

2.5 Attribution of proxy discrimination to individual covariates

Given the measurement of proxy discrimination by (8), a next question of interest is which
(subsets of) covariates – elements of X – are mostly responsible. Here we draw again from
literature on Global Sensitivity Analysis (e.g. Saltelli et al. 2008). Let the dimension of X
be q and S ⊆ {1, . . . , q} =: Q a set of indices, such that XS is the corresponding sub-vector
of X. Analogously, denote Sc = Q \ S, and XSc , such that X = (XS ,XSc).

Noting the form (9), we can attribute the variance in the numerator to the subset S of
covariates, by conditioning on sub-vectors. Specifically, following Definition 4, denote the
regression residual by

Λ(π,X) := π(X)− c∗ −
∑
d∈D

µ(X, d)v∗d. (10)

We now define two metrics that reflect the contribution of (a subset of) covariates to proxy
discrimination.

Definition 5. For the proxy discrimination metric PD of (8) and Λ(π,X) as in (10), we
define the contribution of the sub-vector XS , S ⊆ Q to proxy discrimination by the two
metrics,

PDS(π) =
Var(E[Λ(π,X) | XS ])

Var(π(X))
, (11)

P̃DS(π) =
Var(Λ(π,X))− Var(E[Λ(π,X) | XSc ])

Var(π(X))
. (12)

When S = {i}, we write PDi(π), P̃Di(π).
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The metric PDS is thus understood as the sensitivity of the residual Λ(π,X) to the
subset of covariates XS , reflecting the amount of variability in Λ(π,X) driven by XS . The

metric P̃DS reflects the expected reduction in the variance of Λ(π,X) achieved by averaging
out XS . When S = {i}, then PDi is identified by a (rescaled) Sobol’ Index (or first-order

sensitivity), while P̃Di is known as a total sensitivity (Saltelli et al. 2008). A difference to
standard sensitivity measures is that here we are normalising with Var(π(X)) – rather than
Var(Λ(π,X)) – to maintain the direct connection with the global PD metric (8).

Estimation of the metrics (11) requires evaluating conditional expectations with respect to
subsets of covariates. The sensitivity analysis literature presents various methods to do this
(e.g., Jansen 1999, Sobol’ 2001, Saltelli et al. 2010), though generally under the assumption
of independent X which is not tenable in an insurance context. Alternative approaches are
based on predictive modelling (Da Veiga et al. 2009); for consistent and efficient evaluation
of non-linear regressions on all XS , S ⊆ Q, through a single model see Richman & Wüthrich
(2023).

The metrics introduced in Definition 5 have the following properties, which we state
without proof.

Proposition 3. The metrics PDS , and P̃DS satisfy the following properties.

i) 0 ≤ PDS(π), P̃DS(π) ≤ PD(π).

ii) a) If XS ⊥⊥ Λ(π,X), then PDS(π) = 0.

b) If Λ(π,X) is XS-measurable, then PDT (π) = PD(π) for all S ⊆ T ⊆ Q.

iii) a) If Λ(π,X) is XSc-measurable, then P̃DT (π) = 0, for all T ⊆ S.
b) If XSc ⊥⊥ Λ(π,X), then P̃DS(π) = PD(π).

iv) If there are functions g, h such that Λ(π,X) = g(XS) + h(XSc) and XS ⊥⊥ XSc, then

PDS(π) + PDSc(π) = PD(π) and P̃DS(π) + P̃DSc(π) = PD(π).

Part i) of Proposition 3 is a natural condition for stating that the metrics PDS(π), P̃DS(π)
reflect contributions to the overall proxy discrimination PD(π). Parts ii) and iii) give condi-
tions for the metrics taking their extremal values. The conditions are complementary, using
different independence or measurability assumptions to reflect irrelevance or full relevance
of XS . Specifically, when Λ(π,X) is XS-measurable (case ii)b)), then Λ(π,X) is fully de-
termined by XS (and its super-vectors). Hence a high value of PDS(π) indicates that the
set S contains variables that have high importance. When Λ(π,X) is XSc-measurable (case

iii)a)), then Λ(π,X) is fully determined by XSc . Hence a low value of P̃DS(π) indicates
that the set S contains variables that have low importance. Finally, part iv) gives strong
conditions – independence of XS from XSc and additivity of Λ(π,X) – for being able to
additively decompose the proxy discrimination metric PD(π). We resume the discussion of

the properties of PDS , P̃DS(π) in Section 3.1.
The question of additivity is important for interpreting the contributions of covariates to

proxy discrimination. Specifically, it will generally be

q∑
i=1

PDi(π) ̸= PD(π),

q∑
i=1

P̃Di(π) ̸= PD(π).
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Nonetheless, an additive decomposition of PD(π) is achievable by employing the game-
theoretical concept of the Shapley value (Shapley et al. 1953) for the value functional S 7→
Var(E[Λ(π,X) | XS ]). While recent literature on model interpretability has focused on the
use of Shapley values to derive local model explanations for given instances X = x (Lund-
berg & Lee 2017, Aas et al. 2021), we use the Shapley value for a decomposition of a global
sensitivity measure, following Owen (2014), Owen & Prieur (2017), Song et al. (2016). This
leads to following definition.

Definition 6. For the proxy discrimination metric PD of (8) and Λ(π,X) as in (10), denote

w(S) = Var(E[Λ(π,X) | XS ]), S ⊆ Q.

Then, we define the Shapley attribution of the covariate Xi to proxy discrimination as the
metric,

PDsh
i (π) =

1

Var(π(X)) q

∑
S⊆Q\{i}

(
q − 1

|S|

)−1(
w(S ∪ {i})− w(S)

)
. (13)

As the Shapley value is a well-known concept across literatures, we do not review its
properties here. The key practical feature is that by the use of Shapley values we achieve an
additive attribution.

q∑
i=1

PDsh
i (π) = PD(π).

Furthermore, we note that while Definition 6 calculates the Shapley value with respect to
w(S) = Var(E[Λ(π,X) | XS ]) and is thus based on PDS , a result identical to (13) is obtained

if instead we additivise the alternative metric P̃DS (Song et al. 2016). Hence the distinction
between the two metrics of Definition 6 collapses when Shapley values are employed.

3 Structural properties, price adjustments, and local

measures

3.1 Structural properties

The ideas of demographic unfairness and proxy discrimination discussed in Section 2 related
to the statistical properties and construction of pricing functionals π. Here we associate such
properties with structural properties of the data generating process, that is, with features of
the joint distribution P(X, D, Y ). First, we define a number of such properties.

Definition 7 (Structural properties).

P1 X ⊥⊥ D (independence)

P2 Y ⊥⊥ D | X (X-sufficiency)

P3 µ(X, D) = µ(X) (weak X-sufficiency)

P4 σ(X) ⊆ σ(D) (X-irrelevance)
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P5 Y ⊥⊥ X | D (D-sufficiency)

P6 µ(X, D) = µ(D) (weak D-sufficiency)

The formulation of properties P1-P6 is not reliant on any assumed causal relation between
Y, X and D. Nonetheless, one can formulate Directed Acyclical Graphs (DAG) representing
causal relations such that, e.g. properties P2 or P5 are satisfied. We do not pursue this
route here. We note however that causal inference is at the heart of many discussions of
algorithmic fairness – indicatively we mention the seminal paper by Kusner et al. (2017), the
overview of proxy discrimination by Tschantz (2022) and the insurance-specific investigations
Araiza Iturria et al. (2024), Côté et al. (2024).

In the light of Definitions 1, 2, 3, 4, the relationships summarised in Proposition 4, below,
hold. These show the implications of structural properties P1-P6 for the metrics UF and
PD, for either a general price π(X) or, more specifically, the unawareness price µ(X).

Proposition 4.

i) If P1 holds, any pricing functional π(X) satisfies demographic parity and UF(π) = 0.

ii) If any of P1, P2 or P3 holds, the unawareness price µ(X) avoids proxy discrimination
and PD(µ) = 0.

iii) If P4 holds, any pricing functional π(X) is demographically unfair and UF(π) = 1,
except if π(X) ≡ π, a constant.

iv) If any of P4, P5 or P6 holds, any pricing functional π(X) is proxy discriminatory and
PD(π) = 1, except if π(X) ≡ π, a constant.

Proof. Part i) follows from P1 =⇒ π(X) ⊥⊥ D. For part ii) note from (3), that P1 =⇒
P(D = d|x) = P(D = d), from which PD(µ) = 0 follows. Finally, P2 =⇒ P3. Then the
regression in Definition 4 reduces to

min
c,v

E

(µ(X)− c− µ(X)
∑
d

vd

)2
 = 0.

Part iii) is immediate. For part iv) note that either of P4 or P5 implies P6. The impli-
cation from P6 is a special case of Proposition 2iii); specifically we have that

min
c,v

E

(π(X)− c−
∑
d

µ(d)vd

)2
 = Var(π(X)).

Proposition 4, parts i)-ii), give conditions for avoiding demographic unfairness or proxy
discrimination; in ii) limiting to the case of unawareness prices. Demographic fairness relates
to the joint law of the pricing functional π and the response Y , hence the strong requirement
P1 arises as a natural sufficient condition. Property P2 means that Y depends on D only

13



via X. Hence measurement of non-protected characteristics X eliminates any benefit to
predictions from collecting protected characteristics D. This in turn implies P3, which means
that the best-estimate prices are insensitive in D. Hence, if we restrict to unawareness prices,
these conditions guarantee the absence of proxy discrimination.

Conversely, parts iii)-iv) of Proposition 4 give conditions for maximal levels of demo-
graphic unfairness and proxy discrimination. Here, properties P4-P6, in different ways,
mean that knowing X in addition to D adds no new information useful for predicting claims
Y .

As the properties P1-P6 are formulated with respect to the data generating process rather
than arbitrary pricing functionals, they are strong and only give rise to sufficient conditions.
The following example outlines a situation where properties P1-P3 are violated, but no
demographic unfairness or proxy discrimination arises, demonstrating how the properties do
not generally give necessary conditions. This illustrates also that, despite the insight given
by understanding sufficient structural conditions, there is a need to quantify the materiality
of discriminatory effects, for example via the metrics UF and PD discussed above.

Example 3. Let X ∈ X and D ∈ {0, 1}, and assume the following{
P(D = 0 | X = x) = P(D = 0) if x ∈ A ⊂ X ,
P(D = 0 | X = x) ̸= P(D = 0) if x ∈ X \ A.

That is, X ̸⊥⊥ D under P, and P1 from Definition 7 is violated. Further, assume that the
best-estimate prices satisfy, for a non-trivial ν(x, d){

µ(x, d) = ν(x, d) if x ∈ A ⊂ X ,
µ(x, d) = 0 if x ∈ X \ A ,

which means that E[Y | X, D] ̸= E[Y | X], i.e., P2-P3 from Definition 7 are violated.
Consequently, we may consider that X potentially acts as a proxy of D. Nonetheless, the
materiality of this proxying effect is zero, if the unawareness price is used. To see this,
consider the best-estimate and unawareness prices:

µ(X, D) = E[Y | X, D] = 1{X∈A}ν(X, D),

µ(X) = 1{X∈A}ν(X, 0)P(D = 0 | X) + 1{X∈A}ν(X, 1)P(D = 1 | X)

= µ(X, 0)P(D = 0) + µ(X, 1)P(D = 1).

Hence, by Definition 3, µ(X) avoids proxy discrimination and we have PD(µ) = 0. Further-
more, notwithstanding the dependence of (X, D), the unawareness price is also demograph-
ically fair, given that:

E[µ(X) | D = d] =

∫
x∈A

µ(x)dP(x | d) =
∫
x∈A

µ(x)dP(x),

which does not depend on the value of d and thus UF(µ) = 0.
■

We now turn our attention to the way that structural properties of the data generating
process impact on the sensitivity of the PD measure to covariate sub-vectors XS . In the
following result we deal with the common case of unawareness prices.
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Proposition 5. i) Assume that XSc ⊥⊥ (Y,D) | XS . Then, for the unawareness price
π(X) = µ(X) the following hold.

a) PDS(µ) = PD(µ) and P̃DSc(µ) = 0.

b) If additionally XSc ⊥⊥ XS , then it it also holds that P̃DS(µ) = PD(µ) and PDSc(µ) =
0.

ii) Let the best-estimate price take the form µ(X, D) = g(X) + h(D) and assume that
Cov(g(X), h(D)) ≥ 0 and XSc ⊥⊥ D | XS . Then, for the unawareness price π(X) =
µ(X) the following hold.

a) PDS(µ) = PD(µ) and P̃DSc(µ) = 0.

b) If additionally XSc ⊥⊥ XS , then it also holds that P̃DS(µ) = PD(µ) and PDSc(µ) =
0.

Proof. i) a) By the conditional independence assumption we have that:

P(D = d | X) = P(D = d | XS),

µ(X, D) = E[Y | X, D] = E[Y | XS , D] =: µ(XS , D).
(14)

Consequently, noting (3), we have that

µ(X) =
∑
d∈D

µ(XS , d)P(D = d | XS) =⇒

Λ(µ,X) =
∑
d∈D

µ(XS , d) (P(D = d | XS)− v∗d)− c∗.

As the last expression is XS-measurable, it holds that E [Λ(µ,X) | XS ] = Λ(µ,X),
from which it follows that,

PDS(µ) =
Var(Λ(µ,X))

Var(π(X))
= PD(µ),

P̃DSc(π) =
Var(Λ(π,X))− Var(E[Λ(π,X) | XS ])

Var(π(X))
= 0.

b) Here it is sufficient to show that E[Λ(µ,X) | XSc ] is a constant. It has already been
shown that Λ(µ,X) is XS-measurable; hence the result follows from XSc ⊥⊥ XS .

ii) a) The unawareness price will take the form

µ(X) = g(X) + E[h(D) | X].

We consider the form of the quantity to be minimised in the numerator of the PD
measure. From the specific form of the best-estimate and unawareness prices we
have:

µ(X)− E[µ(X)]−
∑
d∈D

vd (µ(X, d)− E[µ(X, d)])

=

(
1−

∑
d∈D

vd

)
(g(X)− E[g(X)]) + E[h(D) | X]− E[h(D)].
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Consequently, we can just let v :=
∑

d∈D vd ∈ [0, 1] and optimise over that. By
checking the Karush-Kuhn-Tucker conditions (calculations not documented here, we
find that the condition Cov(g(X), h(D)) ≥ 0 is necessary and sufficient for v = 1.
Thus we obtain

Λ(µ,X) = E[h(D) | X]− E[h(D)]

= E[h(D) | XS ]− E[h(D)],

where we used the additional assumption XSc ⊥⊥ D | XS in the second equation.
Furthermore,

E[Λ(µ,X) | XS ] = Λ(µ,X),

from which the stated result follows.

b) Again, it is sufficient to show that E[Λ(µ,X) | XSc ] is a constant, which follows from
the additional independence assumption.

Proposition 5 provides dependence scenarios, under which the contributions of sub-vectors
of X are either zero or equal to the total level of proxy discrimination PD(µ). These depen-
dence scenarios are thus different conceptualisations of full relevance of XS and irrelevance
of XSc with respect to the alternative metrics PDS and P̃DS . Specifically, the conditional
independence of parts i)a) and ii)a) means that knowing XS makes any information on XSc

redundant for risk predictions. The independence statement of parts ib) and ii)b) goes fur-
ther, reducing even more the relevance of XSc . The strength of this requirement is consistent
with the interpretability of high values of PD and low values P̃D, rather than the converse.
Finally, we note that the key difference between parts i) and ii) is that the additional struc-
ture imposed in part ii) makes the properties of the attributions of the PD metric functions
only of the dependence structure for (X, D), with no reference to Y . The simplifying as-
sumptions here are lack of interactions between X and D when predicting Y and a positive
correlation of the portions of claim costs arising respectively from X and D.

The properties discussed in Definition 7 and Proposition 5 describe features of the data
generating process for a particular insurance portfolio. While these are affected by marketing
and underwriting decisions, they typically remain out of the control of, e.g., a pricing actuary.
Hence, any adjustments carried out to avoid demographic unfairness or proxy discrimination
need to focus on the design of pricing functionals, in order to comply with Definitions 1
and/or 3.

At the same time, any such price adjustment allows the quantification of the difference
of a price-in-use and the adjusted price for a particular policyholder profile. Thus, one
can form easily local (policyholder-specific) measures of demographic unfairness and proxy
discrimination in contrast to the global (portfolio-wide) measures introduced above. We
develop these ideas in the rest of this section.

3.2 Local measurement of demographic unfairness

A standard construction of demographically fair prices has been via optimal transport (OT)
methods (Gordaliza et al. 2019, Chiappa et al. 2020). In an insurance context, such methods
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aim at inducing independence between prices π(X) and the protected characteristics D by
suitable variable transformations; for insurance-specific investigations see Lindholm et al.
(2024), Charpentier et al. (2023). The broader mathematical problem of approximating a
random variable with another, subject to an independence constraint, is treated by Delbaen
& Majumdar (2024). There are two key approaches found in the literature. Input OT
aims at transforming (pre-processing) the covariates X so that it is independent of D, thus
satisfying property P1 from Definition 7. Then any functional of the transformed covariates
will satisfy demographic parity. Output OT refers to the transformation (post-processing)
of prices themselves in order to achieve independence from D; thus this procedure targets
Definition 1 and, as it is specific to a given pricing functional, it is in a sense a weaker
intervention compared to Input OT. For a comparison of the two approaches in the context
of insurance pricing and a discussion of their respective interpretability, see Lindholm et al.
(2024).

Here, to create a demographically fair benchmark price, we follow an Output OT ap-
proach. For the pricing functional π, denote the conditional distributions of the correspond-
ing prices by

Gd(m) = P(π(X) ≤ m | D = d), d ∈ D,

and assume for simplicity that they are continuous. Then, for any continuous distribution
G, we may construct the prices

π̃(X, D) =
∑
d∈D

1{D=d}G
−1 ◦Gd

(
π(X)

)
. (15)

The price π̃(X, D) satisfies

P(π̃(X, D) ≤ m) = G(m),

P(π̃(X, D) ≤ m | D = d) = G(m), for all d ∈ D,

such that D ⊥⊥ π̃(X, D) ∼ G; the construction (15) works by making the conditional distri-
bution of prices the same on each demographic subgroup D = d. Note that the transformed
price π̃(X, D) explicitly depends on D – even as π(X) does not. This is a form of direct
discrimination arising in the process of engineering demographic parity; see Lindholm et al.
(2024) for more discussion of this point.

Finally, to construct a demographically fair benchmark, we need to select the target
distribution G. A standard choice is given by Chzhen et al. (2020)

G−1(u) =
∑
d′∈D

P (D = d′)G−1
d′ (u), (16)

From now on we will consistently refer to the Output OT price as the construction π̃(X, D)
from (15) and (16).

We can now proceed with the definition of a local measure of demographic unfairness.

Definition 8. Consider a pricing functional π and the Output OT price π̃(X, D). Then,
for the policyholder with profile X = x, D = d, the local measure of demographic unfairness
is defined as:

δUF(x, d; π) = π(x)− π̃(x, d). (17)

If π(X) = µ(X) is the unawareness price, we just write δUF(x, d).
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A value of δUF(x, d; π) > 0 implies that policyholders with attributes X = x, D = d
suffer from demographic unfairness in the sense that the price they are charged is higher
than the corresponding benchmark demographically fair price. Clearly, if X and D are
already independent, the prices π(X) and π̃(X, D) coincide such that the measure becomes
zero. This is stated formally below.

Proposition 6. If P1 in Definition 7 holds, then δUF(x, d) = 0.

Furthermore, it is of interest to establish conditions for the sign of the metric δUF(x, d; π).
In the simple but common case of a binary D, this is straightforward. Denote by ⪯st

precedence in the usual stochastic order, such that for two distributions F,G, we have that
F ⪯st G ⇐⇒ F (x) ≥ G(x) for all x; this is a strong condition not allowing the crossing of
distributions.

Proposition 7. Let D = {0, 1} and G0 ⪯st G1.

i) δUF(x, 0;π) ≤ 0 and δUF(x, 1;π) ≥ 0.

ii) For x such that P(D = 0 | X = x) > 0, it holds that:

E[δUF(X, D; π) | X = x] > 0 ⇐⇒
P(D = 1 | X = x)

P(D = 0 | X = x)
>

−δUF(x, 0;π)

δUF(x, 1;π)
=

G−1 ◦G0(π(x))− π(x)

π(x)−G−1 ◦G1(π(x))
≥ 0,

where G is given by (16).

Proof.

i) The statement follows by noting that construction (16) implies G0 ⪯st G ⪯st G1 and
consequently

δUF(x, 0;π) = π(x)−G−1 ◦G0(π(x)) ≤ 0,

δUF(x, 1;π) = π(x)−G−1 ◦G1(π(x)) ≥ 0.

ii) We have that

E[δUF(X, D; π) | X = x] =

= P(D = 0 | X = x)δUF(x, 0;π) + P(D = 1 | X = x)δUF(x, 1;π),

with the stated result following directly from the inequalities of part i).

To interpret part i) of Proposition 7, first note that G0 ⪯st G1 means that the policy-
holders with protected attribute D = 1 tend to be considered as higher risk, according to
best-estimate prices. So these are the policyholders for whom the use of the Output OT
price (15) should confer a discount, compared with the unawareness price. For part ii),
we consider a situation where for a policyholder with X = x the value of D may not be
known. The left-hand side of the stated condition implies that, on average, the local measure
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of unfairness will be positive when P(D = 1 | X = x)/P(D = 0 | X = x) is high, such that
there is a high chance that, given X = x, the policyholder belongs to the demographically
disadvantaged group D = 1. Furthermore, the condition is more likely to be satisfied when
the ratio −δUF(x, 0;π)/δUF(x, 1;π) is low. That fraction becomes small if the comparative
disadvantage for group D = 1 (denominator) becomes much higher than the comparative
advantage of group D = 0 (numerator), given the information X = x.

These ideas are illustrated in the following example.

Example 4. We continue from Example 2, where µ(X,D) = 1
2
+X +D and X ∼ U(0, 1).

Note that µ(x, 1) > µ(x, 0) for all x. However, we now allow a variety of positive and negative
dependence relations between (X,D) by assuming that

P(D = 1 | X = x) =
1− a

2
+ ax, a ∈ (−1, 1].

By setting a = 1, we recover the exact setting of Example 2; 0 < a < 1 gives a weaker
positive dependence, while −1 < a < 0 gives a negative dependence. With this modification
the unawareness price changes to µ(X) = 2−a

2
+ (a+ 1)X.

We now evaluate the local measure of unfairness (17) for the unawareness price µ(X) and
various levels of a. The calculations are simple but tedious and are not reported here. In
Figure 1 we plot the functions δUF(x, d) (blue for d = 0, red for d = 1), as well as their condi-
tional mean E[δUF(X,D) | X = x] (black) for a = 0.75 (positive dependence) and a = −0.75
(negative dependence). While the shapes appear similar, there are two observations. First,
for a = 0.75, the red line is above zero and the blue line below, showing that policyholders
with D = 1 are adversely affected by demographic unfairness, while policyholders with D = 0
are benefiting. This pattern is reversed when the dependence of (X,D) becomes negative
(a = −0.75). Second, the two plots are at very different scales, with the absolute value
of local demographic unfairness being an order of magnitude higher in the case of positive
dependence. The reason is that, for a = 0.75, the positive dependence of (X,D) works in
the same direction as the impact of each of those two variables on claims costs. However,
when dependence is negative, then the unawareness price becomes less sensitive to X (in
the extreme a → −1 leads to a constant µ(X)). As a result, for negative dependence much
smaller disparities between demographic groups emerge. This point is reinforced through
Figure 2, where we plot E[δUF(X,D) | X = x] against different values of the dependence
parameter a.

■

In Example 4, we had a single non-protected covariate X = X, but, in general, δUF(x, d)
will be a multivariate function. Then the question arises as to how individual covariates
contribute to this metric. This can be done by using standard local model explainability
methods, e.g., by, analogously to (13), calculating Shapley values with respect to the alter-
native value functional S 7→ E[δUF(X, D) | XS = xS ], where xS is a sub-vector of x for the
specific instance of interest (Lundberg & Lee 2017, Aas et al. 2021). The same comments
apply to the local metric for proxy discrimination introduced in the next section.

3.3 Local measurement of proxy discrimination

Analogously to the last section, we propose a local measure of proxy discrimination. Again,
we need for that purpose a benchmark price that avoids proxy discrimination. Any such
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Figure 1: Local unfairness metric δUF(x, d) (blue for d = 0, red for d = 1) and conditional
mean E[δUF(X,D) | X = x] (black) for a = 0.75 (left) and a = −0.75 (right).

price takes the form (7); nonetheless, to produce a benchmark one needs to choose the
values of c, vd, d ∈ D. Here we choose values that minimise the numerator in (8), such
that the benchmark is the price closest to the original price π(X), which is free from proxy
discrimination. (Note that while the optimal values c∗, v∗d may not be unique, the resulting
approximation is.) The difference between a price and its closest proxy-discrimination-free
approximation has already been defined in Section 2.5, as the regression residual Λ(X, π).
Hence we re-purpose this quantity as a local measure of proxy discrimination.

Definition 9. Consider a pricing functional π and Λ(X, π) in equation (10). Then, for the
policyholder with profile X = x, the local measure of proxy discrimination is defined as:

δPD(x; π) = Λ(x, π). (18)

If π(X) = µ(X) is the unawareness price, we just write δPD(x).

We state Proposition 8 below without proof – for the case of each property it is easy to
show that the unawareness price is already free from proxy discrimination, such that Λ(X, π)
is identically zero.

Proposition 8. If any one of P1, P2 or P3 in Definition 7 holds, then δPD(x) = 0.

We conclude this section with a continuation of our running example.

Example 5. We continue from Example 4, considering the evaluation of our local measure
of proxy discrimination. We make a qualitative argument, omitting a formal proof. Recall
the forms of the best-estimate and unawareness prices, µ(X,D) = 1/2+X +D and µ(X) =
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Figure 2: Conditional mean of the local unfairness metric E[δUF(X,D) | X = x] for the
unawareness price and a range of dependence parameters a.

1 − a/2 + (1 + a)X respectively. If −1 < a ≤ 0, the slope of the unawareness price in X
is less or equal to that of the best-estimate price. As a result Λ(X,µ) = 0 and there is no
proxy discrimination. However, when 0 < α ≤ 1, proxy discrimination arises. The closest
approximation to µ(X) that avoids proxy discrimination is the price µ∗(X) = 1 +X, which
reduces the slope in X to 1. Consequently we have

δPD(x) =

{
0, −1 ≤ a ≤ 0

−a
2
+ ax, 0 < a ≤ 1.

In Figure 3 we show the function δPD(x) for different (non-negative) values of the dependence
parameter a. Because of the positive dependence, policyholders with x > 0.5 are implicitly
inferred to have protected attribute D = 1 and hence are disadvantaged in the sense of proxy
discrimination; the reverse happens for x < 0.5.

Finally, we consider the extent to which adopting a price that avoids proxy discrimina-
tion also has beneficial impacts in reducing demographic unfairness. For this, we calculate,
alongside E[δUF(X,D) | X = x], the quantity E[δUF(X,D; π) | X = x], where π(X) = µ(X)
for −1 ≤ a ≤ 0 and π(X) = µ∗(X) for 0 < a ≤ 1. We plot those metrics in Figure 4, as
functions of the dependence parameter a. Naturally, for a ≤ 0 the two plots are identical.
For a > 0, the discrimination-free price offers a modest improvement, though demographic
unfairness persists. This is expected, since the issues of demographic unfairness and proxy
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discrimination are quite separate and there is no simple way of addressing both at the same
time; for a detailed discussion see Lindholm et al. (2024).

Figure 3: Local proxy discrimination metric δPD for the unawareness price and a range of
dependence parameters a.

4 Discussion and extensions

We propose measures of demographic unfairness and proxy discrimination with a focus on
insurance pricing. The measure of demographic unfairness is already present in the literature
(Bénesse et al. 2022), while the measure of proxy discrimination is new. For that measure,
we also propose methods for attributing any proxying effects to different covariates. These
measures are global, in the sense that they quantify unfairness or discrimination across a
portfolio. In addition to studying the properties of these measures, we develop related local
measures, which allow quantification of demographic unfairness and proxy discrimination at
the granular policy level.

In the rest of this section we discuss limitations of our approach, possible extensions, and
wider issues that we consider relevant and can form directions for future research.
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Figure 4: Conditional mean of local unfairness metric E[δUF(X,D) | X = x] for the un-
awareness price (left) and its closest approximation that avoids proxy discrimination (right),
plotted against dependence parameter a.

4.1 Conceptualisation of proxy discrimination

Our aim in this paper was to provide a measure of proxy discrimination that is useful in
practice, in that it allows quantification from a set of observable insurance prices. This is
important for the empirical assessment and auditing of proxy discrimination in insurance
portfolios. We note that the design of metrics that can be evaluated on the joint distribution
of observed quantities, e.g., (Y,D, π(X)), is generally well suited for group fairness notions.
These notions revolve around the outcomes of a pricing strategy. However, as argued in Lind-
holm et al. (2024), proxy discrimination can be better seen as an individual fairness concern.
In particular, proxy discrimination relates to the mechanism by which prices are calculated,
rather than the outcome of the process. We try to bridge this gap by the construction (8),
which makes the metric PD(π) a function of the joint distribution of (π(X), µ(X, d), d ∈ D),
thus considering the way that prices relate to predictions for different values of the protected
attribute D.

While we believe that through this choice our primary aim has been achieved, tensions
remain. First, Definition 4 used here is different to the definition of proxy discrimination
in Lindholm et al. (2024). The two definitions make requirements of different type. The
definition of proxy discrimination in Lindholm et al. (2024) as an individual fairness property
requires that prices are calculated in a way that is unaffected by the conditional probability
P(D | X), which is precisely the statistical manifestation of proxying. This definition assumes
an implicit commitment of insurers on how they would be pricing the same risk within
the context of alternative portfolios with different statistical dependence structures. This
allows more flexibility in the choice of the pricing functional itself – but it is also harder
to monitor. On the other hand, Definition 4 does not require any such commitment and is
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instead specific to a particular portfolio. The quid pro quo is then less flexibility as to how
a discrimination-free pricing functional can be selected, namely, as a constrained weighted
average of µ(X, d), d ∈ D, and a constant.

The differences between the notion of proxy discrimination in this paper and in Lindholm
et al. (2024) are also reflected in the role of the object π∗(X) = c∗ +

∑
d∈D µ(X, d)v∗d, the

closest element to π(X) within the set of prices that are free from proxy discrimination. Using
π∗(X) as a corrected price appears problematic, since a solution (c∗,v∗) of the regression
problem (8), will generally depend on the joint distribution of (X, D), which, from the
perspective of Lindholm et al. (2024), would make any price depending on those optimised
coefficients not permissible. At the same time we note the following: by the existence of
the offset c∗ we have that E[π∗(X)] = E[π(X)]. Consequently, if the pricing functional
used is unbiased (e.g., the unawareness price µ(X) is used), then it will also hold that
E[π∗(X)] = E[Y ]. Unbiasedness is fundamental property of technical insurance prices, since
its violation implies that portfolios are not mean-self-financing. Note that the discrimination-
free price h∗(X) in (5) is generally not unbiased. Furthermore, any bias correction method
for discrimination-free prices, including the methods discussed in Lindholm et al. (2022),
would suffer from the same limitation of sensitivity in the joint distribution of (X, D).

Finally, we have not considered the situation where there is direct discrimination, i.e.
where the prices are also functions of the protected characteristic D. This is because we
tacitly assumed that such prices are not permitted due to legal or regulatory constraints.
Nonetheless, the measures (4) and (8) can also be evaluated with respect to broader classes
of prices, by substituting for π(X) some random variable Π that represents prices that are
not necessarily X-measurable. For example, it is clear that the variability of such a price
Π cannot be explained by regressing on µ(X, d), d ∈ D, such that in the presence of direct
discrimination it will generally be PD(Π) > 0. This also implies that when observing a high
value of PD, the metric cannot tell us whether direct discrimination is part of the reason.
In situations where direct discrimination is the focal issue, one can follow the suggestion of
Bénesse et al. (2022) and use the total sensitivity 1− Var(E[Π | X])/Var(Π); note that if Π
is X-measurable that metric becomes equal to zero.

4.2 Dependence under a market distribution

Demographic unfairness is easily understood and communicated to all stakeholders. At
the same time, the requirement to satisfy this property is very strong and can become
problematic. Part of the reason for that is that the dependence between π(X) andD may not
reflect causal relations but be an artifact of portfolio composition, which makes company data
not representative of the wider population (Mehrabi et al. 2021, Côté et al. 2024). Lindholm
et al. (2024) discuss how, consequently, modifying prices to avoid demographic unfairness
will generally lead to different adjustments for different portfolios, creating inconsistencies
and potential market distortions.

An alternative to the standard definition of demographic parity is to ask for independence
of π(X) and D across a whole market, rather than any one particular portfolio. This re-
quirement would ensure that across the broader population of policyholders, no demographic
group is systematically disadvantaged. However, at the level of an individual portfolio, it
may still be the case that, on average, different prices are charged for different demographic
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groups.
To formalise this idea, consider P̄(X, D) the joint distribution of (X, D) across such a

broad population, describing the statistical relationship between policyholder characteristics
across an insurance market. Then we can modify Definition 2, by considering a demographic
unfairness measure with respect to a population distribution P̄(X, D), defined as

UF(π, P̄) :=
Var(EP̄[π(X) | D])

Var(π(X))
. (19)

In (19), the conditional expectation, whose variability reflects the dependence between prices
and protected attributes, is calculated with respect to the population (conditional) distri-
bution P̄(X | D). However, the two variances are calculated with respect to the portfolio-
specific distribution P(X), since it is of interest the extent to which the chosen pricing func-
tional performs within that portfolio context. If the portfolio and population distributions
coincide, then (19) reduces to the standard version of the metric (4), UF(π, P̄) = UF(π).

4.3 Model uncertainty

Both the metrics UF and PD rely on quantities that need to be estimated from data –
hence their evaluation is subject to potential model error. A first observation is that data
on protected attributes D is needed and this may not be available for all policies. For the
discussion that follows we make the strong assumption that such data are available. Methods
for dealing with only partial information on D in the context of calculating discrimination-
free prices were developed by Lindholm et al. (2023).

Then, in the case of UF, model uncertainty does not present a major issue, if estimation
takes place on a large enough set of insurance policies. First, as D is generally discrete and
typically does not have a high number of states, the conditional expectation E[π(X) | D = d]
can be evaluated empirically on different subsets of the data. Similarly, the variances in the
numerator and denominator of (4) can be respectively evaluated by the empirical distribution
of D and X. However, note that the population-based measure (19) raises the additional
problem of estimating P̄(X, D); the challenges associated with this exercise are primarily
about data sharing and privacy.

However, the estimation of PD is more susceptible to model error, since it relies on
knowledge of the best-estimate prices µ(X, D) = E[Y | X, D]. While this can be calculated
by regression methods from available policy data, the outcome will be heavily contingent
on the class of models chosen (e.g., a GLM, a tree-based model or a deep neural network).
This problem is fundamental to the idea of proxy discrimination, which is always understood
within the context of a particular predictive model. One way to deal with this issue is to
consider a discrete set of alternative plausible models for best-estimate prices µk(X, D), k ∈
K. We may interpret each µk(X, D) as a conditional expectation EPk

[Y | X, D] under a
different competing predictive model Pk. Then, we may take some inspiration from robust
decision making (Ben-Tal et al. 2009) and provide a suitable generalisation of Definition 4,
by defining a version of PD, with respect to a model set M := {µk(X, D) | k ∈ K}:

PD(π,M) := min
c∈R, v∈V

max
k∈K

E

(π(X)− c−
∑
d∈D

µk(X, d)vd

)2
/Var(π(X)). (20)
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When there is no model uncertainty, M is a singleton and equation (20) simplifies to (8),
i.e., PD(π, {µ(X, D)}) = PD(π).

Finally, we note that, so far, we have not discussed the quality of the price functional π
as a potential predictor of Y . This is a perspective we need to consider, since technical prices
in insurance are explicitly linked to claim costs. The predictive performance of π cannot be
disentangled from its discriminatory potential. In both Definitions 2 and 4, a large variance
of the pricing functional will suppress the value of the metric. One may shed some light
on this by focusing attention on pricing functionals that are auto-calibrated predictors of
Y , that is, they satisfy π(X) = E[Y | π(X)]. For such predictors, a higher variability (in
the sense of convex order) reflects a greater predictive accuracy with respect to a class of
a convex loss functions; for details see, e.g., Krüger & Ziegel (2021), Denuit et al. (2021),
Wüthrich (2023). Then, a high variance of the prices π(X) can be seen as evidence of it
being a good predictor, as it is more effective in differentiating between the predicted costs
of policies with profile X = x. With this in mind, we can understand each of the Definitions
2 and 4 as quantifying the part of that differentiation potential that is viewed as undesirable,
under the lens of either demographic unfairness or proxy discrimination.

4.4 Commercial prices and proxy discrimination

While much of the focus in the actuarial literature is on technical prices, when examining
discrimination effects we need to consider the prices actually charged to policyholders and
the commercial adjustments that these may include. For our discussion of demographic
unfairness this creates no issues; commercial prices can (and should) be used in equation (4).

However, when considering the measurement of proxy discrimination, there are some
complications. The constraints on the weights v in Definition 4 indicate that care should
be taken when applying PD to commercial prices, which may include market discounts or
penalties. On the one hand, the inclusion of the constant c allows for any additive bias of a
commercial price π(X) with respect to a convex combination of µ(X, d) over d. On the other
hand, multiplicative adjustments are potentially considered discriminatory. For instance, in
the context of Example 2, a price of the form µ∗(X) = 1+X would not be subject to proxy
discrimination. On the other hand, any price of the form π(X) = λ(1 +X), λ > 1 leads to
proxy discrimination according to Definition 3, since this implies

∑
d vd > 1. This can also

be understood as the higher slope in X implicitly (and disproportionately) disadvantaging
policyholders with D = 1.

Such penalisation of proportional price adjustments appears excessive. One potential way
to address this is to require additional transparency, by decomposing any commercial price
π̂(X) as

π̂(X) = π(X)ζ(X),

where π(X) is understood as a predictor of Y and ζ(X) as a multiplicative commercial
price adjustment. Then, in equation (8), the predictor π(X) rather than the commercial
price π̂(X) is used. Consequently, there remains the question of how to deal with the
commercial adjustment ζ(X), which may itself introduce some discriminatory effects. Here,
one could take a strong view and require that ζ(X) be independent of D. While some
degree of demographic unfairness can be considered acceptable within a portfolio from a
claims costing perspective, as long as proxying effects are adjusted for, the application of
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different average levels of commercial discounts or loadings per demographic group would
be much more problematic. Independence between ζ(X) and D is most straightforwardly
achieved by making ζ(X) a constant; a more advanced alternative entails pre-processing
X in the spirit of the Input Optimal Transport methods discussed in, e.g., Lindholm et al.
(2024).

A different solution would be to consider a ‘best-estimate commercial price’ ν(X, D) that
explicitly depends on both non-protected covariates and protected attributes. Of course even
the existence of such a functional (let alone attempts to estimate it) would be controversial.
Having said that, in the same way that µ(X, D) is calculated by minimising the deviation of Y
from a statistical predictor, one could envisage ν(X, D) as the result of a price optimisation
exercise (e.g., Guelman & Guillén 2014, Verschuren 2022) that involves all policyholders’
characteristics. Of course ν(X, D) cannot be used in pricing, as it depends on D. However
it can be used to assess proxy discrimination. Consider ν(X) a commercial analogue of the
unawareness price, now derived by price optimisation using data on X only. In that context,
one could assess the extent to which ν(X) proxy-discriminates by the corresponding measure:

PD
(
ν(X), {ν(X, D)}

)
=

minc∈R, v∈V E
[(
ν(X)− c−

∑
d∈D ν(X, d)vd

)2]
Var(ν(X))

.

Such an approach would be contingent on the prices ν(X), ν(X, D) being derived algorith-
mically, with estimation of the latter strictly regulated, with the sole purpose of acting as
a benchmark to measure proxy discrimination. This complex situation could be nonetheless
simplified, if it can be argued that an insurer’s costs associated with a policy are propor-
tional to claims costs such that ν(X, D) := λµ(X, D), ν(X) := λµ(X), λ > 1. With this
justification, one can restore proportional loadings, without falling foul of requirements to
avoid proxy discrimination.
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