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ABSTRACT

The availability of many variables with predictive power makes their selection in a regres-
sion context difficult. This study considers robust and understandable low-dimensional
estimators as building blocks to improve overall predictive power by optimally combining
these building blocks. Our new algorithm is based on generalized cross-validation and
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data show its usefulness in the financial and insurance industries.
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1 Introduction

When selecting a particular submodel for a high-dimensional statistical problem, the noise to signal ratio
must be monitored. The challenge is to obtain the optimal bias reduction for any additional noise and stop
adding more noise at the right time (see, among many others, the popular book of James et al., 2013). In
this study, we introduce a simple approach for optimizing the model selection process in high-dimensional
problems with limited data. We consider a situation with several potentially useful covariates and limited
data to estimate a complicated nonlinear underlying model. We propose building a potentially complex
nonparametric model structure using simple low-dimensional components. With many available covariates,
one can build many one- or two-dimensional models and then construct an optimal weighted average
for these submodels. In principle, this is different from linear regression, in which the linear components
involved can only be interpreted together with the entire linear model. We propose a forward model-selection
method that begins with a simple mean. Through cross-validation, we then examine the noise-to-signal ratio
when replacing a fraction of that mean with each of our many low-dimensional competing submodels. We
select the best replacement, as measured via cross-validation, including the possibility of replacing with
the mean itself (such that nothing is happening). If the mean itself is picked, then we stop the procedure.
However, if any other submodel is picked, we continue the methodology of replacing a fraction of the
mean with a fraction of other submodels until the method stops because the mean itself has been selected
and nothing is happening. This method is described in detail in the following section. Our approach is an
alternative to forward or backward model selection methods in linear regression (e.g., Steinberger and Leeb,
2019) or robust linear regression via penalization (e.g., Filzmoser and Nordhausen, 2021) and can be used for
both standard and time-series regression problems. In the context of time-series regression, our method is
similar to an ensemble method that combines alternative forecasts in an optimal manner. Our method is
different from most other non-parametric approaches because it does not assume an overall complicated
model structure based on all covariates, such as linear regression, generalized additive models, or very
general generalized structured models (see Mammen and Nielsen, 2003). Our final estimator is always a
combination of estimators that are already relevant and useful estimators. Therefore, our final estimator is
easier to understand. It might also be more robust because it does not add noise from estimating residuals,
as linear regression or generalized additive models - or other big model methods - are designed to do.

Consider K possible candidates m̂1, . . . , m̂K when predicting Y (from low-dimensional predictive models).
Then, the combined forecast is

Ŷ =
K

∑
k=1

wkm̂k

with weights w1, . . . , wK being chosen appropriately. We propose a step-wise (forward) procedure starting
from the historical mean and adding “small” bits to the final model based on improvements of our validation
criterion. Our new algorithm for prediction is based only on low-dimensional functions, and can therefore
be used in high-dimensional situations where the number of observations is low compared to the number
of covariates. We consider our method to be a simple interpretable and robust alternative to popular
regularization and shrinkage methods such as Lasso (Tibshirani, 1996), “adaptive” Lasso (Zou, 2006), or
ridge regression (Hoerl and Kennard, 1970), hyperparameter optimization (Bischl et al., 2023), among many
others also aiming at the challenge of analyzing sparse data with many covariates.

In Section 2, we formalize our approach in a general manner that applies to both standard regression data
and time-series regressions. Our validation strategy can be defined according to the nature of the data, with
leave-one-out cross-validation being the simplest and most common choice for non-autocorrelated data.
When adding low-dimensional components to the final predictor, we also consider limiting the number of
covariates used to reduce the noise. In Section 3.2 we provide a real data example for a time series regression
for forecasting yearly stock returns. Our application adds to the results of previous studies by Nielsen and
Sperlich (2003) and Kyriakou et al. (2020, 2021a,b) and obtain better prediction accuracy. In Section 3.3
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we present a real-data regression example for an actuarial telematics dataset. We present a finite-sample
simulation study in Section 3.1 where we consider two standard regression cases without any time-series
dependency. The case we consider has only 200 observations and ten covariates and it turns out that our
new approach performs as well for this case as linear regression, and performs better than ridge regression
and Lasso, even when the linear regression is true. When the linear regression is not true and there is
nonlinearity, our new simple non-parametric ensemble method performs much better than linear, Lasso,
and ridge regression. This is also in line with the results of Scholz (2022), who show that Lasso and ridge
regressions do not perform well for the nonlinear yearly stock prediction problem that we consider as
our real-life data example in Section 3.1 . The conclusions of this study, including a discussion on possible
extensions, are presented in Section 4.

2 Materials and Methods

This section presents the mathematical formulation and implementation of the proposed approach. Section
2.1 begins with a general definition of loss measures incorporating both the loss measure used in this study
and the popular penalty loss measures that the Lasso and ridge regressions - which we compare our new
method to in section 3.1 - are based on.

2.1 Prediction framework

We assume the general prediction framework described in Hastie et al. (2017) as follows:

min
f∈H

{
L
(
yt+h, f (Zt)

)
+ p( f , τ)

}
, t = 1, . . . , T, (1)

where yt+h is the variable to be predicted h periods ahead, Zt is the set of (all available) D covariates, H is a
space of possible functions f that combine the data to form the prediction, p is a penalty on f , τ is a set of
hyperparameters (for example, λ in the Lasso, typically chosen via a version of cross-validation), and L is a
loss function that defines the optimal forecast. Typical loss functions are the L2 and L1 norms.

When choosing a predictor in a high-dimensional situation where the number of covariates D is large,
the sparsity of the data becomes a crucial problem. Therefore, it is necessary to avoid the estimation of
high-dimensional objects and their inherent variability. Our proposal is a forward algorithm, where at each
step, combinations of only low-dimensional (and potentially nonlinear) functions, fk ∈ H (1 ≤ k ≤ K), are
considered based on a subset of dk covariates, Zk,t ⊆ Zt. For example, in the data application we describe
later, we have seven potential covariates; however, we only consider one- and two-dimensional functions
based on them.

2.2 Our proposal

Our proposal consists of three elements: low-dimensional predictors, a method for evaluating their predictive
power, and a criterion for defining combinations of low-dimensional predictors with good predictive power.
The reason for this is to introduce robustness into the forecasting approach. We want to avoid estimators
such as the Lasso or Elastic Net (Rapach and Zhou, 2020), or even linear regression, where entering many
covariates may introduce noise that is difficult to handle in the validation analyses. We use the same
validation measure (out-of-sample R2) as Rapach and Zhou (2020), Yae and Luo (2023), and Kelly et al. (2022).
However, although these three studies cite Campbell and Thompson (2008) for the introduction of this
measure, we cite Nielsen and Sperlich (2003) (see also McGibney and Smith, 1993, and Anh et al., 2017). We
know from Scholz (2022) that machine learning methods, such as Lasso and Elastic Net, do not help improve
forecasting when combined with our simple low-dimensional forecasting candidates. Our combined forecast
out-of-sample R2 values generally seem higher than the out-of-sample R2 values obtained in Rapach and
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Zhou (2020) and Kelly et al. (2022). Although these validation scores are not directly comparable because the
datasets used are not exactly the same, they do indicate that combining low-dimensional forecasts might
be the most efficient way forward. In addition, the simple model selection procedure of this study may
compete very well with more complicated machine learning combinations, whether these machine learning
techniques are applied directly to the covariates, as in Rapach and Zhou (2020) and Kelly et al. (2022) or
to the low-dimensional forecasts suggested in this study, see Scholz (2022). See also Leeb and Steinberger
(2021) for another approach to simple linear models used directly on the covariates when forecasting stock
returns and Anatolyev (2019) for a simple and friendly guide to maintaining simplicity in regression studies
with complex data. We do not think that the promising results of this study can be attributed to p-hacking
(Brodeur et al., 2020) because we select simplicity over complexity, and we are very careful in our validation
technique. It could be interesting, but beyond the scope of this study, to generalize our approach to allow
for a hierarchical structure of combined forecasts, as in Spiliotis et al. (2021), or to robustify the output of
the methodology by combining quantile regression rather than standard regression when forecasting, as in
Belloni et al. (2019).

For the first element we formulate K predictive regression models, based on dk << D (k = 1, . . . , K)
covariates, of the type

yt+h = fk(Zk,t) + ξk,t, (2)

where
fk(z) = E(yt+h | Zk,t = zk,t), zk,t ∈ Rdk , (3)

is an unknown function and ξk,t is an error term. The predictors f̂k for the unconditional means fk can be
computed by assuming a linear structure using ordinary least squares (OLS) or more flexible nonparametric
techniques such as kernel smoothing (Wand and Jones, 1994). It is important that these underlying
low-dimensional objects, the estimated fk’s, fit the job at hand. In real data problems, both linearities
and nonlinearities should be considered. Nonparametric smoothing methods, such as the popular local
linear estimation, can adapt to both situations; therefore, in our empirical studies, we consider local linear
smoothers with an optimal data-driven bandwidth choice. Other types of non-parametric estimators of the
underlying fk are also possible. One simple approach would be to allow for local neighborhood bandwidths
rather than the constant bandwidths used in this study. Many other nonparametric, semiparametric, or even
parametric choices of fk are possible, as long as they fit the problem at hand.

To evaluate the predictive power of a model of type (2), we consider the validated R-squared of Nielsen and
Sperlich (2003) (see also Kyriakou et al., 2021b) defined as

R2
V = 1 − L(Y, f̂−t)

L(Y, Ȳ−t)
, (4)

with Y = (y1+h, . . . , yT)
⊤, loss function L, and where f̂−t and Ȳ−t are the estimators of the conditional mean

function fk (2) and the unconditional historical mean of Y, respectively, computed without the information
contained in Yt. This involves defining a general validation set, which we estimate with all but the t
observation and the 2l observations around it. Leave-one-out cross-validation or the more general K-fold
cross-validation are common choices for models with uncorrelated errors. For time series forecasting, and
because of inherent serial correlation, forecasters tend to prefer out-of-sample evaluation. One problem with
out-of-sample evaluation is that it only evaluates once, whereas cross-validation involves several evaluations,
which may be more convenient, especially for small sample sizes. Other approaches for the case of correlated
errors include cross-validation excluding (2l + 1) observations (with l > 1) as defined above, as well as
other versions, such as the so-called h-block cross-validation (h observations preceding and following the
observation are omitted from the test set). However, most of these time-series alternatives have problems
that require additional corrections. Hence, a simple leave-one-out cross-validation may be a better option in
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many practical situations. See Bergmeir et al. (2018) for a discussion on the validity of cross-validation for
autoregressive time-series predictions and some recommendations in practice.

The validated R-squared value in (4) measures the predictive power of a given model against a benchmark,
that is, the historical mean (a classic benchmark for financial time series). The positive values of R2

V for a
given predictor f̂ indicate that it outperforms the corresponding historical mean forecast. Considering this,
our algorithm chooses predictors that maximize R2

V , which is equivalent to the minimization of the loss
function L(Y, f̂−t).

The last element of our proposal is a combination of predictors to increase predictive power. For predictors
f̂k (k = 1, . . . , K), we define a combination of types

f̂ comb =
K

∑
k=1

wk f̂k, (5)

for certain weights w1, . . . , wK. It is well known in forecasting literature that forecast combinations often
lead to better forecast accuracy (Clemen, 1989). These and other methods were recently analyzed by Scholz
(2022), who show that single predictors can perform better in terms of the validated R-squared than the
combination f̂ comb.

Based on the previous definitions, we propose an algorithm to construct optimal combinations of predictors.
Starting with the historical mean Ȳ, we combine it linearly with a portion of f̂i. The idea is to think like
an investor; that is, using the most promising candidates (the models with R2

V > 0), allowing for leverage
(weights could sum up to a value larger than one), use only small “bits” of the candidate at hand (say a 10%
weight), validate its impact immediately and discard it if no further improvement in predictive power is
achieved. For a fixed α ∈ (0, 1) (e.g., α = 0.1), we calculate

f̂FW = Ȳ + α( f̂i − Ȳ) (6)

where i ∈ {1, . . . , K} is selected such that the validated R-squared of f̂FW is the maximal. Then, we iterate in
the same manner as long as the predictive power improves.

f̂ new
FW = f̂ old

FW + α( f̂i − Ȳ) (7)

where i ∈ {1, . . . , K} is chosen again such that the validated R-squared of f̂ new
FW is the maximal.

Based on the definitions above, our forward Algorithm 1 is described by the following steps.

Algorithm 1. Require: A validation criterion, α ∈ (0, 1) and the historical mean Ȳ.

Step 1: Provide K predictors f̂i, 1 ≤ i ≤ K, based on low-dimensional sets of covariates Zk,t. If f̂i does not have a
better validation than Ȳ, stop, and return Ȳ.

Step 2: Construct f̂FW = Ȳ + α( f̂i − Ȳ) with i such that f̂FW has the best validation with respect to the chosen
criterion. If f̂FW does not improve compared with the best predictor f̂s, then stop and return f̂s.

Step 3: Construct f̂ new
FW = f̂ old

FW + α( f̂i − Ȳ) with i such that f̂ new
FW has the best validation with respect to the chosen

criterion.

Step 4: Repeat Step 3 as long as the validation of f̂ new
FW improves. Return f̂ new

FW .

To simplify the model choice, it may be appropriate to limit the number of candidates. Thus, in the practical
application and simulation study, we also include a variant of Algorithm 1, in which the use of five maximal
predictors f̂i is allowed. We denote the predictor based on Algorithm 1 as forward and the variant as
forward5.

5



High-dimensional regression A PREPRINT

3 Results and Discussion

This section provides a finite sample simulation study in Section 3.1, empirical applications to time-series
data in Section 3.2, and cross-sectional data in Section 3.3. The finite-sample study in Section 3.1 shows
that linear, Lasso, and ridge regression are competitive with our new method when the comparison is on
their home turf: the linear model is true. However, linear regression, Lasso, and ridge regression are not
competitive with our new method when the linear model is not true. Therefore, it is clear that our new
method is superior in performance to linear, Lasso, and ridge regression. The first empirical application
revisits a well-studied dataset of Robert Shiller that is often used for forecasting yearly stock returns. It is a
time series of more than 100 yearly data points with a number of relevant covariates, such as dividend yield,
earnings, inflation, and interest rates. This dataset is in line with the objective of our study, in which we want
to consider small datasets with many covariates. The combination of covariates results in 28 low-dimensional
competing predictors that could all be used for forecasting. Our new approach uses only three of these
predictors and the mean to forecast yearly stock returns. The second empirical application uses telematics
data on individual driving patterns to predict traffic accident claims costs, which is a major problem in motor
insurance. The dataset consists of around 500 individuals (of age 18–35) and includes information on the
policyholder (like age, age of car, or years holding a driver’s license) and the policyholder’s driving style and
driving patterns (“telematic covariates” like annual distance driven or percentage of kilometers driven above
the speed limit or at night). The combination of available covariates again results in 28 low-dimensional
competing predictors that could potentially be used to predict traffic accident claims costs. With our new
approach, we use only five of these predictors and the mean.

3.1 Simulation Studies

In this section, we compare the performances of the forward and forward5 methods proposed in Algorithm
1 with those of the five related methods on the simulated data. The first method is standard linear regression
based on OLS, denoted by linreg. The second and third methods are regularization techniques that ideally
shrink the weights wk of the predictors f̂k without predictive power to zero. We use only two of the many
different approaches and their variants: lasso (Tibshirani, 1996) and ridge regression (Hoerl and Kennard,
1970), denoted by lasso and ridge. To compute the Lasso and ridge regressions, we use the R package glmnet.
The fourth method is a fully nonparametric local-linear smoother based on the quartic (product) kernel,
whose bandwidths are chosen with cross-validation, as described in Section 2. We denote this method by
loclin. The final method is a simple average ȳ denoted by the mean. In all these methods, the full set of
available covariates is used in the prediction procedure.

We consider two cases: a linear data-generating process (dgp) and a nonlinear process. Both simulations
are similar in the choice of a maximum of ten covariates, of which four are relevant and six are irrelevant.
We evaluate the predictions based on two measures: (i) the cross-validation (CV) as discussed in Section
2, that is, L(y, f̂−t) = ||y − f̂−t||22 and (ii) the out-of-sample mean squared forecast error (MSFE), that is,
L(yoos, f̂ oos

−t ) = ||yoos − f̂ oos
−t ||22 based on additional observations from the same dgp that have not been used

in the estimation step. In each case, we generate T = 200 observations for the estimation and Toos = 50
observations for the out-of-sample validation in a total of 500 iterations.

Case 1

We generate data using the model:

y = 1.0 + 0.8x1 + 0.6x2 + 0.4x3 + 0.2x4 + ε

with ε, xi ∼ N (0, 1), i = 1, . . . , 10. As the model is linear in this case, we use OLS for the estimation in
forward and forward5 to reduce the computational burden. Note that the dgp is linear, such that using a
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local-linear smoother would also estimate the true linear model without any bias, and thus deliver similar
results.

Box plots of the CV (left) and MSFE (right) are shown in Figure 1. The median CV for the forward5 is
clearly smaller than that of the other competitors. The second is forward, followed by linreg. For MSPE,
the performance is similar for our forward and forward5 methods and the standard local linear regression.
As expected, loclin and linreg perform comparably well. Interestingly, both shrinkage methods perform
worse than the other model-based approaches. The mean produces the worst results. For the MSFE measure,
forward5, forward, loclin, and linreg perform similarly. Lasso and ridge are again slightly worse. Again,
the mean is the worst predictor under the considered approaches.

Figure 1: Results of the simulation study for the linear data generating process of Case 1. Left: CV, right:
MSFE.
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Case 2

In this case, the dgp is given by:

y = −x2
1 − 2 sin

(
π

2
x2

)
+ x3x4 + ε

where ε, xi ∼ N (0, 1), i = 1, . . . , 10. Note again that only the variables x1, . . . , x4 are used; that is, there are
six irrelevant variables. In forward and forward5, we now use a local linear smoother instead of OLS as in
Case 1.

Box plots of the CV (left) and MSFE (right) are shown in Figure 2. forward5 again performs best in terms of
the lowest value in the CV measure followed by forward. In addition, the fully non-parametric approach,
which is usually ideally suited for such nonlinear dgp’s is outperformed by our new approaches. The linreg,
lasso, and ridge approaches cannot account for the nonlinearities in the dgp and perform much worse than
the other model-based approaches. Even the mean shows CV values similar to those of the purely linear
methods. When considering the MSFE, a similar ranking of the methods can be obtained. Again, forward
and foreward5 outperform their competitors.

We have carried out simulations in dimensions up to 200 for our new method and allowed it to compete
with linear, Lasso, and ridge regression on the home turf of these three methods: when the problem is linear.
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Figure 2: Results of the simulation study for the non-linear data generating process of Case 2. Left: CV, right:
MSFE
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Our proposed method outperforms the others - even when the true model was indeed linear - when the
measure is cross-validation, which is the most used measure of machine learning methods. However, if we
also look at the out-of-sample performance MSFE, that is, we simulate a sample to estimate a model and
use another simulated sample for evaluation; then, it is not clear whether the Lasso, ridge, or our proposal
would be preferable. The simulations yield mixed messages. Linear regression without variable reduction is
not competitive for such high dimensions, even when estimating the true linear regression model. The noise
of the standard linear regression in high dimensions is too large. What is clear is that our new method is
very competitive with Lasso and ridge, even on their home turf. It should also be added that, unsurprisingly,
when nonlinearities are present, Lasso and ridge are not competitive with our proposed method.

3.2 An Empirical Application to Time Series Data

We apply the methods described in Section 2 to annual US stock market data from 1872 to 2019. We use a
revised and updated version of the series described in Shiller’s Chapter 26 (Shiller, 1989) which consists of
the Standard and Poor’s (S&P) Composite Stock Price Index, dividends and earnings accruing to the index, a
one-year interest rate, a long government bond yield, and the consumer price index (http://www.econ.yale.
edu/~shiller/data.htm). We replace the original risk-free rate series (which was discontinued in 2013) with
an annual yield based on the six-month Treasury bill rate (https://fred.stlouisfed.org/series/TB6MS)
secondary market. This new series is only available from 1958 onwards. Therefore, we regress the Treasury
bill rate on the original commercial paper rate from Shiller’s data and instrument the risk-free rate from 1872
to 1957 with the corresponding predicted values. For further details, see Kyriakou et al. (2020) and Mammen
et al. (2019).

Our analysis focuses on the nonlinear predictive relationships between one-year stock returns in excess of
a reference rate (or benchmark) and a set of explanatory variables. We use the data analyzed recently by
Kyriakou et al. (2021a). Table 1 summarizes the available variables using their basic descriptive statistics.
In our analysis, we focus on one-year-ahead forecasts, but we can also consider longer horizons, T > 1;
however, in that case, we should account for overlapping observations and related econometric problems
(see Kyriakou et al., 2020 for more details). The approach considered here estimates a fixed forecast function
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Table 1: US market data (1872–2019).
Max Min Mean Sd Skew Exc. kurt

S&P stock price index 2789.80 3.25 277.58 558.13 2.43 5.50
Dividend accruing to index 53.75 0.18 6.04 10.56 2.45 6.00
Earnings accruing to index 132.39 0.16 13.96 26.31 2.43 5.35
Dividend-by-price 9.88 1.17 4.31 1.71 0.46 0.25
Earnings-by-price 17.75 1.72 7.28 2.75 1.05 1.39
Short-term interest rate 14.93 0.07 3.97 2.50 0.96 2.34
Long-term interest rate 14.59 1.88 4.53 2.27 1.81 3.63
Inflation 20.69 -15.65 2.23 5.96 0.26 1.60
Spread 3.64 -3.71 0.56 1.32 -0.05 0.02

for dynamic time-varying covariates. The time-varying forecasting dynamics of our approach are derived
only from the time-varying covariates. This differs from approaches such as Fan et al. (2022), in which time
dependency is modelled explicitly and applied to portfolio optimization.

We investigate stock returns St = (Pt + Dt)/Pt−1, t = 1, . . . , T, where Dt denotes the (nominal) dividends
paid during year t and Pt is the (nominal) stock price at the end of year t in excess (log scale) of the given
benchmark B(A)

t−1.

yt = ln
St

B(A)
t−1

, (8)

where A ∈ {R, L, E, C} with, respectively,

B(R)
t = 1 +

Rt

100
, B(L)

t = 1 +
Lt

100
, B(E)

t = 1 +
Et

Pt
, B(C)

t =
CPIt

CPIt−1
, (9)

Rt is the short-term interest rate and Lt is the long-term interest rate rate, Et is earnings accrued to the
index in year t, and CPIt the consumer price index for year t. We are interested in one-year-ahead forecasts
yt, that is, h = 1, via equation (2) using low-dimensional combinations of popular time-lagged predictive
variables Zt−1 ∈ Rq and 1 ≤ q ≤ 2, including the: i) dividend-by-price ratio dt−1 = Dt−1/Pt−1; ii) earnings-
by-price ratio et−1 = Et−1/Pt−1; iii) short-term interest rate rt−1 = Rt−1/100iv) long-term interest rate
lt−1 = Lt−1/100, v) inflation πt−1 = (CPIt−1 − CPIt−2)/CPIt−2; vi) term spread st−1 = lt−1 − rt−1; and vii)
excess stock return yt−1. This gives us K = 28 different (potentially highly correlated) predictors, f̂1, . . . , f̂K
that can be ranked based on their predictive power measured by the validated R-squared in (4).

As stated above, we focus on all one- and two-dimensional non-parametric models for predicting real excess
stock returns (using the benchmark B(C)), which gives us 28 different predictors f̂i, 1 ≤ i ≤ 28, all estimated
with the local linear smoother using the quartic (product) kernel. The smoothing parameters (bandwidths)
were chosen by leave-one-out cross-validation, that is, by maximizing the in-sample performance measure
R2

V introduced in Section 2. Table 2 lists the predictive powers of the candidates. For each candidate, we
indicate the variables involved (one or two variables maximum) and the value of the R2

V that provides the
predictive power of the candidate model. We can see that the best candidate model has an R2

V of 15.4% and
is based on the inflation rate (π) and term spread (s) as predictive variables.

Using our new algorithm and setting α = 0.1, the predictive power can be increased by 8% to R2
V = 16.6.

The single rounds are listed in Table 3. The first round corresponds to steps 1-2 of our forward algorithm
(see Algorithm 1 in Section 2.2) and only considers the model candidate with the best predicted power, that
is a two-dimensional model based on π and s as predictive variables (see Table 2). Step 3 of the algorithm is
iterated until no improvement is achieved. The optimal model ( 28) is chosen in the first seven consecutive
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Table 2: Predictive power (in percent) of the 28 low-dimensional models. Model with best predictive power
highlighted in bold.

Model R2
V Model R2

V Model R2
V Model R2

V

1. y -1.4 8. y, d -1.6 15. d, r 0.8 22. e, s 5.4
2. d -0.2 9. y, e -3.4 16. d, l -1.2 23. r, l 5.2
3. e -1.5 10. y, r -0.9 17. d, π 9.5 24. r, π 9.5
4. r 0.8 11. y, l -2.5 18. d, s 7.9 25. r, s 7.4
5. l -0.8 12. y, π 9.7 19. e, r -0.4 26. l, π 9.9
6. π 10.3 13. y, s 4.8 20. e, l -2.5 27. l, s 7.4
7. s 7.2 14. d, e -1.9 21. e, π 10.9 28. π, s 15.4

Table 3: Predictive power (in percent) of the round-based forward algorithm fixing α = 0.1. Steps in
Algorithm 1 with improved predictive power compared to the single best predictor f̂28 highlighted in bold.

Round Model Covariates R2
V

1 28. π, s 3.1
2 28. π, s 5.9
3 28. π, s 8.4
4 28. π, s 10.5
5 28. π, s 12.2
6 28. π, s 13.5
7 28. π, s 14.5
8 21. e, π 15.2
9 18. d, s 15.8

10 18. d, s 16.2
11 21. e, π 16.5
12 18. d, s 16.6

rounds, reaching almost 100 % predictive power with this 70 % input. In rounds 8 and 11, model 21 is
selected, followed by model 18 in rounds 9, 10, and 12. The final forecast is given by (7), which yields the
following combination of predictors.

f̂FW = −0.2Ȳ + 0.3 f̂18 + 0.2 f̂21 + 0.7 f̂28

where 12 rounds are used and the model weights sum to 1.2. Note that already the model produced in round
9 (using a total weight of 0.9) has a larger predictive power than the best individual model.

3.3 An Empirical Application to Cross-Sectional Actuarial Telematics Data

We apply the new method described in Section 2 to a cross-sectional dataset obtained from a Spanish
insurance company (Bolancé et al., 2022). It consists of 488 car insurance policyholders who reported at least
one claim in 2011, covering, among others, the following information: cost per policyholder in thousands of
euros (co), age in years (ag), number of years holding a driver’s license (ad), age of car in years (ac), annual
distance driven in thousands of kilometers (tk), percentage of kilometers driven at night (nk), percentage of
kilometers driven on urban roads (uk), and percentage of kilometers driven above the speed limit (sk). We
use the same data analyzed recently by Bolancé et al. (2023) (see also Bolancé et al. and 2018). Table 4 lists the
variables and their basic descriptive statistics.

We analyze the logarithm of claim costs, y = log(co), and focus on all one- and two-dimensional models.
This provides 28 different predictors f̂i and 1 ≤ i ≤ 28, all estimated with the local linear smoother using
the quartic (product) kernel. Smoothing parameters (bandwidths) were chosen using leave-one-out cross-
validation. Table 5 summarizes the predictive power of the models as measured by the R2

V . Only 2 of the
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Table 4: Spanish claim costs data.
Max Min Mean Sd Skew Exc. kurt

co 17.03 0.02 1.55 2.03 3.36 18.27
ag 34.07 20.59 27.01 3.25 0.09 1.99
ad 14.69 2.00 6.44 2.83 0.76 2.95
ac 20.47 2.11 8.90 4.15 0.79 3.11
tk 35.10 1.22 8.36 4.53 1.30 6.27
nk 42.83 0.04 7.52 6.51 1.86 7.84
uk 80.66 3.81 27.07 14.12 0.96 3.92
sk 48.00 0.12 7.21 7.10 1.90 7.47

Table 5: Predictive power (in percent) of the 28 low-dimensional models. Model with best predictive power
highlighted in bold.

Model R2
V Model R2

V Model R2
V Model R2

V

1. ag -0.33 8. ag, ad -0.64 15. ad, tk -0.60 22. ac, sk -0.52
2. ad -0.20 9. ag, ac -0.78 16. ad, nk 0.08 23. tk, nk -0.26
3. ac -0.41 10. ag, tk -0.72 17. ad, uk -0.83 24. tk, uk -0.83
4. tk -0.18 11. ag, nk -0.42 18. ad, sk -0.41 25. tk, sk -0.45
5. nk 0.15 12. ag, uk -0.88 19. ac, tk -0.81 26. nk, uk -0.65
6. uk -0.51 13. ag, sk -0.30 20. ac, nk -0.45 27. nk, sk -0.25
7. sk -0.04 14. ad, ac -0.70 21. ac, uk -0.98 28. uk, sk -0.58

28 models show a validated R-squared larger than zero, indicating predictive power. The best individual
model has an R2

V of 0.15% and is based on the percentage of kilometers driven at night. Using our new
algorithm (setting α = 0.1), the predictive power can be increased by a factor of 3.3 to 0.5%. Note that the
relative signal to noise ratio is much lower in this study than in the previous annual financial returns study
in Section 3.2. The single rounds are presented in Table 6. The final model is given by

f̂FW = −0.4ȳ + 0.3 f̂4 + 0.3 f̂5 + 0.3 f̂7 + 0.1 f̂13 + 0.4 f̂16

where 14 rounds are used, and the model weights sum to 1.4. Note that the second round produces a model
with improved predictive power compared with the single best model. Interestingly, models based on
telematics variables (annual distance driven in thousands of kilometers, percentage of kilometers driven at
night, and percentage of kilometers driven above the speed limit) and their interactions with the age of the
driver and the number of years of holding a driver’s license were selected. Bolancé et al. (2023) report a mean
squared prediction error for their preferred model of 1.303. When calculating the mean squared prediction
error for our f̂FW using the 488 observations in the dataset, we find a smaller value of 1.220, indicating better
predictive performance than the single-index model used in Bolancé et al. (2023).

4 Conclusion

This study introduces a new regression methodology applicable to both standard regression and time-
series regression settings. Our new approach uses low-dimensional estimators as building blocks for a
larger system instead of going directly to a large system, as its main competitors do. The new approach is
particularly useful when many covariates but only a few observations of the dependent variable are available.
Our data and simulation sections illustrate that our new approach is superior to its main competitors in
our chosen finite sample studies (inspired by typical datasets of interest), and also seems superior in our
important real-life data examples taken from the finance and insurance industries.

11



High-dimensional regression A PREPRINT

Table 6: Predictive power (in percent) of the round-based forward algorithm fixing α = 0.1. Steps in
Algorithm 1 with improved predictive power compared to the single best predictor f̂5 highlighted in bold.

Round Model Covariates R2
V

1 16. ad, nk 0.127
2 16. ad, nk 0.228
3 16. ad, nk 0.303
4 16. ad, nk 0.351
5 13. ag, sk 0.385
6 5. nk 0.410
7 4. tk 0.432
8 7. sk 0.453
9 5. nk 0.467

10 4. tk 0.480
11 7. sk 0.493
12 7. sk 0.498
13 4. tk 0.503
14 5. nk 0.504

Our new methodology can also be considered an addition to the toolbox of machine learning methodology
in insurance and finance; see, for example, Asimit et al. (2020). It is, of course, not only the mean values
that can be modelled via our new approach to machine learning, but also volatility or other moments that
can be modelled in a similar way; see Mammen et al. (2019) for the second moment case, see also Gong
et al. (2022). Further developments in the second moments might facilitate improvements to ARCH- or
GARCH type structures, along the same lines as in Wu and Karmakar (2023), but with the transparency
and robustness of the methodology of this study. Therefore, our new approach could be an alternative
or supporting methodology for other volatility forecasts; see Zahid et al. (2022) among many others, for
forecasting clusters of volatility based on GARCH-type models. Our technique can also be envisioned for
higher-frequency data making it relevant, for example, for trading data; see, for example, Frattini et al.
(2022). It would also be interesting to provide a non-supervised learning version (e.g., classification) of our
supervised learning approach (regression) to provide an alternative methodology to practical problems,
such as those in Brunhuemer et al. (2022). We hope that our new approach can help determine an optimal
level of complexity within a much wider range of applications than the two financial applications indicated
in this study. Note that any sophisticated modern alternative technique to our approach can be enlisted as a
function to be included in our approach when validating our method for the optimal model. Our approach
is therefore very flexible and can perhaps be imagined to work together with other modern techniques and
applications; for example, see Kou et al. (2021), Xu et al. (2024), Kou et al. (2024a) and Kou et al. (2024b).

List of abbreviations

CV: cross-validation

dgp: data generating process

MSFE: out-of-sample mean squared forecast error

OLS: ordinary least squares

oos: out of sample
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