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 A B S T R A C T

Learning statistical regularities from the environment is ubiquitous across domains and species. It might support 
the earliest stages of language acquisition, especially identifying and learning words from fluent speech (i.e., 
word-segmentation). But how do the statistical learning mechanisms involved in word-segmentation interact 
with the memory mechanisms needed to remember words — and with the learning situations where words 
need to be learned? Through computational modeling, we first show that earlier results purportedly supporting 
memory-based theories of statistical learning can be reproduced by memory-less Hebbian learning mechanisms. 
We then show that, in a memory recall task after exposure to continuous, statistically structured speech 
sequences, participants track the statistical structure of the speech sequences and are thus sensitive to probable 
syllable transitions. However, they hardly remember any items at all, with 82% producing no high-probability 
items. Among the 30% of participants producing (correct) high- or (incorrect) low-probability items, half 
produced high-probability items and half low-probability items — even while preferring high-probability items 
in a recognition test. Only discrete familiarization sequences with isolated words yield memories of actual 
items. Turning to how specific learning situations affect statistical learning, we show that it predominantly 
operates in continuous speech sequences like those used in earlier experiments, but not in discrete chunk 
sequences likely more characteristic of early language acquisition. Taken together, these results suggest that 
statistical learning might be specialized to accumulate distributional information, but that it is dissociable 
from the (declarative) memory mechanisms needed to acquire words and does not allow learners to identify 
probable word boundaries.
1. Introduction

The ability to learn statistical regularities from the environment is 
remarkably widespread across species and domains (Aslin, Saffran, & 
Newport, 1998; Chen & Ten Cate, 2015; Hauser, Newport, & Aslin, 
2001; Kirkham, Slemmer, & Johnson, 2002; Saffran, Aslin, & New-
port, 1996; Toro, Trobalon, & Sebastián-Gallés, 2005; Turk-Browne & 
Scholl, 2009), and might support a wide range of computations (e.g., 
Sherman, Graves, & Turk-Browne, 2020). Forms of statistical learning 
that allow learners to track  sequential dependencies among sequence 
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(https://www.testable.org/library#496496; Statistical learning and memory recall).
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items might be especially important during language acquisition (Aslin 
& Newport, 2012; Saffran & Kirkham, 2018). However, their compu-
tational function is unclear. It is widely believed that such forms of 
statistical learning help learners acquire words from fluent speech (e.g., 
Aslin et al., 1998; Saffran, Aslin, & Newport, 1996), and thus (pre-
sumably) store word candidates in (declarative) memory (Graf-Estes, 
Evans, Alibali, & Saffran, 2007; Isbilen, McCauley, Kidd, & Chris-
tiansen, 2020). However, other authors suggest that statistical learning 
is important for predicting events (Sherman & Turk-Browne, 2020; 
Turk-Browne, Scholl, Johnson, & Chun, 2010). Here, we suggest that 
https://doi.org/10.1016/j.cognition.2025.106130
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010-0277/© 2025 The Authors. Published by Elsevier B.V. This is an open access a
rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/cognit
https://www.elsevier.com/locate/cognit
https://orcid.org/0000-0003-4086-5167
https://orcid.org/0000-0003-2345-5676
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://github.com/aendress/segmenation_recall
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://figshare.com/s/dc3bf0cd35fe47156e99
https://github.com/aendress/segmentation_recall
https://doi.org/10.25383/city.28592924
https://www.testable.org/library#496496
mailto:ansgar.endress.1@citystgeorges.ac.uk
https://doi.org/10.1016/j.cognition.2025.106130
https://doi.org/10.1016/j.cognition.2025.106130
http://creativecommons.org/licenses/by/4.0/


A.D. Endress and M. de Seyssel Cognition 261 (2025) 106130 
statistical learning is critical for predicting speech material and op-
erates predominantly under conditions where prediction is possible. 
However, we also suggest that statistical learning does not lead to 
declarative memories of words, and that separate mechanisms are 
required to form these memories.

We note that the label ‘‘statistical learning’’ has also been used for 
a variety of other computations, including discovering phonemic and 
allophonic categories (e.g., Maye, Werker, & Gerken, 2002), learning 
relevant locations in visual search (e.g., van Moorselaar & Slagter, 
2019), compressing redundant information in visual working mem-
ory (e.g., Brady, Konkle, & Alvarez, 2009), among others (see Sherman 
et al., 2020, for a review). Here, we focus on forms of statistical learning 
that allow learners to track sequential dependencies among items in 
continuous sequences (and possibly also to associate simultaneously 
presented items in vision). We surmise that other computations referred 
to as ‘‘statistical learning’’ likely rely on different mechanisms and 
might well have different properties.

1.1. Statistical learning vs. declarative memory of words in fluent speech

Speech is often thought to be a continuous signal (and often per-
ceived as such in unknown languages, but see below), and before learn-
ers can commit any words to memory, they need to learn where words 
start and where they end. To do so, they might rely on Transitional 
Probabilities (TPs) among syllables, that is, the conditional probability 
of a syllable 𝜎𝑖+1 given a preceding syllable 𝜎𝑖, 𝑃 (𝜎𝑖𝜎𝑖+1)∕𝑃 (𝜎𝑖). Rela-
tively predictable transitions are likely located inside words, while un-
predictable ones straddle word boundaries. Early on, Shannon (1951) 
showed that human adults are sensitive to such distributional infor-
mation. Subsequent work demonstrated that infants and non-human 
animals share this ability (Chen & Ten Cate, 2015; Hauser et al., 2001; 
Kirkham et al., 2002; Saffran, Aslin, & Newport, 1996; Toro, Trobalon, 
& Sebastián-Gallés, 2005; Turk-Browne & Scholl, 2009).

Statistical learning therefore supports predictive processing (Sher-
man & Turk-Browne, 2020; Turk-Browne et al., 2010), that is, the 
ability to anticipate stimuli and events based on current and past 
experience. This ability is critical for language (Levy, 2008; Trueswell, 
Sekerina, Hill, & Logrip, 1999) and other cognitive processes (Clark, 
2013; Friston, 2010; Keller & Mrsic-Flogel, 2018). However, while 
words are clearly stored in declarative Long-Term Memory (after all, 
the point of knowing words is to ‘‘declare’’ them), statistical knowledge 
does not imply the formation of such memory representations. In fact, 
after exposure to sequences where some transitions are more likely 
than others, observers report greater familiarity with high-TP items 
than with low-TP items, even when they have never encountered either 
of these items and thus could not have memorized them (because 
the items are played backwards with respect to the familiarization 
sequence; Endress & Wood, 2011; Jones & Pashler, 2007; Turk-Browne 
& Scholl, 2009). Sometimes, observers even report greater familiarity 
with high-TP items they have never encountered than with low-TP 
items they have heard or seen (Endress, 2024b; Endress & Langus, 
2017; Endress & Mehler, 2009b), suggesting that a preference for 
high-TP items over low-TP items does not necessarily imply that the 
high-TP items are encoded in declarative LTM. Further, and in line with 
this view, statistical learning abilities might reflect simple associative 
mechanisms such as Hebbian learning (Endress, 2010a, 2024; Endress 
& Johnson, 2021): If the representation of a syllable is still active while 
the next one is presented, the two syllable representations are active 
together and can thus form an association. These Hebbian associations 
will thus reflect the TPs among syllables.

While the question of whether statistical learning leads to mem-
ory for items (or chunks) is controversial (see e.g. Perruchet, 2019 
vs. Endress, Slone, & Johnson, 2020 and below), statistical learning 
has been linked to implicit learning (e.g., Christiansen, 2018; Per-
ruchet & Pacton, 2006; Saffran, Newport, Aslin, Tunick, & Barrueco, 
1997), and is available to arguably implicit learners such as sleeping 
2 
newborns, (Fló, Benjamin, Palu, & Dehaene-Lambertz, 2022). Dissoci-
ations between implicit learning and declarative memory have long 
been documented behaviorally (Graf & Mandler, 1984), developmen-
tally (Finn, Kalra, Goetz, Leonard, Sheridan, & Gabrieli, 2016), and 
neuropsychologically (Cohen & Squire, 1980; Knowlton, Mangels, & 
Squire, 1996; Poldrack et al., 2001; Squire, 1992), to the extent that sta-
tistical predictions can impair declarative memory encoding in healthy 
adults (Sherman & Turk-Browne, 2020). If statistical learning operates 
similarly in a word-segmentation context as in other implicit learning 
situations, one would expect it to be dissociable from declarative 
Long-Term Memory.

That said, different memory systems can certainly interfere with 
each other during consolidation or support each others when the 
memories share a structure (see Robertson, 2022, for a review). How-
ever, given that the format of the representations created by statistical 
learning might differ from that used for linguistic stimuli (Endress 
& Langus, 2017; Fischer-Baum, Charny, & McCloskey, 2011; Miozzo, 
Petrova, Fischer-Baum, & Peressotti, 2016), it is at least an open ques-
tion to what extent statistical learning supports declarative memories 
for words. In the General Discussion, we will discuss ways in which 
statistical learning might be useful for word learning even if it is 
dissociable from declarative memory.

In addition to possible dissociations between statistical learning and 
declarative memory, it is also unclear how continuous fluent speech 
really is. In fact, due to its prosodic organization, speech does not come 
as a continuous signal but rather as a sequence of smaller units (Cut-
ler, Oahan, & van Donselaar, 1997; Nespor & Vogel, 1986; Shattuck-
Hufnagel & Turk, 1996). This prosodic organization is perceived in 
unfamiliar languages (Brentari, González, Seidl, & Wilbur, 2011; En-
dress & Hauser, 2010; Pilon, 1981) and even by newborns (Christophe, 
Mehler, & Sebastian-Galles, 2001). It might affect the usefulness of 
statistical learning, because such speech cues tend to override statistical 
cues (Johnson & Jusczyk, 2001; Johnson & Seidl, 2009), and because 
statistical learning primarily operates within rather than across major 
prosodic boundaries (Shukla, Nespor, & Mehler, 2007; Shukla, White, & 
Aslin, 2011). As a result, the learner’s segmentation task is not so much 
to integrate distributional information over long stretches of continuous 
speech, but rather to decide whether the correct grouping in prosodic 
groups such as ‘‘thebaby ’’ is ‘‘theba + by ’’ or ‘‘the + baby ’’ (though 
prosodic groups are often longer than just three syllables; Nespor & 
Vogel, 1986).

1.2. Does statistical learning lead to declarative memories after all?

Contrary to our arguments so far, many authors suggest that statis-
tical learning leads to declarative memories for chunks after all (Graf-
Estes et al., 2007; Hay, Pelucchi, Graf Estes, & Saffran, 2011; Isbilen 
et al., 2020). We will fully discuss this evidence in the General Discus-
sion, and focus here only on a particularly strong source of evidence 
for such views that we will refute below through neural network 
simulations.

Specifically, in some studies, after exposure to a statistical learning 
task, recognition performance is better for (statistically defined) units 
compared to (statistically defined) sub-units (e.g., Fiser & Aslin, 2005; 
Giroux & Rey, 2009; Orbán, Fiser, Aslin, & Lengyel, 2008; Slone & 
Johnson, 2018). In a word recognition analogy, hearing the word
hamster makes it difficult to recognize that the first syllable of hamster
is a word on its own (i.e., ham), though, in word recognition, the 
reduced availability of sub-units is at least partially driven by phonetic 
differences between syllables that are parts of words and syllables that 
are words on their own (e.g., Salverda, Dahan, & McQueen, 2003; 
Shatzman & McQueen, 2006a, 2006b; van Alphen & van Berkum, 
2010).

Below, we will show that such results can be explained by a simple, 
memory-less Hebbian learning model, suggesting that such results do 
not provide any evidence for the idea that the output of statistical 
learning is stored in declarative long-term memory.



A.D. Endress and M. de Seyssel Cognition 261 (2025) 106130 
1.3. Statistical learning in continuous sequences and discrete chunks

If statistical learning mainly supports predictive processing rather 
than declarative memory, it might also operate predominantly under 
conditions that are conducive for prediction. Consequently, associations 
among syllables might form more easily when the syllables are part of a 
continuous sequence compared to when they are packaged into discrete 
items (e.g., through prosodic phrasing). After all, longer, continuous 
sequences provide more information on which predictions can be based 
than shorter chunks.

These are just the conditions under which statistical learning is usu-
ally explored. Specifically, participants are familiarized with continuous
speech sequences consisting of random concatenations of non-sense 
‘‘words’’ (or equivalent units in other modalities). As a result, syllables 
within words are more predictive of one another (and have higher TPs) 
than syllable combinations that straddle word boundaries. Following 
such a familiarization, (adult) participants typically complete a two-
alternative forced-choice recognition task, where they have to choose 
between the words from speech stream and part-words. Part-words 
are tri-syllabic items that straddle a word boundary. For example, 
if ABC and DEF are two consecutive words, BCD and CDE are the 
corresponding part-words. Participants tend to choose words over part-
words, suggesting that they are sensitive to the greater predictiveness 
(and TPs) of syllables within words. However, such results still leave 
open the question of whether participants can use this sensitivity to 
memorize words from fluent speech, and whether this sensitivity would 
be present in discrete sequences, or only in continuous sequences, espe-
cially given that continuous speech sequences are processed differently 
from discrete ones (e.g., Endress & Bonatti, 2016; Marchetto & Bonatti, 
2015; Peña, Bonatti, Nespor, & Mehler, 2002).2

If statistical learning predominantly supports predictive processing, 
it might operate predominantly in continuous rather than discrete 
sequences. Conversely, discrete chunks might be more conducive for 
the formation of declarative memories, because such chunks have clear 
onsets and offsets, which appears to be a key requirement of the 
memory representations of linguistic stimuli (Endress & Langus, 2017; 
Fischer-Baum et al., 2011; Miozzo et al., 2016). The importance of 
discrete chunks for word learning is supported by the finding that 
a word-segmentation model relying just on information at the edges 
of discrete chunks (in the form of utterance boundaries) performed 
better than most other word-segmentation models (Monaghan & Chris-
tiansen, 2010), and that statistical information does not always lead to 
better performance when boundary information is provided (Sohail & 
Johnson, 2016).

Be that as it might, if statistical learning preferentially operates 
in continuous sequences, this would be one of numerous examples 
where statistical learning works better over some stimulus classes 
than others. The classic example is taste aversion, where rats readily 
associate tastes with sickness and external stimuli with pain but cannot 
associate taste with pain or external stimuli with sickness (Alberts & 
Gubernick, 1984; Garcia, Hankins, & Rusiniak, 1974; Martin & Alberts, 
1979). Other examples include associations of objects with landmarks 

2 For example, Peña et al. (2002) familiarized participants with con-
tinuous speech streams as well as with discrete, ‘‘pre-segmented’’ speech 
streams, in which each word was followed by a brief silence. The brief 
silences triggered additional processes such as rule-like generalizations that 
were unavailable after continuous familiarizations. Critically, the rule-like 
generalizations observed after pre-segmented familiarizations might reflect 
memory processes. Endress and Mehler (2009a) suggested that the role of 
the silences was to act as Gestalt-like grouping cues that provided learners 
with the location of the word edges (i.e., onsets and offsets), and thus enabled 
generalizations based on those word-edges (see also Glicksohn & Cohen, 2011; 
Morgan, Fogel, Nair, & Patel, 2019 for other perceptual grouping effects in 
statistical learning). Given that the grouping cues resulted in a sequence of 
discrete chunks, the grouping cues might also support declarative memory 
processing.
3 
vs. boundaries (Doeller & Burgess, 2008), associations among social 
vs. non-social objects (Tompson, Kahn, Falk, Vettel, & Bassett, 2019), 
and associations among consonants vs. vowels (Bonatti, Peña, Nespor, 
& Mehler, 2005; Toro, Bonatti, Nespor, & Mehler, 2008).

1.4. The current experiments

Here, we explore the computational function of statistical learning 
in word-segmentation.

We first reconsider the strongest evidence purportedly supporting 
memory-based accounts of statistical learning, namely better recogni-
tion of entire units compared to sub-units (e.g., Fiser & Aslin, 2005; 
Giroux & Rey, 2009; Orbán et al., 2008; Slone & Johnson, 2018). How-
ever, we report neural network simulations showing that this evidence 
can be explained by memory-less Hebbian learning mechanisms. As a 
result, such results do not provide evidence for memory-based accounts 
of statistical learning.

In Experiment 1, we then ask if statistical learning leads to declar-
ative memory of words. We exposed (adult) participants to the speech 
stream from Saffran, Aslin, and Newport’s (1996) classic word-segmen
tation experiment. The speech stream consists of four non-sense words 
randomly concatenated into a continuous speech sequence. As a re-
sult, TPs among syllables are higher within words than across word-
boundaries. We presented the stream either as a continuous sequence 
(as in Saffran, Aslin, and Newport’s (1996) experiments), or as a 
pre-segmented sequence of words, with brief silences across word 
boundaries. As mentioned above, these continuous vs. pre-segmented 
presentation modes trigger different sets of memory processes (Endress 
& Bonatti, 2016; Marchetto & Bonatti, 2015; Peña et al., 2002), but it 
is unknown if either of these processes involves declarative memory. 
Following this familiarization, we simply asked participants to recall 
what they remembered from the speech stream. In light of the finding 
that participants in statistical learning tasks sometimes endorse items 
they have never encountered (e.g., Endress & Wood, 2011; Jones & 
Pashler, 2007; Turk-Browne & Scholl, 2009) and can endorse them over 
items they have encountered (Endress, 2024b; Endress & Langus, 2017; 
Endress & Mehler, 2009b), we expected that participants would form 
declarative memories only after a pre-segmented familiarization.

To foreshadow our results, participants were able to recall items 
after a pre-segmented familiarization. However, after a continuous 
familiarization, 70% of the participants did not recall any (high- or 
low probability) items at all. Among those who did recall some items, 
half produced correct, high-probability items and half incorrect, low-
probability items. We then verified that a prominent statistical learning 
model based on memories for chunks (Perruchet & Vinter, 1998) cannot 
explain these data.

Finally, in Experiment 2, we asked whether statistical learning 
operates in smaller chunks like those that might be encountered due 
to the prosodic organization of language, or only in longer stretches 
of continuous speech typical of statistical learning tasks. Participants 
listened to a speech sequence of tri-syllabic non-sense words. As in 
Experiment 1, the words were either pre-segmented (i.e., with a silence 
after each word) or continuously concatenated.

For half of the participants, both the TPs and the chunk frequency 
were higher between the first two syllables of the word than between 
the last two syllables (TPs of 1.0 vs. .33). A statistical learner should 
thus split triplets like ABC into an initial AB chunk followed by a 
singleton C syllable (hereafter AB+C pattern). For the remaining par-
ticipants, both the TPs and the chunk frequency favored an A+BC
pattern. To make the learning task as simple as possible, the statistical 
pattern of the words was thus consistent for each participant. Following 
this familiarization, participants heard pairs of AB and BC items, and 
had to indicate which item was more like the familiarization items. If 
statistical learning predominantly operates in continuous rather than 
pre-segmented sequences, participants should split the triplets into 
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their underlying chunks only after continuous but not pre-segmented 
familiarizations.

To preview our results, while Experiment 1 revealed that partic-
ipants remember words only after listening to pre-segmented speech 
sequences, in Experiment 2, participants predominantly tracked TPs in 
continuous speech sequences, but less so in pre-segmented sequences.

2. Simulation 1: Does Hebbian learning provide an alternative to 
memory-based theories of statistical learning?

There is considerable debate about whether statistical learning leads 
to memory for recurring chunks (e.g., Endress et al., 2020; Goodsitt, 
Morgan, & Kuhl, 1993; Perruchet, 2019; Swingley, 2005; Thiessen, 
2017), and some empirical results seem to support this idea.

While most of these results have alternative interpretations (see 
General Discussion), there is one research tradition that appears to 
provide strong evidence in favor of a memory-based theory of statistical 
learning.

Specifically, in some studies, recognition performance is better for 
(statistically defined) units compared to (statistically defined) sub-
units (e.g., Fiser & Aslin, 2005; Giroux & Rey, 2009; Orbán et al., 2008; 
Slone & Johnson, 2018). In a word recognition analogy, hearing the 
word hamster makes it difficult to recognize that the first syllable of
hamster is a word on its own (i.e., ham), though, in word recognition, 
the reduced availability of sub-units is at least partially driven by pho-
netic differences between syllables that are parts of words and syllables 
that are words on their own (e.g., Salverda et al., 2003; Shatzman & 
McQueen, 2006a, 2006b; van Alphen & van Berkum, 2010).

Similar effects are observed in statistical learning in both vision and 
audition. For example, the AB part of an ABC unit is harder to recognize 
than a complete CD unit, which would suggest that the entire units 
are stored in memory. We now provide simulation results suggesting 
that such results are compatible with a memory-less Hebbian learning 
mechanism, but discuss this issue separately for sequential, auditory 
sequences and simultaneously presented visual shapes as the arguments 
are somewhat different.

2.1. Units vs. sub-units in audition

As mentioned above, most statistical learning results can be ex-
plained by simple Hebbian learning: If the representation of a syllable 
is still active while the next one is presented, the two syllable represen-
tations are active together can thus form an association. An implemen-
tation of this idea is provided in models such as Endress and Johnson’s 
(2021). In their neural network model, neurons are connected through 
both excitatory and inhibitory connections, where only the excitatory 
connections undergo Hebbian learning. After learning, when B (from
ABC) is activated, it will excite (and inhibit) both A and C in turn. 
Critically, the excitatory connections between A and C are weaker than 
those between A and B and those between B and C (since there is 
less temporal overlap between their activations, and thus less Hebbian 
learning). This idea is illustrated in Fig.  1. After an (external) activation 
of neuron A (top), excitatory connections as well as external input to
B will activate both B and C (bottom). Depending on the balance of 
excitation and inhibition between A and C, the net input from C to A
might thus be inhibitory on the next time step. In contrast, in complete 
two-item units, there is no extra item like C that could reduce the 
activation within the unit due to inhibition.

We now illustrate this point, using Endress and Johnson’s (2021) 
model to simulate one of the first experiments showing better recog-
nition of units compared to units (Giroux & Rey, 2009). In their 
experiment, participants were presented with streams consisting of 
two three-syllable words and four two-syllable words. After such a 
familiarization, Giroux and Rey (2009) found better recognition for 
sub-units (i.e., two syllables from a three-syllable word) than for units 
(i.e., entire two-syllable words).
4 
Fig. 1. After an (external) activation of the neuron A (top), excitatory connections as 
well as external input to B will activate both B and C (bottom). Depending on the 
balance of excitation and inhibition between A and C, the net input on from C to A
might thus be inhibitory on the next time step.

The model is a fully connected network where all neurons send both 
excitatory and inhibitory input to all other units. Their activations also 
decays over time. Critically, excitatory connections are turned using a 
Hebbian learning rule.

In our simulations, we randomly concatenated these words into 
familiarization streams with 143 occurrences of each word (match-
ing Giroux and Rey’s (2009) familiarization). We then presented the 
network with test items (see below) and recorded the total network 
activation while each item was presented, using the total activation as 
a measure of the network’s familiarity with the test item. We tested 
the network for different decay rates (𝛬 in Endress & Johnson, 2021) 
and interference rates (𝐵 in Endress & Johnson, 2021). The cycle of 
familiarization and test was repeated 100 times for each parameter set, 
representing 100 simulated participants.

To compare the network’s familiarity with two-syllable units and 
two-syllable sub-units, we created normalized difference scores 𝑑 =
Unit−Sub-unit
Unit+Sub-unit . We evaluated these difference scores against the chance 
level of zero using Wilcoxon tests.

As shown in Fig.  2, when averaging across trials comparing two-
syllable units to AB and BC sub-units, there was a significant preference 
for units for most parameter sets (except for some simulations with low 
inhibition rates). A simple Hebbian network can thus account for better 
recognition of units compared to sub-units.

However, as shown in Fig.  3, while units were systematically pre-
ferred over AB sub-units for most parameter values, BC sub-units 
were sometimes preferred for very low or very high interference rates. 
Be that as it might, the current results clearly demonstrate that a 
simple Hebbian network can account for the preference for units over 
sub-units, though the level of inhibition might need to be adequate.

To support our contention that the preference for units over sub-
units might arise from the interplay between learning (and thus excita-
tion) and inhibition, Fig.  4 shows the weights between different pairs 
of neurons after learning. As suggested above, the connection between
A and C in a three-syllable ABC unit is generally weaker than the 



A.D. Endress and M. de Seyssel Cognition 261 (2025) 106130 
Fig. 2. Normalized average difference scores of network activations after presentation of entire two-syllable units and different types of two-syllable units (i.e., AB and BC from 
ABC units), as a function of the forgetting rate (y axis) and the interference rate (facets in rows). As in  Giroux and Rey (2009), we do not separate AB and BC sub-units. Positive 
values indicate stronger activations for units. Significance stars reflect a Wilcoxon test against the chance level of zero. Units generally elicit greater activation compared to the 
average of AB and BC sub-units. Significance labels: ***: ≤ 0.001; **: ≤ 0.01; *: ≤ 0.05; .: ≤ 0.1.
other connections, and often substantially smaller than the interference 
rate. Depending on the parameter values, (second order) activation 
of C might thus partially suppress activation in AB sub-units, and 
activation of A might suppress activation in BC sub-units. However, the 
exact computational mechanisms, as well as the differences in behavior 
between AB and BC sub-units deserve further investigation. For the 
current purposes, we just conclude that the fact that a simple Hebbian 
learning model can account for a preference for units over sub-units 
demonstrates that such results do not provide evidence that units have 
been placed in memory, and thus do not license the conclusion that the 
units are stored as chunks in memory.

2.2. Units vs. sub-units in vision

The simulations reported above suggest that a simple Hebbian 
network can account for the preference for units over sub-units when 
items are presented sequentially (though the level of inhibition might 
5 
need to be adequate). As a result, such results do not provide evidence 
that statistical learning leads to memory for chunks.

There is also evidence that units are easier to recognize than sub-
units for simultaneously presented shapes in vision (e.g., Fiser & Aslin, 
2005; Orbán et al., 2008). In such experiments, shape combinations 
are presented simultaneously, leading to patterns of spatial statistical 
regularities.

However, it is unclear how reliable such effects are. For exam-
ple, Fiser and Aslin (2005) observed better recognition of units in their 
Experiments 1 and 4, but not in their Experiment 5. Further, when 
presenting shapes in a sequence rather than simultaneously, Slone and 
Johnson (2015) also failed to find evidence for better recognition of 
units in their Experiment 2, where they directly contrasted the strength 
of representation of units vs. sub-units.

To the extent that such findings are reliable, they are consistent 
with a similar explanation as the sequential case above. Presumably, 
the strength of associations among shapes depends on their spatial 
distance. Further, given the ubiquity of lateral inhibitory processes in 
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Fig. 3. Normalized difference scores of network activations after presentation of entire two-syllable units and different types of two-syllable units (i.e., AB and BC from ABC units), 
as a function of the forgetting rate (y axis) and the interference rate (facets in rows). The rightmost column is the average of the other columns reported by  Giroux and Rey 
(2009). Positive values indicate stronger activations for units. Significance stars reflect a Wilcoxon test against the chance level of zero. Units generally elicit greater activation 
compared to AB sub-units and compared to the average; when compared to BC units, the sign of the difference score depends on the parameters. Significance labels: ***: ≤ 0.001; 
**: ≤ 0.01; *: ≤ 0.05; .: ≤ 0.1.
vision (Desimone & Duncan, 1995; Hampshire & Sharp, 2015; Kiyonaga 
& Egner, 2016), one would expect spatial inhibitory processes to take 
place in statistical learning tasks as well. As a result, one would expect a 
Hebbian-like model like the one above to reproduce better recognition 
of visually presented units compared to sub-units, though the temporal 
organization in the model above would need to be replaced with some 
spatial organization.

Better recognition for units compared to sub-units can thus be 
explained by simple Hebbian processes in the absence of the creation 
of memories for these units. However, we will now suggest further 
alternative interpretations of a preference for units over sub-units.

2.3. Further alternative explanations of a preference for units over sub-units

In the case of sequential statistical learning tasks, results that units 
are easier to recognize than sub-units have another mutually non-
exclusive alternative explanation on top of the Hebbian explanation 
6 
above. This explanation is based on predictive processing. If C is 
strongly associated with AB, hearing an AB fragment during test might 
lead to a prediction error because participants expect to hear C (or
A for backward predictions after hearing BC) even when they have 
no memory representation of the entire ABC chunk. In contrast, in 
entire units, there is no such prediction error. This interpretation is 
in line with the classic finding that tasks such as stem completion do 
not require declarative LTM (Graf & Mandler, 1984). Mutatis mutandis, 
participants might make predictions in test items, without any units 
having been placed in memory, and these predictions might affect their 
familiarity judgments.

In the case of spatial statistical learning, attentional processes pro-
vide a further alternative explanation in terms of the preference for 
units over sub-unit. This account relies on the spatial regions at-
tended by participants. In unpublished results, we presented partic-
ipants with simultaneously presented shape combinations, and then 
tested for recognition of entire units or of sub-units. We found better 
recognition of units than of sub-units, but only when these sub-units 
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Fig. 4. Connection weights between different pairs of neurons as a function of the forgetting rate (columns) and the interference rate (rows). The figure shows connection weights 
within a trisyllabic unit (ABC) and a bisyllabic unit (Unit). The black line represents the interference rate. The A-C connection is generally smaller than the other connections, and 
often substantially smaller than the interference rate. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
were located in parts of the display that do not attract attention. In 
contrast, when the sub-units came from salient parts of the units, 
recognition was as good as for units (Endress, in preparation).

Taken together, it seems reasonable to conclude that a preference 
for units over sub-units is not diagnostic of memory representations of 
the units. Rather, such results can be explained by simple and memory-
less Hebbian learning mechanisms, or by the other explanations above. 
In Experiment 1, we thus ask directly if Statistical Learning leads to 
declarative memory representations.

3. Experiment 1: Do learners remember items in a statistical learn-
ing task?

In Experiment 1, we directly assessed whether Statistical Learning 
leads to declarative memories, asking if participants would remember 
items that occurred in a speech stream.

Adult participants listened to the artificial languages from Saffran, 
Aslin, and Newport’s (1996) Experiment 2 with 8-months-old infants, 
except that, to increase the opportunity for learning the statistical struc-
ture of the speech stream, we doubled the exposure to 90 repetitions of 
each word.3 The languages comprised four tri-syllabic words, with a TP 

3 We doubled the exposure with respect to Saffran, Aslin, and Newport’s 
(1996) infant studies to maximize the chance of observing successful learning, 
7 
of 1.0 within words and 0.33 across word boundaries. The words were 
presented in a continuous stream or as a pre-segmented word sequence. 
We ran a lab-based version of the experiment (Experiment 1a) and an 
online replication with a larger sample size (Experiment 1b). As the 
results of both experiments were similar, we present them jointly.

Following a retention interval, participants had to repeat back the 
words they remembered from the speech stream.4 Lab-based partici-
pants responded vocally, while online participants typed their answers 
into a comment field. Finally, participants completed a recognition test 
during which we pitted words against part-words. Part-words are tri-
syllabic items that straddle a word-boundary. For example, if ABC and
DEF are two consecutive words, BCD and CDE are the corresponding 
part-words. If participants reliably choose words over part-words, they 
must be sensitive to TPs (even though such a sensitivity might arise 
from different mechanisms).

given that even the experimenters found the learning task challenging with 
the stimuli from Saffran, Newport, and Aslin’s (1996) (adult) experiment.

4 Given that the focus of our experiments is the potential usefulness of 
statistical learning for placing items into declarative memory, we introduced 
a brief retention interval to mimic slightly longer-term retention than in 
typical statistical learning studies (but see e.g. Karaman & Hay, 2018; Vlach 
& DeBrock, 2019).
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Table 1
Demographics of the final sample in Experiments 1 and 2. In Experiment 1a, the (lab-based) participants completed 
both segmentation conditions. In Experiment 2b, we conducted two independent replications with the same American 
English voice due to unexpected results with the British English voice in Experiment 2a.
 Sequence type Voice N Females Male Age (M) Age (range)  
 Experiment 1a: Lab-based recall experiment
  continuous us3 13 13 0 19.2 18–22  
  pre-segmented us3 13 13 0 19.2 18–22  
 Experiment 1b: Online recall experiment
  continuous us3 56 18 38 30.6 19–71  
  pre-segmented us3 56 12 44 30.0 18–62  
 Experiment 2a – Lab-based segmentation experiment (British English voice)
  pre-segmented en1 30 22 8 25 18–42  
  continuous en1 30 20 10 23.9 18–45  
 Experiment 2b – Lab-based segmentation experiment (American English voice)
  pre-segmented us3 30 18 12 26.3 18–43  
  continuous us3 (1) 32 26 6 20.1 18–44  
  continuous us3 (2) 30 20 10 23.2 18–36  
Table 2
Languages used Experiment 1. The 
words are the same as in Ex-
periment 2 in Saffran, Aslin, and 
Newport (1996).
 L1 L2  
 pabiku bikuti  
 tibudo pigola  
 daropi tudaro  
 golatu budopa 

We also asked if a prominent chunking model of word segmenta-
tion (Perruchet & Vinter, 1998) can account for the results presented 
here.

3.1. Materials and methods

3.1.1. Participants
As we had no prior expectation about the effect size, we targeted a 

sample of at least 30 participants for each of the conditions (i.e., contin-
uous vs. pre-segmented × Language 1 vs. Language 2, see below) in the 
(laboratory-based) Experiment 1a. This number was chosen because it 
is realistic in the time-frame available for a third-year honors project. 
In the (online) Experiment 1b, we tested 50 participants per language 
and segmentation condition. Participants reported to be native speakers 
of English, but we did not further assess their English proficiency. At 
least in Experiment 1a, participants were most likely exposed to English 
from childhood, as the experiment took place in London, UK, and the 
experimenters did not notice any clear non-native accents.

To reduce performance differences between the pre-segmented and 
the continuous familiarization conditions, participants were excluded 
from analysis if their accuracy in the recognition test was below 50% 
(N = 8 in Experiment 1a; N = 40 in Experiment 1b). Given that our 
aim was to assess the role of statistical learning in the formation of 
declarative LTM representations of words, we restricted our analysis 
to participants who were most likely to have engaged in the statistical 
learning task.

Another 12 participants were excluded from Experiment 1b because 
parsing their productions took an excessive amount of computing time, 
though their productions did not seem to resemble the familiarization 
items in the first place.5 In Experiment 1b, once the final sample of 

5 When participants produce excessively long items 
(e.g., takahsakakakaratatataikokokokotatakatakatakatakatakatakataka,
matikulatatitulapapitularimatitulaatitula), it can take our recursive parsing 
algorithm (see below) a substantial amount of computing time to generate 
all possible matches to the speech stream. When the analysis of a single 
participant exceeded several days of calculations, we decided to remove this 
8 
participants in the continuous condition was established, we randomly 
removed participants from the pre-segmented condition to equate the 
number of participants across the conditions. As a result, any differ-
ences between the continuous and the pre-segmented conditions were 
not just a consequence of differences in statistical power. (This was not 
necessary in the within-participant design of Experiment 1a.) The final 
sample included 26 participants in the lab-based version (Experiment 
1a), and 112 in the online version (Experiment 1b). Demographic infor-
mation is given in Table  1. Except for the exclusions due to excessive 
computing time (which we did not anticipate), the exclusion criteria 
were set forth prior to analysis.

3.1.2. Materials
We re-synthesized the languages used in Saffran, Aslin, and New-

port’s (1996) Experiment 2. The four words in each language are given 
in Table  2. Each word was composed of three syllables, which were 
composed of two segments in turn. Stimuli were synthesized using the 
us3 (male American English) voice6 of the mbrola synthesizer (Dutoit, 
Pagel, Pierret, Bataille, & van der Vreken, 1996), at a constant 𝐹0 of 
120 Hz and at a rate of 216 ms per syllable (108 ms per phoneme). This 
syllable duration is comparable to that in Saffran, Aslin, and Newport 
(1996) (222 ms per syllable).

During familiarization, words were presented 45 times each. We 
generated random concatenations of 45 repetitions of the 4 words, 
with the constraint that words could not occur in immediate repetition. 
For continuous streams, each randomization was then synthesized into 
a continuous speech stream (with no silences between words) using 
mbrola (Dutoit et al., 1996) and then converted to mp3 using ffmpeg 
(https://ffmpeg.org/). For pre-segmented streams, words were synthe-
sized in isolation. Each randomization was then used to concatenate the 
words into a pre-segmented stream, with silences of 222 ms between 
words, which was then converted to mp3. Streams were faded in and 
out for 5 s using sox (http://sox.sourceforge.net/). For continuous 
streams, this yielded a stream duration of 1 min 57 s; for segmented 
streams, the duration was 2 min 37. Syllable transitions had TPs of 1.0 
within words and 1∕3 across word boundaries. We created 20 versions 
of each stream with different random orders of words.

As the role of the silences in the pre-segmented stream was to create 
clearly identifiable chunks, the silence duration was chosen to result 
in clearly perceptible syllable groups (according to the experimenters’ 
perception). Other investigations with pre-segmented material used 

participant from analysis. Critically, and as mentioned above, the productions 
for which this occurred did not resemble the statistically defined words in the 
first place.

6 Experiment 1 was chronologically carried out after Experiment 2, but 
we changed the order for readability. We chose the us3 voice because the 
alternative en1 (British English) voice introduced artifacts in Experiment 2a.

https://ffmpeg.org/
http://sox.sourceforge.net/
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shorter silences (e.g., Peña et al., 2002), longer ones (e.g., Endress & 
Mehler, 2009a; Sohail & Johnson, 2016) or natural prosodic phras-
ing (Seidl & Johnson, 2008; Shukla et al., 2007). Relatedly, other 
experiments mimicking the prosodic organization of speech used nat-
ural prosodic phrasing (Seidl & Johnson, 2008; Shukla et al., 2007) 
or grouped several ‘‘words’’ together using silences (Sohail & Johnson, 
2016). In the light of Experiment 2, where we ask if statistical learning 
can be used to break up small prosodic groups such as ‘‘thebaby’’ 
into their underlying words (i.e., ‘‘the+baby’’), we follow Peña et al. 
(2002) and present silences after each word instead of inducing longer 
groupings.

For the online Experiment 1b, the speech streams were combined 
with a silent video with no clear objects to increase attention to the 
stimuli. We used a panning of the Carina nebula, obtained from https:
//esahubble.org/videos/heic0707g/. The video was combined with the 
speech streams using the muxmovie utility.

3.1.3. Apparatus
The lab-based Experiment 1a was run using Psyscope X (http://

psy.ck.sissa.it) in a quiet room. The online Experiment 1b was run on 
https://testable.org.

3.1.4. Procedure
3.1.4.1. Familiarization. Participants were informed that they would 
be listening to an unknown language and that they should try to 
learn the words from that language. The familiarization stream was 
presented twice, leading to a total familiarization duration of 3 min 53 
for the continuous streams and 5 min 13 for the segmented streams. 
Participants could proceed to the next presentation of the stream by 
pressing a button.

In the online Experiment 1b, participants watched a video with no 
clear objects during the familiarization.

Following the familiarization, there was a 30 s retention interval. 
In both Experiment 1a and 1b, participants were instructed to count 
backwards from 99 in time with a metronome beat at 3s per beat. 
Performance was not monitored. Given that our objective was to inves-
tigate the role of statistical learning in the formation of declarative LTM 
representations of words, we attempted to make our memory tests at 
least somewhat long-term by introducing this filled retention interval.
3.1.4.2. Recall test. Following the retention interval, participants com-
pleted the recall test. In Experiment 1a, participants had 45 s to repeat 
back the words they remembered; their vocalizations were recorded 
using ffmpeg and saved in mp3 format. In Experiment 1b, participants 
had 60 s to type their answer into a comment field, during which they 
viewed a progress bar.
3.1.4.3. Recognition test. Following the recall test, participants com-
pleted a recognition test during which we pitted words against part-
words. The (correct) test words for Language 1 (and part-words for 
Language 2) were /pAbiku/ and /tibudO/; the (correct) test words 
for Language 2 (and part-words for Language 1) were /tudArO/ and 
/pigOlA/. These items were combined into 4 test pairs.

3.1.5. Analysis strategy
As we used performance in the recognition test to restrict the 

analysis to those participants most likely to have engaged in statistical 
learning, performance in the recognition test in the final sample is not 
representative of the whole sample, and is thus not compared to a 
chance level. Therefore, we focus on the participants’ recall responses.

It turned out that the written recall responses required substantial 
pre-processing because participants transcribed syllables using differ-
ent orthographies and misperceived some phonemes, among other 
inconsistencies. The detailed analysis procedure is described in Sup-
plementary Material SM1. All analytic choices were made to maximize 
the correspondence between the participants’ responses and the syllable 
sequences attested in the speech stream.
9 
In brief, the responses were first transformed using a set of substitu-
tions rules to allow for misperceptions (e.g., confusion between /b/ and 
/p/) or orthographic variability (e.g., ea and ee both reflect the sound 
/i/).

Second, the responses were segmented into their underlying units. 
This was necessary because some participants separated only words 
by spaces, while others separated syllables by spaces, and groups of 
syllables (e.g., words) by other characters (e.g., commas). For example, 
responses such as bee coo tee,two da ra,bout too pa likely reflected the 
words bikuti, tudaro and budopa.

Third, we applied another set of substitution rules to allow for other 
misperceptions.

Finally, we selected the best matches to the familiarization stimuli. 
We selected these matches by (1) maximizing the length of the match 
and (2) minimizing the number of substitutions with respect to the 
original responses.

Based on these matches, we calculate a various properties of these 
matches (see Table S2). For readability, we will introduce these mea-
sures in the Results section. Exclusion criteria for responses with unat-
tested syllables are given in Supplementary Material SM1.4.

In Experiment 1a, the (lab-based) participants’ verbal responses 
were recorded and transcribed by two independent observers. Disagree-
ments were resolved by discussion.7 Online participants typed their 
responses directly into a comment box. Analysis of these responses was 
fully automatic.

We use likelihood ratios to provide evidence for the various null 
hypotheses. Following Glover and Dixon (2004), we fit the participant 
averages to (i) a linear model comprising only an intercept and (ii) 
the null model fixing the intercept to the appropriate baseline level, 
and evaluated the likelihood of these models after correcting for the 
difference in the number of parameters using the Bayesian Information 
Criterion.

3.2. Results

3.2.1. Analysis of the participants’ productions
We present the results in three steps. First, we report some general 

measures of the recall items to show that participants engage in the task 
and track TPs in both the continuous and the pre-segmented condition. 
Second, we ask whether participants are more likely produce words 
than part-words. Third, we ask whether participants know where words 
start and where they end.

Descriptives, comparisons to chance levels as well as comparisons 
between the continuous and the pre-segmented conditions are given in 
Table  3.
3.2.1.1. General measures: Do participants engage in the task? As shown 
in Table  3 and Figs.  5a and b, participants produced about 4 items. 
Neither the number of items produced nor their lengths differed across 
the segmentation conditions. Critically, and as shown in Table  3 and 
Figs.  6a and b, forward and backward TPs in the participants’ re-
sponses were significantly greater than the chance level of 0.083 in 
both segmentation conditions. These TPs were greater in the pre-
segmented condition. These TPs likely underestimate the participants’ 
actual performance, as we included responses with unattested syllables 
that might reflect misperceptions (and thus lower TPs); after removing 
such responses, TPs in the participants’ responses were about twice as 
large. Participants were thus clearly sensitive to the TPs in the speech 
stream.

We next examined the production of two-syllable chunks. Such 
chunks can be either high-TP chunks (if they are part of a word) 
or low-TP chunks (if they straddle a word boundary). For example, 
with two consecutive words ABC and DEF, the high-TP chunks are
AB, BC, . . . , while the low-TP chunk is CD. As a result, two-syllable 

7 The number of disagreements can no longer be recovered.

https://esahubble.org/videos/heic0707g/
https://esahubble.org/videos/heic0707g/
https://esahubble.org/videos/heic0707g/
http://psy.ck.sissa.it
http://psy.ck.sissa.it
http://psy.ck.sissa.it
https://testable.org
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Table 3
Main analyses pertaining to the productions as well as test against their chances levels in the recall phase of Experiments 1a and 1b. The 𝑝 value in the rightmost column reflects 
a Wilcoxon test comparing the continuous and the pre-segmented conditions. 𝑁 ’s refer to a total sample of 13 participants (lab-based) and 56 participants (online), respectively. 
Further results are given in Table S3.
 Continuous Pre-segmented p(continuous vs. 

pre-segmented)
 

 Recognition accuracy
  lab-based (Exp. 1a) N = 13, M = 0.615, SE = 0.0476, p = N/A N = 13, M = 0.923, SE = 0.0455, p = N/A N/A  
  online (Exp. 1b) N = 56, M = 0.737, SE = 0.029, p = N/A N = 56, M = 0.946, SE = 0.014, p = N/A N/A  
 Number of items
  lab-based (Exp. 1a) N = 13, M = 4.23, SE = 0.756, p = 0.0016 N = 13, M = 4.23, SE = 0.818, p = 0.0015 0.812  
  online (Exp. 1b) N = 56, M = 3.8, SE = 0.332, p = 6.83e−11 N = 56, M = 3.16, SE = 0.235, p = 6.11e−11 0.226  
 Number of syllables/item
  lab-based (Exp. 1a) N = 13, M = 3.78, SE = 0.421, p = 0.0016 N = 13, M = 2.97, SE = 0.02, p = 0.0007 0.026  
  online (Exp. 1b) N = 56, M = 2.65, SE = 0.103, p = 5.61e−11 N = 56, M = 2.95, SE = 0.04, p = 3.41e−12 < 0.001  
 Forward TPs
  lab-based (Exp. 1a) N = 13, M = 0.301, SE = 0.07, p = 0.011 N = 13, M = 0.634, SE = 0.092, p = 0.00159 0.006  
  online (Exp. 1b) N = 56, M = 0.383, SE = 0.0385, p = 1.42e−08 N = 56, M = 0.576, SE = 0.0472, p = 6.82e−10 0.003  
 Backward TPs
  lab-based (Exp. 1a) N = 13, M = 0.301, SE = 0.0702, p = 0.0107 N = 13, M = 0.634, SE = 0.092, p = 0.00159 0.006  
  online (Exp. 1b) N = 56, M = 0.383, SE = 0.0385, p = 1.42e−08 N = 56, M = 0.576, SE = 0.0472, p = 6.82e−10 0.003  
 Proportion of High-TP chunks among High- and Low-TP chunks
  lab-based (Exp. 1a) N = 4, M = 0.75, SE = 0.289, p = 0.424 (vs. 0.5); 

0.85 (vs. 2∕3)
N = 12, M = 1, SE = 0, p = 0.000627 (vs. 0.5); 
0.000627 (vs. 2∕3)

1.000  

  online (Exp. 1b) N = 38, M = 0.752, SE = 0.0575, p = 0.000246 (vs. 
0.5); 0.0163 (vs. 2∕3)

N = 45, M = 0.967, SE = 0.0249, p = 2.53e−10 (vs. 
0.5); 2.16e−09 (vs. 2∕3)

< 0.001  

 Proportion of words among words and part-words (or concatenations thereof)
  lab-based (Exp. 1a) N = 7, M = 0.321, SE = 0.153, p = 0.322 (vs. 0.5); 

0.798 (vs. 1∕3)
N = 12, M = 1, SE = 0, p = 0.000627 (vs. 0.5); 
0.000627 (vs. 1∕3)

0.034  

  online (Exp. 1b) N = 17, M = 0.588, SE = 0.127, p = 0.484 (vs. 0.5); 
0.019 (vs. 1∕3)

N = 39, M = 1, SE = 0, p = 4.46e−10 (vs. 0.5); 
4.46e−10 (vs. 1∕3)

< 0.001  

 Proportion of items with correct initial syllables
  lab-based (Exp. 1a) N = 13, M = 0.333, SE = 0.105, p = 0.856 (vs. 1∕3); 

0.481 (vs. 0.375)
N = 13, M = 0.809, SE = 0.0694, p = 0.00186 (vs. 
1∕3); 0.00209 (vs. 0.375)

0.016  

  online (Exp. 1b) N = 56, M = 0.446, SE = 0.0472, p = 0.0521 (vs. 
1∕3); 0.25 (vs. 0.375)

N = 56, M = 0.727, SE = 0.045, p = 9.41e−09 (vs. 
1∕3); 5.1e−08 (vs. 0.375)

< 0.001  

 Proportion of items with correct final syllables
  lab-based (Exp. 1a) N = 13, M = 0.456, SE = 0.125, p = 0.5 (vs. 1∕3); 

0.525 (vs. 0.375)
N = 13, M = 0.818, SE = 0.0829, p = 0.00222 (vs. 
1∕3); 0.00278 (vs. 0.375)

0.025  

  online (Exp. 1b) N = 56, M = 0.403, SE = 0.0514, p = 0.38 (vs. 1∕3); 
0.815 (vs. 0.375)

N = 56, M = 0.721, SE = 0.0532, p = 4.13e−08 (vs. 
1∕3); 1.8e−07 (vs. 0.375)

< 0.001  
Fig. 5. Number of items produced and number of syllables per item in the recall phase of Experiments 1a (top) and 1b (bottom).
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Fig. 6. Forward and backward TPs in the participants’ productions in the recall phase of Experiments 1a (top) and 1b (bottom). The dotted line represents the chance level for a 
randomly ordered syllable sequence.
items have a 2⁄3 probability of being a high-TP chunk. As shown in 
Fig.  7b, the proportion of high-TP among chunks high- and low-TP 
chunks exceeded chance in both the pre-segmented condition and the 
continuous condition in Experiment 1b (though not in the continuous 
condition of Experiment 1a), with a significantly higher proportion in 
the pre-segmented versions. These results thus confirm that participants 
are sensitive to TPs or high frequency chunks (which are confounded 
in the current design).
3.2.1.2. Are participants more likely to produce words rather than part-
words? We now turn to the question of whether a sensitivity to TPs 
implies memory for words. We address this issue in two ways, by using 
the traditional contrast between words and part-words and by turning 
to the question at the heart of word segmentation — do participants 
know where words start and where they end?

The traditional analysis of word segmentation experiments relies 
on the contrast between words and part-words. As mentioned above, 
part-words are tri-syllabic items that straddle a word-boundary. We 
thus calculated the proportion of words among words and part-words 
recalled by the participants.

As shown in Table  3 and in Fig.  7a, the proportion of words 
among words and part-words was close to 100% in the pre-segmented 
conditions, but did not differ from 50% in the continuous conditions. 
This difference between the segmentation conditions was statistically 
significant. Likelihood ratio analysis suggests that, in the continuous 
condition of Experiment 1b, participants were 3.2 times more likely 
to perform at 50% than to perform at a level different from chance; in 
Experiment 1a, the likelihood ratio was 1.2. An alternative chance level 
is 1⁄3. In fact, if participants faithfully produce trisyllabic sequences 
from the stream, they can start the sequences on the first, second 
or third syllable of a word, but only the first possibility yields a 
word rather than a part-word. As a result, if participants initiate their 
productions with a random syllable, a third of their productions should 
be words. Using this chance level, Table  3 and Fig.  7a show that, in 
the continuous conditions, the proportion of words among words and 
part-words differs from chance in Experiment 1b, but not in Experiment 
1a.

However, either chance level drastically overestimates the partic-
ipants’ performance. As shown in Fig.  8 and Table S3, 70% of the 
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participants in the continuous condition of Experiment 1b (46% in Ex-
periment 1a) produced neither words nor part-words. Further, among 
those who produced words or part-words, half produced words and 
half produced part-words. As a result, it seems reasonable conclude 
that a familiarization with a continuous speech stream does not lead to 
declarative memories in the overwhelming majority of the participants.

This conclusion is also supported by noting that the distributions 
in the continuous conditions are bimodal, with some participants pro-
ducing only words, and others producing only part-words (see Fig.  7a). 
Such a behavior can arise if participants pick a syllable as their starting-
point, and segment the rest of the stream accordingly. If they happen to 
pick a word-initial syllable, they will produce only words; if they pick 
the second or the third syllable of a word, all subsequent items will be 
part-words.

Assuming that the number of participants producing words vs. part-
words is binomially distributed, we calculated the likelihood ratio of a 
model where learners identify word boundaries (and should produce 
words with probability 1), and a model where they track TPs and 
initiate productions at random positions (and should produce words 
with a probability of 1⁄3). As shown in SM4, the likelihood ratio in 
favor of the first model is 3𝑁𝑊  if participants produce no part-words 
(i.e., after a pre-segmented familiarization), where 𝑁𝑊  is the number 
of participants producing words; otherwise, the likelihood ratio in 
favor of the second model is infinity. Given that the overwhelming 
majority of participants produce words only after a pre-segmented 
familiarizations, these results thus suggest that, despite their ability to 
track TPs, participants initiate productions at random positions in the 
sequence, and thus do not remember statistically defined words.

However, as shown in Fig.  8, even these results might be mislead-
ing because, in the continuous conditions, most participants produced 
neither words nor part-words. (In the pre-segmented condition, most 
participants produce at least one word, with an average of 1.26.) We 
thus turn to the question of whether participants know where words 
start and end, asking if participants produce correct initial and final 
syllables.

3.2.1.3. Do participants know where words start and where they end? If 
participants use statistical learning to remember words, they should 
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Fig. 7. Analyses of the participants’ productions in the recall phase of Experiments 1a (top) and 1b (bottom). (a) Proportion of words among words and part-words. The dotted 
line represents the chance level of 50% in a two-alternative forced-choice task, while the dashed line represents an alternative chance level of 33%. (b) Proportion of high-TP 
chunks among high- and low-TP chunks. The dashed line represents the chance level of 66% that an attested 2 syllable-chunk is a high-TP rather than a low-TP chunk. N’s reflect 
the numbers of participants producing words or part-words out of a total of 13 (Exp. 1a) and 56 (Exp. 1b), respectively.
know where words start and where they end. In contrast, if they just 
track TPs, they should initiate their responses with random syllables.

However, for this analysis, the applicable chance level is somewhat 
unclear. On the one hand, one can calculate the chance level by 
assuming that the participants’ productions are not influenced by their 
knowledge of TPs. As there are four words with one correct initial and 
final syllable each, and 12 syllables in total, 4⁄12 = 1⁄3 of the productions 
should have ‘‘correct’’ initial syllables, and, similarly, 1⁄3 should have 
correct final syllables.

On the other hand, knowledge of TPs might change this chance 
level. Given that participants tend to produce high-TP two-syllable 
chunks (i.e., AB and BC rather than CD chunks), the actual baseline 
level should reflect this pattern. In fact, participants in the continuous 
condition produce about 75% high-TP chunks. If they initiate their 
productions with high-TP chunks, one would expect them to produce 
about 75%/2 = 37.5% of items with correct initial syllables. This 
chance level also applies to items with correct final syllables.

The results are shown in Table  3 and Fig.  9a and b. With the 
chance level of 1⁄3, participants produced items with correct initial or 
final syllables at greater than chance level only in the pre-segmented 
conditions, but not in the continuous conditions (though the proportion 
of items with correct initial syllables was marginally greater than 1⁄3 
in Experiment 1b). When using the chancel level of 0.375, none of 
the continuous conditions yielded above chance performance. With this 
chance-level, in the continuous condition of Experiment 1b, the likeli-
hood ratio in favor of the null hypothesis was 2.4 for initial syllables 
and 6.5 for final syllables; in Experiment 1b, the likelihood ratios were 
3.3 and 2.9, respectively. Critically, only between 33% and 44% of 
the productions had a correct initial syllable, which is unexpected if 
participants knew where words start and where they end. Together with 
the finding that the overwhelming majority of participants produce no 
words at all, these results thus suggest that TPs do not allow learners 
to reliably detect onsets and offsets of words.
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3.2.2. Can chunking models account for these results?
Taken together, the results of Experiment 1 suggest that partici-

pants can learn statistical information from fluent speech. However, 
the information they retain does not allow them to learn (statistically 
defined) chunks that might then be encoded as word candidates in 
declarative long-term memory. Rather, few participants produced any 
words or part-words at all, and among those participants who produced 
such items, less than half produced words. Further, only about a third 
of the participants produced items starting with word-initial syllables, 
while two-thirds produced items starting with word-medial or word-
final syllables. Such results suggest that statistical learning does not 
support the very function for which it was motivated originally — to 
identify word boundaries in fluent speech, and thus to learn words from 
fluent speech.

Given the debate about whether statistical learning entails mem-
ories for chunks (see e.g. Perruchet, 2019 vs. Endress et al., 2020 
and General Discussion), we illustrate the conclusion that chunking 
models will not produce part-words rather than words. Specifically, in 
SM6, we report simulations with PARSER (Perruchet & Vinter, 1998), 
a prominent chunking model of word segmentation, where we attempt 
to bias the model to prefer part-words over words (see also Endress & 
Langus, 2017, for related simulations). However, despite our attempt 
to bias the model, it never preferred part-words to words.

Given that, in our recall experiment, the majority of those partici-
pants who produced either words or part-words produced part-words, 
these results suggest that chunking models (or at least one rather promi-
nent chunking model) either cannot account for the current results, or, 
to the extent that other chunking models might account for them, that 
these models learn information that does not allow them to recover 
word boundaries from fluent speech.

Critically, such models would also need to account for the fact 
that participants produce part-words even when they prefer words in a 
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Fig. 8. Number and proportion (among vocalizations) of words and part-words in the recall phase of Experiments 1a (top) and 1b (bottom).
recognition test. As a result, while it might be possible to create chunk-
ing model that produce part-words (even though this would contradict 
their original purpose),8 such models are unlikely to simultaneously 
prefer words in a recognition test. After all, the preferences of chunking 
models are driven by those chunks with the strongest memory repre-
sentations. If these chunks happen to be words, the models will prefer 
words in both recognition and recall; if they are part-words, the models 
will prefer part-words, again in both recognition and recall. As a result, 

8 For example, it is possible to add an ‘‘attentional’’ component that forces 
the model to start chunks with word-medial syllables. We are grateful to a 
reviewer for pointing out this possibility.
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we believe that the current results are fundamentally incompatible with 
chunking models of statistical learning.

3.2.3. Relations between recall and recognition
The results so far suggest that the information extracted in statistical 

learning tasks does not allow participants to identify word boundaries. 
Further, the pattern of performance is unlikely to be explained by 
chunking models of word segmentation. As mentioned above, such 
models are driven by the memory strength of those chunks they happen 
to have memorized. As a result, even if it is possible to bias such 
models to prefer low-probability items, it is unclear how such models 
could prefer words over part-words in a recognition test (and thus 
have stronger memory traces of words), and simultaneously produce 



A.D. Endress and M. de Seyssel Cognition 261 (2025) 106130 
Fig. 9. Analyses of the participants’ productions in the recall phase of Experiments 1a (top) and 1b (bottom). (a) Proportion of productions with correct initial syllables and (b) 
with correct final syllables. The dotted and the dashed lines represent alternative chance levels of 33% and 37.5%, respectively.
part-words rather than words in a recall test (and thus have stronger 
memory traces of part-words).

That being said, statistical learning performance (as measured in the 
recognition test) might still be related to memory for word candidates 
(as measured by the participants’ productions), albeit indirectly. For 
example, and as mentioned above, participants might focus on particu-
lar individual syllables, and preferentially track statistics around those 
syllables they happen to focus on.

Given that attention affects statistical learning (e.g., Toro, Sinnett, 
& Soto-Faraco, 2005; Turk-Browne, Jungé, & Scholl, 2005), focusing 
on particular syllables might also direct the participants’ attention and 
thus what they learn from the streams. For example, if participants 
happen to focus on word-medial or word-final syllables, they would 
also focus on statistically less cohesive syllable sequences as a result. 
Conversely, if participants happen to focus on word-initial syllables, 
they would also focus on statistically more cohesive syllables. This, 
in turn, might affect recognition performance: Those participants who 
produced part-words might have focused on those syllables at the 
beginning of part-words, and those who produced words might have 
focused on word-initial syllables. The syllables participants happen to 
focus on might be chosen randomly.

Critically, while our evidence does not allow us to decide whether 
participants focused on particular syllables, such views would imply 
that, in Experiment 1, many participants focused on other syllables than 
word-initial syllables, given that less than half of the participants who 
produced either words or part-words produced words, and that up to 
82% of the participants produced no words at all — even when they 
preferred words to part-words in a recognition test. While we show 
in SM5 that recall performance is related to recognition performance, 
any memory-based views would thus still imply that statistical learning 
does not lead to memories of high probability sequences in most 
participants, which would make statistical learning unsuitable for word 
learning in turn.
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3.3. Discussion

Experiment 1 provided the first direct test of the contents of the 
participants’ (episodic or semantic) declarative memory after exposure 
to a statistical learning task. The results suggest that, even when 
participants successfully track statistical information, they remember 
familiarization items only when familiarized with a pre-segmented 
sequence. In contrast, when familiarized with a continuous sequence, 
their productions start with random syllables rather than actual word 
onsets. Given that the memory representations of linguistic items are 
based on their initial and final syllables (Endress & Langus, 2017; 
Fischer-Baum et al., 2011; Miozzo et al., 2016), these results thus sug-
gest that statistical learning did not lead to the creation of declarative 
memory representations.

These results do not imply that statistical learning might not play 
a critical role in word segmentation. As mentioned above, speech is 
prosodically organized (Cutler et al., 1997; Nespor & Vogel, 1986; 
Shattuck-Hufnagel & Turk, 1996), and a learner’s segmentation task is 
not so much to integrate distributional information over long stretches 
of continuous speech, but rather to decide whether the correct grouping 
in prosodic groups such as ‘‘thebaby ’’ is ‘‘theba + by ’’ or ‘‘the + baby ’’. 
In principle, statistical learning might be well suited to this task. 
For example, implicit knowledge of statistical regularities might help 
learners acquire words more effectively once (prosodic) segmentation 
cues are given (but see e.g. Ngon, Martin, Dupoux, Cabrol, Dutat, 
& Peperkamp, 2013; Sohail & Johnson, 2016). In Experiment 2, we 
test this issue directly, asking whether statistical learning would help 
participants splitting up prosodically defined units.

4. Experiment 2: Is statistical learning available in both continu-
ous and pre-segmented speech ?

Experiment 1 suggests that participants do not form declarative 
memory traces of words when the only available cues are statistical 
in nature. In contrast, they readily form declarative memories when 
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items are pre-segmented. In Experiment 2, we ask if statistical learning 
allows learners to split prosodically defined units into their underlying 
words (though we use silences as a simplified form of prosody).

Participants listened to a speech sequence of tri-syllabic non-sense 
words. For half of the participants, both the TPs and the chunk fre-
quency were higher between the first two syllables of the word than 
between the last two syllables. We thus expected learners to split a 
triplet like ABC into an AB+C pattern. For the remaining participants, 
both the TPs and the chunk frequency favored an A+BC pattern. In the
pre-segmented condition, the words were presented separated from each 
other and with a silence after each word. In the continuous condition, 
they were continuously concatenated. Following this familiarization, 
participants heard pairs of AB and BC items and had to indicate which 
item was more like the familiarization items. In Experiment 2a, stimuli 
were synthesized with the en1 (British English male) voice, though 
this voice turned out to produce artifacts in the continuous stream. 
In Experiment 2b, stimuli were synthesized using the us3 (American 
English male) voice.

If, as we initially assumed, statistical learning allows learners to 
extract ‘‘correct’’ syllable groupings, they should recognize high-freq
uency chunks after both continuous and pre-segmented familiariza-
tions. In contrast, if statistical learning predominantly supports predic-
tive processing (Sherman & Turk-Browne, 2020; Turk-Browne et al., 
2010), participants should extract high frequency groupings predomi-
nantly after continuous familiarizations in the continuous condition.

4.1. Material and methods

We prepared two versions of Experiment 2, differing in the voice 
used to synthesize the stimuli. In Experiment 2a, we used a British 
English male (en1) voice. In Experiment 2b, we used an American 
English male (us3) voice. Both experiments were lab-based.

4.1.1. Participants
Participants were recruited from the City, University London par-

ticipant pool and received course credit or monetary compensation 
for their time. We targeted 30 participants per experiment (15 per 
language). This number was chosen because it is realistic in the time-
frame available for a third-year honors project. Participants reported 
to be native speakers of English, but we did not assess their English 
proficiency. However, participants were most likely exposed to English 
from childhood, as the experiment took place in London, UK, and 
the experimenters did not notice any clear non-native accents in most 
participants and excluded the few participants with non-native accents 
from analysis. The final demographic information is given in Table  1. In 
Experiment 2a, an additional 3 participants took part in the experiment 
but were not retained for analysis because they were much older than 
the rest of the sample (𝑁 = 3) or because they had a noticeable non-
native accent 𝑁 = 1. In Experiment 2b, an additional six participants 
were excluded from analysis because they had taken part in a prior 
version of this experiment (𝑁 = 4), were much older than the rest of 
our sample (𝑁 = 2), or used their phone during the experiment or were 
visibly inattentive (𝑁 = 2).

4.1.2. Design
Participants were familiarized with a sequence of tri-syllabic words. 

In Language 1, both the TPs and the chunk frequency were higher in 
the bigram formed by the first two syllables than in the bigram formed 
by the last two syllables. As a result, a statistical learner should split 
a triplet like ABC into an initial AB chunk followed by a singleton C
syllable (hereafter AB+C pattern). In Language 2, both the TPs and the 
chunk frequency favored an A+BC pattern. The basic structure of the 
words is shown in Table  4.

As a result, in Language 1, the first bigram had a (forward and 
backward) TP of 1.0, while the second bigram had a (forward and 
backward) TP of .33. In contrast, in Language 2, the first bigram had 
15 
Table 4
Design of Experiment 2. (Left) Language structure. (Middle) Structure of test items. 
Correct items for Language 1 are foils for Language 2 and vice versa. (Right) Actual 
items in SAMPA format; dashes indicate syllable boundaries.
 Word structure for Test item structure for Actual words for
 Language 1 Language 2 Language 1 Language 2 Language 1 Language 2 
 ABC ABC AB BC w3:-le-gu: w3:-le-gu:  
 ABD FBC FG GD w3:-le-vOI faI-le-gu:  
 ABE HBC HJ JE w3:-le-nA: rV-le-gu:  
 FGC AGD faI-zO:-gu: w3:-zO:-vOI 
 FGD FGD faI-zO:-vOI faI-zO:-vOI  
 FGE HGD faI-zO:-nA: rV-zO:-vOI  
 HJC AJE rV-b{-gu: w3:-b{-nA:  
 HJD FJE rV-b{-vOI faI-b{-nA:  
 HJE HJE rV-b{-nA: rV-b{-nA:  

a (forward and backward) TP of .33, while the second bigram had a 
(forward and backward) TP of 1.0. Likewise, the initial bigrams were 
three times as frequent as the final ones for Language 1, while the 
opposite holds for Language 2.

We asked whether participants would extract initial bigrams or final 
bigrams. The test items are given in Table  4.

4.1.3. Stimuli
Stimuli in Experiment 2a were synthesized using the en1 (British 

English male) voice from mbrola (Dutoit et al., 1996). However, as 
discussed below, it turned out to be of relatively low quality and intro-
duced artifacts in the data. Stimuli in Experiment 2b were synthesized 
using the us3 voice (American English male) voice from mbrola (Dutoit 
et al., 1996).

Segments had a constant duration of 60 ms (syllable duration 
120 ms) with a constant 𝐹0 of 120 Hz. These values were chosen to 
match recordings of natural speech that were intended to be used in 
investigations of prosodic cues to word segmentation.

For continuous streams, a single file with 45 repetitions of each 
word was synthesized for each language (2 min 26 s duration). It was 
faded in and out for 5 s using sox (http://sox.sourceforge.net/) and 
then compressed to an mp3 file using ffmpeg (https://ffmpeg.org/). The 
stream was then presented 3 times to a participant (total familiarization 
duration: 7 min 17 s). The random order of the words was different for 
each participant.

For segmented streams, words were individually synthesized using 
mbrola. We then used a custom-made Perl script to randomize the 
words for each participant and concatenate them into a familiarization 
file using sox. The order of words was then randomized for each 
participant and concatenated into a single aiff file using sox. The silence 
among words was 540 ms (1.5 word durations). The total stream 
duration was 6 min 12s. The stream was then presented 3 times to a 
participant (total familiarization: 18 min 14 s).

4.1.4. Apparatus
The experiment was run using Psyscope X (http://psy.ck.sissa.it). 

Stimuli were presented over headphones in a quiet room. Responses 
were collected from pre-marked keys on the keyboard.

4.1.5. Procedure
Participants were informed that they would listen to a monologue 

by a talkative Martian, and instructed to try to remember the Martian 
words. Following this, they listened to three repetitions of the familiar-
ization stream described above, for a total familiarization duration of 
7 min 17 s (continuous stream) or 18 min 14 s (segmented stream).

Following this familiarization, participants were presented with 
pairs of items with an inter-stimulus interval of 500 ms, and had to 
choose which items was more like what they heard during familiariza-
tion. One item comprised the first two syllables of a word, and was a 
correct choice for Language 1. The other item comprised the last two 

http://sox.sourceforge.net/
https://ffmpeg.org/
http://psy.ck.sissa.it
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Table 5
Performance differences across familiarization conditions in Experiment 2. The differences were assessed using a generalized linear model for the trial-by-trial data, using participants, 
correct items and foils as random factors. Random factors were removed from the model when they did not contribute to the model likelihood.
 Term Voice Log odds Odds ratios 𝑡 𝑝  
 Estimate SE CI Estimate SE CI  
 Pre-segmented familiarization, British English voice (Exp. 2a)
  language = L2 en1 −0.097 0.441 [−0.96, 0.767] 0.908 0.400 [0.383, 2.15] −0.22 0.826 
 Continuous familiarization, British English voice (Exp. 2a)
  language = L2 en1 −1.024 0.410 [−1.83, −0.22] 0.359 0.147 [0.161, 0.803] −2.50 0.013 
 Pre-segmented vs. continuous familiarization, British English voice (Exp. 2a)
  language = L2 en1 −1.061 0.382 [−1.81, −0.313] 0.346 0.132 [0.164, 0.732] −2.779 0.005 
  stream type = segmented en1 −0.242 0.360 [−0.949, 0.464] 0.785 0.283 [0.387, 1.59] −0.673 0.501 
  language = L2 ×stream type = segmented en1 0.967 0.508 [−0.0292, 1.96] 2.631 1.338 [0.971, 7.13] 1.903 0.057 
 Pre-segmented familiarization, American English voice (Exp. 2b)
  language = L2 us3 0.114 0.673 [−1.2, 1.43] 1.121 0.754 [0.3, 4.19] 0.170 0.865 
 Continuous familiarization (replication 1), American English voice (Exp. 2b)
  language = L2 us3 −0.184 0.480 [−1.12, 0.757] 0.832 0.400 [0.325, 2.13] −0.383 0.702 
 Continuous familiarization (replication 2), American English voice (Exp. 2b)
  language = L2 us3 0.317 0.786 [−1.22, 1.86] 1.372 1.079 [0.294, 6.4] 0.403 0.687 
 Pre-segmented vs. continuous familiarization, American English voice (Exp. 2b, replication 1)
  language = L2 us3 −0.019 0.558 [−1.11, 1.07] 0.982 0.547 [0.329, 2.93] −0.033 0.973 
  stream type = segmented us3 −0.328 0.188 [−0.696, 0.0391] 0.720 0.135 [0.499, 1.04] −1.752 0.080 
 Pre-segmented vs. continuous familiarization, American English voice (Exp. 2b, replication 2)
  language = L2 us3 0.215 0.657 [−1.07, 1.5] 1.240 0.814 [0.342, 4.49] 0.327 0.743 
  stream type = segmented us3 −0.608 0.244 [−1.09, −0.13] 0.544 0.133 [0.337, 0.878] −2.493 0.013 
syllables of a word, and was a correct choice for Language 2. There 
were three items of each kind. They were combined into 9 test pairs. 
The test pairs were presented twice, with different item orders, for a 
total of 18 test trials.

4.1.6. Analysis strategy
Accuracy was averaged for each participant, and the scores were 

tested against the chance level of 50% using Wilcoxon tests. Perfor-
mance differences across the languages (Language 1 vs. 2) and, when 
applicable, familiarization conditions (pre-segmented vs. continuous) 
were assessed using a generalized linear mixed model for the trial-
by-trial data with the fixed factors language and, where applicable, 
familiarization condition, as well as random slopes for participants, 
correct items and foils. Following Baayen, Davidson, and Bates (2008), 
random factors were removed from the model when they did not 
contribute to the model likelihood.

We use likelihood ratios to provide evidence for the null hypothesis 
that performance did not differ from the chance level of 50%. Follow-
ing Glover and Dixon (2004), we fit the participant averages to (i) 
a linear model comprising only an intercept and (ii) the null model 
fixing the intercept to the appropriate baseline level, and evaluated 
the likelihood of these models after correcting for the difference in the 
number of parameters using the Bayesian Information Criterion.

4.2. Results

4.2.1. Experiment 2a (British English voice)
We first report the results from Experiment 2a, using a British 

English voice. When the familiarization stream was pre-segmented, 
participants failed to split smaller utterances into their underlying 
components. As shown in Fig.  10 (top), the average performance did 
not differ significantly from the chance level of 50% when the stream 
was synthesized with the en1 voice (M = 54.26, SD = 25.09), Cohen’s 
d = 0.17, 𝐶𝐼.95 = 44.89, 63.63, ns. Likelihood ratio analysis favored the 
null hypothesis by a factor of 3.55 after correction with the Bayesian 
Information Criterion. Further, as shown in Table  5, performance did 
not depend on the language condition.

In contrast to the common finding that humans and other animals 
are sensitive to TPs, our participants failed to use TPs to split pre-
segmented utterances into their underlying units. We thus asked if, in 
line with previous research, they can track TPs units are embedded 
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into a continuous speech stream. That is, participants in the continuous 
condition listened to the very same artificial speech stream as in the 
pre-segmented condition, except that the stream was continuous and 
had no silences between words.

Participants also failed to use TPs to segment words when the 
speech stream was continuous. Specifically, and as shown in Fig. 
10 (top), the average performance did not differ significantly from 
the chance level of 50%, (M = 48.89, SD = 19.65), t(29) = −0.31, 
p = 0.759, Cohen’s d = 0.057, 𝐶𝐼.95 = 41.55, 56.23, ns, 𝑉 = 166, 
𝑝 = 0.818. Likelihood analyses revealed that the null hypothesis was 
5.22 times more likely than the alternative hypothesis after a correction 
with the Bayesian Information Criterion. However, as shown in Table 
5, performance was much better for Language 1 than for Language 2, 
presumably due to some click-like sounds the synthesizer produced for 
some stops and fricatives (notably /f/ and /g/). These sounds likely 
affected grouping, and prevented participants from using statistical 
learning. We thus decided to replicate Experiment 2a with a different, 
American English voice.

4.2.2. Experiment 2b (American English voice)
When the familiarization stream was pre-segmented, participants 

failed to split smaller utterances into their underlying components. As 
shown in Fig.  10 (bottom), the average performance did not differ 
significantly from the chance level of 50% when the stream was synthe-
sized with the us3 voice (M = 51.67, SD = 15.17), 𝑉 = 216, 𝑝 = 0.307. 
Likelihood ratio analysis favored the null hypothesis by a factor of 
4.57 after correction with the Bayesian Information Criterion. As shown 
in Table  5, performance did not depend on the language condition. 
However, Fig.  10 also shows a clearly defined outlier. In Supplementary 
Information SM7, we remove participants for Experiments 2a and 2b 
who differ by more than 2.5 standard deviations from the condition 
mean. This analysis yields similar results to the unfiltered analyses.

The failure to use statistical learning to split pre-segmented units 
was conceptually replicated in a pilot experiment with Spanish/Catalan 
speakers using chunk frequency and backwards TPs as the primary cues 
(SM8).

As in Experiment 2a, and in contrast to the common finding that 
humans and other animals are sensitive to TPs, our participants failed 
to use TPs to split pre-segmented utterances into their underlying 
units. We thus asked if they could track TPs units that are embedded 
into a continuous speech stream. As in Experiment 2a, participants in 
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Fig. 10. Results of Experiment 2. Each dot represents a participant. The central red dot is the sample mean; error bars represent standard errors from the mean. The results show 
the percentage of correct choices in the recognition test after familiarization with (left) a continuous familiarization stream or (right) a pre-segmented familiarization stream, with 
a British English voice (en1, top) or an American English voice (us3, bottom). The two continuous conditions with the American English voice are replications of one another.
the continuous condition listened to the very same artificial speech 
stream as in the pre-segmented condition, except that the stream was 
continuous and had no silences between words.

As shown in Fig.  10 (bottom), when the speech stream was synthe-
sized with the us3 voice, the average performance differed significantly 
from the chance level of 50%, (M = 58.51, SD = 16.21), Cohen’s 
d = 0.52, 𝐶𝐼.95 = 52.66, 64.35, 𝑉 = 306.5, 𝑝 = 0.02. As shown in 
Table  5, performance did not depend on the language condition, and 
was marginally better than in the pre-segmented condition (p = .08).

Given the likely confound introduced by the voice used in Ex-
periment 2a, we sought to ensure that the results of Experiment 2b 
would be reliable, and replicated the successful tracking of statistical 
information using a new sample of participants, still with the us3
voice. As shown in Fig.  10 (bottom), the average performance differed 
significantly from the chance level of 50%, (M = 62.78, SD = 21.35), 
Cohen’s d = 0.6, 𝐶𝐼.95 = 54.81, 70.75, 𝑉 = 320, 𝑝 = 0.008. As shown in 
Table  5, performance did not depend on the language condition, and 
was significantly better than in the pre-segmented condition (p = .013).

Taken together, these results thus suggest that statistical learning 
mechanisms predominantly operate in continuous sequences, but less 
so in pre-segmented sequences (see also Shukla et al., 2007, 2011). 
Such a result is compatible with the view that statistical learning is 
important for predictive processing, given that continuous sequences 
are more conducive for prediction. In contrast, it raises doubts as 
to whether participants can use statistical learning mechanisms to 
memorize words, given that they do not seem to be able to do so in 
pre-segmented streams.

4.3. Discussion

In Experiment 2, participants tracked statistical dependencies pre-
dominantly when they were embedded in a continuous speech stream, 
but not across pre-segmented chunk sequences. This finding does not 
contradict the results from the Experiment 1 above, where TPs were 
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somewhat higher in the pre-segmented condition; after all, if partici-
pants faithfully recall familiarization items, the resulting TPs will be 
high as well.

This result is also consistent with earlier findings that statistical 
learning predominantly occurs within major prosodic groups, and, 
within these groups, predominantly at the edges of those groups (Seidl 
& Johnson, 2008; Shukla et al., 2007). We show that, with shorter and 
better separated groups, statistical learning can be weakened further, 
to the extent that it is no longer detectable (at least in the current 
experiment).

In line with results from conditioning experiments (Alberts & Gu-
bernick, 1984; Garcia et al., 1974; Gubernick & Alberts, 1984; Martin 
& Alberts, 1979), statistical learning, and maybe associative learning in 
general, can thus be enhanced or suppressed depending on the learning 
situation. The enhanced statistical learning in continuous sequences 
is consistent with the view that statistical learning is important for 
predictive processing (Sherman & Turk-Browne, 2020; Turk-Browne 
et al., 2010), given that prediction is arguably more useful in lengthy 
chunks. It is also consistent with the view that statistical learning 
may be less important for memorizing words (or at least to break up 
utterances so that the underlying words can be memorized), especially 
given that, due to its prosodic organization, speech tends to be pre-
segmented into smaller groups (Brentari et al., 2011; Christophe et al., 
2001; Cutler et al., 1997; Endress & Hauser, 2010; Nespor & Vogel, 
1986; Pilon, 1981; Shattuck-Hufnagel & Turk, 1996).

A possible alternative interpretation is that, in the continuous 
streams of Experiment 2, repeated bisyllabic items pop out (and are 
thus remembered), while, in the pre-segmented streams, chunking cues 
(in the form of silences) prevent sub-chunks from popping out. How-
ever, if repeated bisyllabic items pop out in Experiment 2’s continuous 
streams, then repeated trisyllabic items (i.e., words) should pop out in 
Experiment 1 as well, and participants should be able to recall them 
as a result. As this prediction is falsified, a reasonable conclusion is 
that statistical learning does not make repeating elements pop out. 
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Conversely, the availability of chunks might make statistical learning 
of within-chunk regularities more difficult, especially if chunks are 
memorized as whole units. This possibility would also confirm that 
statistical learning is separable from the (declarative) mechanisms 
involved in memorizing chunks.

Further, while our trisyllabic items are relatively short, so are utter-
ances in infant-directed speech. For example, infant-directed utterances 
have a typical duration of about 1 s (with some cross-language variabil-
ity; see e.g., Fernald, Taeschner, Dunn, Papousek, de Boysson-Bardies, 
& Fukui, 1989; Grieser & Kuhl, 1988), with a mean utterance length of 
about 4 (e.g., Smolak & Weinraub, 1983; Snow, 1977; see also Martin, 
Igarashi, Jincho, & Mazuka, 2016). As a result, if statistical learning 
is difficult in shorter utterances, the utility of statistical learning for 
language acquisition might be reduced.

This is not to say that statistical learning can never occur in pre-
segmented units. While the available statistical information does not 
always improve performance when chunking information is avail-
able (e.g., Sohail & Johnson, 2016), Shukla et al. (2007) showed that, 
when adults learners are exposed to 10-syllables chunks (defined by 
intonational contours), they have some sensitivity to statistical informa-
tion within the chunks, though they might also use declarative memory 
mechanisms to remember sub-chunks (see also Endress & Bonatti, 2007; 
Endress & Mehler, 2009a; Endress & Wood, 2011 for additional results 
suggesting that statistical learning is possible within chunks, at least 
when the structure of the test items made the TP contrast rather 
salient). However, Shukla et al. (2007) also found that participants 
predominantly retain information at chunk edges rather than at chunk 
medial positions. At minimum, it is thus an empirical question to what 
extent statistical learning is useful for word segmentation in the short 
utterances infants are faced with.

5. General discussion

In the current experiments, we explored to what extent statistical 
learning can fulfill the function that is often attributed to it: Identifying 
word boundaries in fluent speech so that participants can learn words 
and, ultimately, commit them to declarative LTM.9 In Experiment 1, 
we exposed (adult) participants to the speech streams from Saffran, 
Aslin, and Newport’s (1996) classic word-segmentation experiment 
with infants, and asked whether they would be able to recall the words 
contained in these speech streams. When the speech streams were 
continuous, participants clearly tracked TPs in the speech streams, but 
we found no evidence that they had remembered any words at all. 
The overwhelming majority produced neither words nor part-words. 
Even among those who produced word or part-words, half produced 
words and half part-words. Further, less than half of the participants 
produced items starting with word-initial syllables, while the remainder 
produced items starting with word-medial or word-final syllables. Sta-
tistical learning thus does not appear to provide participants with the 
ability to identify word boundaries in fluent speech nor to remember 
the words to which they have been exposed. Through simulations with 
a prominent chunking model (Perruchet & Vinter, 1998), we confirmed 
that these results cannot be explained by chunking models of word seg-
mentation. Further, and as mentioned above, the fact that participants 
produce part-words even when they prefer words in a recognition test 
is fundamentally incompatible with such models, given that the models’ 
preferences are driven by those chunks with the strongest memory 
representations, in both recall and recognition. As a result, they should 
show the same preferences in both recall and recognition. In contrast, 
when brief silences were inserted at word boundaries, mimicking the 
prosodic organization of speech, participants reliably produced words.

9 As mentioned above, we focus on forms of statistical learning that allow 
learners to track sequential dependencies among items in continuous sequences 
and possibly also to associate simultaneously presented items in vision. Other 
forms of statistical learning might well have different properties.
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In Experiment 2, we asked whether statistical learning operates 
in smaller chunks, such as those that might be encountered due to 
the prosodic organization of language, or only in longer stretches of 
continuous speech. Participants listened to a speech sequence of tri-
syllabic non-sense words. As in Experiment 1, the words were either
pre-segmented (i.e., with a silence after each word) or continuously 
concatenated. We found that participants preferred high probability 
sequences only after exposure to continuous but not to pre-segmented 
streams, suggesting that statistical learning might be much less effective 
in the short and prosodically structured sequences that are typical of 
language acquisition (e.g., Fernald et al., 1989; Grieser & Kuhl, 1988; 
Martin et al., 2016; Smolak & Weinraub, 1983; Snow, 1977).10

Taken together, Experiments 1 and 2 suggest that statistical learning 
does not lead to declarative LTM representations of words, does not 
allow learners to identify word boundaries, and might not even operate 
under those conditions likely encountered during language acquisition. 
As a result, statistical learning and (declarative) memory might fulfill 
different computational functions in the process of word segmentation.

These results echo dissociations between associative learning and 
declarative memory (Cohen & Squire, 1980; Finn et al., 2016; Graf & 
Mandler, 1984; Knowlton et al., 1996; Poldrack et al., 2001; Squire, 
1992), suggesting that the (cortical) declarative memory system might 
be independent of a (neostriatal) system for associative learning
(Knowlton et al., 1996; Poldrack et al., 2001; Squire, 1992), though 
other authors propose that both types of memory involve the hippocam-
pus (Ellis, Skalaban, Yates, Bejjanki, Córdova, & Turk-Browne, 2021; 
Schendan, Searl, Melrose, & Stern, 2003; Sherman & Turk-Browne, 
2020) and different memory systems can interact during consolida-
tion (Robertson, 2022). In line with earlier proposals (Sherman & 
Turk-Browne, 2020; Turk-Browne et al., 2010), we thus suggest that 
the computational function of statistical learning might be distinct 
from that of (declarative) memory encoding, and that statistical learn-
ing might be more important for predictive processing. The relative 
salience of these mechanisms might depend on how useful and adaptive 
they are for the learning problem at hand.

5.1. Can chunking models account for word-segmentation data?

As mentioned above, there is considerable debate about whether 
statistical learning leads to memory for recurring chunks (e.g., Endress 
et al., 2020; Goodsitt et al., 1993; Perruchet, 2019; Swingley, 2005; 
Thiessen, 2017). However, and as also mentioned above, there are a 
number of results that seem incompatible with a declarative memory 
theory of statistical learning.

For example, observers sometimes report greater familiarity with 
high-TP items than with low-TP items when they have never encoun-
tered either of them (because the items are played backwards with 
respect to the familiarization sequence; Endress & Wood, 2011; Jones 
& Pashler, 2007; Turk-Browne & Scholl, 2009). Further, observers 
sometimes report greater familiarity with high-TP items they have never
encountered than with low-TP items they have heard or seen (Endress, 
2024b; Endress & Langus, 2017; Endress & Mehler, 2009b), a result 
that has been indirectly replicated even in findings that purportedly 
challenge these conclusions (Perruchet & Poulin-Charronnat, 2012).11 
Such results clearly demonstrate that a sensitivity to statistical structure 
does not imply that the statistically favored items have been encoded 
in LTM. In line with this view, many statistical learning results can 

10 As mentioned above, we do not propose that statistical learning is 
impossible within chunks, and there is evidence that statistical learning can 
occur within chunks under some conditions.
11 In Perruchet and Poulin-Charronnat’s (2012), as in Endress and Langus’s 
(2017) and Endress and Mehler’s (2009b) experiments, it was much harder to 
choose between words and unattested high-TP items than to choose between 
words and part-words, a result that is incompatible with current chunking 
models.
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be explained by purely correlational, memory-less Hebbian learning 
mechanisms (e.g., Endress, 2024; Endress & Johnson, 2021, 2023; 
Verosky & Morgan, 2021).

In our view, the main evidence in favor of memory-based models of 
statistical learning comes in three flavors (see Endress et al., 2020, for a 
critical review of other evidence). First, different authors suggested that 
statistically favored items are preferentially encoded in memory (e.g., 
Graf-Estes et al., 2007; Hay et al., 2011; Isbilen et al., 2020). Such 
experiments generally proceed in two phases. During a statistical learn-
ing phase, participants are exposed to some statistically structured 
sequence. Then, they are exposed to items presented in isolation, and 
show some processing advantage for isolated high-probability items 
compared to isolated low-probability items. However, we proposed that 
such experiments have a two-step explanation that does not involve 
declarative memory (Endress & Langus, 2017). First, during the statis-
tical learning phase, participants acquire statistical knowledge without 
remembering any specific items. When experimenters subsequently 
provide participants with isolated chunks, the accumulated statistical 
knowledge facilitates processing of the experimenter-provided chunks 
(e.g., due to predictive processing), without these chunks having been 
acquired before being supplied by the experimenter. In contrast to such 
indirect designs, we provide a direct measure of declarative knowledge 
of sequence items, and show that participants do not form declarative 
memories of sequence items unless the sequence is pre-segmented.

The second major source of evidence for a memory-based model 
for statistical learning is the observation that statistically structured 
sequences can elicit periodic electrophysiological activity with rhythms 
corresponding to word durations. For example, if words are three 
syllables long, a neural rhythm with a periodicity of three syllables can 
arise (e.g., Batterink & Paller, 2017; Buiatti, Peña, & Dehaene-Lambertz, 
2009; Fló et al., 2022; Kabdebon, Pena, Buiatti, & Dehaene-Lambertz, 
2015; Moser et al., 2021). At first sight, such results seem to suggest 
that participants must track (and thus remember) words, though not 
all of these authors espoused a memory-based perspective of statistical 
learning. However, it turns out that this periodic activity can also result 
from Hebbian learning mechanisms that do not place any items in 
memory (Endress, 2024). After all, in each word, the final syllable is 
maximally predictive, and thus receives more associative input from 
other syllables than word-initial and word-medial syllables. As a result, 
one would expect an activation peak on word-final syllables, and thus 
a rhythm with a periodicity of a word duration.

The third major source of evidence for a memory-based model 
of statistical learning comes from studies revealing better recogni-
tion of (statistically defined) units compared to (statistically defined) 
units (e.g., Fiser & Aslin, 2005; Giroux & Rey, 2009; Orbán et al., 
2008; Slone & Johnson, 2018). In the word recognition analogy used 
above, hearing the word hamster makes it difficult to recognize that 
the first syllable of hamster is a word on its own (i.e., ham; leaving 
aside phonetic differences between syllables that are parts of words 
and syllables that are words on their own; e.g., Salverda et al., 2003; 
Shatzman & McQueen, 2006a, 2006b; van Alphen & van Berkum, 
2010). In actual statistical learning tasks, the AB part of an ABC unit 
is harder to recognize than a complete CD unit, which would suggest 
that the entire units are stored in memory.

However, the simulations reported here suggest that such results 
are compatible with memory-less Hebbian learning mechanisms, due 
to the interplay between excitation and inhibition. We also provided 
additional alternative explanations, which suggest that the evidence for 
chunk-based memory due to statistical learning is much weaker than 
commonly believed.

Taken together, these results suggest there are several alternative 
explanations for better recognition of units than of sub-units that do not 
involve declarative memory representations of the units. Given that the 
relatively direct memory test presented here revealed no evidence that 
statistical learning leads to memory representation for recurring units, 
a plausible conclusion is that it does not. Potentially, statistical learning 
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might reflect simple Hebbian learning as in Endress and Johnson’s 
(2021) model.12

The conclusion that statistical learning does not lead to declarative 
memories of words does not imply that statistical learning has no role in 
word learning. For example, and as mentioned above, prior associations 
among syllables (or other phonological units) might facilitate the sub-
sequent establishment of declarative memory representations for words 
once suitable cues become available. Pre-existing associations might 
be particularly useful for word learning if the initial (phonological) 
representations of word sounds are not yet integrated in the mental 
lexicon, and if this integration requires additional exposure to these 
words (e.g., Gaskell & Dumay, 2003; see also Viviani & Crepaldi, 2022, 
for evidence that lexica are acquired gradually in second language 
acquisition). However, most words are exceedingly rare (Yang, 2013), 
which, in turn, raises the question of whether sufficient exposure 
would be available to learners to acquire all but the most frequent 
words. Conversely, when potential meanings are available, people can 
learn words from just one or a few exposures (e.g., Aravind et al., 
2018; Carey & Bartlett, 1978; Stevens, Gleitman, Trueswell, & Yang, 
2017; Trueswell, Medina, Hafri, & Gleitman, 2013), suggesting that 
considerable exposure is not required for all forms of word learning.

Be that as it may, the current results also demonstrate that statistical 
learning does not allow learners to identify the beginnings and endings 
of words in the absence of other cues. While statistical learning might 
lead to helpful prior associations among syllables, other cues seem to 
be required to identify the (phonological) word forms that can later be 
consolidated.

5.2. Cues to word boundaries

These current results have implications for how words can be 
learned from fluent speech. If learners cannot use statistical learning 
to encode word candidates in (declarative) memory, they need to use 
other cues. Possible cues include using known words as delimiters 
for other words (Bortfeld, Morgan, Golinkoff, & Rathbun, 2005; Brent 
& Siskind, 2001; Mersad & Nazzi, 2012), attentional allocation to 
beginnings and ends of utterances (Monaghan & Christiansen, 2010; 
Seidl & Johnson, 2008; Shukla et al., 2007), legal sound sequences (Mc-
Queen, 1998) and universal aspects of prosody (Brentari et al., 2011; 
Christophe et al., 2001; Endress & Hauser, 2010; Pilon, 1981). Such 
cues might plausibly support declarative memories of words because 
they (but not transition-based associative information) are consistent 
with how linguistic sequences are encoded in declarative long-term 
memory: Linguistic sequences are encoded with reference to their 
first and their last element (Endress & Langus, 2017; Fischer-Baum 
et al., 2011; Miozzo et al., 2016). Moreover, even a fairly simple 
computational model attending to utterance edges yielded excellent 
segmentation and word-learning performance (Monaghan & Chris-
tiansen, 2010), suggesting that such cues might be useful for actual 
language learners as well.

12 This conclusion does not imply that there are no explicit components 
to statistical learning. In fact, statistical learning is sensitive to attentional 
manipulations (Toro, Sinnett, & Soto-Faraco, 2005; Turk-Browne et al., 2005), 
and recognition performance in statistical learning tasks tends to be better 
when participants are more confident in their responses (e.g., Batterink, Reber, 
Neville, & Paller, 2015; Smalle, Daikoku, Szmalec, Duyck, & Möttönen, 2022). 
However, such results do not imply that statistical learning leads to declarative 
memory for words. For example, after familiarization with an episode of 
Looney Tunes, participants would presumably be highly confident in the 
association between Bugs Bunny and a carrot. However, this association does 
not imply that the Bugs Bunny–carrot combination is stored as a chunk in 
LTM.
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5.3. Potential roles of statistical learning

This is no to say that statistical learning might play no implicit role 
in word learning even when it is not sufficient to produce memories 
that can be recalled. For example, and as mentioned above, associ-
ations among syllables might facilitate the establishment of declara-
tive memories once suitable (and explicit) segmentation cues become 
available (Endress & Langus, 2017), and, once words are acquired, 
word processing is not immune to unconscious stimuli such as masked 
primes (e.g., Forster, 1998; Kouider & Dupoux, 2005). Statistical learn-
ing might also facilitate word learning indirectly, for example through 
the acquisition of phonotactic constraint that might affect word learn-
ing in turn (e.g., Friederici & Wessels, 1993; Mattys, Jusczyk, Luce, & 
Morgan, 1999; McQueen, 1998). However, the extent to which statisti-
cal learning supports such computations remains to be established. For 
example, the phonotactic regularities above can be learned by keeping 
track of material at utterance boundaries (Monaghan & Christiansen, 
2010), and thus just using the type of cues we introduced in the pre-
segmented conditions. However, given that the current results suggest 
that statistical learning and declarative memory might have separable 
functions, and that statistical learning does not lead to memory for 
words nor to knowledge of word boundaries, we believe that it is an 
important topic for further research to determine the role statistical 
learning plays in word acquisition.
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