

City, University of London Institutional Repository

Citation: Brain, M. & Malkawi, M. (2024). Misconceptions about Loops in C. In:

UNSPECIFIED (pp. 60-66). ACM. ISBN 9798400706219 doi: 10.1145/3652588.3663324

This is the published version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/33426/

Link to published version: https://doi.org/10.1145/3652588.3663324

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Misconceptions about Loops in C

Martin Brain
City, University of London
London, United Kingdom
martin.brain@city.ac.uk

Mahdi Malkawi
City, University of London
London, United Kingdom
mahdi.malkawi@city.ac.uk

Abstract

Loop analysis is a key component of static analysis tools. Un-
fortunately, there are several rare edge cases. As a tool moves
from academic prototype to production-ready, obscure cases
can and do occur. This results in loop analysis being a key
source of late-discovered but significant algorithmic bugs.
To avoid these, this paper presents a collection of examples
and “folklore” challenges in loop analysis.

CCS Concepts: • Software and its engineering→ Soft-

ware verification; Automated static analysis.

Keywords: Loop Analysis, Software Verification, Static Anal-
ysis

ACM Reference Format:

Martin Brain and Mahdi Malkawi. 2024. Misconceptions about

Loops in C. In Proceedings of the 13th ACM SIGPLAN International

Workshop on the State Of the Art in Program Analysis (SOAP ’24),

June 25, 2024, Copenhagen, Denmark. ACM, New York, NY, USA,

7 pages. h�ps://doi.org/10.1145/3652588.3663324

1 Introduction

When developing a new static analysis tool, there is little
distance between the developers and users. Often they are
the same. Diagnosing and debugging issues with the tool
is no more difficult than regular development. The distance
between users and developers grows as a tool becomes more
successful. Identifying faults requires the users to be will-
ing and able to file bug reports. Reproduction may require
non-disclosure agreements or travel to customer premises.
Confirming fixes may require a full release and deploy cycle.
Bugs that would have taken days to fix in early development
now take weeks, highlighting the importance of early bug
detection.

Bugs in static analysis tools vary in terms of severity and
impact. Crashes early in inputs can normally be isolated
relatively easily. Correctness bugs from mistakes in the core
algorithms are some of the most challenging to find and fix.

SOAP ’24, June 25, 2024, Copenhagen, Denmark

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0621-9/24/06

h�ps://doi.org/10.1145/3652588.3663324

The worst of these are cases with several edge cases, and
it seems like only one needs to be fixed. This can lead to a
cycle of bug reports and fixes, consuming time, budget and
user goodwill frighteningly quickly.

This paper addresses bugs that arise from tool develop-
ers’ mistaken beliefs and incorrect assumptions about loops
and their structure. Experience with various tools including
CBMC [17, 18, 21], SPARK [16], 2LS [4] and goto-analyzer
[14, 23] at different stages of development has shown that
these are a persistent source of complex and late-detected
bugs. Loops that do not meet the developer’s assumptions are
often fixed with a simple workaround for the specific exam-
ple, rarely solving the entire problem, leading to additional
bugs with precarious fixes and ballooning code complexity.

This paper makes the following contributions:

• Section 2 reviews several definitions of loops using
different program representations and gives examples
highlighting their differences.

• Section 3 explains mistakes (marked E) that the au-
thors and others, have made about the structure of
loops. These were identified as root causes of correct-
ness bugs found in several tools, with many leading
to severe and time-consuming bugs.

• Section 4 provides recommendations for handling loop
analysis, bug prevention and checks to avoid some
mistakes outlined in section 3.

2 What Are Loops?

To illustrate our definitions we use the “first” loop in C [11]:

whi l e (f a h r <= upper) {

c e l s i u s = (5 . 0 / 9 . 0) ∗ (f a h r −32 . 0) ;

p r i n t f (" %4 . 0 f ␣ %6 . 1 f \ n " , f ahr , c e l s i u s) ;

f a h r = f a h r + s t e p ;

}

This has all the classical features of a loop [19]:

1. The program first checks the loop condition. . .
2. . . .which is the only way out of the loop.
3. If the condition is true, the loop body is run.
4. The program jumps back to the top of the loop after

the loop body finishes and everything repeats.

Unfortunately none of these is true for all loops.
When a program is represented as a parse tree, a loop is

any instance of the loop grammar rules, such as the while

or for rules. In the example, we have a single while loop,
with a loop condition (fahr <= upper) and a loop body.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

60

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-4216-7151
https://orcid.org/0009-0005-3045-1472
https://doi.org/10.1145/3652588.3663324
https://doi.org/10.1145/3652588.3663324
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3652588.3663324&domain=pdf&date_stamp=2024-06-20

SOAP ’24, June 25, 2024, Copenhagen, Denmark M. Brain, M. Malkawi

JUMP_IF

ASSIGN

CALL

ASSIGN

JUMP

SKIP

Figure 1. A control flow graph for the first loop example

An alternative representation for the program is a list of
instructions. Jumps transfer execution to a different part of
the instruction list, dependent on some condition or uncon-
ditionally forgoing execution of instructions between the
jump and target label. The running example is representable
using six instructions:

A: JUMP_IF !(fahr <= upper), B

ASSIGN celsius, (5.0/9.0) * (fahr-32.0)

CALL printf, "%4.0f %6.1f\n", fahr, celsius

ASSIGN fahr, fahr + step

JUMP A

B: SKIP

The first jump is a conditional, the second is unconditional
and is a backwards jump as the target is earlier in the list.

A third representation is a control flow graph (CFG) [3],
which abstracts the list of instructions into a directed graph.
Each instruction becomes a node. Conditional jumps have
two edges: to the jump target and to the next instruction.
Unconditional jumps have a single edge to their target. All
other instructions (except the last) have a single edge to the
next instruction. Figure 1 gives the example’s CFG.

There are two widely used definitions of loops in CFGs:
a natural loop and a cycle. Following [2, 10] we describe
a back edge as any edge in the graph from C → ℎ where
every path from the start of the function to C passes through
ℎ. We call ℎ the head of the loop and C the tail of the loop.
The corresponding natural loop is ℎ plus the set of nodes
that can reach C without passing through ℎ. Natural loops
with the same head are merged and regarded as a singular
loop. Following [9] we describe a cycle as a maximal strongly
connected component (SCC). Cycles are more general and
can contain multiple entry points, unlike natural loops.

Loop Definitions Are Not Equivalent. As all four defini-
tions seek to describe the same fundamental structure, it is
not unreasonable to treat them as the same or at least “essen-
tially equivalent”. For example, deductive verification tools
provide annotations to allow the programmer to state loop in-
variants. Abstract interpreters and counterexample-guided
inductive synthesis based tools also compute loop invari-
ants. Deductive verification tools typically use the parse

tree definitions of loops, whilst other tools use the CFG or
list definitions. These definition mismatches and differing
properties of loops can cause considerable misunderstanding
and bugs when trying to combine different kinds of tools
[4, 21]. This section presents some sources of these mistakes.

E Loop conditions are the same in all definitions. Loop
conditions are a feature of the parse tree representation as
they are a syntactic feature of most languages. Unfortunately,
loop conditions are more fragile than often assumed. In the
following code, the parse tree representation has a single
loop condition true suggesting the loop does not terminate:

do {

o p e n _ s o ck e t () ;

i f (connec t () == SUCCESS) { b reak ; }

c l o s e _ s o c k e t () ;

} wh i l e (1) ;

In languages with alternative means of exiting a loop, the
syntactic loop conditions are sufficient but not necessary for
loop termination . The other routes must be detected and
added to precisely reason about the loop exit. See Section
3.3 for more details about the subtleties involved.

The parse tree loop conditions are not directly definable
in the instruction lists and CFGs. Compare the following two
programs that make use of “shortcut” operators :

whi l e (A () && B ()) {

green () ;

}

wh i l e (A ()) {

i f (! B ()) { b reak ; }

green () ;

}

The CFGs are equivalent but the parse tree loop conditions
are {A && B } and {A} (or {A,B} if augmented as above).

It is tempting to think there is a CFG definition of a loop
condition along the lines of “A conditional branch where one
branch is outside of the SCC”, but this does not match the
parse tree definition:

whi l e (A () | | B () | | C ()) {

i f (D ()) { b reak ; }

p ink () ;

i f (E ()) { b reak ; }

}

Here {C, D, E } would be “CFG loop conditions” but {A ||

B || C} (and possibly D and E) would be parse tree loop
conditions.

E Loop bodies are the same in all definitions. Similarly
to loop conditions, loop bodies are a syntactic feature in most
languages and are clearly defined. They do not necessarily
correspond to what instructions are regarded to be in the
loop in other representations. For example, consider:

whi l e (choose ()) {

i f (choose ()) { r ed () ; b reak ; }

e l s e i f (choose ()) { goto out ; }

}

61

Misconceptions about Loops in C SOAP ’24, June 25, 2024, Copenhagen, Denmark

unsigned int return_value_choose;

return_value_choose=choose();

!(return_value_choose != 0u)?

Skip

true

unsigned int return_value_choose$1;

false

!(0 != 0)?

return_value_choose$1=choose();

Skip

true blue();

false

!(return_value_choose$1 != 0u)?

Goto

unsigned int return_value_choose$0;

true

red();

false

End of Function

return_value_choose$0=choose();Goto

return_value_choose$0 != 0u?

true Goto

false

Figure 2. In the CFG, neither red or blue are in the loop

i f (0) { out : b l u e () ; }

In the parse tree representation, red is in the loop body and
blue is not. The CFG given in Figure 2 shows that neither
red or blue are in the loop as they cannot reach themselves.
They are also largely indistinguishable suggesting that the
parse tree notion of loop body is not expressible in the CFG.

E Back edges are the same as backwards jumps. Back-
wards edges in a list representation are not guaranteed CFG
back edges. Consider the following list representation:

goto A ;

B : second () ;

a s s e r t (c o u n t e r == 2) ;

goto C ;

A : f i r s t () ;

a s s e r t (c o u n t e r == 1) ;

goto B ;

C : t h i r d () ;

a s s e r t (c o u n t e r == 3) ;

r e t u r n ;

In the list representation, goto B gives a backwards jump
but in the CFG representation it is not a back edge.

E The number of loops is the same in all definitions.

Compare the following programs:

do {

do {

b l u e () ;

} wh i l e (A ()) ;

} wh i l e (B ()) ;

do {

b l u e () ;

} wh i l e (A () | | B ()) ;

r e t u r n ;

unsigned int return_value_choose;

return_value_choose=choose();

!(return_value_choose != 0u)?

orange();

true

green();

false

unsigned int return_value_choose$0;

Goto

return_value_choose$0=choose();

!(return_value_choose$0 != 0u)?

Goto

true

purple();

false

End of Function Goto

Figure 3. Control flow merges can create multiple loop entry
edges

In the parse tree representation, the left example has two
loops while the right has only one. However in the CFG
representation both have one natural loop.

3 Common Mistakes About Loop Structure

3.1 Entering Loops

E Loops have one entry edge. If two or more control flow
paths merge at the loop entry and there is no explicit merge
node, it is possible to have multiple entry edges. Consider
the following program and its CFG given in Figure 3:

i f (choose ())

green () ;

e l s e

orange () ;

wh i l e (choose ())

p u r p l e () ;

E All entry edges go to the same location. C and some
other languages allow writing loops with multiple entry
points. Arguably an unintentional “feature” of the language,
the labels used by switch statements are normal labels and
can appear within other control flow structures. Duff [8, 13]
used this to provide a manual version of loop unrolling for
older compilers and hardware:

s w i t c h (n & 0 x3) {

do {

c a s e 0 : d e s t [i ++] = s r c [j ++] ;

c a s e 1 : d e s t [i ++] = s r c [j ++] ;

c a s e 2 : d e s t [i ++] = s r c [j ++] ;

c a s e 3 : d e s t [i ++] = s r c [j ++] ;

} wh i l e (j < n) ;

}

62

SOAP ’24, June 25, 2024, Copenhagen, Denmark M. Brain, M. Malkawi

Simon Tatham’s implementation of coroutines uses a more
advanced version of the same idea [22]. Studies suggest cy-
cles with multiple entry points are rare [20].

E Multiple loop entry locations can be fixed by one

unrolling. As entry locations only affect the first iteration,
a tempting solution is to unroll the first iteration of any loop
with multiple entry locations. In most cases this is a simple
and reasonably efficient solution. However [6, 15] shows
there are pathological cases which result in an exponential
size increase.

E The first instruction must be an entry location. It is
possible for no entry to exist to the obvious first instruction,
and that the entry can be from inside a nested loop.

i f (choose ()) goto one ;

e l s e i f (choose ()) goto two ;

e l s e goto t h r e e ;

wh i l e (choose ()) {

wh i l e (choose ()) {

r ed () ;

one : orange () ;

two : ye l low () ;

t h r e e : green () ;

}

}

3.2 Inside Loops

E Loops have contents. In all representations, it is possi-
ble to create an empty loop. For example busy-wait loops
for low latency inter-thread communication:

vo id busy_wai t (vo id) {

wh i l e (z e r o _ t o _ u n l o c k) ;

r e t u r n ;

}

SV-COMP[1] and others [7] use empty loops as an idiom to
terminate an analysis path.

l oop : goto loop ;

E The entry location is a test for exiting the loop. C
and many other languages have a syntactic construct where
this is not true; the do/while loop:

do {

b l u e () ;

} wh i l e (choose ()) ;

It is tempting to think that marking do/while loops or un-
rolling the loop once will make this belief true. There are a
number of less obvious cases where this does not hold. De-
pending on whether function calls, pointer validity checks,
modifications of variables, etc. need separate instructions
this may not start with a conditional exit:

whi l e (f 0 0 (∗ (p o i n t e r + +)) == v a l u e)

ye l l ow () ;

This is also a case where inlining can cause significant changes
to the properties of the loop, see Section 3.4.

E End of a loop is an unconditional jump. Only the
parse tree and list representations primarily have a concept
of a last instruction. In the list representation, the last in-
struction must be a backwards jump for it to be a loop, but
it can be conditional, for example in the do/while loop.

EThere is a single backwards jump or back edge. Within
the list representation, this depends on whether continue is
implemented as a jump to the end or as a jump to the start:

whi l e (choose ()) {

p ink () ;

i f (choose ()) { c o n t i n u e ; }

b l u e () ;

}

Some languages have control flow statements for “redo this
loop iteration (without testing the loop condition)”. Perl and
Ruby have the redo keyword, useful for iterating over data
structures or streams where there may not be a way of undo-
ing the loop counter update. The simplest implementation
of these is using additional back edges.

E Loops may have multiple back edges but they all

go to the same place. In nested loops the back edge of the
inner loop will appear as a back edge into the middle of the
outer loop.

whi l e (choose ()) {

wh i l e (choose ()) {

ye l l ow () ;

}

}

3.3 Exiting Loops

E Loops have an exit. Infinite loops can and do happen in
correct code. Event driven systems and some control systems
will often have one main control loop without an exit.

do {

h a n d l e _ r e q u e s t () ;

} wh i l e (1) ;

E Loops have a single exit edge. The break gives a simple
way to have multiple exit edges to the same location:

whi l e (choose ()) {

orange () ;

i f (choose ()) { b reak ; }

p ink () ;

}

EAll break statements go to the same location. A subtle
consequence of the example in Figure 2 is that the CFG
loop exits as soon as a break statement is unavoidable, not
at the break. The instructions between the if and break

statements are the actual exit locations. The following loop

63

Misconceptions about Loops in C SOAP ’24, June 25, 2024, Copenhagen, Denmark

has three exit locations, one for each break and one for the
loop condition:

f o r (i n t i = 0 ; i < f i r e w a l l −> r u l e _ c o u n t ; ++ i) {

i f (f i r e w a l l −> r u l e [i] . matches (p a c k e t)) {

i f (f i r e w a l l −> r u l e [i] . type == WHITELIST) {

p a c k e t . s t a t u s = ACCEPTED ; / / 1 s t e x i t l o c a t i o n

break ;

}

e l s e i f (f i r e w a l l −> r u l e [i] . type == BLACKLIST) {

p a c k e t . s t a t u s = REJECTED ; / / 2nd e x i t l o c a t i o n

break ;

}

}

}

/ / 3 rd e x i t l o c a t i o n

In effect this inserts code “after” the loop exit when using
break but not when exiting via the loop condition. Python
supports else statements attached to loops to resolve this
asymmetry. Another version of this problem occurs when
the loop contains multiple variable declaration scopes and
the source or intermediate language requires actions at the
end of scope (marking dead variables, C++ destructors, etc.).
A break may need to perform end of scope actions while the
loop condition does not as it is before the start of the scope.

E Loops can only exit using the loop condition or break.

A return statement provides a third kind of exit location
that is not the same as the loop condition or break:

whi l e (choose ()) {

orange () ;

i f (choose ()) { r e t u r n ; }

p ink () ;

}

E Loops can only exit using the loop condition, break

or return. Many languages allow break statements to spec-
ify the depth of nested loops they are exiting. Kosaraju [12]
shows this to be vital to prove a version of the structured
programming theorem that does not require additional vari-
ables. Thus it can be argued to be a fundamental control flow
statement. C does not have break to label so this is regarded
as one of the legitimate uses of goto, for example:

f o r (uns igned i n t i = 0 ; i < WIDTH ; ++ i) {

f o r (uns igned i n t j = 0 ; j < HEIGHT ; ++ j) {

f o r (uns igned i n t k = 0 ; k < DEPTH ; ++k) {

i f (n e x t _ c e l l (i , j , k)) { c o n t i n u e ; }

e l s e i f (next_column (i , j , k)) { b reak ; }

e l s e i f (next_row (i , j , k)) { goto nextRow ; }

e l s e p r o c e s s _ c e l l (i , j , k) ;

}

}

nextRow : ;

}

Another legitimate use of goto is the creation of multiple
return paths with different resource deallocation and error

handling strategies. This is a common pattern in the Linux
kernel and can give additional exit locations. The follow-
ing example provides a degree of robustness against pro-
gramming errors as unhandled branches and conditions will
default to the error exit path:

s t r u c t s u b s y s ∗ s = k a l l o c (s i z e o f (s t r u c t s u b s y s)) ;

i n t e r r = s u b s y s _ i n i t (s , parameter s , p o l i c y) ;

i f (e r r) { goto f a i l _ s u b s y s ; }

f o r (uns igned i n t i = 0 ; i < s−>hook_count ; ++ i) {

e r r = s u b s y s _ r e g i s t e r _ h o o k (s , i) ;

i f (e r r) { goto f a i l _ h o o k ; }

}

i f (s u b s y t e m _ s t a t u s (s) == FUNCTIONAL)

{ goto s u c c e s s ; }

f a i l _ h o o k : s u b s y s _ u n r e g i s t e r _ h o o k s () ;

f a i l _ s u b s y s : k f r e e (s) ;

k log (" F a i l e d ␣ t o ␣ c o n f i g u r e ␣ s u b s y s ␣ %d " , e r r) ;

r e t u r n f a l s e ;

s u c c e s s :

k log (" Subsys ␣ %s ␣ c o n f i g u r e d ␣ with ␣ %d ␣ hooks " ,

s−> i d e n t i f i e r , s−>hook_count) ;

r e t u r n t r u e ;

Some languages have additional control flow statements
which provide additional different exit locations for example
exception handlers.

3.4 Simplification, Preprocessing and Optimisation

E Simplifications do not affect loop analysis. Semantic
reasoning can alter the results of loop analysis. For example,
a common pattern to force a macro to be used like a statement
requires a do/while loop to “swallow” the semi-colon:

d e f i n e INIT_SUBSYSTEM (X) do { \

b z e r o ((X) , s i z e o f (s t r u c t subsys tem)) ; \

l o a d _ s y s t e m _ c o n f i g ((X)) ; \

r e g i s t e r _ s u b s y s t e m ((X)) ; \

} wh i l e (0)

INIT_SUBSYSTEM (networking) ;

Whether this is regarded as a loop depends on the kind and
amount of simplification before the loop analysis.

E Simplification only affects control edges decisions.

The previous example can be handled during the construc-
tion of the CFG by omitting edges that cannot be taken.
Unfortunately not all simplifications are so straight-forward:

d e f i n e POINTER_RW (p) do { ∗ (p) = ∗ (p) ; } wh i l e (0)

do {

POINTER_RW (p) ;

do {

some_code (p) ;

64

SOAP ’24, June 25, 2024, Copenhagen, Denmark M. Brain, M. Malkawi

} wh i l e (c o n d i t i o n 1 ()) ;

p = p−> next ;

} wh i l e (p ! = n u l l) ;

If p is always an accessible address, then POINTER_RW can
be removed such that there is one CFG loop rather than two.
The converse effect is also possible; adding instructions or
instrumentation at the start of loop bodies can increase the
number of loops.

E Preprocessing can alter the number of loops but not

create them from nothing. Depending on the language’s
requirements and where in the compilation process loop
analysis is performed, this may not be true. If the language re-
quires that tail recursive functions are rewritten it is possible
for loops to “appear” in an acyclic (but recursive) function.

E Inlining is harmless. Inlining allows simulation of
context-aware analysis to potentially simplify the handling
of small utility functions, and “syntactic sugar”. On inlining,
return statements act as a lightly restricted form of forward
goto statements. The return is replaced with a jump to
the calling context. This can give a loop exits which are a
significant distance from the loop, may or may not merge
with flow control from the loop and are not easily recognised
as a special case in the way normal return statements are. If
the tool performs inlining then a lot of developer intuitions,
“This works as long as the input programs do not have goto”
no longer hold. Many uses of goto in this paper can be
simulated with inlined return statements1.

E Jump threading is harmless. If a jump instruction �
targets a second, unconditional jump , then � can be redi-
rected to directly jump to the target of . In most cases this
simplifies the resultant CFG but it can interact in unexpected
ways with other preprocessing steps and undo other sim-
plifications. For example, if continue is implemented as a
jump to the end of the loop body (see Section 3.2) then jump
threading can covert these to additional back edges. If the
instruction after a function call is a jump then inlining and
then jump threading can create a goto from anywhere in
the callee to anywhere in the caller.

4 Recommendations

Faced with some of the oddities and edge cases described
in this paper, a reasonable reaction is to ask how common
they are. In our experience, loop edge cases are more com-
mon than anticipated in user-supplied code. Sources include
code compiled from languages with non-C control flow con-
structs like Python’s for-else, Ada’s loop or nested break

instructions, autogenerated code from DSLs (like Simulink),
combinations of preprocessing steps, such as inline, loop ac-
celeration, unrolling then simplification, legacy code, hand
optimised high-performance code, decompiled optimised

1returns should be thought of as domesticated gotos but domesticated in

the same way that cats are domesticated.

code, particularly loop unrolling, splitting, fusion and i-cache
layout optimisations and decompiled obfuscated code.

As a tool becomes prosperous, the chances of encoun-
tering one or more edge cases rise dramatically. Thus we
recommend the following steps:

1. Design for the most general case. For example, if you
are using the CFG definitions of a loop, the API should
return the set of entry locations and the (possibly
empty) set of exit locations. It is fine to have more
specific calls such as getting the entry location or the
exit condition but these should have at least a run-time
check that the loop is in the required form.

2. Make explicit which cases are not handled. It is rea-
sonable to initially not handle irreducible loops or to
handle them with a naïve exponential algorithm. How-
ever this should be explicitly checked at run time and
documented to the user. Extending support by adding
extra cases is strongly preferable to having a complete
algorithm for some loops and adding rewrite steps
before and after to expand the set of supported loops.

3. If your system makes use of more than one representa-
tion then handling the translation between them needs
to be part of the design. For example, a system that
generates source/parse tree loop invariants using a
CFG-based technique will need to track the correspon-
dence between the two definitions of loop. Annotating
parse tree concepts such as the loop body and loop
conditions into the CFG is one approach but care needs
to be taken to preserve them (see Section 3.4).

4. Loop analysis code needs careful and systematic test-
ing with awareness of the possible edge cases. The ex-
amples given in this paper are available as a test suite
[5]. Each program is a minimal test for the specific
issue, with a single input that controls the path taken
through the program, providing a single output that
records the branches taken. This can be used for back-
to-back testing with compilers, interpreters, source-
to-source translation, or dynamic analysis tools. If the
input/output relation changes, the transformation is
buggy and is either inserting or omitting edges. To
test static analysis tools, the programs also contain
assertions that are only true for valid paths through
the program. If an assertion fails, it indicates a bug in
the static analysis tool. We provide a usable set-up to
test the examples supplied with CBMC.

Acknowledgments

Research reported in this publication was supported by an
Amazon Research Award, Fall 2022 CFP. Any opinions, find-
ings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not reflect the
views of Amazon.

65

Misconceptions about Loops in C SOAP ’24, June 25, 2024, Copenhagen, Denmark

The examples in this paper have been collated over a long
period, from bug reports, folklore, edge cases found during
development, etc. The authors wish to thank everyone who
has had input. Where possible, citations are provided. In
particular, Martin Brain would like to thank Peter Schrammel
for his development model, Holly Nyx for editorial support,
and John Galea for being the person saying “But Martin, that
doesn’t work because...”.

References
[1] 2023. Competition on Software Verification (SV-COMP). h�ps://sv-

comp.sosy-lab.org/

[2] Alfred Vaino Aho, Monica Sin-Ling Lam, Ravi Sethi, and Jeffrey David

Ullman. 2006. Compilers: Principles, Techniques, and Tools (2nd Edition).

Addison Wesley.

[3] Frances Elizabeth Allen. 1970. Control Flow Analysis. 5, 7 (1970).

h�ps://doi.org/10.1145/390013.808479

[4] Martin Brain, Saurabh Joshi, Daniel Kroening, and Peter Schram-

mel. 2015. Safety Verification and Refutation by k-Invariants and

k-Induction. In Static Analysis, Sandrine Blazy and Thomas Jensen

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 145–161.

[5] Martin Brain and Mahdi Malkawi. 2024. [artifact] Misconceptions

About Loops in C. h�ps://doi.org/10.5281/zenodo.11113582

[6] Larry Carter, Jeanne Ferrante, and Clark Thomborson. 2003. Folklore

Confirmed: Reducible Flow Graphs Are Exponentially Larger. SIG-

PLAN Not. 38, 1 (jan 2003), 106–114. h�ps://doi.org/10.1145/640128.

604141

[7] Byron Cook, Björn Döbel, Daniel Kroening, Norbert Manthey, Martin

Pohlack, Elizabeth Polgreen, Michael Tautschnig, and Pawel Wiec-

zorkiewicz. 2020. Using model checking tools to triage the severity

of security bugs in the Xen hypervisor. In 2020 Formal Methods in

Computer Aided Design, FMCAD 2020, Haifa, Israel, September 21-24,

2020. IEEE, 185–193. h�ps://doi.org/10.34727/2020/isbn.978-3-85448-

042-6_26

[8] Tom Duff. 1988. Re: Explanation, please! Usenet. h�p://doc.cat-

v.org/bell_labs/duffs_device

[9] Paul Havlak. 1997. Nesting of Reducible and Irreducible Loops. ACM

Trans. Program. Lang. Syst. 19, 4 (jul 1997), 557–567. h�ps://doi.org/

10.1145/262004.262005

[10] Matthew Sterling Hecht and Jeffrey David Ullman. 1974. Characteri-

zations of Reducible Flow Graphs. J. ACM 21, 3 (jul 1974), 367–375.

h�ps://doi.org/10.1145/321832.321835

[11] Brian Wilson Kernighan and Dennis MacAlistair Ritchie. 1978. The C

Programming Language. Bell Telephone Laboratories Incorporated.

[12] Sambasiva Rao Kosaraju. 1974. Analysis of structured programs. J.

Comput. System Sci. 9, 3 (1974), 232–255. h�ps://doi.org/10.1016/S0022-

0000(74)80043-7

[13] Chloé Lourseyre. 2021. Duff’s device in 2021. h�ps://belaycpp.com/

2021/11/18/duffs-device-in-2021/

[14] Daniel Neville, Andrew Malton, Martin Brain, and Daniel Kroening.

2016. Towards automated bounded model checking of API implemen-

tations. CEUR Workshop Proceedings 1639, 31–42.

[15] Carl D. Offner. 2013. Notes on graph algorithms used in optimizing

compilers. Technical Report. University of Massachusetts Boston.

h�ps://www.cs.umb.edu/~offner/files/flow_graph.pdf

[16] Florian Schanda and Martin Brain. 2012. Using Answer Set Pro-

gramming in the Development of Verified Software. In Technical

Communications of the 28th International Conference on Logic Pro-

gramming (ICLP’12) (Leibniz International Proceedings in Informatics

(LIPIcs), Vol. 17), Agostino Dovier and Vítor Santos Costa (Eds.). Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 72–

85. h�ps://doi.org/10.4230/LIPIcs.ICLP.2012.72
[17] Peter Schrammel, Daniel Kroening, Martin Brain, Ruben Martins, Tino

Teige, and Tom Bienmüller. 2015. Successful Use of Incremental BMC

in the Automotive Industry. In Formal Methods for Industrial Criti-

cal Systems, Manuel Núñez and Matthias Güdemann (Eds.). Springer

International Publishing, Cham, 62–77.

[18] Peter Schrammel, Daniel Kroening, Martin Brain, Ruben Martins, Tino

Teige, and Tom Bienmüller. 2017. Incremental Bounded Model Check-

ing for Embedded Software. Form. Asp. Comput. 29, 5 (sep 2017),

911–931. h�ps://doi.org/10.1007/s00165-017-0419-1

[19] Kaitlyn Siu and Marcelo Badari. 2022. What’s A Loop : A Tree House

Adventure. Wayland.

[20] James Stanier and Des Watson. 2012. A Study of Irreducibility in

C Programs. Softw. Pract. Exper. 42, 1 (jan 2012), 117–130. h�ps:

//doi.org/10.1002/spe.1059

[21] Youcheng Sun, Martin Brain, Daniel Kroening, Andrew Hawthorn,

Thomas Wilson, Florian Schanda, Francisco Javier Guzmán Jiménez,

Simon Daniel, Chris Bryan, and Ian Broster. 2017. Functional

Requirements-Based Automated Testing for Avionics. In 2017 22nd

International Conference on Engineering of Complex Computer Systems

(ICECCS). 170–173. h�ps://doi.org/10.1109/ICECCS.2017.18

[22] Simon Tatham. 2000. Coroutines in C. h�ps://www.chiark.greenend.

org.uk/~sgtatham/coroutines.html

[23] Tomoya Yamaguchi, Martin Brain, Chirs Ryder, Yosikazu Imai, and

Yoshiumi Kawamura. 2019. Application of Abstract Interpretation

to the Automotive Electronic Control System. In Verification, Model

Checking, and Abstract Interpretation, Constantin Enea and Ruzica

Piskac (Eds.). Springer International Publishing, Cham, 425–445.

Received 03-MAR-2024; accepted 2023-04-19; accepted 3 May 2024

66

https://sv-comp.sosy-lab.org/
https://sv-comp.sosy-lab.org/
https://doi.org/10.1145/390013.808479
https://doi.org/10.5281/zenodo.11113582
https://doi.org/10.1145/640128.604141
https://doi.org/10.1145/640128.604141
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_26
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_26
http://doc.cat-v.org/bell_labs/duffs_device
http://doc.cat-v.org/bell_labs/duffs_device
https://doi.org/10.1145/262004.262005
https://doi.org/10.1145/262004.262005
https://doi.org/10.1145/321832.321835
https://doi.org/10.1016/S0022-0000(74)80043-7
https://doi.org/10.1016/S0022-0000(74)80043-7
https://belaycpp.com/2021/11/18/duffs-device-in-2021/
https://belaycpp.com/2021/11/18/duffs-device-in-2021/
https://www.cs.umb.edu/~offner/files/flow_graph.pdf
https://doi.org/10.4230/LIPIcs.ICLP.2012.72
https://doi.org/10.1007/s00165-017-0419-1
https://doi.org/10.1002/spe.1059
https://doi.org/10.1002/spe.1059
https://doi.org/10.1109/ICECCS.2017.18
https://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
https://www.chiark.greenend.org.uk/~sgtatham/coroutines.html

	Abstract
	1 Introduction
	2 What Are Loops?
	3 Common Mistakes About Loop Structure
	3.1 Entering Loops
	3.2 Inside Loops
	3.3 Exiting Loops
	3.4 Simplification, Preprocessing and Optimisation

	4 Recommendations
	Acknowledgments
	References

