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A B S T R A C T   

Machine learning offers great potential for automated prediction of post-stroke symptoms and their response to rehabilitation. Major challenges for this endeavour 
include the very high dimensionality of neuroimaging data, the relatively small size of the datasets available for learning and interpreting the predictive features, as 
well as, how to effectively combine neuroimaging and tabular data (e.g. demographic information and clinical characteristics). This paper evaluates several solutions 
based on two strategies. The first is to use 2D images that summarise MRI scans. The second is to select key features that improve classification accuracy. Addi-
tionally, we introduce the novel approach of training a convolutional neural network (CNN) on images that combine regions-of-interests (ROIs) extracted from MRIs, 
with symbolic representations of tabular data. 

We evaluate a series of CNN architectures (both 2D and a 3D) that are trained on different representations of MRI and tabular data, to predict whether a composite 
measure of post-stroke spoken picture description ability is in the aphasic or non-aphasic range. MRI and tabular data were acquired from 758 English speaking 
stroke survivors who participated in the PLORAS study. Each participant was assigned to one of five different groups that were matched for initial severity of 
symptoms, recovery time, left lesion size and the months or years post-stroke that spoken description scores were collected. Training and validation were carried out 
on the first four groups. The fifth (lock-box/test set) group was used to test how well model accuracy generalises to new (unseen) data. 

The classification accuracy for a baseline logistic regression was 0.678 based on lesion size alone, rising to 0.757 and 0.813 when initial symptom severity and 
recovery time were successively added. The highest classification accuracy (0.854), area under the curve (0.899) and F1 score (0.901) were observed when 8 regions 
of interest were extracted from each MRI scan and combined with lesion size, initial severity and recovery time in a 2D Residual Neural Network (ResNet). This was 
also the best model when data were limited to the 286 participants with moderate or severe initial aphasia (with area under curve = 0.865), a group that would be 
considered more difficult to classify. 

Our findings demonstrate how imaging and tabular data can be combined to achieve high post-stroke classification accuracy, even when the dataset is small in 
machine learning terms. We conclude by proposing how the current models could be improved to achieve even higher levels of accuracy using images from hospital 
scanners.   

1. Introduction 

Modern healthcare has become good at keeping patients alive 
following a stroke. Consequently, there are increasingly many stroke- 
survivors with debilitating impairments that they may live with for 
many years. Of impairments following stroke, language deficits can be 
particularly distressing, since they limit the ability to communicate with 
others, impacting relationships with friends and family, as well as work 
opportunities. Accordingly, post-stroke rehabilitation is critically 
important. 

Targeted therapy for post-stroke aphasia has been shown to bring 
benefit, even in the chronic stage (Menahemi-Falkov et al., 2022; Pierce, 

2023). Ideally, one would like to predict deficits soon after stroke and 
use that information to target rehabilitation at the identified deficit. 
Furthermore, one would like prediction of deficits to be obtained 
automatically, or at least with the assistance of modern machine 
learning. 

Modern AI, through its focus on deep learning, offers great potential 
for automated prediction (Roohani et al., 2018; Chauhan et al. 2019). 
However, although there is a determined effort to acquire large datasets 
in stroke research, they remain small in machine learning terms. This 
means that the signal-to-noise level is relatively low, and this has the 
consequence that feature selection is likely to be needed. For example, a 
high resolution T1 weighted MRI scan has hundreds of thousands of 
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voxels (features), and the number of trainable parameters in a 3D con-
volutional neural network (CNN) can be in the millions. Yet the number 
of patients in the stroke datasets rarely exceeds the low thousands. This 
is very little data to train networks of such high dimensionality. This 
paper proposes and evaluates two possible strategies. The first is to use 
2D images that summarise MRI scans. The second is to identify key 
symbolic features to be added to image processing that can lead to better 
classifications. 

A further challenge is how to combine the images with the symbolic 
features, i.e. the MRI data with tabular data (demographic information 
and clinical characteristics). As we will illustrate, there has only been 
limited success in developing multimodal deep learning systems that 
combine MRI and tabular data. But, as discussed below, there is robust 
evidence that both MRI and tabular data have value in predicting post- 
stroke language deficits. 

In this paper, our objectives are to:  

1) provide a state-of-the-art assessment of the effectiveness of deep 
learning when predicting a functionally informative measure of 
language deficits (spoken picture description) for stroke survivors, 
who were assessed months or years post-stroke;  

2) assess the value of multimodal deep learning models, which include 
both images and tabular data; and  

3) determine the key “information-bearing” feature dimensions in 
brain-scans; i.e the most important regions-of-interest, as part of an 
explainable AI approach. 

We introduce our novel approach for training CNNs on images that 
combine regions-of-interest (ROIs) extracted from MRIs, with symbolic 
representations of tabular data. 

Experiments were carried out with a series of CNN architectures 
(both 2D and a 3D) that combined MRI and tabular data to predict 
whether spoken picture description scores were in the aphasic or non- 
aphasic range. Several of our experiments used a Residual Neural 
Network (ResNet) model, as this type of CNN has been shown to provide 
state of the art levels of accuracy in medical imaging, due to its “skip 
connections” enabling the scaling-up to large numbers of layers (Yu 
et al. 2021). There are a variety of 2D and 3D ResNet models, typically 
labelled with a number following “ResNet” (e.g. ResNet-18) that refers 
to the number of layers in the model. 

All analyses were carried out using MRI and tabular data from the 
Predicting Language Outcome and Recovery After Stroke (PLORAS) 
database (Seghier et al., 2016). This includes patients’ high resolution 
T1-weighted structural MRI brain scans that are acquired months or 
years post stroke, lesion images derived from the MRIs, and tabular data 
including language and cognitive scores from the Comprehensive 
Aphasia Test (CAT) battery (Swinburn et al., 2004). Although, we do not 
predict on the full range of CAT scores, but rather subdivide that range 
into Healthy and Impaired and perform classification on this binary 
distinction, since modern deep learning techniques are focussed on 
classification problems. PLORAS excludes patients with evidence of 
other neurological conditions. To ensure that low language scores were 
not a consequence of non-stroke related language proficiency, we also 
excluded patients whose native language was not English. 

Hope et al. (2013) employed Gaussian process regression models to 
predict the CAT spoken picture description scores that are also of in-
terest in the current study. A baseline model using just demographic 
data and elapsed time since stroke gave an R-squared of 0, using data 
from 270 patients from the PLORAS database (Seghier et al., 2016). The 
R-squared was increased to 0.33 when adding lesion volume; and 0.59 
when adding lesion loads that indicate the proportions of anatomically 
defined grey and white matter regions of interest (ROI) that are cat-
egorised as “lesioned” in each patient. 

Hope et al. (2018) analysed whether disrupted white matter con-
nectivity adds unique prognostic information for post-stroke aphasia 
recovery. Baseline regression models were fitted using the PLORAS data 

of 818 patients, including demographic data, elapsed time since stroke, 
lesion volume and lesion loads of grey matter ROIs, where lesion load 
was the proportion of each ROI damaged in each binary lesion image. 
The baseline models were then compared to a series of models that 
added or replaced the data from the baseline model with white matter 
connectivity data. The best Pearson R scores reported for the spoken 
description score were 0.73. Overall, it was found that adding connec-
tivity data did not improve prediction accuracy for patient language 
skills, a finding that was also observed in an independent dataset by 
Zhao et al. (2023). Hope et al. emphasise that their findings do not 
exclude white matter disruption being a key casual mechanism for post- 
stroke cognitive symptoms. This is because lesions may result in highly 
correlated grey matter and white matter damage. Hence grey matter 
damage could be a suitable proxy in prognostic models, even if white 
matter damage is etiologically important. 

Roohani et al. (2018) trained a CNN using 2-D stitched images 
created from 1,211 PLORAS MRI scans. Each image consisted of sixty- 
four axial cross-sectional slices from each MRI scan (Fig. 1, left). The 
slices were always stitched in the same order, so that a voxel location in 
the stitched images always corresponded to the same brain location. 
Roohani et al. motivated their stitched image format on the grounds that 
there was insufficient data to effectively train a 3D network. By contrast, 
using 2D stitched images reduces the number of trainable parameters, 
whilst still capturing contextual information across scans. The CNN 
achieved a prediction accuracy of 79 % at classifying patients’ spoken 
picture description scores (aphasic or not aphasic), based on a threshold 
score of 60 on spoken picture description. A second analysis was carried 
out by combining the feature vector from the final convolutional layer 
with demographic data, and then regressing against spoken description 
scores, giving an R-squared of 0.6. Roohani et al.’s analysis suggests that 
the stitched image format successfully captures the predictive signal 
within an MRI scan, however it is not directly comparable with either of 
the Hope et al. (2013, 2018) papers, as each uses a different subset of 
participants from the PLORAS database. 

Chauhan et al. (2019) compared the performance of a 3D CNN 
trained on post-stroke MRI scans with both a ridge regression and a 
support vector regression model trained on features of lesion images 
extracted by principal component analysis. A hybrid model was also 
trained that combined the lesion image features with features extracted 
from the 3D CNN. This was carried out with data from 98 patients with 
language deficits from a Washington University School of Medicine 
dataset. The support vector regression had the highest R-squared of 0.66 
compared to the 3D CNN’s 0.63. 

There are very few published multimodal CNNs that combine MRI 
data with tabular clinical data. We are unaware of any papers using 
multimodal CNNs for predicting language outcomes after stroke, how-
ever there are several papers on diagnosing Alzheimer’s that are rele-
vant. Esmaeilzadeh et al. (2018) and Liu et al. (2018) both use ‘Early 
Fusion’ models (Huang et al., 2020). Early Fusion models consist of a 
CNN that learns a latent representation of the input images. The latent 
representation is then concatenated with the tabular data, before being 
passed through some fully connected layers. The Liu et al. (2018) model 
first identifies discriminative anatomical landmarks from MRI images, 
extracts image patches around these landmarks and passes these patches 
to a CNN. The feature maps from the last convolutional layer are then 
concatenated with demographic data before being passed through some 
fully connected layers. Wolf et al. (2022) criticise such approaches as 
failing to enable fine grained interaction between voxels and tabular 
data. They propose a multimodal 3D convolution neural network called 
Dynamic Affine Feature Map Transform (DAFT). DAFT employs a 
modified 3D ResNet architecture in which tabular data scales and shifts 
the feature maps of the ResNet’s final layer. Wolf et al. trained DAFT on 
MRI and tabular data for diagnosing and predicting Alzheimer’s disease. 
In their experiments, DAFT had higher balanced accuracy, AUC and F1 
scores than either a baseline linear regression, an Early Fusion model, or 
a 3D ResNet. 
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The remainder of the paper is organised as follows. Section 2 spec-
ifies the data that was extracted from the PLORAS dataset, and how this 
was used to create new image datasets displaying features such as ROIs 
and symbolic representations of tabular data. A summary is also pro-
vided of an explainable AI method called CLEAR Image that was used to 
identify key ROIs. Section 3 specifies the experiments that were carried 
out using a variety of CNN architectures. It also explains how the project 
countered the danger of overfitting by employing a strategy of cross- 
validation with a hold out ‘lock box’ (Hosseini et al., 2020). The re-
sults are presented in Section 4, highlighting the potential of using im-
ages that combine ROIs and symbolic representations of tabular data. 
Section 5 discusses our findings and indicates directions for future work. 
Section 6 identifies key limitations, including that the MRI data was 
restricted to research quality scanners. Section 7 concludes the paper. 

2. Methods and materials 

2.1. Dataset 

The participants were 758 S survivors from the PLORAS database 
(Seghier et al., 2016). The male to female ratio was 2.3:1, and the 
average age at stroke was 56.1. Patients included in the study could have 
bilaterial, left sided or right sided strokes. The dataset used for the 
current study consists of MRI scans, their associated tabular data and 
two-dimensional image datasets that are derived from the MRI scans 
(see subsections 2.1.1 to 2.1.4). Three PLORAS tabular features were 
identified a priori as being of prognostic relevance to recovery from 
aphasia: (i) Initial severity of aphasia after stroke (henceforth: initial 
severity), see Lazar et al. (2010), Benghanem et al. (2019); (ii) Left 
hemisphere lesion size (henceforth: left lesion size), see Hope et al. 
(2013), Thye & Mirman (2018), Benghanem et al. (2019); (iii) Recovery 
time − which is defined as the time between the stroke and the CAT 
tests, see Hope et al. (2013), Johnson et al. (2022). 

In this paper, initial severity was assessed by patient report (as in 
Roberts et al., 2022). A patient was classified as severe if they were 
conscious, physically capable of attempting to speak, but unable to 
speak due to aphasia; moderate if they were able to produce words, but 
not sentences; mild if they could produce lexically meaningful short 
sentences and normal if they did not report an impairment. There is an 
additional category for patients who were either unconscious and hence 
could not be tested, or whose score was missing. Initial severity was 
treated as a categorical rather than ordinal measure because the un-
conscious/missing values cannot be ranked relative to the other values. 
Initial severity scores were distributed: 25.5 % severe, 12.3 % moderate, 
24.8 % mild, 17.2 % normal and 20.2 % unconscious or missing. 

The outcome of interest for this paper was the total score from the 
CAT spoken picture description task, to be classified as either Healthy or 
Impaired. This task requires participants to conceptualise events in a 
scene, retrieve the words associated with the objects and actions, 
formulate sentences, and generate the associated speech sounds. It 
objectively measures the building blocks of connected speech, including 
the number and appropriateness of information carrying words, syn-
tactic variety, speed ratings and grammatical accuracy. We focused on 
predicting the overall score (strictly performing a binary classification 
on it), which provides a reasonable proxy for participants’ language 
skills in more naturalistic contexts. The overall scores were standardised 
into T-scores (not to be confused with the t-statistic) that measure pa-
tient performance relative to an independent sample of participants 
without aphasia. That is, the T-scores are defined relative to a separate 
distribution of scores on the same task, acquired from a sample of 27 
neurologically normal controls. The T-scores are preferred to raw scores 
because they more directly represent the extremity of impairment in 
these tasks. For example, a reduction of 1 raw score point corresponds to 
a much greater change in T-score when the raw score is already low, 
than when it is relatively high. 

We classified scores that were less than 60 as aphasic, as this is rarely 
observed in participants from the PLORAS database who do not have 
any identifiable brain damage. That is, the PLORAS database includes 
clinically diagnosed strokes that may have had minimum damage: pa-
tients with no detectible damage who claim that they never experienced 
any speech production impairments can have scores of 60 on the CAT. 
The distribution of spoken picture description scores was skewed, with 
34 % having a score less than 60 (i.e. in the aphasic range). For patients 
with severe or moderate initial severity scores, 44.5 % had spoken 
description scores less than 60. 

The MRI scans, from our 758 participants were acquired by research- 
dedicated MRI scanners between 30th June 2010 and 14th March 2020 
(when data collection was stopped by Covid-19 restrictions). Partici-
pants recruited prior to these dates were not included because initial 
severity scores were not routinely collected. Imaging data were collected 
using either a 1.5 T Avanto scanner, a Siemens 3 T Trio scanner or a 
Siemens 3 T Allegra scanner. For anatomical images acquired on the 1.5 
T Avanto scanner, a 3D magnetization-prepared rapid acquisition 
gradient-echo (MPRAGE) sequence was used to acquire 176 sagittal 
slices with a matrix size of 256 × 224, yielding a final spatial resolution 
of 1  mm isotropic voxels (repetition time/echo time/inversion time =
2730/3.57/1000  ms). For anatomical images acquired on the other 3 T 
scanners, an optimised 3D modified driven equilibrium Fourier trans-
form (MDEFT) sequence was used to acquire 176 sagittal slices with a 
matrix size of 256 × 224, yielding a final spatial resolution of 1  mm 

Fig. 1. Left: An example of a stitched MRI consisting of sixty-four axial cross-sectional slices from an MRI scan. Right: An ROI Image consisting of the 12 key (most 
predictive) ROIs (see Section 3.2). The dotted red lines have been added to this figure for visual clarity, demarcating the boundaries of the left superior temporal 
gyrus, middle temporal gyrus and inferior frontal gyrus-triangular. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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isotropic voxels: repetition time/echo time/inversion time = 12.24/ 
3.56/530  ms and 7.92/2.48/910  ms at 1.5 T and 3 T, respectively 
(Deichmann et al., 2004). Preprocessed with Statistical Parametric 
Mapping software (Penny et al, 2011), these images were spatially 
normalized into Montreal Neurological Institute (MNI) space using a 
unified segmentation algorithm (Ashburner and Friston, 2005; Crinion 
et al., 2007) optimized for use in patients with focal brain lesions via the 
addition of an extra ‘lesioned-tissue’ class (Seghier et al., 2008). That is, 
lesion segmentation used the automated lesion identification (ALI) 
approach, specified by Seghier et al. (2008), which outputs a 3D whole 
brain binary lesion image (lesioned or not lesioned) for each patient. Left 
lesion size was an estimate of the number of damaged voxels in each 
patient’s left hemisphere binary lesion image (see Hope et al., 2013). 

The dataset was partitioned into five groups, such that each group 
was balanced in terms of recovery time, initial severity, left lesion size 
and spoken description score. All training and validation was carried out 
on the first four groups, with the fifth group being held out as a lock box/ 
test set. In other words, a lock box is a subset of the dataset removed 
from the analysis pipeline before any optimisation begins, and not 
accessed until after all hyperparameter adjustments and training is 
completed. As long as no decisions concerning the set-up or training of 
data is made on the lock box, which would be the case if accuracy on the 
lock box is only assessed once, performance on the lock box is a fair test 
of generalization (Hosseini et al., 2020). Thus, importantly, in this work, 
we have not performed a nested cross validation, in which, effectively, 
multiple lock-boxes are used. Our approach here could be characterised 
as a “single-lock-box” approach. 

This variant of cross-validation also enables us to make a valid 
comparison between models with different levels of complexity, e.g. 
between logistic regression and a ResNet. The problem of complexity 
arises because more complex models can extract pattern from the noise 
in the data better than less complex ones, leading to over-fitting. Our 
validation set stops training approximately when over-fitting starts, and 
this point will be reached at different points for more or less complex 
models. Then, we perform an out-of-sample test using our lock-box test 
set. If there has been overfitting due to greater model flexibility, this 
“clean” test of generalisation is expected to produce a lower accuracy 
score, thereby penalising the more complex model. We do not include 
any drop-out in our neural networks, or other forms of regularisation. 

2.1.1. Stitched MRI dataset 
The 2D stitched MRI used in this paper were produced to the same 

specification as used by Roohani et al. (2018). These images do not rely 
on any lesion segmentation processing. They are created by displaying 
sixty-four axial cross-sectional spatially normalised MRI slices in a single 
2D 632 × 760 image (see Fig. 1, left). These 2D images are then down- 
sampled to 256 × 256 as part of preprocessing for the CNNs. The down- 
sampling leads to some distortion in the shapes of the MRI slices and also 
some loss of information. The degree to which the resulting images can 
still be used to generate accurate forecasts was one of the questions for 
the experiments performed in this paper. 

2.1.2. Regions of interest (ROI) dataset 
The original 2D stitched MRI images (prior to down-sampling) were 

parcellated into grey and white matter anatomical ROIs. The grey- 
matter ROIs (from now on simply ROIs) were defined by the Auto-
matic Anatomical Labelling atlas (Tzourio-Mazoyer et al., 2002). Those 
that contributed most to the ResNet-18′s predictions (see below) were 
considered “key anatomical ROIs” and stitched together into “ROI im-
ages” (Fig. 1, right). A possible advantage of using ROI images is that the 
ROIs can be kept at the original resolution of the MRI scan and hence no 
information is lost, whereas the stitched MRI were down-sampled (as 
described above). Using ROI images may also reduce the risk of the curse 
of dimensionality (Altman and Krzywinski, 2018) compared to the 
stitched MRI dataset. There are also a priori grounds for believing that 
the 2D ROI images reduce redundant dimensions. For example, the most 

relevant ROIs for aphasia are known to be in the left hemisphere. 
Furthermore, there can be a significant degree of duplication in the 
predictive information contained within an MRI slice, as a lesion that 
causes aphasia is likely to damage multiple ROIs, including some that 
are functionally irrelevant to aphasia (Seghier & Price, 2023). 

The key ROIs were identified by first training a ResNet-18 neural 
network on the original stitched MRI dataset to predict spoken 
description scores greater or equal to 60 (i.e. full recovery). An 
explainable AI method called CLEAR Image (see subsection 2.2) then 
identified which of the 116 ROIs were most important to the ResNet-18′s 
predictions. CLEAR Image analysed 100 predictions made by the 
ResNet-18 and calculated each ROI’s average feature importance score. 
The key ROIs (all left hemisphere) were, in order of importance: (i) 
superior temporal gyrus, (ii) middle temporal gyrus, (iii) inferior frontal 
gyrus − triangular, (iv) postcentral gyrus, (v) supramarginal gyrus, (vi) 
inferior frontal gyrus − opercular, (vii) insula gyrus, (viii) caudate 
gyrus, (ix) temporal pole, (x) inferior parietal, (xi) middle frontal gyrus, 
and (xii) hippocampus gyrus. Four of these are temporal lobe regions (i, 
ii, ix, xii), three are parietal lobe regions (v, x, iv), and three are front 
lobe regions (iii, vi, xi). 

Cross-validation was then used to determine the number of ROIs to 
include in the ROI images. 

With three ROIs, the final images would display the three highest 
scoring ROIs according to CLEAR Image, i.e. left superior temporal 
gyrus, middle temporal gyrus, inferior frontal gyrus-triangular. To 
determine the number of ROIs to include in the images, we used cross- 
validation on the original stitched MRI dataset over all combinations 
of the three learning rates (see below) and number of ROIs to include, 
which ranged from 3 to 12. It was found that the top eight ROIs mini-
mised ResNet-18′s loss (see Fig. 2). Notice that selecting the number of 
ROIs based on test (i.e. lock-box) accuracy would overfit. The use of only 
one level of cross-validation to fit hyper-parameters, such as number of 
ROIs, could also induce over-fitting; however, our use of a lock box 
(which is only tested on after all fitting is complete) allows us to test 
whether our ultimate quantification of overall accuracy generalises well 
to new data, at least with the variability inherent to the PLORAS dataset 
(Hosseini et al., 2020). 

2.1.3. Hybrid stitched MRI dataset 
Hybrid stitched MRIs combine the stitched MRIs with symbolic 

representations of initial severity, lesion size and recovery time. The 
choice of symbols and how to represent feature values was largely 
arbitrary, the only criteria being that the neural networks to be trained 
following the addition of the symbols should be sensitive to these rep-
resentations. Left lesion size is a continuous feature and was represented 
by a pentagon symbol whose radius varies in proportion to its value. 
Recovery time was represented by a pie-slice of fixed size whose in-
tensity varies in proportion to its value. Each initial severity category 
was represented by a different symbol, for example moderate by a tri-
angle, normal by an ellipse, and unconscious /missing by a star. In order 
to create space for the tabular features in the hybrid stitched MRI 
dataset, four MRI slices were removed (see Fig. 3., left), the excluded 
slices being the four most dorsal, which are rarely lesioned in our 
dataset. 

2.1.4. Hybrid ROI dataset 
Hybrid ROI images combine the ROIs and the three tabular features 

(see Fig. 3, right). The number of ROIs displayed in each image was 
determined using the cross-validation process described above for the 
ROI dataset, but with the images now also including the three tabular 
features. This identified that the seven top ROIs should be included. 

2.2. CLEAR image explainable AI system 

CLEAR Image (White et al., 2023) was used to identify which of the 
116 ROIs were most salient to an image’s classification probability. 

A. White et al.                                                                                                                                                                                                                                   
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CLEAR Image is a perturbation-based explainable AI method that was 
enhanced for this paper to use brain atlases, and also contrast MRI im-
ages. The key idea behind perturbation methods is to parcellate an 
image into ROIs, perturb the image, and then determine how much each 
ROI affects a neural network’s classification probability. Consider an 
example where a neural network has assigned a stitched MRI, S, a 
classification probability of 0.96. CLEAR Image creates a perturbed 
image S’ by replacing an ROI of image S with the same ROI taken from a 
‘contrast’ image S’’ selected from a stitched MRI with a low predicted 
classification probability. CLEAR Image then passes the perturbed image 
S’ through the neural network and records how much the classification 
probability changes. By creating a large number (>1000) of perturbed 
images in which different combinations of ROIs are replaced and the 
changes in classification probability are recorded, CLEAR Image creates 
a regression dataset. A logistic regression is then performed, whose co-
efficients give the feature importance score for each ROI. An example of 
a CLEAR Image explanation is shown in Fig. 4. For a full specification of 
the CLEAR Image method and a comparison with other perturbation 
methods see White et al. (2023); White and Garcez (2021). 

3. Experiments and inference 

Ten sets of experiments were initially carried out:  

1. A baseline logistic regression.  
2. ResNet-18 fine-tuned on the Stitched MRI dataset.  

3. A lightweight CNN, based on the 2D CNN used by Roohani et al. 
(2018), trained on the Stitched MRI dataset.  

4. 3D ResNet10 fine-tuned on the MRI scans dataset.  
5. Early fusion model trained with the Stitched MRI dataset and 

tabular data.  
6. Dynamic Affine Feature Transform (DAFT) – a multimodal 3D 

CNN trained on the MRI scans dataset and tabular data.  
7. ResNet-18 fine-tuned on the ROI dataset.  
8. ResNet-18 fine-tuned on the Hybrid Stitched MRI dataset.  
9. A lightweight CNN trained on the Hybrid Stitched MRI dataset.  

10. ResNet-18 fine-tuned on the Hybrid ROI dataset. 

Cross-validation was used to train each of the neural networks, with 
the held out test dataset (i.e. the lock box) being used to determine 
(final) test accuracy. That is, one of our five splits was reserved as the 
lock-box test set, while four fold cross validation was performed on the 
remaining four splits, with, on each fold, three of the four providing the 
training set and the remaining split providing the validation set. The 
neural networks were trained for a maximum of 200 epochs using an 
early stopping rule that selected the epoch with the minimum class- 
weighted binary cross-entropy validation loss. This process was 
repeated for three learning rates: 1e-4, 5e-4, 1e-5. The neural networks 
were trained using stochastic gradient descent, with the exception of the 
lightweight neural network, which (following Roohani et al., 2018) used 
Root Mean Square Propagation. All neural networks used a single 
parameter variant of Platt scaling to calibrate the classification 

Fig. 2. Plots of how balanced validation loss and balanced test accuracy vary with the number of ROIs displayed in ROI Images. The balanced validation loss was 
used to determine that 8 ROIs should be included in each ROI Image. Note that the balanced test accuracy only varies slightly with number of ROIs, achieving > 0.79 
with only three ROIs. 

Fig. 3. Left: A Hybrid stitched MRI, after pre-processing which reshapes it to 256 x 256. Right: A hybrid ROI image consisting of twelve ROIs plus the symbols for 
initial severity (normal for this patient), left lesion size and recovery time. 
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probabilities (Guo et al., 2017). The ResNet-18 models used pretrained 
weights based on the ImageNet dataset, which were fine-tuned as part of 
the cross validations. Each experiment was repeated for twenty random 
number seeds. 

The evaluation metrics were unbalanced accuracy of the predictions, 
balanced accuracy of predictions (i.e. the average of sensitivity and 
specificity), area under the ROC Curve and F1-score (i.e. the harmonic 
mean of precision and sensitivity). These four metrics are also reported 
for patients with initial severity scores that are severe or moderate, as 
these were taken as being clinically the most difficult to predict; see 
(Bowman et al., 2021; Hope et al., 2019; Bonkhoff et al., 2020) for a 
discussion of why patients at ceiling can inflate estimates of recovery 
performance. The relative importance of balanced and unbalanced ac-
curacies was a question of interest. Balanced accuracy is perhaps the 
easiest to interpret. However, if the proportion of patients with and 
without spoken-picture description deficits in our dataset reflects the 
presentation of patients at hospital stroke units, then unbalanced accu-
racy would be more representative of the effectiveness of our machine 
learning classification, since it would reflect the prior probability of 
patients presenting with particular conditions. Accordingly, unbalanced 
accuracy might also be a relevant measure to consider. 

Additional information on some of the experiments is provided in 
subsections 3.1 to 3.5 and then the statistical procedure we have per-
formed is discussed in subsection 3.6. 

3.1. Baseline regression 

A binary logistic regression model was created to provide a baseline 
forecast for the paper. Its independent variables were the three a priori 
features: left lesion size, initial severity, recovery time. Cross-validation 
was not used for the logistic regression, allowing all four groups to be 
used for training (but excluding the fifth group, i.e. the lock box). 
(Although, a different approach was taken in appendix A2.). 

3.2. Lightweight neural network trained on stitched MRI 

This is the neural network used by Roohani et al. (2018). The basic 
building block was the commonly used sequence of a 2D convolution, 
followed by a ReLU function and a max pooling function. This was 
repeated six times. Such shallow architectures have been suggested to 
perform similarly to deeper networks such as ResNet-50 and Inception v- 
3 when applied to medical images (Raghu et al., 2019). 

3.3. 3D ResNet10 trained on MRI scans 

MED3D’s ResNet10 and ResNet-18 were evaluated. These were 
pretrained using the 3DSeg-8 dataset, which was aggregated from 
several medical challenges (Chen et al., 2019). 

3.4. Multimodal trained on both stitched MRI slices and tabular data 

An early fusion model using a ResNet-18 with the Stitched MRI 
dataset. The feature maps from the last convolutional layer of a ResNet- 
18 are concatenated with the three a priori tabular features and then 
passed through a fully connected layer. 

3.5. Dynamic Affine feature Transform (DAFT) 

We use the same DAFT-Resnet model that Wolf et al. applied in their 
Alzheimer’s study. Their modified ResNet is lightweight, with its four 
blocks having 4, 8, 16 and 32 output channels respectively. 

3.6. Comparing models 

We will compare the accuracy performance of our different models. 
To do this, we will perform t-test comparisons to assess statistical 
robustness of the accuracy differences we observe. However, statistical 
inference to demonstrate that one machine learning algorithm is supe-
rior to another has its challenges (Dietterich, 1998), a major issue being, 
if a test is performed across folds, samples will not be independent. We 

Fig. 4. Example of a Clear Image output. This explains the classification probability determined by ResNet-18 for the stitched MRI of patient 108. CLEAR Image 
estimates the feature importance scores that the ResNet-18 has used in determining the classification probability. CLEAR Image also shows the logistic regression 
equation it generated for this stitched MRI (top left), some counterfactuals and fidelity errors – these are explained in White et al. (2023). 
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discuss this issue in Appendix A1 and highlight a degrees of freedom 
adjustment that compensates for this loss of independence. 

4. Results 

Accuracy results are shown in Table 1. All the models performed well 
with balanced accuracies (all patients) exceeding 0.800. For the logistic 
regression (without stitched or ROI images), all three tabular features 
were statistically significant (p < 0.001) although, these significant 
findings are, to some extent, carried by the very high degrees of freedom 
associated with these tests (Lorca-Puls et al., 2018). If the logistic 
regression was run just with ‘left lesion size’ as the independent variable, 
the balanced accuracies dropped to 0.678/0.694 (all patients/patients 
with initial severity severe and moderate). Adding ‘initial severity’ 
increased the balanced accuracies to 0.757/0.706; further adding ‘re-
covery time’ gave balanced accuracies of 0.813/0.780. The logistic 
regression results do not have confidence intervals, as the regressions 
used Statsmodel’s deterministic Broyden–Fletcher–Goldfarb–Shanno 
optimization method (https://www.statsmodels.org/stable/optimizat 
ion.html) and hence the results did not vary across folds or with 
random seed. 

The best results came from using the ResNet-18 with the Hybrid ROI 
images, improving balanced accuracy by approximately 0.04 compared 
to the baseline logistic regression. This difference was also statistically 
significant (false discovery rate corrected for multiple comparisons); see 
appendix A2. The models trained with the Stitched MRI dataset per-
formed similarly to the ResNet3D, suggesting that the 2D images 
retained the key prognostic information contained in the 3D scans. The 
unbalanced accuracy and balanced accuracy results for severe/moderate 
initial severity are almost identical due to the test dataset being 
approximately balanced for these two groups. 

The area under the ROC curve (AUC) and F1 scores are shown in 
Table 2. As seen in the balanced and unbalanced accuracies (Table 1), 
the Hybrid ROI model had the highest AUC and F1 scores. The second 
highest AUC score was observed for the ResNet3D (with 3D MRI Scans), 

which contrasts with its relatively poor performance on the accuracy 
metrics. Table 3 shows the comparison of unbalanced accuracies for 
different cutoff thresholds and confirms that the Hybrid ROI model 
dominated the ResNet3D at all thresholds. 

Some additional analyses were carried out with the Hybrid ROI 
model, in order to understand its relatively strong performance. First, 
test runs were conducted to assess the contributions of its individual 
tabular features. New image datasets were created displaying the seven 
ROIs plus either one or two of the tabular features. As shown in Table 4, 
‘initial severity’ was found to have the largest impact, whilst ‘left lesion 
size’ had a negligible or negative impact. Hybrid RM-ROI images that 
only included ‘initial severity’ and ‘recovery time’ achieved highest 
accuracies; however, this may be the result of overfitting, as the choice 
of features was not selected using cross-validation. The apparent nega-
tive impact of ‘left lesion size’ when included with the other two features 
may be due to its signal already being present in the other features 
(ROIs, ‘initial severity’ and ‘recovery time’), and that adding ‘left lesion 
size’ added noise that impaired classification. The effect of varying the 
depth of the ResNet architecture was also tested and it was found that 
increasing the depth slightly reduced the accuracies (see Table 5). 

5. Discussion and future work 

This paper has shown that CNNs can provide predictions for aphasia 
recovery with a balanced accuracy of approximately 0.85. (We do not 
count the Table 4 results as best performance, since there is the possi-
bility of over-fitting through feature selection, as we do not cross vali-
date.) The best mean accuracy performance came from using 2D Hybrid 
ROI images that combined a small number of grey matter ROIs with 
three tabular features (initial severity of aphasia after stroke, left 
hemisphere lesion size and recovery time). Of these three features, left 
hemisphere lesion size was least important when damage to key 
anatomical regions of interest was incorporated. It may seem surprising 
that the 3D CNNs were outperformed (in terms of mean accuracy) by 
some of the 2D models. A key issue is likely to be the number of patients 

Table 1 
Accuracy results on the lock box test data. Accuracies and confidence intervals are calculated across the four folds of our cross validation. (I = uses image data, T = uses 
tabular data.).     

All Patients  Initial Severity: Severe or Moderate   
I T Accuracy Balanced accuracy Accuracy Balanced accuracy 

Logistic regression X Y 0.847 0.813 0.782 0.780 
Stitched MRI w/ResNet-18 Y X 0.823 ± 0.04 0.807 ± 0.03 0.746 ± 0.07 0.746 ± 0.07 
Stitched MRI w/Lightweight CNN Y X 0.825 ± 0.04 0.801 ± 0.02 0.739 ± 0.04 0.739 ± 0.04 
MRI Scans w/ResNet3D Y X 0.818 ± 0.02 0.805 ± 0.05 0.747 ± 0.13 0.747 ± 0.13 
Early Fusion Hybrid w/ResNet-18 Y Y 0.820 ± 0.03 0.800 ± 0.05 0.732 ± 0.09 0.732 ± 0.09 
Dynamic Affine Feature Transform Y Y 0.818 ± 0.05 0.814 ± 0.03 0.758 ± 0.07 0.759 ± 0.07 
Hybrid ROIs w/ResNet-18 Y Y 0.866 ± 0.02 0.854 ± 0.01 0.820 ± 0.04 0.821 ± 0.04 
Hybrid Stitched MRI w/ResNet-18 Y Y 0.838 ± 0.03 0.829 ± 0.04 0.771 ± 0.08 0.771 ± 0.08 
Hybrid Stitched MRI w/Lightweight CNN Y Y 0.829 ± 0.05 0.819 ± 0.02 0.762 ± 0.04 0.763 ± 0.05 
ROIs w/ResNet-18 Y X 0.832 ± 0.03 0.811 ± 0.05 0.764 ± 0.09 0.763 ± 0.09  

Table 2 
Area under the ROC curve and F1-scores for the test dataset. Accuracies and confidence intervals are calculated across the four folds of our cross validation. (I = uses 
image data, T = uses tabular data).     

All Patients  Initial Severity: Severe or Moderate   
I T AUC F1 AUC F1 

Logistic regression X Y 0.872 0.890 0.837 0.806 
Stitched MRI w/ResNet-18 Y X 0.873 ± 0.02 0.868 ± 0.03 0.820 ± 0.06 0.751 ± 0.08 
Stitched MRI w/Lightweight CNN Y X 0.862 ± 0.02 0.872 ± 0.05 0.811 ± 0.02 0.749 ± 0.07 
MRI Scans w/ResNet3D Y X 0.884 ± 0.07 0.867 ± 0.04 0.840 ± 0.15 0.762 ± 0.15 
Early Fusion Hybrid w/ResNet-18 Y Y 0.868 ± 0.01 0.867 ± 0.03 0.820 ± 0.06 0.741 ± 0.08 
Dynamic Affine Feature Transform Y Y 0.879 ± 0.03 0.861 ± 0.05 0.833 ± 0.08 0.749 ± 0.05 
Hybrid ROIs w/ResNet-18 Y Y 0.899 ± 0.01 0.901 ± 0.01 0.865 ± 0.03 0.820 ± 0.04 
Hybrid Stitched MRI w/ResNet-18 Y Y 0.887 ± 0.02 0.879 ± 0.02 0.841 ± 0.06 0.768 ± 0.07 
Hybrid Stitched MRI w/Lightweight CNN Y Y 0.879 ± 0.005 0.872 ± 0.05 0.831 ± 0.03 0.759 ± 0.05 
ROIs w/ResNet-18 Y X 0.877 ± 0.004 0.877 ± 0.02 0.847 ± 0.01 0.777 ± 0.06  
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in the dataset. The number of voxels/features in an MRI scan massively 
exceeds the number of patients and this may lead to the curse of 
dimensionality. It could be that far larger patient numbers are needed to 
adequately populate the high dimensional feature space. Problems are 
further exacerbated by the large number of trainable parameters in 
standard 3D CNNs. The lightweight 3D ResNet in Wolf et al.’s (2022) 
DAFT implementation might mitigate against the trainable parameters 
problem, but risks losing some of the predictive power of deeper ResNet 
models. 

2D CNNs trained on the Stitched MRI dataset had similar mean ac-
curacies to the 3D Resnet trained on the 3D MRI scans. The stitched MRI 
contain less information than the 3D MRI scans, as they only display 64 
MRI slices that are downsized to 256 x 256 images. Yet this loss of in-
formation appears to be offset by having a smaller feature space and 
having less trainable parameters. 

Table 1′s mean accuracy results point to the Hybrid ROIs and ROIs 
datasets having greater prognostic information than their respective 
Stitched MRI datasets; and in the former case, Hybrid-ROIs w/ResNet-18 
vs Stitched MRI w/ResNet18, we could show a statistic difference (see 
appendix A2). As Fig. 2 illustrates, this is the case even when the number 
of ROIs being displayed is only four, highlighting the benefit feature 
selection through explainable AI can bring. 

Importantly, the goal of the work reported here was to obtain high 
classification accuracy and look at which tabular data improved the 
classifications. This was done in the context of assessing the effective-
ness of deep learning, applied to MRI stroke data. In particular, in this 
paper, we are not illuminating the key, but difficult, question of 
explaining how the classifier has used the features available to it – either 
those in the MRI scans or the tabular features. 

Accordingly, we are not providing an exact description of how 
different regions enable good performance. This is consistent with prior 
studies, which have typically not been able to explain the critical com-
bination of damage behind their predictions. Thus, we are looking at the 
combination of features, not which ones are dominating. 

Indeed, incontrovertible feature importance is difficult to determine, 
since our data features are fundamentally colinear – the smoothness in 
brain scans and the stereotypicality of brain damage ensure this. So, it is 
always the case that the ResNet can extract the same information in 
different ways. Indeed, the information contained in our tabular features 
are certainly highly correlated with the information contained in the 
brain scans. The purpose of taking a multimodal approach is to benefit 
from all available data. Research on what might be the best way of 
implementing a multimodal approach is in its infancy. The improvement 
of accuracy obtained by the Hybrid ROI ResNet18 in comparison with 
the Early Fusion ResNet18 indicate that the idea of incorporating tabular 
data as image artefacts can be promising in the case of medical appli-
cations of CNNs. 

Issues of one modality dominating another can arise in multimodal 
approaches, but this is typically considered in the context of multimodal 
fusion at later stages of the classification pathway. Our approach, in 
which all relevant features are incorporated into the same embedding 
space (by being in the same images), may limit such issues. Additionally, 
differences in “detectability” of different visual features is already 
inherent to the basic visual classification problem that CNNs are trying 
to handle; for example, even when classifying brain scans on their own, 
there will be particular features in images that are easy for a CNN to 
detect and others that are considerably harder to detect. 

Indeed, our expectations are that the shapes used to represent the 
tabular data are so much easier for the ResNet to detect than features in 
the brain scans that shapes will provide the dominant features driving 
classification, when tabular data is represented as shapes in brain im-
ages. This might mean that features in the scans become less important 
for the classification performance in our (shape-embedded) multimodal 
approach. Further work is ongoing in this area. 

A key difficulty with the application of machine learning in neuro-
imaging (and more broadly) is the potential for over-fitting to creep in 
un-noticed (Hosseini et al., 2020). The difficulty is reflected in the bias- 
variance dilemma (Kohavi & Wolpert, 1996) (and its “twin”: the trade- 

Table 3 
Comparison of unbalanced accuracy for different cutoff thresholds (confidence intervals are not shown for ease of reading). Accuracies are calculated across the four 
folds of our cross validation.  

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Hybrid ROI  0.818  0.846  0.855  0.863  0.866  0.858  0.827  0.766  0.604 
ResNet3D  0.808  0.825  0.828  0.827  0.818  0.799  0.749  0.658  0.497  

Table 4 
Accuracy results for modified versions of the Hybrid ROI images. For example, ‘Initial severity & Left lesion size’ refers to experiments carried out with a dataset of 
images each displaying seven ROIs plus the symbols representing the initial severity and left lesion size features, but without recovery time. Accuracies and confidence 
intervals are calculated across the four folds of our cross validation.   

All Patients  Initial Severity: Severe or Moderate   
Accuracy Balanced accuracy Accuracy Balanced accuracy 

No features added 0.832 ± 0.03 0.811 ± 0.05 0.764 ± 0.09 0.763 ± 0.09 
Initial severity 0.851 ± 0.04 0.841 ± 0.04 0.799 ± 0.07 0.799 ± 0.07 
Left lesion size 0.837 ± 0.04 0.819 ± 0.04 0.771 ± 0.06 0.771 ± 0.06 
Recovery time 0.844 ± 0.02 0.826 ± 0.03 0.775 ± 0.06 0.774 ± 0.06 
Recovery time & Left lesion size 0.845 ± 0.02 0.829 ± 0.02 0.785 ± 0.03 0.785 ± 0.03 
Initial severity & Left lesion size 0.860 ± 0.03 0.844 ± 0.04 0.803 ± 0.07 0.803 ± 0.07 
Initial severity & Recovery time 0.872 ± 0.02 0.866 ± 0.03 0.825 ± 0.05 0.826 ± 0.05 
All three features added 0.866 ± 0.02 0.855 ± 0.03 0.822 ± 0.06 0.822 ± 0.06  

Table 5 
Accuracy results for ResNet models of different depths, trained on Hybrid ROI dataset. The number at the end of ResNet is the number of layers in the network. These 
are the four smallest Pytorch ResNet models for which ImageNet weights are available. Accuracies and confidence intervals are calculated across the four folds of our 
cross validation.   

ResNet-18 ResNet34 ResNet50 ResNet101 

Accuracy 0.866 ± 0.02 0.855 ± 0.02 0.859 ± 0.03 0.857 ± 0.03 
Balanced Accuracy 0.854 ± 0.01 0.842 ± 0.04 0.847 ± 0.03 0.842 ± 0.03  
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off between type-I and type-II errors (Lieberman & Cunningham, 2009)), 
i.e. changes that increase classification accuracy have the potential to 
hinder generalisation, or in other words, efforts to reduce under-fitting, 
can increase over-fitting. This is essentially because some of the 
improvement in classification accuracy is due to finding pattern in noise, 
rather than in signal. Additionally, this problem is especially serious 
when datasets are small, which in machine learning terms, ours is. The 
problem is that, with small data, the effective signal-to-noise ratio is also 
small. However, we believe that we have been diligent in protecting 
ourselves against gross overfitting. For example, use of a lock-box, which 
is only opened once (Hosseini et al.,2020), suggests that our reported 
accuracies reliably reflect the out-of-sample effectiveness of our learning 
algorithms, given the data available to us. 

There is a subtle issue that if the (out-of-sample) accuracies of mul-
tiple learning algorithms are quantified on the same lock-box, the choice 
of the best amongst these will be inflated by this multiple testing. 
Ideally, one would like to have two lock-boxes, one to determine the best 
algorithm and a second to determine its true out-of-sample accuracy. 
However, if you are choosing between a relatively small number of al-
gorithms (we have 10), using a single lock-box is not likely to be a large 
inflation of accuracy. All this said, replication in a new dataset, prefer-
ably by a new research group, is the ultimate test of generalization. We 
await this assessment. 

Notably, in this paper, logistic regression classified surprisingly well 
(see tables 1 and 2) given that it only includes one coarse imaging 
variable: lesion size. For example, “Early Fusion Hybrid w/ResNet-18” 
has a performance below logistic regression; although, we were able to 
show that our best model, 2D Hybrid ROIs w/ResNet-18, did perform 
better than logistic regression in a statistical sense; see appendix A2. 
Accordingly, in this work, we are not claiming to have established that 
deep learning substantially outperforms more traditional methods. One 
possibility is that, as previously noted, even though our data set is big by 
neuroimaging standards, it remains small by machine learning stan-
dards. Accordingly, it may be that subtle spatial patterns of brain 
damage, can only benefit deep learning with the higher signal-to-noise 
afforded by larger data sets. This is a question we are actively pursu-
ing. Put in other terms, with our data size, it may be that the curse of 
dimensionality is limiting our capacity to train the larger (deep learning) 
models. Additionally, incorporating further symbolic knowledge and 
explainability may help with this problem, as advocated in neuro-
symbolic AI (d’Avila Garcez et al., 2002). 

In this respect, there appears to be significant potential for increasing 
the predictive accuracy of CNN models for aphasia recovery. For 
example, the PLORAS dataset is planned to include an additional 2000 S 
survivors by 2028. Increasing the dataset size might reduce some of the 
problems with the curse of dimensionality and the large number of 
trainable parameters. The larger datasets may also improve the 2D 
CNNs’ ability to learn complex patterns in the data, reflecting the het-
erogeneous nature of lesion patterns generating a particular deficit. 

There is considerable scope for further developing the hybrid image 
approach. For example, additional tabular features could be included 
such as age, sex at birth, handedness and the duration and intensity of 
treatments. Nonlinear transformations could also be applied to some of 
the tabular features, with the new values being represented by changes 
in the corresponding symbols’ intensities or sizes. Symbolic data could 
also be added to the 3D MRI scans. Finally, hybrid images could be 
created that combine grey and white matter as well as tabular data. 

One reason we are able to obtain relatively high accuracies is due to 
the pre-training of the ResNet on the ImageNet dataset. For example, 
using pre-training weights improved the balanced accuracy of the 
Hybrid ROIs from 0.823 to 0.855. However, this pre-training is not 
focused on images relevant to the learning problem being considered, i. 
e. the networks were not trained on brain-scans. Consequently, if a very 
large dataset of T1-weighted MRI scans (hopefully, of 100 s of thou-
sands) can be identified then it may be possible to provide a pre-training 
that tunes the convolutional kernels to features more appropriate for 

classification from the brain-scans available from stroke patients. There 
are a number of ways in which a teacher signal can be obtained for this 
pre-training as part of a so-called teacher-student approach (Doersch 
et al., 2015). For example, the student CNN to be pre-trained could 
become the encoder in an autoencoder architecture, with the input 
scans, or parts of them, also serving as teacher pattern (Pathak et al., 
2016). Additionally, if suitable cognitive measures are available with 
the pre-training dataset, then they could be used as the teacher signal. If 
available, training to classify language abilities should tune the CNN 
kernels very appropriately for classifying stroke recovery. 

Finally, PLORAS is now collecting longitudinal data from 90 aphasic 
stroke survivors, including both MRI scans and extended tabular data. 
Changes in the voxel intensities and tabular features may well be 
prognostically valuable. These changes could be incorporated into 
hybrid images. 

6. Limitations 

A key limitation of this work is that it has been restricted to research 
quality MRI scanners. If CNNs are to be clinically employed, then they 
will need to achieve high levels of accuracy using images from hospital 
scanners, including CT images. In addition, the images are collected on 
research scanners at a mean of 46.38 (standard deviation 54.21) months 
after the stroke. Thus, imaging and CAT scores are collected later than 
initial severity. Future work needs to classify from clinical imaging 
collected soon after the stroke. 

Additionally, in this paper we have followed other studies in using 
anatomical atlases (Hope et al., 2013; Hope et al., 2015; Hope et al., 
2018). Future studies could use functional parcellation, but there are 
also limitations with these because they do not correspond to the vas-
cular territories that determine stroke damage. 

An important further issue is that our measure of initial severity is 
relatively crude (see description in second paragraph of subsection 2.1). 
However, although currently unpublished, within the PLORAS research 
programme, we have found the measure to be reliable and effective. This 
is consistent with our findings in this paper. Indeed, in a sense, “the 
proof is in the pudding”; that is, even if our measure of initial severity is 
crude, it seems to carry considerable information that classifiers, 
whether traditional linear approaches (such as logistic regression) or 
modern non-linear methods (such as deep learning), can use to classify 
patients. Although, there is certainly a good deal of further work 
required, such as relating our measure of initial severity to what would 
typically be considered more objective measures such as, NIHSS or 
standardised speech and language assessments. 

Importantly, spoken picture description performance is measured 
across a range of values, which are often predicted using regression. In 
this paper, this scale has been simplified to a binary classification task. 
This is because the majority of deep learning techniques are targeted at 
classification, rather than prediction of a continuous dimension, as 
performed by regression. Support vector machine regression exists 
(Awad et al., 2015), and is a powerful approach, but it is not a deep 
learning approach in the sense we are focussed on in this paper. 

We could have attempted to extract continuous (regression-like) 
predictions from a late layer of the ResNet, but such approaches are 
currently somewhat ad hoc, and may not work well. This is because the 
neural network has been trained to classify, not predict on a continuous 
scale, and the layer being predicted from is unlikely to be well tuned for 
this “secondary” task. Our specific objective for this paper was to pro-
vide a state-of-the-art assessment of the effectiveness of modern deep 
learning when applied to assessing recovery from stroke. This is unlikely 
to be well served by bolting an ad hoc mechanism onto a deep learning 
network. 

However, it is also interesting to consider the effect on predictive 
performance that might follow from different ways of encoding the 
Comprehensive Aphasia test T-scores, with binary classification being an 
extreme form of such encoding, i.e. into two bins. On the one hand, 
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grouping or binning the scores might obscure the signal if within-bin 
differences are systematic and predictable. But on the other hand, this 
grouping might enhance the signal if within-bin differences are driven 
by measurement noise, or are otherwise not predictable given the pre-
dictor variables that we have. 

Our investigation of this issue has yielded preliminary results sug-
gesting that in fact, this encoding makes little difference overall, 
yielding a numerical (non-significant) advantage for classification over 
regression. In the context of deep learning, this advantage might simply 
reflect the broader trend that more research effort has been devoted to 
classification than to regression. However, this investigation is not 
currently published. 

Additionally, some sort of binning seems required, since there is 
often no easy way to interpret very small T-score differences in ways that 
matter to patients. In this sense, a shift to more categorical approaches is 
motivated both by available methodology (deep learning works better 
for classification), and by clinical need. Naturally, as just discussed, 
binning into two classes might obscure useful information, but some 
binning will be required, and the binary one we have used here may be 
the only one that can be made without a lot of argument, because it 
comes out of the standardisation of the original task. More detailed 
binning needs more justification. 

This is undoubtedly an important topic for further work, especially 
since patients and clinicians will want estimates of how severe an 
impairment would be. 

A general limitation of using CNNs is that the complexity of their 
calculations is beyond human capacities to understand. Yet in a clinical 
setting it seems essential to be able to understand and explain why 
particular predictions are being made. This highlights the need for 
explainable AI methods. There are many explainable AI methods 
available. This paper has used a bespoke version of CLEAR Image, other 
methods include Grad-CAM (Selvaraju et al., 2017) and LIME (Ribeiro 
et al., 2016). Unfortunately, these methods often differ in their putative 
explanations of a CNN’s classification probabilities, highlighting 
different regions as being important (Fong et al. (2019), White et al. 
(2023)). A priority for explainable AI methods then, is to show that their 
explanations are faithful, i.e. they correctly mimic the input–output 
behaviour of the AI classifier that they are meant to be explaining. 
CLEAR Image does provide fidelity statistics unlike Grad-CAM or LIME. 
However, further work is needed to assess the fidelities of explainable AI 
methods with MRI data and the relevance of the brain regions and 
counterfactuals highlighted by CLEAR Image. 

There are two potential criticisms in the scope of the paper’s experi-
ments that were judged to be of low risk. The first is that there may be a 
different CNN architecture (e.g. EfficientNet) or a Transformer Network 
that would have produced better results. However, we are unaware of any 
papers that indicate that a different architecture would be expected to 
generate substantially improved results compared to using ResNet models 
in this area of application. It could also be argued that the project should 
have used data augmentation to increase the size of the training datasets. 
However, we are training CNNs to discriminate between small changes in 
lesion sizes and locations on spatially normalised images. The usual data 
augmentation transformations of rotation, blurring and translation would 
have distorted the subtle patterns that the CNN needed to learn (see Wang 
et al. (2023) for a similar argument when using CNNs to detect patterns in 
MRI scans of Alzheimer patients). 

7. Conclusions 

Predicting recovery from post-stroke aphasia could enable targeted 
therapy. This paper has provided an evaluation of the effectiveness of 

deep learning for predicting the class of a patient’s spoken picture 
description score (i.e. aphasic/non-aphasic). We have provided evidence 
that deep learning with ResNets, multimodal data and feature selection 
using explainable AI can achieve high levels of predictive accuracy. 
Importantly, though, our accuracies will have benefitted from the 
careful balancing that we performed of our five groups (on recovery 
time, initial severity, left lesion size and spoken picture description 
scores), which, for example, is likely to have meant that our training will 
have been appropriate for the distributional properties of our lock-box. 
Additionally, if deep learning methods are to be clinically employed, 
they will need to achieve high levels of accuracy using images from 
hospital scanners. There appears to be significant potential for achieving 
this, for example by increasing dataset size, developing the hybrid image 
approach as a neurosymbolic system, better pre-training weights and 
using longitudinal data. Our findings may also be relevant to other 
neuroscience fields that wish to combine image data and tabular data. In 
cases where a dataset is small in machine learning terms, our novel 
approach of training a CNN on images that combine ROIs with symbolic 
representations of tabular data may be fruitful. 
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Appendix A1. : Verifying statistical procedure 

t-tests 
Statistical inference to demonstrate that one machine learning algorithm is superior to another has its challenges (Dietterich, 1998). Firstly, as with 

statistical inference in many other contexts, one would really like to test significance where the unit of statistical inference is the participant. However, 
measures of performance of machine learning algorithms are (typically) only obtained across the entire cohort of participants. One could employ a 
resampling procedure to obtain surrogate datasets. However, this would require the machine learning algorithms to be trained over each one of these 
surrogate datasets, requiring potentially many hundreds or even thousands of re-trainings of the algorithms, which is infeasible. 

Accordingly, one typically performs inference across the folds arising from a cross validation procedure. However, this has its own difficulties, 
because (apart from in the split-half case) folds are not independent samples. For example, in fivefold cross validation, the training sets in any two folds 
share 3/4 of their data, i.e. three of the five disjoint partitions of the data. This breaks the IID (identically independently distributed) assumption of 
standard statistical tests, and will increase type 1 error rates; see below. 

(Dietterich, 1998) is a key paper, which demonstrates this inflation with standard procedures and provides simulation evidence that their 5×2 
cross validation test does not inflate false positive rates. Notably, this procedure removes the 

̅̅̅
n

√
term from the classical t-test. This term scales the 

remainder of the t- formula (which is just a standardised effect size) according to the square root of the degrees of freedom (plus one). 
This, we believe, indicates the direction for responding to the non-independence of folds. Essentially, because of the correlation between folds, one 

does not have as many degrees of freedom as the standard t-test formula suggests. Accordingly, a correction needs to be applied to the degrees of 
freedom. Although applied in different contexts, i.e. ANOVAs that do not correspond to t-tests, corrections for loss of sphericity, such as Greenhouse 
Geiser corrections to the degrees of freedom, address a similar point. 

Accordingly, we have simulated our cross-validation procedure under the null. The simulations were set-up as follows: 
1) Noise data of 18 dimensions was randomly sampled from independent gaussians, i.e. noise is i.i.d (independently identically distributed). 960 

observations were generated (i.e. close to the sample size in this paper, but divisible in the way needed for these simulations). 
2) Half of these observations were given class label 1; the other half class label 2. 
3) The simulations contained “signal”, since for class 1, a random pattern was generated across dimensions, and then included unchanged in every 

class 1 observation. The same was done for class 2. This consistent pattern was overlaid with the noise from point 1). 
4) In order to ensure the null was true (i.e. the two classifiers being compared were not different) we used the same algorithm (linear discriminant 

analysis) for both the classifiers. Statistical differences between the two classifiers were obtained through feature selection: with a proportion of the 
input dimensions ignored by each classifier. This proportion was the same for both classifiers, but the units ignored were non-overlapping. 

5) The null hypothesis should be true in all simulations; i.e. since everything was randomly sampled, the algorithms were the same for both 
classifiers and the proportions left out were the same size. 

6) K fold cross validation was implemented, with simulations reported here employing 4 folds, the situation applied in this paper. 
7) A lock-box, of the size of a single fold, with the properties of the rest of the data was generated. The final test accuracy of each fold was calculated 

on this lock-box. 
8) We simulated the null 800 times in order to assess the type-I error rate, which given an alpha level of 0.05 should yield close to 40 significant p- 

values. 
The use of a lock-box in our analysis procedure, increases the correlation between folds, making the loss of iid more severe. 
The standard t-statistic for a paired test can be expressed as follows: 

t =
μdiff .

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
df + 1

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
i=1

(diff i − μdiff )
2

N− 1

√

where, N is the sample size; df = N − 1 is the degrees of freedom; diff i = xi − yi is the difference between the two conditions (x and y) for the i th sample; 
and μdiff is the mean of these differences across all samples. This statistic is distributed as t with df degrees of freedom. 

The df -corrected t-statistic that we use scales df in this equation. Thus, 

df = dfcorrected = s.(N − 1)

which is distributed as t with dfcorrected degrees of freedom. s has to be between 1
(N− 1) and one, i.e. corrected degrees of freedom cannot be less than 1 or 

bigger than the original dof. Then, the p-value is inferred as one minus the t-distributions’s cumulative distribution function applied to t with dfcorrected 
degrees of freedom. 

Our main findings are shown in figure A1. 
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Fig. A1. Results of false positive test. All tests were two-tailed. Mostly paired tests are presented, but we include independent tests for standard t, Wilcoxon and 
permutation. This is because the paired Wilcoxon fails as a result of insufficient orderings of four items (in fact, permutation-paired faces a similar shortage of 
orderings, but manages to provide p-values by virtue of the variably introduced by the Monte-Carlo resampling). We wanted to make clear that the problem being 
considered is not due to loss of normality, i.e. Wilcoxon-independent, as well as the permutation procedures (none of which make normality assumptions), also 
exhibit very substantial inflation of the false positive rate. t-paired-bast1, t-paired-bast2 and t-paired-bast3 are the new method with corrected degrees of freedom. 
These are scaled down to three different levels downScale1 = 0.45, downScale2 = 0. 435 and downScale3 = 0.4. t-paired-bast1 has the closest type-I error rate to 
alpha; it is 4.65 %, i.e. just below 5 % = alpha × 100. 

So, all traditional methods (paired and independent t; independent Wilcoxon; and paired and independent permutation) inflate the false-positive 
rate very considerably (paired Wilcoxon would do as well, but with just four, there are insufficient samples to calculate it). 

The degrees of freedom correction we are proposing, returned the paired t-test to a non-inflating regime. That is, if we scale the degrees of freedom 
by 0.45, we obtain a type-I error rate close to alpha, i.e. 4.65 %. The scalings of 0.435 and 0.4 indicate the sensitivity to changes in this scaling factor. 

On the basis of these simulation results, we employ a scaling of 0.45 in the statistical inference proper we perform in appendix A2 Thus, s in our 
degrees of freedom correction becomes 0.45, i.e. 

df = dfcorrected = s.(N − 1) = 0.45.(N − 1)

and the t-formula is unchanged in all other respects. 
Confidence intervals 
We can also calculate confidence intervals that are adjusted for the reduced degrees of freedom arising from folding. That is, we can calculate the 

standard error of the mean as, 

semx =
stdx
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
df + 1

√ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑N
i=1

(xi − μx)
2

N− 1

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
df + 1

√

where xi is the accuracy of the i th fold; μx is the mean across fold accuracies; N is the sample size; and for us, 

df = dfcorrected = s.(N − 1)

where s is the down scaling of the degrees of freedom. We also need the critical t-value for a probability of 0.025; which can be obtained as, 

ts = tinv(0.025, dfcorrected)

where tinv is the inverse of the t statistic’s cumulative distribution function. 
Then, our confidence intervals are: 

CI = μx ∓ ts.semx  

Appendix A2. : Statistical results 

We now apply the correction identified in appendix A1 to the across fold accuracies from which descriptive statistics are presented in Table 1. We 
especially focus on the “all patients” balanced accuracy, which is a particularly informative measure. 

In order to statistically compare against it, we re-ran logistic regression classification, but this time with folding. Table 1 and 2 show logistic 
regression’s classification performance when it is run over the four splits of the data that are available once the lock-box split is removed. Thus, there 
was no division of the four into training and validation, logistic regression was simply fit to all four splits put together. This made logical sense, since 
these are what are available because, with logistic regression, there is no necessity to use a validation set to determine when learning should stop. 
However, this strategy is not sufficient to enable a statistical comparison of logistic regression to the other models, since that is performed across folds. 

A. White et al.                                                                                                                                                                                                                                   



NeuroImage: Clinical 43 (2024) 103638

13

Accordingly, we refit the logistic regression but this time we fit four times, once on each of the ways three splits can be taken from the four left after 
the lock-box is removed. A consequence of this is that in each of these four foldings, one split of the data (which would have been the validation set) is 
unused. This then gave us a logistic regression accuracy for each fold, which had a mean of 0.810 and a confidence interval of 0.034. It is this logistic 
regression fitting that we statistically compare to the other models here. 

The statistical inferences arising from this correction are presented in Table A2.1. The t-stat (adj) and p-value columns present the results of 
applying the degrees of freedom adjustment of appendix A1. We follow this with a False Discovery Rate correction (Benjamini and Hochberg, 1995) 
for multiple comparisons, in the columns BH threshold and BH p-adj. 

This enables us to consider which of our models have accuracies that our best model (Hybrid ROIs w/ResNet-18, last row) is better than. 
(Formulating inference in this way is convenient, since it means that all our tests will be positively dependent, which is a pre-requisite for applying 
False Discovery Rate multiple comparisons correction (Benjamini and Yekutieli, 2001) in the way we have.) We highlight the four comparisons that 
are significant according to the FDR correction. Importantly, even though the models of the first two rows do not cross their individual (adjusted) 
statistical threshold, as they are followed by models that do, according to the FDR logic, they are counted as significant. 

Perhaps most notably, logistic regression is one of these four. Thus, we have obtained evidence to reject the null hypothesis that our best model 
(Hybrid ROIs w/ResNet-18) has the same accuracy as our baseline model, logistic regression.  

Table A2.1 
Statistical inference on across folds balanced accuracies of Hybrid ROIs w/ResNet-18 against all other models (with each row this contrast for one model). Table 1 in 
main body of paper shows the descriptive statistics for the same models. Unlike in Table 1, here, models are ordered from largest (adjusted) t-value to smallest, which 
also sorts p-values smallest to largest. Mean accuracies and standard deviations are as presented in Table 1. t-stat (adj) is the t-statistic introduced in appendix A1, with 
degrees of freedom adjusted using the scaling factor 0.45. p-value is the corresponding p-value, calculated from t-stat (adj), with adjusted degrees of freedom. BH 
threshold is the False Discovery Rate (FDR) adjustment of a 0.05 statistical threshold, with nine comparisons, using the Benjamini–Hochberg procedure (Benjamini and 
Hochberg, 1995). BH p-adj is the adjusted p-value implied by the Benjamini–Hochberg procedure; accordingly, these p-values can be considered relative to a 0.05 
threshold.  

Hybrid ROIs w/ResNet-18 vs < Model> Mean accuracy Standard deviation t-stat (adj) p-value BH threshold BH p-adj 

Hybrid Stitched MRI w/Lightweight CNN  0.819  0.001  21.357  0.011  0.006  0.102 
Stitched MRI w/Lightweight CNN  0.801  0.002  20.576  0.012  0.011  0.054 
Stitched MRI w/ResNet-18  0.807  0.003  17.986  0.014  0.017  0.043 
Logistic regression  0.810  0.003  14.336  0.019  0.022  0.044 
Early Fusion Hybrid w/ResNet-18  0.800  0.004  9.171  0.035  0.028  0.063 
DAFT  0.814  0.003  9.033  0.036  0.033  0.054 
MRI Scans w/ResNet3D  0.805  0.004  7.706  0.044  0.039  0.057 
ROIs w/ResNet-18  0.811  0.005  5.434  0.070  0.044  0.079 
Hybrid Stitched MRI w/ResNet-18  0.829  0.004  4.062  0.103  0.050  0.103 
Hybrid ROIs w/ResNet-18  0.854  0.001      
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