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Abstract
Lack of the established noninvasive diagnostic biomarkers causes delay in diagnosis of 
lung cancer (LC). The aim of this study was to explore the association between inflam-
matory and cancer- associated plasma proteins and LC and thereby discover potential 
biomarkers. Patients referred for suspected LC and later diagnosed with primary LC, 
other cancers, or no cancer (NC) were included in this study. Demographic information 
and plasma samples were collected, and diagnostic information was later retrieved 
from medical records. Relative quantification of 92 plasma proteins was carried out 
using the Olink Immuno- Onc- I panel. Association between expression levels of panel 
of proteins with different diagnoses was assessed using generalized linear model 
(GLM) with the binomial family and a logit- link function, considering confounder ef-
fects of age, gender, smoking, and pulmonary diseases. The analysis showed that the 
combination of five plasma proteins (CD83, GZMA, GZMB, CD8A, and MMP12) has 
higher diagnostic performance for primary LC in both early and advanced stages com-
pared with NC. This panel demonstrated lower diagnostic performance for other can-
cer types. Moreover, inclusion of four proteins (GAL9, PDCD1, CD4, and HO1) to the 
aforementioned panel significantly increased the diagnostic performance for primary 
LC in advanced stage as well as for other cancers. Consequently, the collective ex-
pression profiles of select plasma proteins, especially when analyzed in conjunction, 
might have the potential to distinguish individuals with LC from NC. This suggests 
their utility as predictive biomarkers for identification of LC patients. The synergistic 
application of these proteins as biomarkers could pave the way for the development 
of diagnostic tools for early- stage LC detection.

K E Y W O R D S
confounder correction, diagnostic biomarker, liquid biopsy, lung cancer, machine learning, 
plasma proteomics, screening
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1  |  INTRODUC TION

Lung cancer remains one of the most prevalent cancers world-
wide, causing 2.2 million deaths per year.1 The 5- year survival rate 
for all types of LC is 21%.1,2 Around 75% of the cases are discov-
ered when the disease is locally advanced (stage III) or metastatic 
(stage IV), with 5- year survival rates of 13% and 0%, respectively.3 
The symptoms are usually nonspecific and include lasting cough 
and dyspnea.4 Though diagnostic tests such as chest radiography, 
along with computed tomography (CT) and fiberoptic bronchos-
copy (FB), are the usual way of LC diagnosis, due to nonspecific 
symptoms, early- stage patients are not referred to those diag-
nostic tests for further investigations until they are in later stages 
of LC.5–7 LC screening using low- dose CT can reduce LC- specific 
mortality by 20% compared with screening with chest radiogra-
phy.8 However, a high frequency of false- positive results, high 
cost and the malignancy risk associated with cumulative radiation 
exposure are limitations of low- dose CT. Therefore, liquid biopsy 
approaches have garnered considerable attention, as they offer 
a minimally invasive alternative with lower associated cost and 
greater accessibility, which may aid in rapid, accurate, and possibly 
early diagnosis of LC.9,10

Histologically, LC is subdivided into two major categories named 
NSCLC and SCLC. NSCLC constitutes around 85% of the diagnosed 
LCs, while SCLC is around 15% of cases.11 The cancer stage at diag-
nosis and the possibility of surgical treatment are the most crucial 
factors influencing the survival of LC patients. For stage I, II, and 
IIIA NSCLC, surgery is the main form of treatment, but for 75% of 
NSCLCs that are diagnosed at stage IIIB, IIIC, or IV, resection is no 
longer possible, which increases the mortality risk.11,12 Therefore, a 
sensitive and specific method for early detection of LC is essential to 
improve the survival rate.

Rapid accessibility and minimal invasiveness form the foun-
dation for preferring blood- based assays and plasma biomarkers 
for LC, which would improve LC detection in both symptomatic 
and nonsymptomatic individuals.13–15 Blood- based biomarkers 
broadly include CTCs, ctDNA, cfDNA, tumor- derived exosomes, 
TEPs, proteins, and miRNAs.16–18 The discovery of effective bio-
markers (single or in combination) that can be used for referral 
to other examinations (such as CT scans, bronchoscopy, etc.) for 
LC, has been difficult due to a lack of analytical accuracy, insuf-
ficient patient numbers, and the selection of potential markers. 
Additionally, the development of biomarkers is often limited be-
cause of low statistical power in rare subtypes, making it unlikely 
that a single marker will be sufficient to diagnose LC. Therefore, 
it is necessary to explore combinations of markers to improve the 
accuracy of LC diagnosis.

In this study, we set out to assess plasma samples from a group 
of patients with primary LC, other cancers, and NC using PEA.19 PEA 
offers several advantages over traditional immunoassays, includ-
ing high specificity for proteins due to the use of DNA- conjugated 
pairs of antibodies, which minimizes nonspecific binding. These fea-
tures enable the discovery of disease- specific protein signatures for 

various diseases and may serve as a promising method for develop-
ing protein profiles as potential cancer biomarkers. While this assay 
is currently used mostly for research purposes, there are studies in-
dicating its potential as a diagnostic tool.20 The selected 92 immuno- 
oncology- related proteins in this study were generally involved in 
tumor immunity, chemotaxis, vascular and tissue remodeling, apop-
tosis, and tumor metabolism. Although not specifically selected for 
LC, these proteins are relevant to cancer biology. Among the pro-
teins, we tested which of them, either alone or in combination, were 
able to classify patients with LC from those with other cancers and 
NC. Our aim was to develop a set of single or combined proteins 
as biomarkers for LC that could be used to “flag” patients who may 
benefit from further diagnostic investigation. Specifically, our focus 
was on developing “rule- in” biomarker panels to identify patients. 
Ultimately, the goal was to develop a screening tool that could be 
used by primary care providers to screen patients with upper re-
spiratory tract and other unspecific symptoms. By identifying these 
biomarkers, the study aimed to improve the early diagnosis of LC, 
ultimately leading to better patient outcomes.

2  |  MATERIAL S AND METHODS

2.1  |  Patient sample information

Blood samples were collected from patients with lung inflammatory 
condition who were referred by primary health care to Karolinska 
University Hospital (KUH) for investigation for suspected LC during 
the period between September 2014 and November 2015.21,22 A co-
hort of 252 patients was derived from the initial ensemble of plasma 
donors for the purpose of maintaining data integrity and efficient 
utilization of available resources (Figure S1). Subsequent to their in-
clusion in the study, medical records detailing the eventual diagnosis 
whether LC, other cancer, or NC were meticulously retrieved, ensur-
ing a minimum follow- up duration of 1 year post enrollment. This 
cohort comprised 173 patients (68.65%) diagnosed with primary 
LC (indicating the cancer originated in the lungs without any prior 
cancer history), 56 patients (22.22%) with NC diagnosis, and 23 pa-
tients (9.13%) diagnosed with cancers other than LC. Comprehensive 
demographic and clinical information for all patients (n = 252) is 
presented in Table 1. Additionally, detailed clinical diagnostic char-
acteristics for patients diagnosed with primary LC (n = 173) are pre-
sented in Table 2.

2.2  |  Plasma sample preparation and PEA

Patient blood samples were collected into potassium EDTA 
tubes and centrifuged at 3000 × g for 10 min at room tempera-
ture within 10–15 min of collection to separate plasma, which was 
then biobanked at −80°C for future analysis. The Olink multiplex 
immuno- oncology panel (92 proteins) was applied to these plasma 
samples. Further information on the Olink PEA method's specificity, 
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    |  3AHAMED et al.

data validation, NPX value calculation, limit of detection, and repro-
ducibility can be found on the webpage http:// www. olink. com.23,24

2.3  |  Quality control and statistical analysis

2.3.1  |  Quality control and sample size

In the course of analyzing NPX values for 92 proteins in patient sam-
ples, 12 proteins were omitted owing to inadequate internal quality. 

Consequently, the analysis proceeded with samples from 252 pa-
tients, focusing on the remaining 80 proteins (Figure S2).

2.3.2  |  Exploratory analysis, confounder 
adjustment, and differential expression

Statistical analysis conducted in this study was of an exploratory 
nature, as no validated single computational methods have been es-
tablished for LC- specific biomarker discovery. Hierarchical k- means 
clustering, and principal component analysis (PCA) were utilized to 
explore relationships between NPX values and clinical characteris-
tics (LC histology, gender, mutation, cancer stage, smoking status, 
and concurrent pulmonary disease status) of patients.

Differential protein expression for LC and other cancers ver-
sus NC were assessed through univariate analyses. Shapiro–Wilk 
tests evaluating NPX value normality (non- normality indicated by 
p < 0.05) and Mann–Whitney U tests were utilized for differential ex-
pression analysis (p < 0.05), incorporating false discovery rate (FDR) 
correction to mitigate multiple testing issues. To balance true posi-
tive detection with false discovery control, the Benjamini–Hochberg 
procedure was applied for maintaining an FDR of 0.05.

Impact of potential confounding factors (gender, age, smoking 
status, and concurrent pulmonary disease) were evaluated on NPX 
values. Patients with at least one pulmonary complication were cat-
egorized into the pulmonary disease group (n = 105). To assess the 
impact of confounding variables, associations between NPX and 
confounders were analyzed for significance (p < 0.05) using: Mann–
Whitney U test (gender), Spearman correlation (age), Kruskal–Wallis 
test (smoking status), and Mann–Whitney U test (concurrent pulmo-
nary disease). A linear regression model (LRM) was applied to each 
protein expression to evaluate the effects of confounding variables 
on the relationship between NPX and cancer status (LC, other can-
cer, and NC). Models adjusted for confounders were then compared 
with unadjusted versions. Confounders that led to a change in effect 
size of at least 10% in the adjusted LRM were deemed significant 
and retained. Proteins that remained significant (p < 0.05) after ad-
justment were identified as potential biomarkers. This approach of 
adjusting for confounders to identify biomarkers was performed 
over different patient groups based on LC histology, other cancer, 
and NC.

2.3.3  |  Development of discriminative classifier

Based on identified single proteins as potential biomarkers, opti-
mal panel of proteins were developed to distinguish LC and other 
cancers from NC groups. Furthermore, stratified analyses were 
performed by considering LC histology (NSCLC, ADC, SCC, SCLC) 
and stage (early and advanced stage) using both univariate and mul-
tivariate approaches. Discriminative classifier was developed using 
the generalized linear model (GLM) with binomial distribution and 
logit link function, akin to logistic regression. This method models 

TA B L E  1  Clinical information of the patients included in the 
study (n = 252).

No 
cancer 
(n = 56)

Lung 
cancer 
(n = 173)

Other 
cancer 
(n = 23)

Gendera; n (%)

Female 20 
(37.71)

93 (53.76) 10 (43.48)

Male 36 
(64.29)

80 (46.24) 13 (56.52)

Ageb; mean (SD) 65.00 
(11.48)

70.06 
(8.50)

69.74 (7.61)

Smoking historyc; n (%)

Never smoker 18 
(32.14)

23 (13.29) 7 (30.43)

Past smoker 25 
(44.64)

88 (50.87) 12 (52.17)

Current smokerd 13 
(23.21)

62 (35.84) 4 (17.40)

Concurrent pulmonary diseasee; n (%)

Chronic obstructive 
pulmonary disease 
(COPD)

8 
(14.29)

34 (19.65) 2 (8.70)

Chronic bronchitis 2 (3.57) 2 (1.16) 0 (0.00)

Pneumonia 17 
(30.36)

35 (20.23) 5 (21.74)

Asthma 10 
(17.86)

19 (10.98) 2 (8.70)

Pulmonary edema 
(excess fluid in lung)

6 
(10.71)

14 (8.09) 7 (30.43)

Asbestos- related 
diseases

1 (1.78) 1 (0.58) 1 (4.35)

Emphysema 1 (1.78) 8 (4.62) 0 (0.00)

aDistribution of gender does not significantly differ (χ2(2, n = 252) = 5.8, 
p = 0.06) between the patient groups.
bStatistically significant differences exist between the group means as 
determined by one- way ANOVA (F(2,249) = 6.61, p = 0.0016). By Tukey's 
honest significant difference (HSD) method, only the “No cancer vs. 
Lung cancer” group showed significant (p = 0.001) difference.
cDistribution of smoking history significantly differed (χ2(2, 
n = 252) = 13.70, p = 0.0083) between the patient groups.
dCurrent smokers also include those who stopped smoking less than a 
year ago.
eEach patient can have several concurrent conditions.
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4  |    AHAMED et al.

the relationship between a binary outcome (LC, other cancer, or NC) 
and one or more predictors (proteins). The model's discriminative 
power was evaluated using AUC, reflecting its ability to differenti-
ate between classes. The diagnostic accuracy of individual protein 
expression for distinguishing patients with LC or other cancers from 
NC was measured by AUC. In univariate analysis, proteins with sig-
nificant differential expression (p ≤ 0.05) and higher AUC values were 
linearly combined into a panel to achieve an optimized AUC in mul-
tivariate analysis. The linear coefficients representing the proteins' 
contributions to the panel were determined using a nonparametric 
search by the R package optAUC.25 The smoothing parameter “λ = 5” 
and variables (proteins) were standardized by setting scale = T as de-
fault arguments in the R function optAUC. The diagnostic effective-
ness of both individual proteins and panels of protein was assessed 
using Youden index (Sensitivity+ Specificity – 1).26

3  |  RESULTS

3.1  |  Potential confounders

Hierarchical k- means clustering was performed using NPX values 
to assess the relationship between protein expression profiles and 
clinical characteristics (Figure 1). However, PCA of patient samples 
formed by NPX values revealed no distinct grouping according to 

any clinical characteristics, including LC histology, cancer stage, gen-
der, age, and smoking status (Figure S3).

3.2  |  Diagnostic biomarker identification based on 
single proteins

Univariate analyses were performed to evaluate the differential ex-
pression and AUC values of specific proteins among subgroups of 
patients with LC and other cancers, compared with the NC group.

3.2.1  |  Univariate analysis on the primary LC and 
OC patient groups

Primary LC (n = 173)
Differential expression of individual proteins in patients with pri-

mary LC (n = 173) was evaluated by comparing against the NC group 
(n = 56). Post adjustment for confounders, nine proteins (MMP12, 
CD83, TRAIL, GZMB, CD8A, GZMA, FASLG, CCL19, and CD5) 
were identified with significant differential expression (p ≤ 0.05) and 
showed moderate to low diagnostic potential for primary LC, with 
AUC values ranging from 0.58 to 0.64. Except for MMP12, these 
proteins were generally expressed at lower levels in the LC group 
than in the NC group (Table 3; Table S1).

Cancer type Histology
Histological 
subtype Ordinal stagea Stage Total n (%)

Primary LC
(n = 173)

NSCLC (141) ADC (125) Early (57) I 22 (12.72)

II 10 (5.78)

IIIA 25 (14.45)

Advanced (54) IIIB 8 (4.62)

IV 46 (26.59)

Unknown (14) 14 (8.09)

SCC (32) Early (21) I 11 (6.36)

II 3 (1.73)

IIIA 7 (4.05)

Advanced (9) IIIB 4 (2.31)

IV 5 (2.89)

Unknown (2) 2 (1.16)

SCLC (16) Early (5) II 2 (1.16)

IIIA 3 (1.73)

Advanced (9) IIIB 3 (1.73)

IV 6 (3.47)

Unknown (2) 2 (1.16)

Abbreviations: ADC, adenocarcinoma; LC, lung cancer; NSCLC, non- small cell lung cancer; SCC, 
squamous cell carcinoma; SCLC, small cell lung cancer.
aStages I, II, and IIIA can be identified as early stages of LC, as tumor does not spread form its 
primary location. Stages IIIB, IIIC, and IV were identified as advanced stages of LC.

TA B L E  2  Clinical diagnostics of 
patients with primary LC (n = 173).
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Other cancers (n = 23)
The relationship between the expression of individual proteins 
and other cancers was evaluated by comparing the OC patient 
group (n = 23) against the NC group (n = 56). Six proteins (CCL20, 
PDL2, MCP4, MCP2, LAMP3, and LAP TGF beta1) showed sig-
nificant differential expression (p ≤ 0.5) and moderate diagnos-
tic potential for the OC group, with AUC values between 0.64 
and 0.70. None of these proteins showed significant differential 
expression between the primary LC and NC group. Additionally, 
the average expression levels of these six proteins were lower in 
the OC group compared with both the primary LC and NC groups 
(Table 3; Table S1).

3.2.2  |  Lung cancer histology- based 
stratified analysis

Patients with NSCLC (n = 157) and SCLC (n = 16)
This study explored the differential expression of proteins among 
groups of patients with NSCLC (n = 157) and SCLC (n = 16) against 
NC (n = 56). In the NSCLC cohort, nine proteins (MMP12, CD83, 
TRAIL, GZMB, CD8A, GZMA, CD4, CCL19, and CD5) and in the 
SCLC cohort, eight proteins (MMP12, CD8A, IL8, PGF, IL12, 
CXCL13, FASLG, and CAIX) were identified with significant dif-
ferential expression (p ≤ 0.05), showing AUC values ranging from 
0.59 to 0.63 for NSCLC and from 0.60 to 0.76 for SCLC. CD8A 
and MMP12 were the only proteins that demonstrated significant 
differential expression across both the NSCLC and SCLC groups 
(Table 3; Table S2).

Patients with ADC (n = 125) and SCC (n = 32)
The NSCLC patient group (n = 157) was further stratified into two 
subgroups based on histology: patients with ADC (n = 125) and 

patients with SCC (n = 32). Protein expressions for both subgroups 
were compared against the NC group. For the ADC subgroup, eight 
proteins (TRAIL, CD8A, HO1, CD832, CD5, CCL19, FASLG, and 
GZMA) showed significant (p ≤ 0.05) differential expression with 
AUC values from 0.59 to 0.62. In the SCC subgroup, three proteins 
(MMP12, TRAIL, and VEGFA) showed significant differential expres-
sion with AUC values from 0.62 to 0.74. TRAIL was the only signifi-
cant protein in both the ADC and SCC subgroups (Table 3; Table S3).

3.2.3  |  Lung cancer stage- based (early stage; 
n = 83 and advanced stage; n = 72) stratified analysis

In early- stage LC patients' samples, 13 proteins (CD83, GZMA, 
GZMB, CD8A, MMP12, CCL23, TIE2, CSF1, GAL9, PDCD1, CD4, 
HO1, and PDL2) were significantly differentially expressed (p ≤ 0.05) 
when compared with NC patients. PDL2 stood out as the sole pro-
tein significantly expressed (p ≤ 0.05) in patients with other types of 
cancers. Among these, eight proteins (CD83, GZMA, GZMB, CD8A, 
MMP12, CCL23, TIE2, and CSF1) were consistently differentially 
expressed in both early and advanced stages of LC. Furthermore, 
five of these proteins (CD83, GZMA, GZMB, MMP12, and CD8A) 
showed significant (p ≤ 0.05) differential expression across histology 
(NSCLC, ADC, SCC, and SCLC) and stage- based (early and advanced 
stage) stratification. (Table 3).

3.3  |  Assessment of multiple protein panels

We evaluated the performance of protein combinations as panels to 
identify potential candidates for guiding LC investigations. A mul-
tiprotein panel might serve as an LC screening tool for further in- 
depth examination and management of suspected patients.

F I G U R E  1  Clinical characteristics (LC histology, gender, mutation, stage of cancer, smoking status, and concurrent pulmonary disease 
status) on clustered plasma protein expression. ADC, adenocarcinoma; LC, lung cancer; SCC, squamous cell carcinoma; SCLC, small cell lung 
cancer.
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3.3.1  |  Selection of protein panels

Protein panels were chosen based on each protein's significant dif-
ferential expression (p ≤ 0.05) in the univariate analysis stratified by 

histology and stage. This selection process was aimed to compare 
various LC subtypes and other cancer against the NC group, ensur-
ing the identification of proteins with the highest relevance to ma-
lignancy diagnostics and progression. This methodological approach 

TA B L E  3  Univariate stratified analysis: Significant (p ≤ 0.05*) differential expression of single proteins in different types of LC based on 
histology and stage.

Note: Green arrows indicate lower expression and red arrows indicate higher expression for the corresponding protein compared with the expression 
in the group of patients with no cancer.
Abbreviations: ADC, adenocarcinoma; LC, lung cancer; NSCLC, non- small cell lung cancer; PLC, primary lung cancer; SCC, squamous cell carcinoma; 
SCLC, small cell lung cancer.
*Only significant (p ≤ 0.05) proteins are shown.

Al
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Histology based stratification
Stage based stratification
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Early Stage Advanced Stage

PL
C

N
SC
LC
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C
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LC

PL
C

N
SC
LC

AD
C

SC
C

SC
LC

PL
C

N
SC
LC

AD
C

SC
C

SC
LC

Sample size (n) 173 157 125 32 16 83 78 57 21 5 72 63 54 9 9 23 
No smoke (n)

(%)
23 

(13.29) 
23 

(14.65) 
18 

(14.40) 
5 

(15.63) 
0 

(0.00) 
12 

(14.46) 
12 

(15.38) 
10 

(17.54) 
2 

(9.52) 
0 

(0.00) 
10 

(13.89) 
10 

(15.87) 
7 

(12.96) 
3 

(33.33) 
0 

(0.00) 
7 

(30.43) 
Current Smoker (n)

(%)
62 

(35.84) 
53 

(33.76) 
44 

(35.20) 
9 

(28.13) 
9 

(56.25) 
27 

(32.53) 
23 

(29.49) 
18 

(31.58)) 
5 

(23.81) 
4 

(80.00) 
26 

(36.11) 
23 

(36.51) 
19 

(35.19) 
4 

(44.44) 
3 

(33.33) 
4 

(17.39) 
Past Smoker (n)

(%)
88 

(50.87) 
81 

(51.59) 
63 

(50.54) 
18 

(56.25) 
7 

(43.75) 
44 

(53.01) 
43 

(55.13) 
29 

(50.88) 
14 

(66.67) 
1 

(20.00) 
36 

(50.00) 
30 

(47.62) 
28 

(51.85) 
2 

(22.22) 
6 

(66.67) 
12 

(52.17) 
Pulmonary diseases (n)

(%)
75 

(43.35) 
66 

(42.04)  
48 

(38.40) 
18 

(56.25) 
9 

(56.25) 
29 

(35.90) 
28 

(35.90) 
17 

(29.82) 
11 

(52.38) 
1 

(20.00) 
35 

(48.61) 
27 

(42.86) 
22 

(40.74) 
5 

(55.56) 
8 

(88.89) 
15 

(65.22) 

P1
 

CD83
GZMA
GZMB
CD8A

MMP12

P2
 CCL23

TIE2
CSF_1

P3
 

Gal_9
PDCD1

CD4
HO_1

P4
 

TRAIL
CD5

CCL19
FASLG
VEGFA

IL8
CXCL13

CAIX
PGF
IL12

P5
 

TNFRSF12A
MCP_3
FGF2
IL7

ICOSLG
ANG_1

IL10
CX3CL1
CD244
MMP7

HGF
IL6

CD40_L
MIC_A_B
CXCL11
TNFSF14

EGF
CASP_8

P6
 

PD_L2
CCL20
MCP_4
MCP_2
LAMP3

LAP TGF beta1
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was designed to enhance the sensitivity, specificity, and reliability of 
potential biomarkers for differentiating LC and OC from noncancer-
ous conditions (Table 4).

Panel 1, consisting of five proteins (CD83, GZMA, GZMB, CD8A, 
and MMP12), showed differential expression (p ≤ 0.05) within the 
overall LC cohort (n = 173). These proteins were significant across 
different histological subtypes (NSCLC, ADC, SCC, SCLC) and stages 
(early and advanced), highlighting their utility as potential LC bio-
markers. However, they did not show significance in patients with 
other cancer types, suggesting their specificity to LC. Specifically, 
MMP12 had consistently higher expression in LC patients across all 
subgroups compared with the NC group (Table 3). Early- stage LC 
showed lower expressions of GZMA, GZMB, and MMP12, while 
CD83 and CD8A levels were higher—a trend that was inverted in 
advanced- stage of LC (Figure 2).

Panel 2, consisting of three proteins (CCL23, TIE2, and CSF1), 
was differentially expressed (p ≤ 0.05) in early and advanced stages 
of LC but were not significant in the overall LC cohort, histology, 
or other cancer type- based strata. Panel 3 comprised four proteins 
(GAL9, PDCD1, CD4, and HO1), where CD4 and HO1 were differ-
entially expressed across histology and early stages in patients with 
NSCLC and ADC, respectively. GAL9 and PDCD1 showed signif-
icance in early- stage ADC patients. None of these proteins were 
significant in patient groups of advanced- stage LC or OC types 
(Table 3). The observed differential expressions of proteins in panels 
2 and 3, linked primarily to stage- based and histology/early- stage- 
based strata, respectively, suggest their potential as biomarkers 
within specific LC contexts.

Panel 4, containing ten proteins, showed differential expression 
(p ≤ 0.05) in four proteins (TRAIL, CD5, CCL19, and FASLG) across 

the overall LC cohort, with some showing significance in histology 
and advanced- stage strata but not in the early- stage or OC groups. 
Panel 5 included 18 proteins that were significantly expressed 
(p ≤ 0.05) only in advanced stage of LC, lacking significance in the 
overall LC cohort, OC group, or in specific histology and early stage 
of LC (Table 3). The lack of significant expression in early- stage LC 
for proteins of panels 4 and 5 suggests a limitation in their utility 
for early detection. Furthermore, expression of these proteins in 
advanced- stage LC underscores the intricate nature of protein inter-
actions at advanced- stage LC, suggesting a careful consideration for 
their integration into diagnostic panels.

Panel 6, consisting of proteins (PDL2, CCL20, MCP4, MCP2, 
LAMP3, and LAP TGF beta1), was differentially expressed (p ≤ 0.05) 
in patients with other cancer types, with four proteins (CCL20, MCP4, 
MCP2, and LAMP3) uniquely identified in this group. Additionally, 
two proteins, PDL2 and LAP TGF beta1, also showed significance in 
the LC histology- based groups: PDL2 in early- stage ADC and LAP 
TGF beta1 in advanced- stage SCC (Table 3). Panels 7, 8, and 9 were 
developed by different combinations of panels 1, 2, and 3 (Table 4).

3.3.2  |  Evaluation of protein panels

The classification and diagnostic performance of the selected pro-
tein panels in distinguishing LC and other cancer types from NC pa-
tients were evaluated using the AUC values and Youden index. This 
evaluation considered the collective performance of proteins within 
each panel (Figure 3 and Figure 4).

Protein panel 1 showed strong classification performance 
within all LC subgroups (AUC: 0.72–0.91) and varying diagnostic 

TA B L E  4  Proposed panel of proteins.

Panel name Proteins in the panel N Rationale to include in the panel

Panel 1 (P1) CD83, GZMA, GZMB, CD8A, 
MMP12

5 • Proteins of this panel were significantly expressed in the full patient cohort and 
in the histology (NSCLC, ADC, SCC, and SCLC)-  and stage (early and advanced 
stage)- based stratified cohorts

Panel 2 (P2) CCL23, TIE2, CSF1 3 • Proteins of this panel were significantly expressed in the stage (early and 
advanced)- based stratified cohorts

Panel 3 (P3) GAL9, PDCD1, CD4, HO1 4 • Proteins of this panel were significantly expressed in the histology (NSCLC, 
ADC)-  and stage (early ADC)- based stratified cohorts

Panel 4 (P4) TRAIL, CD5, CCL19, FASLG, 
VEGFA, IL8, CXCL13, CAIX, PGF, 
IL12

10 • Proteins of this panel were significantly expressed in the histology-  and 
advanced- stage- based stratified cohorts

Panel 5 (P5) TNFRSF12A, MCP3, FGF2, IL7, 
ICOSLG, ANG1, IL10, CX3CL1, 
CD244, MMP7, HGF, IL6, CD40L, 
MIC AB, CXCL11, TNFSF14, EGF, 
CASP8

18 • Proteins of this panel were significantly expressed in the advanced- stage- 
based stratified cohort

Panel 6 (P6) PDL2, CCL20, MCP4, MCP2, 
LAMP3, LAP TGF beta1

6 • Proteins of this panel were significantly expressed in the other cancer patients' 
group

Panel 7 (P7) Panel 1 + panel 2 8 • Combined panel of proteins

Panel 8 (P8) Panel 1 + panel 3 9 • Combined panel of proteins

Panel 9 (P9) Panel 1 + panel 2 + panel 3 12 • Combined panel of proteins
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performance (Youden index: 27.5–91.0) across the overall and strat-
ified (histology and stage based) LC patient cohort. Conversely, this 
panel displayed lower classification and diagnostic performance 
(AUC: 0.66, Youden index: 21.60) for other cancer types (Figure 3; 
Table S4).

Panels 2 and 3 showed low classification performance (AUC: 
0.54–0.64) across all LC subgroups, except for early- stage SCLC 
(AUC: 0.81 and 0.74 for panels 2 and 3, respectively) and advanced- 
stage SCC (AUC: 0.75 and 0.74 for panels 2 and 3, respectively). 

The diagnostic performance for each panel was consistently low 
for all subgroups of patients with LC (Youden index: 4.20–42.50). 
For the group of patients with other cancer types, panels 2 and 3 
also showed low classification performance (AUC: 0.57 and 0.66) 
and diagnostic performance (Youden index: 16.30, 30.30) (Figure 3; 
Table S4).

Protein panels 4 and 5 showed moderate to high classification 
performance (AUC: 0.67–1.00) and varying diagnostic performance 
(Youden index: 18.7–100.0) across all subgroups of LC. In contrast, 

F I G U R E  2  Expression of proteins of panel 1 (CD83, GZMA, GZMB, CD8A, and MMP12) in early an advanced stage of different types 
of LC patients. NPX values on the y- axis and different groups of patients based on LC histology in the x- axis. (A) Half violin and box plot for 
panel 1 proteins: The left- side violin plot shows the density of protein expression, while the right- side box plot displays the data distribution 
across the first (Q1), second (Q2), and third (Q3) quartiles, including outliers. The brown dot represents the mean for each disease 
group. (B) The mean expressions of individual proteins in different disease groups are shown compared with the no cancer group. ADC, 
adenocarcinoma; LC, lung cancer; nscLC, non- small cell lung cancer SCC, squamous cell carcinoma; scLC, small cell lung cancer.

F I G U R E  3  Classification (AUC) and diagnostic (Youden index) performance for the panel of proteins including their sensitivity and 
specificity for panels 1, 2, 3, 6, 7, 8, and 9 against the no cancer patient group. (A) Classification performance by AUC. (B) Diagnostic 
performance by Youden index. (C) Sensitivity. (D) Specificity. For all LC subtypes in different stratified analysis panels 1, 7, 8, and 9 showed 
higher values in all matric compared to panels 2, 3 and 6. Only for other cancer group, panel 6 showed higher performance in AUC and 
Youden index. ADC, adenocarcinoma; AUC, area under the receiver- operating characteristic curve; LC, lung cancer; NSCLC, non- small cell 
lung cancer; PLC, Primary lung cancer; SCC, squamous cell carcinoma; SCLC, small cell lung cancer.
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for the group of other cancer types, these panels showed high classi-
fication performance (AUC: 0.78 and 0.80) but moderate diagnostic 
performance (Youden index: 44.60, 46.20) (Table S4).

Panel 6 showed in general low to moderate classification perfor-
mance (AUC: 0.61–0.80) and diagnostic performance (Youden index: 
15.50–46.10) across all LC subgroups. But the performance of this 
panel was higher for the other cancer types (AUC: 0.80, Youden 
index: 49.70) compared with both early stage (AUC: 0.64, Youden 
index: 22.70) and advanced stage (AUC: 0.63, Youden index: 20.80) 
of LC (Figure 3; Table S4).

When compared with panel 1, panels 7, 8, and 9 showed only 
slight enhancements in classification (AUC values) and diagnostic 
accuracy (Youden index) across all LC strata. Additionally, these pan-
els offered modest improvements in sensitivity and specificity also. 
Nonetheless, they provided notably better performance in identify-
ing other cancer subgroups (Figure 3; Table S4).

4  |  DISCUSSION

In this study, we conducted stringent statistical adjustments to 
address multiple testing issues and carefully considered potential 
confounding factors, including gender, smoking status, age, and 
pulmonary disease status. As a result, we successfully pinpointed 
46 proteins, constituting 48% of the total proteins examined, which 
exhibited statistically significant differential expression (padj ≤0.05) 
across diverse strata defined by the histology and stage of primary 
LC and other cancer types when compared with a cohort of patients 
without cancer. Among these significant proteins, 40 were exclu-
sively identified as significant in the group of patients with primary 
LC, while 4 were specific to the group of patients with other cancers, 
and 2 were found in both groups. Furthermore, employing univari-
ate analyses that considered the distinctive expression patterns of 
several single proteins within different histology and stage- based 
stratified LC categories, we systematically categorized these 40 pro-
teins identified within the primary LC patient group into five distinct 
panels: panel 1 (5 proteins), panel 2 (3 proteins), panel 3 (4 proteins), 
panel 4 (10 proteins), and panel 5 (18 proteins) (Table 4).

Univariate analysis of single proteins’ differential expression, 
conducted on the overall LC cohort and further stratified by histol-
ogy (NSCLC, ADC, SCC, and SCLC) and stage (early and advanced), 
revealed that individual proteins in panels 1, 2, and 3 emerged as 
promising biomarkers for LC diagnostic applications. These proteins 
in the panel demonstrated unique expression patterns that were 
distinctively associated with overall LC, histology, and stages, panel 
1 with overall LC/histology/stage, panel 2 with stage, and panel 3 

with histology and early- stage strata. Conversely, proteins in panel 
6 might have potential for diagnosing other cancer types, given 
their exclusive expression pattern within the other cancer cohort 
(Table 3).

In multivariate analysis, the collective performance of pro-
teins in panels 1, 2, and 3 was evaluated. Panel 1 (AUC: 0.72–0.91, 
Youden index: 27.5–91.0) surpassed panels 2 (AUC: 0.54–0.81, 
Youden index: 4.20–33.20) and 3 (AUC: 0.56–0.74, Youden index: 
0.00–42.50) in differentiating various LC histology and stages 
from the NC group. Panel 6 (AUC: 0.80, Youden index: 49.70) was 
identified as a promising tool for diagnosing cancers other than 
LC (Figure 3, Table 3). Subsequently, three more panels (7, 8, and 
9) were assessed, showing enhanced capabilities in detecting LC 
subtypes and other cancers more effectively than panel 1. Among 
these, panels 7 and 8 had comparable performance in LC detec-
tion, yet in identifying cancers other than LC, panel 8 (AUC: 0.75) 
excelled over panel 7 (AUC: 0.67). Although panel 9 demonstrated 
superior efficacy to panels 7 and 8, it necessitated a larger set of 
proteins (n = 12) for optimal performance. Thus, panel 8, with its 
concise protein count (n = 9), stands out as the most suitable for 
LC-  and OC- screening applications.

The expression patterns of proteins within panels 1, 6, and 
8 (combining panels 1 and 3) showed no dependency with clini-
cal characteristics of patients across various groups (Figure 4A). 
Additionally, no correlation pattern was observed within or between 
proteins in panels 1, 6, and 8, highlighting their expression indepen-
dence (Figure 4B). These characteristics underscore the importance 
of utilizing multiple proteins together as a panel to navigate the het-
erogeneity in protein expression. These results suggest that a single 
protein is insufficient for effectively distinguishing between patient 
groups, and that a comprehensive approach, analyzing multiple pro-
teins as a combined panel, is essential to reveal unique panel- specific 
traits.

The findings from this study indicate the utility of panel 1 for LC 
across all histology and stages (Figure 4C), panel 6 for identifying 
other cancers than LC (Figure 4D), and panel 8 as a broad- spectrum 
cancer predictor (Figure 4E), with higher sensitivity and specificity 
(Figure 3; Table S4). Also, the use of panels significantly improves 
the performance compared with the individual proteins (Table S5). 
Moreover, the proteins within panel 1, including CD83, GZMA, 
GZMB, CD8A, and MMP12, warrant further exploration for their 
potential roles in cancer biology, highlighting their significance in the 
diagnosis and understanding of LC.

Membrane CD83 (mCD83), a marker for mature dendritic 
cells (DCs),27,28 is also found on activated B cells,29 T cells,30 neu-
trophils,31 thymic epithelial cells,32 and even tumor cells,33 with a 

F I G U R E  4  (A) No grouping tendency was observed in the expression of proteins (panels 1, 3, 6, and 8) in different cancer groups (no 
cancer, early- stage LC, advanced- stage LC, and other cancer) of patients with different characteristics (histology of LC tumor, gender, 
status of pulmonary diseases, and smoking). (B) Correlation (Pearson) in the expression of proteins (in panels 1, 2, and 6). The values are 
the strength of correlation, and insignificant correlations (p ≥ 0.05 in Pearson's coefficient) are left blank. (C–E) Area under the receiver- 
operating characteristic curve (AUROC) values and Youden index of panels (panels 1, 6, and 8). Also, single proteins in the panels that are 
significant (p ≤ 0.05) between different patient groups (early, advanced, and other cancer) compared with no cancer are demonstrated. ADC, 
adenocarcinoma; LC, lung cancer; SCC, squamous cell carcinoma; SCLC, small cell lung cancer.
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soluble isoform present in serum.34 It is critical for lymphocyte 
maturation, activation, and homeostasis, playing a key role in both 
innate and adaptive immune responses.35–37 CD83 is involved in T 
cell stimulation by DCs, whereas its soluble form can inhibit T cell 
activation.28,30,38–41 LC patients showed lower DC maturation rates 
and CD83 expression compared with healthy controls,42 with our 
study confirming reduced CD83 levels in LC patients, particularly 
pronounced in advanced stages (Figure 2). This pattern suggests an 
initial immune response to early- stage cancer that diminishes as the 
disease advances, potentially due to the tumor's ability to evade im-
mune surveillance (hallmarks of cancer).

Granzymes (GZMs), serine proteases released by cytotoxic 
T lymphocytes (CTLs) and natural killer (NK) cells, are pivotal 
in immune responses,43 with GZMA measuring tumor cell cyto-
lytic activity43–45 and inhibiting tumor cells through the caspase- 
independent programmed cell death pathway46 and GZMB 
inducing apoptosis.47 Both GZMA and GZMB contribute to NK 
cell- mediated cytotoxicity toward tumor cells.48 In LC, GZMA 
and GZMB may enhance antitumor immunity.49 This study found 
higher GZMA and GZMB expression in NC patients, possibly due 
to robust immune reactions against abnormal cells (hallmarks of 
cancer) (Figure 2). Importantly, the NC patients in our study had 
systemic illnesses related to other inflammatory lung conditions 
that potentially may trigger immune responses resulting in ele-
vated GZM expression. Interestingly, cancer patients exhibited 
lower GZM levels, likely due to tumor immune evasion.50 In the 
current study, advanced- stage LC showed increased GZMA and 
GZMB expression compared with early stages, suggesting that the 
higher tumor burden and a more immune- suppressive microenvi-
ronment might stimulate immune cell recruitment and activation, 
leading to elevated GZM levels.

CD8, a coreceptor involved in T cell antigen signaling, plays a 
vital role in the immune system's fight against cancer, with CD8A 
indicating the presence of CD8+ cytotoxic T cells.43,51 Previous 
studies indicated that CD8A expression is higher in normal lung tis-
sues than in lung ADC and SCC, which also show different levels of 
myeloid dendritic cell (mDC) infiltration.52 Current study observed 
elevated CD8A levels in noncancer individuals and early- stage LC 
as opposed to advanced- stage LC, implying more effective immune 
detection and elimination of cancer cells in early stages (Figure 2). 
Conversely, as LC advances, mechanisms employed by tumors to 
evade or dampen immune responses (hallmarks of cancer) may lead 
to decreased CD8A expression.

MMP12, part of the matrix metalloproteinase (MMP) family, 
plays a critical role in responding to extracellular matrix (ECM) dam-
age and lung protein secretion.53 Their expression is regulated by 
various stimuli, including inflammation and hormonal changes, as 
well as intercellular and matrix interactions.54 In healthy tissues, 
MMP expression is low but it increases under pathogenic conditions 
requiring repair, wound healing, or tissue remodeling (hallmarks of 
cancer).55 Previous studies have revealed that elevated expression 
of MMP12 was associated with local recurrence, metastasis in LC 
patients, and early cancer- related mortality in NSCLC.56–59 Smoking 

has been shown to elevate MMP12 expression,60 significant for 
ECM remodeling,61 essential in physiological repair processes,62 and 
implicated in diseases like emphysema,63 asthma, Chronic obstruc-
tive pulmonary disease (COPD),64 and LC. Our study found MMP12 
expression higher in LC patients than in those without cancer, with 
increase in advanced- stage LC, aligning with prior findings (Figure 2). 
Therefore, the inclusion of all five proteins in panel 1 is justified by 
robust biological evidence and rationale.

In this study, patients in the noncancer group had concurrent 
inflammatory diseases, and the analyzed proteins were predomi-
nantly related to inflammation. Consequently, the low to moderate 
classification performance of individual proteins in distinguishing 
SCLC or NSCLC subtypes (ADC and SCC) from NC patients may be 
influenced by these inflammatory conditions or LC progression, re-
sulting in poor individual protein classification (Table S5). However, 
when measured collectively as panels, the classification perfor-
mance for SCLC improves compared with NSCLC subtypes in all 
panels (Table S4). This improvement may be due to several factors: 
The higher mutation burden and neoantigen load of SCLC increase 
baseline immunogenicity65–67; SCLC employs immune evasion mech-
anisms such as MHC class I molecule downregulation and immune 
checkpoint protein upregulation, unlike the varied strategies in 
NSCLC subtypes66,68–70; and SCLC has a predominantly immunosup-
pressive microenvironment with elevated regulatory T cells (Tregs) 
and myeloid- derived suppressor cells (MDSCs), compared with the 
more heterogeneous environments in NSCLC.66,70–72 Thus, while 
individual proteins showed low to moderate performance in univar-
iate analysis, their combined use as panels enhances classification 
by leveraging the integrated protein profile. These findings suggest 
that combining inflammatory proteins in a panel may significantly 
enhance the accuracy of LC diagnosis.

The interplay between genomic mutations and inflammatory 
pathways is crucial in understanding LC progression and the modu-
lation of the identified protein panels. High mutation burdens in LC 
not only contribute to neoantigen formation and immune activation 
but also facilitate immune evasion and tumor progression through 
various mechanisms. These include the alteration of immune check-
point protein expression, modulation of protein expression levels, 
and changes in the tumor microenvironment.73–78 In this study, 
among the proteins in panel 1, GZMA, GZMB, and MMP12 are di-
rectly involved in inflammation, while the remaining proteins play 
roles in immune regulation, cell signaling, or protective functions. 
Genomic mutations of immune- related pathways in LC can alter the 
CD83 regulation,42,79 affecting DC maturation27,28 and T cell activa-
tion,30 leading to immune evasion and tumor progression.35–37 High 
mutation burdens influence GZMA and GZMB expression, poten-
tially reduce immune response efficacy by inhibiting CTLs and NK 
cell activity through overexpression of immune checkpoints proteins 
like PD- L1.80,81 Conversely, high mutation burdens may enhance 
CD8A- mediated immune responses through neoantigen formation. 
However, tumors can develop mutations that enable immune eva-
sion, such as losing MHC class I molecules or upregulating immune 
checkpoint proteins, hindering the ability of CD8A+ CTLs to target 
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and eliminate tumor cells, thus contributing to tumor progression.82 
Additionally, genomic mutations in LC can increase MMP12 expres-
sion, promoting tumor progression by degrading the ECM and aiding 
tumor cell migration. Mutations in regulatory pathways can fur-
ther enhance MMP12 activity, contributing to an aggressive tumor 
phenotype.83,84

Understanding the effects of genomic mutations on the mod-
ulation of identified markers provides valuable insights into the 
tumor biology of LC. This knowledge can inform diagnostic strate-
gies by highlighting the significance of assessing mutation burdens 
alongside protein expression levels. Additionally, it underscores 
the potential for developing targeted therapies that address both 
genetic alterations and inflammatory pathways, improving the ef-
ficacy of treatments for LC patients. The identified protein panel, 
when considered in the context of genomic mutations and muta-
tion burdens, might contribute to the understanding of LC progres-
sion. This integrated approach could enhance diagnostic accuracy.

The landscape of LC screening and diagnosis has evolved signifi-
cantly with the advent of plasma proteomics. A study by Albanes, 
Demetrius, etal. identifies 36 proteins with potential as biomark-
ers for early LC detection, where specific proteins like CEACAM5 
and MMP12 that showed strong associations with ADC and squa-
mous cell carcinoma, respectively.85 Another study discusses high- 
resolution metabolomic biomarkers that distinguish LC patients 
from healthy controls, emphasizing the role of metabolomics along-
side proteomics in LC diagnostics.86 Another innovative approach 
that involves the use of superparamagnetic iron oxide nanoparticles 
(SPIONs) for rapid, deep, and precise profiling of the plasma pro-
teome offers a novel method for biomarker identification.87 Another 
study further explores the application of proteomics technologies 
in cancer liquid biopsies, highlighting the discovery of protein bio-
markers via reverse- phase protein array (RPPA) analysis and em-
phasizing the need for novel protein- based biomarkers in clinical 
settings.88 Additionally, a deep learning- based algorithm for LC on 
chest radiographs showcases the integration of advanced compu-
tational methods with traditional diagnostic techniques to improve 
detection accuracy.89 Furthermore, another review addresses the 
global burden of LC, underscoring the importance of advancements 
in treatment and the potential of proteomics in addressing the gaps 
in LC care.90 Collectively, these studies not only demonstrate the 
potential of plasma proteomics in revolutionizing LC screening and 
diagnosis but also highlight the importance of integrating these ad-
vancements with existing diagnostic methods to enhance early de-
tection and improve patient outcomes.

The promising result of the current study suggests that PEA 
or similar methods may have potential to detect clinically relevant 
biomarkers. The ability to rapidly measure multiple plasma proteins 
simultaneously and identify potential associations between changes 
in protein expression and LC is a promising area for further research 
and development.

Differentiating LC from other inflammatory lung conditions 
poses a significant diagnostic challenge. Including patients without 

cancer but with inflammatory lung conditions in this study likely en-
hanced the accuracy of the protein panels' detection capabilities. 
Although potential protein panels for LC diagnosis were identified, 
independent cohort validation is necessary to ensure their reliabil-
ity. The limited sample size and retrospective design of this study 
necessitate larger, prospective investigations to fully evaluate these 
protein panels' effectiveness. Furthermore, future studies aimed 
at validation are vital for the clinical application of these promising 
panels.

The discovery of proteins suitable for LC screening, especially in 
early stages, holds significant clinical importance. This study's well- 
characterized cohort enabled the identification of various proteins, 
leading to the formation of potential panels that could distinguish 
between primary LC, OC, and NC patients. Particularly, the protein 
panels are robust in accurately differentiating primary LC and effec-
tively stratified LC patients by histology (NSCLC, ADC, SCC, SCLC) 
and disease stage (early and advanced).

While biomarkers for advanced- stage LC are mainly useful for 
tracking the effectiveness of treatments, early detection of LC can 
lead to timely interventions, such as surgery, significantly improving 
survival prospects. Thus, our results have profound clinical implica-
tions. The identified protein panel could accelerate clinical decision- 
making, streamlining the process for referring patients for tissue 
biopsies, thereby facilitating more accurate diagnoses and improved 
management of LC patients.
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