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Abstract We propose a new type of quantum thermodynamic cycle whose efficiency is greater than the one of the classical Carnot
cycle for the same conditions for a system when viewed as homogeneous. In our model, this type of cycle only exists in the low-
temperature regime in the spontaneously broken parity-time-reversal (PT) symmetry regime of a non-Hermitian quantum theory and
does not manifest in the PT-symmetric regime. We discuss this effect for an ensemble based on a model of a single boson coupled
in a non-Hermitian way to a bath of different types of bosons with and without a time-dependent boundary. The cycle cannot be set
up when considering our system as heterogeneous, i.e. undergoing a first-order phase transition. Within that interpretation, we find
that the entropy is vanishing throughout the spontaneously broken PT-regime.

1 Introduction

Carnot’s thermodynamic cycle has been proposed almost 200 years ago in 1824 [1, 2]. According to Carnot’s theorem, the most
efficient engine operates between two heat reservoirs at absolute cold temperature Tc and absolute hot temperature Th achieving
its efficiency at η � 1 − Tc/Th. Here, we propose a new type of cycle that has a larger efficiency, for a system when viewed as
homogeneous. The proposed cycle bears resemblance to a Stirling cycle, as unlike the Carnot, which moves along two isentropes
and two isothermals, our cycle moves along two isochorics and two isothermals. We formally identify a combination of coupling
constants as the analogue of the volume in this picture. When considering our system as heterogeneous, i.e. undergoing a first-order
phase transition, the Maxwell construction leads to a breakdown of the features that allow for the set of the proposed cycle. In that
interpretation, the cycle does not exist.

Our setting is within the context of non-Hermitian PT symmetric quantum theories which have been studied extensively for 25
years since their discovery [3]. Their theoretical description is by now well-understood. In contrast with non-Hermitian open systems,
they possess two distinct regimes that are characterised by their symmetry properties with regard to simultaneous parity reflection
(P) and time-reversal (T ). When their Hamiltonians respect this antilinear symmetry [4] and their eigenstates are simultaneous
eigenstates of the PT -operator, the eigenspectra are guaranteed to be real and the evolution of the system is unitary. This regime is
referred to as the PT -symmetric regime. In turn, when the eigenstates of the PT -symmetric Hamiltonian are not eigenstates of the
PT -operator, the energy eigenvalues occur in complex conjugate pairs, and one speaks of this parameter regime as the spontaneously
broken PT -regime. The two regimes are separated in their parameter space by the so-called exceptional point [5–7]. Many of the
features predicted by these type of theories have been verified experimentally in optical settings that mimic the quantum mechanical
description [8–10]. The transition from one regime to another has recently also been confirmed in a fully fledged quantum experiment
[11].

The new thermodynamic cycle we propose here exists in the spontaneously broken PT -symmetric regime. In a single particle
quantum mechanical theory, this parameter regime would normally be discarded on the grounds of being unphysical. The reason
for this is that while one of the complex energy eigenvalues will give rise to decay, which is physically acceptable, the other with
opposite sign in the imaginary part would inevitably lead to an unphysical infinite growth. One way to fix this problem and “mend”
the broken regime is to introduce a time-dependent metric [12] or technically equivalently by introducing time-dependent boundaries
[13]. In this manner, the instantaneous energy eigenvalues become real in all PT -regimes. Another possibility is to consider a large
thermodynamic ensemble of particles [14, 15], which is the approach followed here. In that case, the average expectation values
become real as complex conjugate eigenvalues pair up to make real contributions. We will also explore the combination of both
approaches.
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2 A boson coupled to a boson bath

2.1 Time-independent scenario

Our model [16] consists of a boson represented by the operators a, a† coupled to a bath of N different bosons represented by qi , q
†
i

i � 1, . . . , N . The non-Hermitian Hamiltonian reads

H � νNa + νNq +
√
N (g + k)a†Q +

√
N (g − k)Q†a, (2.1)

with number operators Na � a†a, Nq � ∑N
n�0 q†

nqn , Weyl algebra generators Q � ∑
n qn/

√
N , Q† � ∑

n q
†
n/

√
N and real

coupling constants ν, g, k. The PT -symmetry of the Hamiltonian is realised as PT : a, a†, qi , q
†
i → −a, −a†, −qi , −q†

i . Since
the model is non-Hermitian, we need to define a new metric in order to obtain a meaningful quantum mechanical Hilbert space or
map it to an isospectral Hermitian counterpart. The latter is achieved by using the Dyson map η � eγ (Na−Q†Q) for the similarity
transformation in the time-independent Dyson equation

h � ηHη−1 � ν(Na + Nq ) +
√
Nλ(a†Q + Q†a), (2.2)

with λ :� g2 − k2 and tanh(2γ ) � −k/g. Clearly for h to be Hermitian, we require λ > 0, which constitutes the PT -symmetric
regime, whereas λ < 0 is referred to as the spontaneously brokenPT -regime when also the eigenstates ofH are no longer eigenstates
of the PT -operator. This is seen from the change in the Dyson map, with γ /∈ R, in the relation φ � ηψ , where φ and ψ are
the eigenstates of h and H, respectively. The exceptional point is located λ � 0 in the parameter space where the stated Dyson
map becomes undefined. In order to solve the model, we can employ the Tamm–Dancoff method [17] by mapping the Hermitian
Hamiltonian to

h � W+�
†
+�+ + W−�

†
−�− (2.3)

with

W± :� ν ± √
N

√
λ, �

†
± � 1√

2

(
a† ± Q†). (2.4)

The eigensystem of h then consists of two decoupled Hermitian harmonic oscillators

h|n+, n−〉 � (
En+ + En−

)|n+, n−〉, (2.5)

where the eigenvalues and eigenstates are

En± � n±W±, |n+, n−〉 � 1√
n+! n−!

�
†n+
+ �

†n−− |0, 0〉, (2.6)

respectively, and n± ∈ N0. In the PT -symmetric regime, we restrict our parameter range here to ν ≥ √
N

√
λ in order to ensure

the boundedness of the spectrum. The Hermitian Hamiltonian h is equivalent to the Hamiltonian H in equation (2.1) as long as the
Dyson map is well-defined.

2.2 Time-dependent scenario

Next, we introduce an explicit time-dependence into our system. This can be achieved in two different ways: by allowing the
non-Hermitian Hamiltonians and the metric to be explicitly time-dependent or by allowing only the metric to be time-dependent.
An alternative, but equivalent viewpoint of these settings corresponds to restricting the domain of the system by introducing a
time-dependent boundary [13]. While the latter approach is more physically intuitive, dealing with time-dependent Dyson maps or
metric operators is technically easier and better defined. In either case, the Dyson Eq. (2.2) has to be replace by its time-dependent
version [18]

h(t) � η(t)H (t)η−1(t) + i�∂tη(t)η−1(t), (2.7)

and one needs to distinguish the non-Hermitian Hamiltonian H(t) from the instantaneous energy operator

E(t) � H (t) + i�η−1(t)∂tη(t). (2.8)

Keeping H time-independent, a solution to (2.7) for the non-Hermitian Hamiltonian in (2.1) in form of a time-dependent Dyson
map

η(t) � e−iνt(Na+Nq )−iμI (t)(a†Q+Q†a), (2.9)

and a time-dependent Hermitian Hamiltonian

h(t) � ν(Na + Nq ) + μ(t)(a†Q + Q†a), (2.10)
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were found in [16], with

μ(t) �
λ
√
N

√
c2

1 + λ

2λ + 2c2
1 sin2

[
2
√
Nλ(t + c2)

] , (2.11)

and

μI (t) � 1

2
arctan

⎧
⎨

⎩

√
c2

1 + λ
√

λ
tan

[
2
√
Nλ(t + c2)

]
⎫
⎬

⎭
. (2.12)

We have set � � 1 with c1 and c2 being real integration constants. The latter may be set to zero as it just corresponds to a shift in
time, whereas the appropriate choice of c1 is crucial since it controls in part the reality of the coefficient functions μ(t) and μI (t).

As the operator structure of the time-independent and time-dependent system are identical, they also share the same eigenstates,
where the instantaneous energy eigenvalues become

En± (t) � n±W±(t), with W±(t) � ν ± μ(t). (2.13)

At the particular times

tnc � 1

4λ
√
N

arccos

⎡

⎣1 +
2λ − √

λ

√
c2

1 + λ

c2
1

⎤

⎦ +
πn

2λ
√
N

, (2.14)

with n ∈ Z, the time-dependent system coincides with the time-independent one. These times are real in the two parameter regimes
of either PT -regime, i.e. −c2

1/3 ≤ λ ≤ 0 or 0 ≤ λ ≤ c2
1/3.

Here, we will discuss the thermodynamic properties of the time-independent and time-dependent systems in all PT -regimes,
but not in terms of microstates in bipartite systems as previously done in [16, 19]. Instead, here will look at large ensembles and
in particular focus on setting up a Carnot cycle and a new cycle moving along different thermodynamic paths. In general, quantum
thermodynamic properties for non-Hermitian systems have been discussed previously in [14, 15, 20–22].

3 Carnot (TS) versus Stirling (Tλ) cycles

The quantum mechanical partition function for canonical ensembles is calculated in a standard fashion for our time-independent
model (2.1) as

Z (T , ν, λ) �trρh �
∑

n±
〈n+, n−|ρh |n+, n−〉

� eν/T

4 sinh(W+/2T ) sinh(W−/2T )
, (3.1)

with ρh � e−βh , β � 1/T . From this expression, we may compute all thermodynamic quantities that are of interest here. The
Helmholtz free energy, internal energy and entropy result in

F(T , ν, λ) � − T ln Z (T , ν, λ), (3.2)

U (T , ν, λ) �T 2

Z

dZ

dT
� tr(hρh)

trρh
(3.3)

� 1

2

[

W− coth
W−
2T

+ W+ coth
W−
2T

− 2ν

]

,

S(T , ν, λ) � −dF

dT

∣
∣
∣
∣
λ

� ln Z +
U

T
, (3.4)

respectively. The behaviour of these quantities as functions of temperature, displayed in Fig. 1, is qualitatively different in the two
PT -regimes discussed here.

We find that in the PT -symmetric regime the internal energy, as well as the entropy, behave in a standard fashion with the latter
being a monotonously increasing function. Remarkably, the energy has been mended as it is also real in the spontaneously broken
PT -symmetric regime. This is due to the fact that the complex energies always come in complex conjugate pairs so that their
combined contribution in the ensemble always gives a real contribution. In the low-temperature regimes, we observe oscillatory
behaviour for both quantities, whereas for large temperatures, the asymptotic behaviour is similar to the one in the PT -symmetric
regime, with limT→∞ U (T ) ∼ 2T and limT→∞ S(T ) ∼ 2 ln T .
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Fig. 1 Internal energy U panels (a, b) and entropy panels S (c, d) as a function of temperature T at different values of λ in the PT -symmetric (left) and in
the spontaneously broken PT -regime

We also notice that while the entropy is positive and strictly increasing in the PT -symmetric regime, it becomes negative and
oscillating in the low-temperature regime of the spontaneously broken PT -regime. Thus, the second law of thermodynamics appears
to be broken. In Sect. 4, we discuss how this may be rectified.

We can exploit these features to set up a new type of thermodynamic cycle along a different path and compare with the conventional
Carnot cycle in the two PT -regimes which is identified in Figs. 2 and 3 in form of a dashed rectangle. In general, the Carnot cycle
is defined as a four step process consisting of an isothermal expansion (1 → 2), an isentropic expansion (2 → 3), a subsequent
isothermal compression (3 → 4) and an isentropic compression (4 → 1).

In our example in the spontaneously broken PT -regime, these steps can be realised by a suitable tuning of the parameters at our
disposal. We have: step 1 → 2 : change λ1 to λ2, step 2 → 3 : change ν as a function of T along the line S(T ) � S2 for constant λ

as indicated in the top inset of Fig. 2, step 3 → 4 : change λ2 to λ1 and finally in step 4 → 1 : change ν as a function of T along
the line S(T ) � S1 for constant λ as indicated in the top inset of Fig. 2.

Notice that the steps 2 → 3 and 4 → 1 along the isentropes cannot be realised by varying λ as a function of T for constant ν.
The multi-valuedness of λ(T ) which makes this impossible can be seen in the contour plot in the lower inset in Fig. 2. However, in
the broken PT -symmetric regime, we also have a second option at our disposal to connect the point 2 with 3 and 4 with 1. Instead
of keeping λ fixed and varying ν along the isentropic, we can keep both λ and ν fixed with only varying the temperature, i.e. we
connect the points along the iso-λ and iso-ν lines. This is the new thermodynamic cycle we propose.

The cycle can almost be interpreted as an analogue to the Stirling cycle: Seeking out conjugate pairs of variables in parameter
space we may interpret λ as the volume and pair it as usual with the pressure p. Keeping ν constant, the total differential of the
Helmholtz free energy then acquires the form

dF � −SdT − pdλ, (3.5)

such that

p � −∂F

∂λ

∣
∣
∣
∣
T

�
√
N sinh

(√
λ
√
N

T

)

√
λ
[
2 cosh

(
ν
T

) − 2 cosh
(√

λ
√
N

T

)] . (3.6)
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Table 1 Contributions to the work
Wi j , heat Qi j and internal
energy Ui j for different steps
i → j in the Tλ-cycle

Tλ-cycle Wi j Qi j Ui j

1 → 2 2.1172 33.6174 31.5002
2 → 3 0 0.1054 0.1054
3 → 4 0.2065 –31.4415 –31.6480
4 → 1 0 0.0424 0.0424
∮
�2 2.3238 2.3238 0

We can then interpret the thermodynamic processes in the new cycle as: 1 → 2: isothermal heat addition, 2 → 3: isochoric (iso-λ)
heat addition, 3 → 4: isothermal heat removal and 4 → 1: isochoric (iso-λ) heat addition. Notice that our cycle differs from a
standard Stirling cycle in step 2 → 3, where instead of removing heat we are adding heat.

As seen in Fig. 1 panels (c) and (d), it is crucial to note that in the PT -symmetric regime and the high temperature regime of
the spontaneously broken PT - regime two points with the same entropy always have different values for λ when ν is fixed or vice
versa, since the entropy is monotonously increasing. Hence, the proposed cycle cannot manifest in those regimes.

A necessary condition for the cycle, as depicted in Fig. 2, to manifest, is the existence of solutions to the two equations

S(T1, ν, λ1, N ) �S(T2, ν, λ1, N ) � S1, (3.7)

S(T1, ν, λ2, N ) �S(T2, ν, λ2, N ) � S2 (3.8)

for T1 and T2 with given N , ν, λ1, λ2. Our numerical solutions for these equations are reported in the captions of Fig. 2. Notice that
it is by no means guaranteed that for a given set of parameters real solutions to (3.7) and (3.8) exist and that even an ideal Carnot
cycle can be realised. In the PT -symmetric regime, no such solution exists. The fact that we found a solution to vary along the
isentropics with a single parameter, i.e. ν, is also not guaranteed in all parameter settings.

The newly proposed cycle does indeed beat the Carnot cycle in the sense that the amount of total energy transferred as work W
during the cycle as well as its efficiency are larger than in the Carnot cycle. To see that we calculate the work Wi j as the heat Qi j

transferred minus the internal energy Ui j for each of the steps i → j

Wi j � Qi j − Ui j , (3.9)

where Qi j � ∫ S j
Si

T dS, Wi j � ∫ λ j
λi

pdλ, with the pressure p identified in (3.6), and Ui j � Uj − Ui . This means we are
adopting here the conventions Q > 0 (Q < 0) for heat absorbed (released) by the system and W > 0 (W < 0) for work
done by (put into) the system. The numerical values for our example are reported in Table 1:

Here, each column is computed separately and the assembled results confirm the relation (3.9). We obtain the values U1 �
−14.0513, U2 � 17.4488, U3 � 17.5543, U4 � −14.0937 from (3.3). We denote the path along the dashed rectangle in Fig. 2
as �1 and �2 as the path that differs from �1 in the verticals by tracing over the arches above and below the segments 23 and 41,
respectively. The internal energy is vanishing along any closed loop and therefore does not contribute to the total work. Hence, in
our Tλ-cycle the heat is directly converted into work

WTλ �
∮

�2

T dS � 2.3238. (3.10)

The efficiency, defined in general as the total work done by the system divided by the heat transferred into it, results for our cycle to

ηTλ � WTλ

Q12 + Q23 + Q41
� 0.0688. (3.11)

At first, we compare this to the efficiency of the Stirling cycle in an ideal gas

ηStirling � R(T2 − T1)

RT2 + cv(T2 − T1)/ ln λ2/λ1
(3.12)

withR denoting the ideal gas constant and cv the specific heat. With a typical value of cv � 5/4R for air this yields ηStirling � 0.05503
and if we want to match the expression with ηTλ we would require a negative specific heat of cv � −0.4516R. Evidently, this means
our system is far from an ideal gas.

Next, we compare with the Carnot cycle as indicated in Fig. 2. We report once more the individual contributions in a Table 2:
Thus, the total work done by the system is

WCarnot �
∮

�1

dQ −
∮

�1

dU

�
∮

�1

T dS � (T2 − T1)(S2 − S1) � 2.1760, (3.13)

123



  733 Page 6 of 9 Eur. Phys. J. Plus         (2024) 139:733 

Table 2 Contributions to the work
Wi j , heat Qi j and internal
energy Ui j for different steps
i → j in the standard Carnot cycle

TS cycle Wi j Qi j Ui j

1 → 2 2.1172 33.6174 31.5002
2 → 3 – 0.1054 0 0.1054
3 → 4 0.2065 – 31.4415 – 31.6480
4 → 1 – 0.0424 0 0.0424
∮
�1 2.1760 2.1760 0

Fig. 2 Entropy as a function of
temperature in the spontaneously
broken PT -regime with a Carnot
(dashed lines) and new type of
thermodynamic cycle. We kept the
size of the bath fixed with
N � 160. For the chosen
parameters, we obtain as solutions
of (3.7), (3.8) the temperatures
T1 � 5.53240, T2 � 5.91528 and
entropies S1 � −2.51338 and
S2 � 3.16977. The top inset
shows how to vary ν from T2 to T1
as a function of T and vice versa
along constant entropies. The
lower inset shows a contour plot
of the entropy in the λT-plane

Fig. 3 Entropy as a function of
temperature in the PT -symmetric
regime with a Carnot
thermodynamic cycle (dashed
lines). The size of the bath is
N � 120 and ν � 25. The Carnot
cycle is constructed between the
temperatures T1 � 35.5489,
T2 � 88.4576 and entropies
S1 � 4.7726 and S2 � 6. The
inset shows how to vary λ from T2
to T1 as a function of T and vice
versa along the constant entropies
S2 and S1, respectively

which is smaller than the work done by the Tλ-cycle (3.10). The efficiency is obtained in this case as

ηCarnot � WCarnot

12
� 1 − T1

T2
� 0.06473, (3.14)

which is also smaller than the one obtained for the Tλ-cycle (3.11).
In comparison, in the PT -symmetric regime, any Carnot cycle must connect four different values of λ or ν for fixed ν or λ,

respectively. This is seen in Fig. 3 for the first case. A similar Figure can be constructed by varying ν for fixed λ. Thus, the new
cycle we proposed for the spontaneously broken PT -regime cannot manifest in the PT -symmetric regime. A further difference
is that when ν is kept fixed we cannot vary λ along an isentropic line in the spontaneously broken PT -regime, whereas in the
PT -symmetric regime we have to vary λ to stay on the isentropic.

123



Eur. Phys. J. Plus         (2024) 139:733 Page 7 of 9   733 

Fig. 4 Panel a Contours of constant entropy in the spontaneously broken PT -symmetric regime in the Tt-plane for N � 160, ν � 12, λ � −24 and
c1 � 4.75. The dashed lines display the values of constant S1 as specified in Fig. 2. The red dots indicate S1 � S(T1, t1) � S(T2, t2) with t1 � 0.0023241,
t2 � 0.0023532 or t ′2 � 0.0028210, t ′1 � 0.0028501. Panel b Contours of constant entropy in the PT -symmetric regime in the Tt-plane for N � 120,
ν � 25, λ � 4.5 and c1 � 6. The dashed lines display the values of constant S1 as specified in Fig. 1. The red dots indicate S1 � S(T1, t1) � S(T2, t2) with
t1 � 0.0025630 and t2 � 0.0053601

Next, we carry out a similar analysis for the time-dependent system. The thermodynamic quantities can be computed in almost the
same manner as in (3.1)–(3.4), with the difference that the time-dependence is introduced by replacing the functions W± in (2.6) by
their time-dependent versions W±(t) from (2.13). For fixed values of time, we obtain a similar behaviour as in the time-independent
case and as pointed out in (2.14), for some values of time this becomes even identical.

The novel option we have in the time-dependent case is that we can keep all the model parameters fixed and let the system evolve
with time. An example of such an evolution in the spontaneously broken PT -symmetric regime is seen in Fig. 4, where we depict
contours of constant entropy in the temperature-time plane. We observe that there exist plenty of timelines along the constant entropy
contour S(T ) � S1, displayed as dashed black lines. After changing from λ1 to λ2, a similar Figure can be obtained for S(T ) � S2.
Thus, for the time-dependent system in the broken regime, we may lower or increase the temperature along the isentropics by letting
the system evolve in time, which means there exists yet another possibility to manifest the steps 2 → 3 and 4 → 1 in the Carnot
cycle. We note that the timescales involved for this process are extremely short, e.g. for the sample values in Fig. 4 panel (a) we
have t :� t2 − t1 � t ′1 − t ′2 � 0.0000291.

We compare these finding now with the time evolution in the PT -symmetric regime. As seen in Fig. 4 panel (b), unlike as in
the time-independent regime, we have now the option to connect points at different temperatures for the same value of λ along an
isentropic. Thus, in principle, we could modify the Carnot cycle displayed in Fig. 3 and set it up between just two values of λ, similar
as for the broken regime. However, the time evolution is always increasing the temperature, which is fine for the 4 → 1 step, but
for the step 2 → 3 we need to lower the temperature which would require time to run backwards. Hence, a Carnot cycle between
two values of λ does not exist in the PT -symmetric regime.

4 First-order phase transition

The observed behaviour in the spontaneously broken PT regime suggests that various fundamental principles of thermodynamics
are apparently violated. The pressure (3.6) exhibits regions in which it increases with volume λ, thus breaking the condition for
stability of a thermodynamic system in equilibrium. Moreover, in Fig. 1, we observe that the entropy does not only take on negative
values, but may even decrease so that the second law of thermodynamics is broken. It is these features that allow to set up the
proposed cycle.

We may overcome the aforementioned breaches by viewing the system of being in a heterogeneous rather than a homogeneous
phase. Insight into the existence and stability properties of homogeneous and heterogeneous states can be obtained from the
Maxwell construction and subsequent spinodal decomposition [23]. First, we observe from the expression of the pressure (3.6) that
the Helmholtz free energy has infinitely many minima at λ

(2n)
0 in the spontaneously broken PT -regime, where

λ
(n)
0 � −n2π2T 2

N
, n ∈ Z, (4.1)

denotes the zeros of p(λ). Thus, we have infinitely many homogeneous equilibrium states in that situation and expect therefore
first-order phase transitions to occur.
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Fig. 5 Helmholtz free energy for
the homogeneous states F(λ) as
functions of the volume λ in the
spontaneously broken PT -regime
at sample constant temperatures
T . The Helmholtz free energy for
the heterogeneous states Fhet(λ) is
indicated as red line for T � 5.
The binodal region and the
spinodal region are bounded by
λ1, λ2 and the inflection points
λ̃1, λ̃2, respectively. The binodal
lines (dotted black) and spinodal
lines (dashed lines) are obtained
by varying the temperature T ,
intersecting at the critical
temperature Tcrit

At first, we identify the Maxwell line marking the constant pressure of the heterogeneous states. We easily find that the λ-axis
constitutes the Maxwell line, i.e. pMax � 0, since the areas above and below the isotherms are the same for all temperatures T

I (n) :�
λ

(n)
0∫

λ
(n−1)
0

p(λ)dλ � T log

{
cos[(n − 1)π] − cosh ν

T

cos[nπ] − cosh ν
T

}

, (4.2)

where n ∈ N. Thus we have I (n) � −I (n+1).
Following [23], we next carry out a spinodal decomposition in order to identify the unstable regions and the critical temperature.

First, we identify the line of heterogeneous states in which the two phases exist together in different proportions

n1 � λ2 − λ

λ2 − λ1
, and n2 � λ − λ1

λ2 − λ1
. (4.3)

Denoting by λ1 � λ
(2n)
0 and λ2 � λ

(2n+2)
0 two next but one zeros, we can split up the Helmholtz free energy for these states in this

binodal region [λ1, λ2] into a contribution from each of the components according to the so-called lever rule as

Fhet(λ) � n1F(λ1) + n2F(λ2). (4.4)

Keeping the temperature constant, we obtain from relation (3.6)

F(λ1) − F(λ2) � −
∫ λ2

λ1

p1,2 � (λ1 − λ2)p1,2, (4.5)

where p1, 2 denotes the pressure on the Maxwell line. Since in our case we have found p1, 2 � pMax � 0, it follows that F(λ1) � F(λ2)
and therefore Fhet(λ) � F(λ1). In the binodal region, Fhet(λ) is always lower than the homogeneous free energy F(λ), as seen in
figure 5 for the particular temperature T � 5, where Fhet(λ) is the common tangent to the minima at F(λ1) and F(λ2). In the
spinodal region [λ̃1, λ̃2] the homogeneous states are known to be unstable so that all states will transition to heterogeneous states,
whereas in the complement of the binodal region, i.e. [λ1, λ̃1] and [λ2, λ̃2], the homogeneous states are known to be metastable, that
is stable with respect to infinitesimal perturbations but unstable against finite perturbations. The intersection point of the binodal
and spinodal lines is identified as the critical temperature Tcrit, where the minima and inflection points coincide. In our case we find

Tcrit � 0. (4.6)

This means in the spontaneously broken PT -regime we can employ the Maxwell construction for any temperature. Notice further
that these regions repeat periodically as functions of the volume λ.

Furthermore, for the heterogeneous system we also find that P(T ) � 0 so that by dS � (∂p/∂T )|λdλ it follow that the entropy is
vanishing throughout the broken PT -regime. Hence, when viewing the system as consisting of two phases none of the fundamental
axioms of thermodynamics are broken.

5 Conclusion, summary, outlook

Our main result is that in the low-temperature regime of an ensemble build on a non-Hermitian Hamiltonian system in the spon-
taneously broken PT -regime three new options exist to connect two values of the entropy at different temperatures that do not
manifest in the other regimes: One can connect these points by a) by varying ν as a function of temperature at constant entropy
and λ, b) by varying the entropy as a function of temperature at constant λ and ν, c) by varying the temperature as a function of
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time at constant entropy, λ and ν. The possibility a) can be employed in an ideal Carnot cycle, whereas the possibilities b) and c)
allow to set up a new type of cycle along an isochoric path. The new cycle has a better efficiency than the Carnot cycle. The nature
of the paths in the new cycle resembles a Stirling cycle apart from step 2 → 3, but its efficiency is quite different from setting up
the latter in an ideal gas. Thus, our results appear to contradict a claim made in [22] that the classical Carnot bound holds in both
PT -symmetric regimes. Other possibilities to break the bound were previously found for a Hermitian time-dependent harmonic
oscillator coupled to a squeezed thermal reservoir [24]. Such type of systems maybe realised experimentally by confining ions in
linear Paul traps with tapered geometry and coupling it to specially designed laser reservoirs [25]. However, as discussed in Sect. 4,
the system will undergo a first-order phase transition and should be seen as being composed of two phases. As a consequence, the
entropy vanishes throughout the spontaneously broken PT regime. Thus, the cycle cannot be set up. Since the existence of the
new cycle would imply the violation of various fundamental axioms of thermodynamics, one may take this an endorsement for the
first-order phase transition to take place. Accepting this mechanism, we found for our model that the entropy is vanishing throughout
the spontaneously broken PT -regime.

Naturally, there are several open issues left to explore in future work. We conjecture that the observed features in our model,
i.e. the signs of the heat supply or removal in the steps i → j and the efficiency gain when compared to the Carnot cycle for the
proposed cycle are universally occurring in the spontaneously broken PT -regimes of non-Hermitian systems. However, to confirm
this, one needs to explore more examples and ultimately identify more generic model-independent mechanisms. While these details
belong to a process that appears to be unphysical, it seems to be more interesting to explore further the features of the occurring
first-order phase transition in different type of non-Hermitian systems in the spontaneously broken PT -regime. In particular, the
question of whether the entropy in the spontaneously broken PT -regime is always zero remains to be answered in more generality.

Data Availability Statement No data associated in the manuscript.
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