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Abstract
Automatic 3D object detection using monocular cameras presents significant challenges in the context of autonomous driving.
Precise labeling of 3D object scales requires accurate spatial information, which is difficult to obtain from a single image due
to the inherent lack of depth information in monocular images, compared to LiDAR data. In this paper, we propose a novel
approach to address this issue by enhancing deep neural networks with depth information for monocular 3D object detection.
The proposedmethod comprises three key components: 1)Feature Enhancement PyramidModule:We extend the conventional
Feature Pyramid Networks (FPN) by introducing a feature enhancement pyramid network. This module fuses feature maps
from the original pyramid and captures contextual correlations across multiple scales. To increase the connectivity between
low-level and high-level features, additional pathways are incorporated. 2)Auxiliary Dense Depth Estimator: We introduce
an auxiliary dense depth estimator that generates dense depth maps to enhance the spatial perception capabilities of the deep
networkmodel without adding computational burden. 3)Augmented Center Depth Regression: To aid center depth estimation,
we employ additional bounding box vertex depth regression based on geometry. Our experimental results demonstrate the
superiority of the proposed technique over existing competitive methods reported in the literature. The approach showcases
remarkable performance improvements in monocular 3D object detection, making it a promising solution for autonomous
driving applications.

Keywords 3D Object detection · Autonomous driving · Machine learning

1 Introduction

Autonomous driving is an evolving research topic, with
object detection being a key technology alongside planning
and guidance systems [1–4]. Existing works in 2D object
detection such as [5–9] have made significant progress in
recent years. However, 3D attributes as location, size, ori-
entation are required for more precise and safety-guaranteed
applications like autonomous driving. Therefore research on
deep learning based 3D object detection has gained popu-
larity. Classically, existing 3D object detection approaches
are based on LiDAR sensor data or RGB images. State-of-
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the-art methods [10–12] rely on the accurate depth infor-
mation provided by LiDAR point clouds. While achieving
descent performance, their implementations are expensive
and computational demanding. In order to propose attractive
solutions which are characterized by low hardware-costing,
low-computational and flexible deployment implementation,
monocular 3Dobject detectionmethods [13, 14] are explored
with impressive progress in prediction accuracy relying on
consistency between 2D detection and 3D detection priors.
However, the performance is still far from satisfaction due to
the natural drawback of image data compared to LiDAR data
although the latter lacks of spatial information. Ma et al. [15]
uses an independent depth estimator to reconstruct 3D point
cloud as an enhanced input representation. The data from 2D
detection deep neural network and depth generator are fused
and then sent to the 3D detector, which makes the framework
miscellaneous. Nevertheless, regressing depth from monoc-
ular images is a challenging computer vision problem. Errors
in depth estimation heavily affect the detection precision of
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methods that depend on accurate depth, therefore it becomes
the major reason for the performance gaps between pseudo-
LiDAR and LiDAR-based detectors.

Besides focusing on the detector framework, recent
research shows interest in feature extraction for better per-
formance. Among these works, FPN [16] is an effective
framework that is adopted by many solutions as their fea-
ture extractor for object detection. In Convolutional Neural
Networks (CNNs), the network depths correspond to differ-
ent levels of semantic features. The small network has high
resolution and learns more detailed features, while the deep
network has low resolution and learns more semantic fea-
tures. FPN proposes a feature fusion method using different
resolutions. The feature maps of high resolution, and the up-
sampled low-resolution features are element-wise added, so
that the features of different levels are enhanced. Since this
method only performs cross-layer connection and element-
wise summation on the basis of the network, the increase
of calculation is minor, while with an excellent performance
improvement. Furthermore, PANet [17] finds the long path
from low-level structure to topmost features, increases the
difficulty to access accurate localization information. Zhang
et al. [18] further explores the inner connection among the
feature pyramids and proposes to gather these information
and fuse them into one feature.

In this paper, we propose a 3D object detector that utilises
enhanced depth information to locate the object positions.
We adopt VoVNet−v2 [50] as the backbone connected to a
feature pyramid structure. The estimation of an object’s 3D
location is classically decoupled to the 2D center with an
offset to the projected 3D center, and its depth [19]. Rather
than estimating single depth for each object, we propose an
additional branch to regress vertex depths assisting the cen-
ter depth formatting. We model the uncertainties of vertices
depth estimation and direct regression, then formulate the
final estimation as a confidence-weighted average estima-
tion problem. The proposed combination allows the model
to flexibly choose more suitable estimators for robust and
accurate predictions. Although our vertex depth estimator
provides improvement to object locating, it does not change
the ill-posed nature of point depth prediction, which is lack-
ing contextual information from surrounding pixels in the
regression mechanism. To this end, we introduce our auxil-
iary dense depth estimator that updates the parameters in
the feature extractor (the VoVNet backbone and the fea-
ture enhancement pyramid module) which effectively assists
point depth prediction. During inference time, we remove
ADDE and not use it to avoid increasing computational bur-
den. To further boost the detection accuracy from the source
feature, we design an efficient feature enhancement pyramid
module that captures the intact global contextual information
from all feature levels.

We train and evaluate our model on the popular dataset
NuScenes [20]. As this dataset only provides center depth
ground truth and to generate the additional ground truth data
we need for the validation of our method, we exploit the
existing label attributes and the geometry constraints among
them. The dense ground truth depths are created by LiDAR
point cloud projections.

Our paper makes several key contributions, which can be
summarized as follows:

1. We introduce a novel auxiliary dense depth estimator
to enhance the model’s perception of depth information.
This auxiliarymodule effectively improves depth estima-
tion capabilities without adding excessive computational
burden, making our overall model lightweight and effi-
cient.

2. To achieve more accurate depth estimation, we design an
augmented center depth module. This module dynami-
cally combines the outputs from the fundamental center
depth predictor and the vertex depth estimator, resulting
in more robust and precise depth predictions.

3. Our proposed feature enhancement pyramid module sig-
nificantly enhances the contextual representation of the
model. The module effectively fuses feature maps from
the original pyramid, capturing contextual correlations
across multiple scales. Additionally, it facilitates seam-
less integration into other detectors, leading to improved
performance for various object detection tasks.
Overall, extensive evaluations on the widely-used bench-
mark dataset, NuScenes, demonstrate the effectiveness of
our algorithm when compared to state-of-the-art meth-
ods.

2 RelatedWork

2.1 Monocular 3D Object Detection

In recent years, many researchers develop 3D object detec-
tion based on camera feeds for the convenience of low-cost
deployment compared to LiDAR based methods. Most of
the previous approaches adopt additional networks in their
architectures or auxiliary labelling data, such as keypoints,
CADmodels, instance segmentation or even the use of stereo
cameras feed. Monocular 3D detection is more challenging
due to the natural limitation of acquiring reliable 3D informa-
tion based on a single image. To tackle this problem, RTM3D
[14] predicts the keypoints of the 3D bounding box and addi-
tional properties while realizing real-time performance. Liu
et al. [21] uses geometrical heuristics based on the assump-
tion that the objects are always on the ground plane. Prior
3D shapes of vehicles are also leveraged to reconstruct the
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bounding box for autonomous driving. One of the pioneers,
Deep MANTA [22], reconstructs 3D object information uti-
lizing 2D keypoints and template similarities from 3D CAD
models. Ansari et al. [23] accomplishes 3D reconstruction
of vehicles on uneven roads based on monocular camera.
The core of this framework is to estimate the 3D shape and
6DOFpose from themonocular image. 3D-RCNN[10] based
on R-CNN can predict the shape, attitude and size attributes
of the vehicles, and render the scene at the same time. The
obtained mask performs ”render-and-compare” loss calcu-
lation with the ground truth depth map. MonoGRNet [24]
regresses the 3D center points, the rough instance depths
and the approximate 3D positions. This work highlights the
difference between the 2D bbox center and the projected
3D bbox center to the 2D image. The projected 3D center
point can be considered as an additional keypoint. Inspired
by “2D proposal generation” methods, Mono3D [25] filters
low-confidence bounding box proposals based on predefined
priors (e.g. shape, height, location) to reduce the searching
space. Qin et al. [26], on the other hand, uses an additional
network to estimate the confidence map to filter meaning-
less proposals. However, these frameworks inevitably face
a huge computational burden despite the reduced propos-
als they adopt. To this end, single-stage methods propose
to directly predict classes and regress other components of
the 3D boxes from each feature position, in a similar way
of semantic segmentation. Groomed-NMS [27] proposes a
detector that generates both 2D anchors and 3D anchors for
the given images. The anchor generation is highly related
to its class label. CenterNet [28] in particular, utilizes key-
point estimation tofind the center point and several regression
heads are used to estimate the other attributes of the object,
including depth, size, and orientation. Monopair [29] gets
inspiration from CenterNet, and improves the final detection
results via the spatial relationship betweenpairs of cars.Com-
pared to CenterNet, the 3D bbox is directly predicted, and
the constraint points between virtual pairs of matching cars
are also predicted. In order to complete the spatial informa-
tion, [30] proposes to use input from stereo camera and fuse
the feature for proposal generation. The stereo image feeds
allow the network to better learns the depth hints. Xu and
Chen [31] uses a multi-modal framework to fuse the depth
feature from a single depth estimator and the RGB feature to
capture the spatial cues. Haq et al. [32] utilizes the discrete
depth and orientation representation to predict the 3D bound-
ing boxes. An additional segmentation heatmap sub-network
is applied for center point regression, reducing the detection
offset significantly. Wang et al. [33] further extends the idea
with a fusion strategy by embedding dynamic weights and
affinity to combine depth features and RGB features in mul-
tiple network layers. Clearly, these methods could improve
the accuracy of the detection, but they are computationally
demanding with extra networks and labelled data.

2.2 Feature Pyramid

Exploration of using features from different deep neural net-
work layers for computer vision tasks has beenmade through
the years. LRR [13] fuses feature maps to get more details
for semantic segmentation. Fully Connected Network (FCN)
[34], U-Net [35] aggregate information from lower layers
through simple skip-connections. TDM [36] constructs a
top-down path with lateral connections and takes the high-
est resolution fused feature map for object detection. SSD
[37], DSSD [38], MS-CNN [10] choose to infer from sev-
eral feature levels. FPN [16] combines their advantages and
becomes a widely used feature extractor for many object
detectors. Optimizations have also been made based on the
FPN framework. PANet [17] creates a bottom-up path aug-
mentation based on FPN. It aims to shorten the information
path and uses the precise positioning information stored in
the low-level feature to improve the feature pyramid architec-
ture. ThunderNet [39] up-samples and broadcasts low-level
features and fuses them into one detection head. AugFPN
[40] proposes consistency supervision to narrow the seman-
tic gaps between features at different levels. For features of
various sizes, it introduces adaptive spatial fusion. Same as
ThunderNet, the detection head only contains a final feature
fusion.

2.3 Contextual Dependency

Various studies have illustrated the impact of the contex-
tual information on deep learning based computer vision
problems including semantic segmentation [41, 42] as well
as object detection [43]. Squeeze-and-Excitation Networks
[44] uses spatial-wise average pooling, and two fully-connect
layers to model the channel-wise relationships by atten-
tion mechanism, reinforcing the representational capability
of the model. The self-attention method ”Non-local mod-
ule” [45] is followed by OCNet [18] and DANet [46], to
calculate the contextual information. EPSANet [47] har-
vests attention map from different sized features pyramid.
FAN [48] uses fusion attention which contains channel-wise
and spatial-wise aggregation. A pyramid pooling technique
is also proposed for computation reduction while the per-
formance is guaranteed. CCNet [49] markedly reduces the
parameters and the complexity of the non-local module
through the computation of the partial dependencies. By
repeating the attention module, it achieves a promising per-
formance.

3 Methodology

3.1 Framework Overview

Figure 1 illustrates our proposed model, which mainly con-
sists of four sections: the backbone, the FeatureEnhancement
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Fig. 1 Overview of our framework. The features are first extracted
from input by the backbone and processed by our feature enhancement
pyramid module, which can be seen as a redesigned FPN. This FEPM

utilize the asymmetric fusion module to strengthen the representation
of feature pyramids. The multi-head detector shares parameters from
the backbone and FEPM to regress the bounding boxes

Pyramid Module (FEPM), the auxiliary dense depth estima-
tion, and the 3D detection heads.

We exploit VoVNet−v2 [50] as our backbone network,
and take the features from the last four layers as the orig-
inal feature pyramid. The FEPM module is designed to
generate contextual enhanced features from different scales,
while several convolution and combination operations are
applied to reverse the fusion feature back into pyramids.
Then, with the feature pyramid, the auxiliary dense depth
estimator (ADDE) will be trained to regress the dense depth
maps, updating all the parameters in backbone and FEPM.
Finally, we remove the depth estimator and replace it with
3D object detectors to train the multi-task branches includ-
ing augmented center depth estimation (ACDE) with vertex
depth estimation inside.

3.2 Feature Enhancement PyramidModule

FPN is widely used in 3D object detection tasks. It uses
feature maps of different resolutions, generated by interme-
diate layers, to build a feature pyramid. In order to make up
for both high-level and low-level features, FPN integrates
the multi-scale context information, fusing features at differ-
ent levels by skip-connections and element-wise summation.
Although FPN achieves great improvement, there is still
space to make it more effective. To that end, by implement-
ing the asymmetric fusion module, our FEPM framework
further enhances the network with the identifying capability
of large instances in higher level features and the contextual

dependencies of all levels. First of all, unlike FPN,we rebuild
the feature hierarchy by only applying lateral connections to
feature maps from the last 4 layers of the backbone network,
denoted as Mi ∈ Hi × Wi × Ci , i = 1, 2, 3, 4 as shown in
Fig. 2. Each lateral connection consists of a 1 × 1 convo-
lution layer, and reduces the channel number of all feature
levels to C , resulting in Mi ∈ Hi × Wi × C, i = 1, 2, 3, 4.
Note that this operation does not include skip-connections
between backbone features and pyramid features. To make
the most of the feature pyramid, we further down-sample
M4 to get M5. Here, we introduce our asymmetric fusion
block. The asymmetric fusion module we propose as part of
the FPN, gathers information from the feature pyramid and
generates an enhanced feature map. Then enhanced feature
map is recovered back to the pyramid through lateral feature
aggregation for detection heads.As shown in Figs. 3 and 4(a),
we reshape all the feature maps from Mi ∈ Hi × Wi × C
into Vi ∈ Ni × C , where Ni = Hi × Wi , i = 1, 2, ..., 5. In
self-attention mechanism, Key, Query and Value vectors are
used to model the correlation of the features. We concate-
nate V4, V5, resulting in size (N4 + N5) × C and take the
concatenated features as Value and Key vectors. Similarly,
V3 is taken as query vector. Then we operate a matrix multi-
plication between the Query and transposed Key to obtain:

S = Query × KeyT (1)

with Query=V3, ∈ (N3×C) and KeyT =(cat(V4, V5))T ,
∈ (C × (N4 + N5)) and where S is the similarity matrix,
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Fig. 2 Overview of the feature
enhancement pyramid module

demonstrating the degrees of correlation between each posi-
tion in query andkey.Note that the size of S∈N3×(N4+N5).
After that, we apply a SoftMax layer on S to calculate the
attention map A ∈ N3 × (N4 + N5). Then, a matrix multi-
plication is performed between the matrix A and the value
vector we generated above to obtain:

M
′ = A × Value (2)

where Value equals to Key and M
′
has the size of N3 × C ,

same as M3. Finally, the output Y1 of fusion block 1
containing rich contextual information is obtained by an
element-wise sum operation between feature map M3 and
the calculated M

′
:

Y1(H ,W ) = γ M
′
H ,W + M3(H ,W ) (3)

Where H ,W specify each position in Y1, M
′
, M3. M3 is the

original feature map before reshaping and γ is a learning
scale parameter. It is initialized as 0 and gradually learns to
increase with more weight, [51]. By adding the original fea-
ture to contextual information,we enhance the representation
capacity of our network. Using Eqs. 1 and 2, we implement
the same operations on V1 and V2 to obtain the enhanced
feature Y2 with the difference that Query = V1, Key = V2
and Value = V2. Y2 is the output of fusion block 2 using
(3). Y1 and Y2 are then used to calculate fusion block 3 out-
put E1 ∈ H1 × W1 × C , which is the final enhanced feature
map. Note that he order of value, key and query assignments
to intermediate layers are fixed to get the E1 the same size
as M1. In the last step of our FEPM module, lateral feature
aggregation, as shown in Fig. 4(b), is performed. The aggre-

gation first takes the enhanced feature map E1 and a coarser
map M2 through lateral connection and generates the new
feature map E2. Specifically, E1 first goes through a 3 × 3
convolutional layers with stride 2 to reduce the spatial size.
Then each element of the original feature map M2 and the
down-sampled enhanced map are added through lateral con-
nection. The fused feature map E2 is then manipulated by
another 3 × 3 convolutional layer to generate E3 for the fol-
lowing sub-blocks. This is an iterative process and terminates
after obtaining the enhanced feature map E5. All convolu-
tional layers are followed by a ReLU [52]. Through lateral
feature aggregations, the enhanced featuremaps are obtained
as a new enhanced feature map pyramid E1, E2, E3, E4, E5

that is ready to use by the detection heads.
Compared to only using skip-connections to combine

the information from different scales in traditional Feature
Pyramid Network, our method gathers the information by
applying the asymmetric attention mechanism. We calculate
the correlation of two high-level featuremaps and another for
three low-level feature maps, and then get a global feature
map with enhanced the contextual information by execute
the same operation on the two outcomes from before.

3.3 Auxiliary Dense Depth Estimation (ADDE)

One of the draw-back ofmonocular 3D object detection is the
inaccurate depth estimation. As the dataset we plan to use,
NuSenes, does not considermonocular depth prediction task,
we generate depth ground truth from the LiDAR point cloud
projection to each camera view-angle. In the proposed Aux-
iliary Dense Depth Estimating (ADDE) module, per-pixel
depth predictions are implemented on all levels of feature

Fig. 3 Asymmetric Fusion
Module

123



  101 Page 6 of 16 Journal of Intelligent & Robotic Systems          (2024) 110:101 

Fig. 4 (a) Fusion block and (b)
Lateral Feature Aggregation,
i = 1, 2, 3, 4

maps obtained in Feature Enhancement Pyramid Module.
Figure 1 details the architecture of the proposedADDE. Each
feature level is connected to a convolutional layer, followed
by two transposed convolutional layers. We use extra ReLU
and batch normalization layers for fast converging. Then, the
ADDE network is updated byminimizing the inverse smooth
L1 norm loss function below:

�(d, p) =
w∗h∑

n=1

ln (4)

with

ln =
{
0.5(dn − pn)2/beta if |dn − pn| < beta

|dn − pn| − 0.5 ∗ beta otherwise
(5)

where d is the ground truth depth and p represents the inverse
predicted depth values in each position of (width, height).
Instead of directly predicting the depth, we regress the log of
it,which is p = edpredict . As it can be seen inFig. 1, theADDE
and the augmented center depth estimator (Center Depth and
Vertex Depth) share the same backbone and feature pyramid
network. During training, the depth predicting capability of
the auxiliary dense depth estimator allows us to better regress
the augmented center depth, while also benefits other targets
learning in the framework solution we propose with effective
transfer in a multi-task learning scheme. Note that the aug-
mented center depth prediction does not directly rely on the
output of the ADDE. During inference time this prediction is

realized as a regression branch on its own, as shown in Fig. 1.
Doing this will significantly reduce computation.

3.4 Augmented Center Depth Estimation (ACDE)

Single center depth estimation for object detection is unsta-
ble and inaccurate. It is even harder for the center depth
regression branch to converge in a multi-task regression
structure, as the modality of depth prediction is far distinct
from other branch tasks such as classification and dimen-
sion estimation. Based on this, we explore a better position
reasoning approach for the depth regression branch and fur-
ther take advantage of the Auxiliary Dense Depth Estimator
(ADDE). The ACDE module we propose in the section
includes two regression branches, center depth and vertex
depth. We regress extra depth from vertices and utilise the
geometry of the 3D detection bounding box to finalize the
augmented center depth prediction. Based on geometry con-
straints showed in Fig. 5(a), the center depth equals to the
average value of vertex depths:

dv = (dv1 + dv2 + dv3 + dv4)/4 (6)

Assuming that the ground is flat, the four column frames
of a bounding box are always perpendicular to the ground
plane, which means the four vertices on the top have the
same depth as their corresponding vertices on the bottom.
In order to lighten the computation of this vertex depth
regression branch, we only regress the top four corner vertex
depths. This branch also benefits from the network parame-

Fig. 5 (a) Vertices and center of
a bounding box, (b) The angle
(yaw) between the perceived
object and world coordinates,
which is deified by the ego
camera
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ters trained by the ADDE. To make sure the parameters in
this branch and ADDE are updated in the same way, keeping
the consistency between different depth estimators, the same
loss function as �(d, p) is applied with an additionally intro-
duced confidence factor δ, resulting in Ldepth as follows:

Ldepth =
∑4

i=1 �(d, p)i
δ

+ log(δ) (7)

with

�(d, p) =
w∗h∑

n=1

0.5(dn − pn)
2/beta (8)

if |dn − pn| < beta. otherwise:

�(d, p) =
w∗h∑

n=1

|dn − pn| − 0.5 ∗ beta (9)

where �(d, p)i indicates the loss of four vertex depth. When
calculating the center depth, there is only ln with δ in Eq. 7.
And pn = edpredictn , which is the error between the ground
truth and the log of predicted depth. δ models the uncertainty
of center and vertex depth regression tasks. To minimize this
loss [7], the network needs to have high uncertainty value
whichdemonstrates its confidence of the prediction. The term
log(δ) can avoid trivial solutions and encourage the model
to be optimistic about accurate predictions. Same as for the
vertex depth estimation, we add confidence prediction to the
center depth branch as following: we combine the average
vertex depth value dv and the center depth value according
to their confidence ratio as shown in Eq. 10. The confidence
combination can assign more weights to the outputs of the
more confident estimator; therefore being robust to poten-
tially inaccurate predictions.

d = δc ∗ dc + δv ∗ dv

δc + δv

(10)

Similar to the dense depth learning, vertex depth ground
truth is also unavailable from the dataset. We then seek to
acquire this information based on the center depth and other
existing annotations. In Fig. 5(b), yaw is the angle between
the world coordinate and the ego coordinate. θ and α are
the angles of the diagonal and world coordinate. The center
of the bounding box (noted as bb in the following) is at the
origin, and the position of vertex a can be located on the
four quadrants. We further simplify the location conditions
of vertex a into two types: 1. the first and third quadrants; 2.
the second and fourth quadrants. The diagonal and β can be
calculated by:

diag =
√

(lengthbb)2 + (widthbb)2 (11)

β = arctan(widthbb/lengthbb) (12)

Then we can get the depth of the four bounding box ver-
tices as following:
If β < yaw < π ∗ 0.5 or − π − β < yaw < − 0.5 ∗ π

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dv1 = dcenter + cos(β − yaw) ∗ diag

dv2 = dcenter − cos(β − yaw) ∗ diag

dv3 = dcenter + cos(β + yaw) ∗ diag

dv4 = dcenter − cos(β + yaw) ∗ diag

(13)

otherwise,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dv1 = dcenter + sin(β − yaw) ∗ diag

dv2 = dcenter − sin(β − yaw) ∗ diag

dv3 = dcenter + cos(β + yaw) ∗ diag

dv4 = dcenter − cos(β + yaw) ∗ diag

(14)

where dcenter denotes the bounding box center depth ground
truth.

3.5 Multi-Head Detectors

After the feature enhancement pyramid module, as shown in
Fig. 1, five detection heads (blue heads) are respectively con-
nected to thefivepyramid featuremaps (E1, E2, E3, E4, E5),
which were aggregated from the FEPM. Each head consists
of two sets of four convolutional layers,with kernel size 3 ∗ 3,
stride 1 and padding 1. The first set of four convolutional
layers in one head is for classification tasks (blue squares)
and the other set is for the rest (green and grey squares) as
regression tasks. Finally, the features processed and output
by the detection heads (F1, F2, F3, F4, F5) will be passed to
a convolutional layer with different output dimensions for
multiple purposes. The detection heads and the task layers
together are called multi-head detectors. The output of each
tasks is in the form of a heatmap, and the width and height
are the same as the corresponding input level feature maps.
The offset regression branch predicts the offset between the
2D center and the projected 3D center on the image plane.
With the regressed center depth and offsets, the 3D center
point [X ,Y , Z ] can be retrieved based on the camera intrin-
sics. The dimension regression branch predicts the size of
the object. The rotation regression branch predicts the yaw
angle, and the outputs from the direction regression branch
help to solve the controversial angle situations (when this
object in opposite directions). The speed regression branch
and the attribute regression branch predict velocity and addi-
tional attributes of the detected objects in order to obtain
the overall score required for the nuScenes dataset. Follow-
ing [7], we adopt the centerness regression branch as a filter
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to retrieve and display only the high-quality 3D detection
bounding box predictions.

While training the auxiliary dense depth estimator neither
regression branch nor classification branch is attached to the
detection heads, as the intermediate step of the whole train-
ing. Instead, as shown in Fig. 1, two transposed convolutional
layers are introduced to predict dense depth information. We
find it is more efficient to have extra ReLU and batch normal-
ization layers between convolutional layers and transposed
convolutional layers for the dense depth training.

3.6 Adopted Training Loss Functions

To train the full 3D detection model we propose in Fig. 1, we
use three different loss functions. We use cross-entropy loss
for direction, attribute and centerness predictions:

Lce = Ldirec + Lattri + Lcentr (15)

For the rest of the regression branches, smooth L1 norm
loss is applied as specified in Eqs. 4 and 5 but without inverse
the prediction values. The loss of the offset, dimension, rota-
tion and speed branches, together are denoted asLsml1. Note
that the augmented center depth branch uses a modified L1
norm loss with confidence assignment as shown in Eqs. 7, 8,
and 9. The loss of center depth and vertex depth branches is
denoted as Ldepth = Equation(4) + Equation(7). A sim-
ple focal loss is used for the classification branches, denoted
as L f ocal . To sum up, the total loss is defined as:

Ltotal = Lce + Lsml1 + L f ocal + Ldepth (16)

4 Experiments

4.1 Dataset

The nuScenes 3D detection benchmark dataset [12] is
adopted in our experiments and it consists of 1000 multi-
modal videos with 6 cameras on the top of a car, covering
the full 360-degree field of view from the ego car. Our dataset
is split into 700 videos for training, 150 for validation, and
150 for testing. The 3D detection models are evaluated by
regressing 3D bounding boxes of 10 object classes, from
multiple types of vehicles to pedestrians, over an amount of
frames from videos. NuScenes is becoming one of the defini-
tive benchmarks for 3Dobject detection because of its variety
and quantity of scenarios and labels.

4.2 Implementation Details

We adopt VoVNet−v2 [50] as our backbone network, with
input size of 1600 × 900. Each feature level map from the

FEPM connects to a detection head, attached to four H ×
W × 256 convolutional layers, a BatchNorm layer [53], and
a ReLU layer, plus another H × W × num Conv layer for
different classification and regression tasks, where num is
the output size. The whole model is trained using stochastic
gradient descent (SGD) [54] optimizerwith an initial learning
rate of 2e-3 and weight decay as 1e-4, warm-up iterations at
500 andwarm-up ratio of 0.33.We set themulti-task learning
weight to 1. We train the model for 12 epochs with a batch
size of 16 on a single Nvidia A100 GPU, and finetune the
loss weights of depth-related regression branches for another
12 epochs. The random horizontal flip is adopted as the only
data augmentation we use here.

4.3 Results

In this subsection we present our quantitative and qualitative
results. A detailed ablation study is given as it is shown to
prove the impact of the different modules we introduce in
our work.

4.3.1 Evaluation Metrics

The detection performance is evaluated by the officialmetrics
adopted in nuScenes and are distance-based mAP (Aver-
age Precision metric) and comprehensively defined NDS
(nuScenes Detection Score), which is a more intuitive
overall score to assess the 3D detection model perfor-
mance on nuScenes dataset. The mAP defines the match
between the ground truth and the predicted bounding boxes
that have the smallest 2d center-distance under a certain
threshold, where NDS is computed by the weighted sum
of the mean average precision(mAP), average translation
error(mATE), average scale error(mASE), average orien-
tation error(mAOE), average velocity error(mAVE) and
average attribute error(mAAE). To calculate NDS, the true
positive error needs to be transformed to true positive
scores(TP), and normalize the weighted score sum as:

NDS = 1

10
[5 ∗ mAP +

∑
max(1 − T Perror , 0)] (17)

We test our model on the validation dataset, and report
NDS and mAP, along with all the five true-positive metrics
that are critical to 3D detection.

4.3.2 Quantitative and Qualitative Analysis

The training progress is shown in Fig. 6 (a) and (b). As
expected it is harder for depth regression to converge than
other tasks which proves again that the problem tackled in
this research is tough since amulti-task training is conducted.
The plunge in loss responds to the drop of learning rate dur-
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Fig. 6 (a) Training progress. As a multi-task learning approach, we display the losses of multiple tasks. Note that one step means training a batch
size. (b) Training progress of center depth estimator and vertex depth estimator

ing training. We then show the performance of our proposed
method on nuSecnes validation set. We compare the results
with other state-of-the-art monocular 3D detectors, as shown
in Table 1. It can be observed that our approach achieves bet-
ter performance than other camera-based methods in terms
of themAPwhich is themost important locatingmetric in the
benchmark. Furthermore, it is worth noting that our approach
outperforms other non-extra-depth-assistedmethods by large
margins. For instance, compared to FCOS3D [7], CenterNet
[19],MonoDIS [13],we exceeded theirmAPby 9.1%, 12.8%
and 13.0%, respectively. Thanks to the depth reasoningmod-
ules ADDE and ACDE, we noted that our method achieves
much better mAVE than the three methods mentioned above.
Despite that we did not use continuous multi-frame data as
input, the depth information strongly helps the prediction
of the speed. Compared to LiDAR based methods, we sur-
passed PointPillars [10] at mAP by 12.9%. However, LiDAR
basedmethods naturally and as expected got better NDS than
most camera based approaches and better in mAVE cate-
gory, due to the accurate point cloud information. To recover
the missing distance information in monocular images, some

depth-assisted methods like ours achieve better results than
regular methods. Compared to PGD, AIML-ADL, DD3Dv2,
we still have 6.5%, 8.2% and 0.3% of improvement in mAP,
and 22%, 35% inmAVE compared to PGD and AMIL-ADL.
The detailed scores on mAP in each classes can be found in
Table 2. Our model works good for traffic cones, barrier and
most importantly, cars. For categories of big objects such
as trucks and buses, the precision still needs improvement.
The performance drop for this case and on this challenging
dataset is due to the frequent occlusion by smaller objects and
those objects being out of images. Further work is required
and expected in the future.

We test the inference time of other two code-available
monocular-based methods in Table 3, FCOS3D and PGD (a
depth-assisted method) on the same hardware-a single RTX
4090 graphics card to compare the computational efficiency
of our method. As shown in the Table 3, our method achieved
the highestNuscenes detection score (NDS).Regarding com-
putational efficiency, our inference time is 14% faster than
PGD, supporting our claim that the depth module avoids
additional computational burden.Additionally, the asymmet-

Table 1 Results on nuScenes
dataset in order of NDS scores

Methods Modality mAP mATE mAVE mAAE mASE mAOE NDS

CenterNet [19] camera 0.306 0.716 1.426 0.658 0.264 0.609 0.328

MonoDIS [13] camera 0.304 0.738 1.553 0.134 0.263 0.546 0.384

FCOS3D [7] camera 0.343 0.725 1.292 0.153 0.263 0.422 0.415

PGD [56] camera 0.369 0.683 1.268 0.185 0.260 0.439 0.428

AIML-ADL camera 0.352 0.696 1.592 0.122 0.696 0.392 0.429

DD3Dv2 [58] camera 0.431 0.570 − − 0.250 0.380 0.480

PointPillars [10] LiDAR 0.305 0.520 0.316 0.368 0.290 0.500 0.450

CVFNet [55] LiDAR 0.548 0.291 0.349 0.139 0.248 0.389 0.633

Ours camera 0.434 0.581 1.246 0.053 0.238 0.614 0.461

We outperform existing camera based methods. We also compare with LiDAR methods, which has nature
advantages in position related tasks. Although they have higher overall NDS scores, we still have competetive
performance in mAAE, mASE and mAOE
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Table 2 mAP Results on each
categories

car truck bus trailer construction vehicle

0.607 0.364 0.481 0.239 0.156

pedestrian motorcycle bicycle barrier traffic_cone

0.510 0.397 0.381 0.604 0.602

ric attention mechanism in our Feature Enhanced Pyramid
Module (FEPM) is more efficient than the traditional atten-
tion mechanism. When compared to FCOS3D, although our
method is 0.32 seconds slower, we surpass their NDS by
4.6%.

Amore comprehensive analysis of the visualized results is
attained using the nuScenes dataset. We categorize the show-
cases into comparisons based on differences in range and
environmental conditions. To ensure the presentation of only
the most precise bounding boxes, we implement a threshold
for box display, thereby disregarding lower-scoring boxes
solely for display purposes. Figure 7 illustrates an example
of the filtering process applied to generated bounding boxes.
As shown in the distance category of Fig. 8, our 3D detec-
tion deep network model demonstrates remarkable precision
in detecting most objects across all ranges. For instance, in
the parking lot scenario illustrated in Fig. 8(d), our algorithm
accurately generates bounding boxes even amidst heavy
occlusions between cars. Similarly, the image featuring large
trucks and two cars in Fig. 8(c) highlights the robustness of
our 3D detection approach. However, objects situated at con-
siderable distances, as showcased in examples like Fig. 8(d)
and (e), pose challenges for precise tracking by the model.
Additionally, incomplete objects, visible less than half, due
to proximity to the camera also present difficulty for accurate
detection. To increase the detecting difficulties, we consider
the comparisons under various environmental conditions to
better show the robustness of the model. As shown in Fig. 9,
we conducted performance tests in scenes characterized by
sunny (Fig. 9(a)), cloudy (b), and rainy (c) weather con-
ditions. Remarkably, the model exhibits flawless handling
across all moderate weather condition changes, showcasing
its adaptability and reliability. We then compare the model’s
performance under heavy rain conditions with raindrops on
the camera, which significantly impact the visual quality. In
Fig. 9(e) and (f), despite heavy occlusions affecting the red

Table 3 Inference time testing results, calculated by second per 100
frames of detection

Methods NDS Inference Time (s/100task)

FCOS3D [7] 0.415 4.23

PGD [56] 0.428 5.19

Ours 0.461 4.55

cars, the model adeptly detects them and generates bound-
ing boxes surpassing the threshold. However, under extreme
conditions illustrated in Fig. 9(d), where the red car is nearly
invisible due to raindrop blockage, the detection falls below
the threshold. In night conditions, our model exhibits robust-
ness against poor illumination and reflections. In Fig. 9(g)
and (i), despite challenging conditions such as low light and
blurriness, our model accurately bounds the front objects,
although the bounding box for the overlapped truck is fil-
tered out. In Fig. 9(h), our method successfully bounds the
car even in the presence of reflections from the traffic light,
simulating a camera failure scenario.

Moreover, we discovered that the dataset assumes the road
to be flat by default. In Fig. 9(i), the slanted bus results from
the gradient of the road. While the generated bounding box
effectively locates the object, it’sworth noting that the default
ground is perpendicular to the x-axis of the camera coordi-
nate (world coordinate), causing the bounding boxes to align
parallel to the ground. Addressing this challenge in future
research involves exploring methods to detect the roll angle
information of these objects and adjust their bounding boxes
accordingly. Figure 10 illustrates the comparison of envi-
ronment layouts in different areas. In urban environments,
characterized by high complexity and a higher density of
objects, the task of detection becomes more challenging due
to the increased clutter. However, even in such demanding
scenarios, our model maintains robust performance. Con-
versely, in rural environments with more vegetation, where
the scene complexity differs, our model continues to demon-
strate consistent and reliable performance.

In conclusion, our method exhibits robust performance
across a wide spectrum of detection ranges, ranging from
close proximity to distant objects. Furthermore, it proves its
adaptability and reliability across diverse environmental con-
ditions, including variations in lighting, weather, and scene
complexity.

4.3.3 Ablation Studies

We conducted an in-depth comparison among the three
components we proposed, with Table 4 showcasing their
performance across various evaluation metrics. Initially, we
present the results of the Feature Enhancement Pyramid
Module (FEPM). It is evident that our FEPM module yields
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Fig. 7 Visualization with (left)
and without (right) thresh hold
filters

Fig. 8 Visualization of detection results, categorized by distances of the objects

Fig. 9 Visualization of detection results, categorized by different environment conditions

Fig. 10 Visualization of
detection results in urban and
rural areas
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Table 4 Ablation studies on nuScenes dataset

Parts mAP mATE mAVE mAAE NDS

Baseline 0.343 0.725 1.292 0.153 0.415
FEPM 0.374 0.714 1.275 0.104 0.427
ADDE 0.412 0.653 1.249 0.072 0.446
ACDE 0.434 0.581 1.246 0.053 0.461

a significant improvement, contributing to a 1.2% enhance-
ment in the overallNDScompared to the baseline (FCOS3D).
A noticeable boost shows in the mAAE (attribute errors).
Thanks to our asymmetric fusion block, the fused feature
benefits of the strong contextual information from different
feature levels. With the Auxiliary Dense Depth Estimator
(ADDE), we further raise the performance to 0.412 in mAP.
The ADDE module offers the recognition of spatial infor-
mation, and this capability remains in the shared parameters
leading to a better NDS at 0.446. The Augmented Center
Depth Estimation (ACDE) also improves the results. The
regression of it is actually done the sameway as center depth,
however, the confidence voting mechanism provides more
robustness when one of the regression branches is not sure
about its prediction. Including ACDE in our 3D object detec-
tion module achieves state-of-the-art performance at 0.434
mAP and 0.461 NDS.

We included visualizations comparing the results from the
depth-assisted model (combining ACDE and ADDE) with
those from the depth-less model. Our decision to combine
ACDEandADDE into onemodel stems from their significant
contribution to performance gains and their role as depth-
assisted components. Therefore, the two models we tested
are the one with FEPM and the full method. As detailed
in last section, during inference, we employ a bounding
box score threshold to mitigate the occurrence of multiple
boxes on a single object. The absence of boxes on an object
indicates that the generated bounding boxes fall below this
threshold. Conversely, a higher number of bounding boxes
signifies more precise predictions. When comparing the full
method to solely using FEPM, it becomes apparent the pro-

posed method generates more bounding boxes within the
same scenes in Fig. 11.However, themissing boxes primarily
occur in regions distant from the camera and in overlapping
areas, which are known challenging aspects of the 3D object
detection task. This observation underscores the effective-
ness of our proposed depth-assisted modules in addressing
these challenges and enhancing the overall performance of
the detection system.

4.3.4 Assessment on FEPM

This section includes a comprehensive impact analysis of
the Feature Enhancement Pyramid Module (FEPM). While
original feature maps and enhanced feature maps from inter-
mediate layers can be directly visualized, the distinctions
are not apparent due to the complexity of high-level features
in deep neural networks. To gain a better understanding of
the proposed method’s impact, we employ Grad CAM to
generate heatmaps for the original feature pyramid and the
proposed enhanced feature pyramid, respectively, which are
both then projected onto the input images.

Four sets of comparisons using different input images are
presented in Fig. 12, with colors representing the impor-
tance of pixels in predicting 3D bounding boxes. Warmer
colors indicate higher importance, signifying areas where
the network focuses its attention. Upon examination of the
four examples, it becomes evident that with the original
feature maps, the highlights are randomly dispersed, sug-
gesting that the network makes less efficient predictions
based on imperfect information. In contrast, the enhanced
feature maps enable the detection network to concentrate
more accurately on the main objects (cars and pedestrians),
resulting in better regression of bounding boxes. Particularly
in well-illuminated conditions (examples 1 and 2), the fea-
ture map enhancement allows the network to precisely focus
on objects while disregarding irrelevant information. Even
under undesirable conditions such as poor illumination and
light reflection (examples 3 and 4), the attention map still
covers most of the relevant areas. When combined with the

Fig. 11 Visualization of
detection results regarding the
efficiency of the depth-assisted
module
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Fig. 12 Visualization of attention maps on the impact of FEPMmodule. We present the Grad CAM [57] on the input images to show the important
regions when making a prediction. Warmer colors mean most influential areas and cooler colors mean less influence

results presented in Table 3, the feature enhancement demon-
strates its efficacy in facilitating the precise prediction of 3D
bounding boxes, center points, attribute classification, and,
notably, boosting the accuracy of object speed estimation.
This enhancement leads to better object localization in the
detection process.

Furthermore, to assess the efficiencies of different lev-
els within the enhanced feature pyramid, we present three
examples of Grad CAM images from level 1 (representing
low-level features) and level 5 (representing high-level fea-
tures) in Fig. 13. In the context of CNN applications, it is
widely understood that lower level features encompass more
primitive information, such as basic shapes, edges, colors,
or textures, while higher level features capture more abstract
and complex information. In the specific object detection
task, we observe that the rules reflect to detecting of objects
in various sizes and distances. At level 1, smaller and more

distant objects are better detected, but there is a partial loss of
focus on larger objects, such as the bus located in the middle
of the street and the pedestrians closer to the camera. Con-
versely, at level 5, the network prioritizes nearer objects in
its predictions while paying relatively less attention to distant
ones. By leveraging the benefits of different feature levels,
the multi-head detector achieves versatile object detection
performance across all objects, regardless of their sizes and
distances. This indicates the efficacy of our proposed feature
enhancement pyramid module in improving object detection
capabilities.

5 Conclusion

In this paper, we have introduced a novel approach for
monocular 3D object detection using depth-enhanced deep

Fig. 13 Attention visualization
of enhanced lower level feature
maps and higher level feature
maps from FEPM
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learning, incorporating spatial information assistance. By
training an auxiliary dense depth estimation, our network’s
feature extractor gains depth awareness without incurring
additional computational burden. To leverage this depth per-
ception capability further, we have devised a simple yet
effective vertex depth regression technique. The fusion of
center depth and vertex depth through confidence voting
enhances the robustness of depth estimation. Additionally, to
improve the representation of features from the source, we
have proposed the Feature Enhancement Pyramid Module
(FEPM), which effectively captures contextual dependen-
cies from different feature levels, thereby preserving high-
resolution and detailed semantic features. Looking ahead,
we acknowledge that several challenges and opportunities
remain for future research. One such challenge is computing
the roll angle and even pitch angle of objects to address 3D
object detection in more complex road conditions, such as
on ramps. Another important direction involves optimizing
weight assignment for different sub-tasks to achieve better
overall performance. The balancing of numerous sub-tasks
can be intricate, but it holds the potential for substantial
performance gains. Overall, our proposed depth-enhanced
monocular 3D object detection approach, along with the
spatial information assistance and the Feature Enhancement
PyramidModule, has shown promising results. We hope that
this work will inspire further advancements in the field and
contribute to the development ofmore accurate and robust 3D
object detection systems for various real-world applications.
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