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Insights from EEG analysis 
of evoked memory recalls using 
deep learning for emotion charting
Muhammad Najam Dar 1*, Muhammad Usman Akram 1, Ahmad Rauf Subhani 1, 
Sajid Gul Khawaja 1, Constantino Carlos Reyes‑Aldasoro 2 & Sarah Gul 3

Affect recognition in a real‑world, less constrained environment is the principal prerequisite of the 
industrial‑level usefulness of this technology. Monitoring the psychological profile using smart, 
wearable electroencephalogram (EEG) sensors during daily activities without external stimuli, such 
as memory‑induced emotions, is a challenging research gap in emotion recognition. This paper 
proposed a deep learning framework for improved memory‑induced emotion recognition leveraging a 
combination of 1D‑CNN and LSTM as feature extractors integrated with an Extreme Learning Machine 
(ELM) classifier. The proposed deep learning architecture, combined with the EEG preprocessing, such 
as the removal of the average baseline signal from each sample and extraction of EEG rhythms (delta, 
theta, alpha, beta, and gamma), aims to capture repetitive and continuous patterns for memory‑
induced emotion recognition, underexplored with deep learning techniques. This work has analyzed 
EEG signals using a wearable, ultra‑mobile sports cap while recalling autobiographical emotional 
memories evoked by affect‑denoting words, with self‑annotation on the scale of valence and arousal. 
With extensive experimentation using the same dataset, the proposed framework empirically 
outperforms existing techniques for the emerging area of memory‑induced emotion recognition 
with an accuracy of 65.6%. The EEG rhythms analysis, such as delta, theta, alpha, beta, and gamma, 
achieved 65.5%, 52.1%, 65.1%, 64.6%, and 65.0% accuracies for classification with four quadrants of 
valence and arousal. These results underscore the significant advancement achieved by our proposed 
method for the real‑world environment of memory‑induced emotion recognition.

Keywords Emotional memory recall, Electroencephalogram (EEG), Ultra-mobile wearable sensor, Memory-
induced emotion recognition, Affective words

Emotions are shaped not only by immediate stimuli but also by past experiences and memories. In the real-world 
environment, memories can induce emotions in the absence or minimal presence of external stimuli. Humans 
usually recall their emotional memories for emotional regulation in real-world scenarios by repeatedly feel-
ing those emotional  states1. However, the research on automatic emotion recognition predominantly relies on 
immediate stimuli for emotion elicitation. Therefore, the dataset acquisition is generally constrained to a specific 
lab environment and the presence of external stimuli, such as horror or comedy movies, to induce immediate 
emotional responses in the participants. Because of the limitations posed by immediate stimuli, automatic emo-
tion recognition algorithms usually fail to perform well in real-world scenarios. Emerging research  works2,3 with 
self-induced or emotional memories instead of immediate stimuli to play a crucial role in understanding and 
recognizing emotions accurately in real-world applications. Therefore, developing and improving techniques 
that facilitate the generation of emotional memories could be highly effective for the industrial-level usefulness 
of automatic emotion recognition.

The motivation for memory recall-based emotion analysis originates from several studies highlighting the 
interplay between emotions and memory. The strong correlation between inducing emotional responses through 
stimulus images and subsequent memory recall demonstrates the relevance of memory formation and emotional 
 stimuli4. Their study was limited to static instead of interactive user experience and is limited to 37 university 
students with a limited age range of 18–29 years. Another  research5 found that memories triggered with auto-
biographical images of favorite places can effectively induce positive emotions, particularly useful for depression 
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patients. Despite indicating the effectiveness of autobiographical memories in inducing emotions, they do not 
provide automatic emotion recognition for these memory-induced emotions, and the study has limited gen-
eralizability because of specific age groups of participants (between 18 and 35 years and above 65 years). The 
 researchers6 also explored the association between emotional states and false memories, revealing that false 
memories can occur more frequently in the context of positive emotions. Another  study7 highlights the influence 
of positive and negative body postures on EEG patterns during emotional memory recalls. Similarly, the  analysis8 
provides chaotic EEG patterns during the recall of fearful events in memory. These studies provide insight into 
memory-induced emotion phenomena and potential implications for emotion recognition.

There are two models for emotion charting: the categorical model and the dimensional model. The categorical 
model includes various emotion categories such as happy, sad, fear, disgust, surprise, and anger. The dimensional 
model is based on the valence and arousal on the scale of integer values. The valence is the measure of pleasure 
or displeasure, while arousal is the measure of excitement. The prevailing trend in EEG-based emotion recogni-
tion primarily focused on the binary classification of high and low levels of either valence or arousal, particu-
larly with challenging self-induced and memory-induced  emotions9. However, it may oversimplify the diverse 
spectrum of human emotions. Despite the potential benefits of considering all four quadrants of valence and 
arousal, only a limited subset of  studies9 utilized this comprehensive framework. This underscores the need to 
explore all quadrants of valence and arousal, mitigating potential criticism and ensuring a robust understanding 
of affective computing.

Memory-induced emotion recognition is explored with conventional machine-learning techniques. An ear-
lier  study10 proposed the real-time identification of self-induced disgust by remembering unpleasant odors 
using electroencephalogram (EEG) signals. Their study lacks exploration of a broader range of emotions and is 
limited to a small sample size (ten subjects only). Another  study11 with a relatively larger dataset of 28 subjects 
was also limited to disgust emotion, as the EEG correlates with odor memory, even when the person affected by 
hyposmia imagines an olfactory situation (disgust). They find that the subjects can lose concentration during 
memory recall, which affects emotion recognition performance.

Deep learning is the most commonly used recent tool for improved emotion recognition performance, but 
this tool is underexplored for memory-induced emotion recognition due to a lack of relevant data. Conventional 
techniques were limited to perform with a small sample size and number of emotion classes as they can extract 
a limited set of features from EEG signals (spatial or temporal features). A  study12 explored regularization 
parameter-based improved intrinsic feature extraction method for EEG signals via empirical mode decomposi-
tion (EMD) to effectively enhance depression recognition performance on four EEG datasets. In recent years, 
EEG signal analysis for emotion recognition has enhanced our understanding of neural correlates and improved 
classification accuracy and robustness by leveraging deep learning algorithms with diverse features. A recent 
 study13 used an improved capsule network and residual Long-Short Term Memory (ResLSTM), and another 
study used multi-branch Capsule  network14 to extract spatiotemporal dual module features for improving emo-
tion recognition performance. The combination of CNN and LSTM is explored for better emotion recognition 
 performance15. Few  researchers16,17 also explored 1D-CNN for EEG signal analysis for emotion recognition, as 
it can extract repetitive and unique patterns from 1D channel data of EEG signals. However, these studies lack 
the testing on self-induced or memory-induced-based challenging datasets. The existing work has primarily 
explored emotions induced with immediate external stimuli, but the potential of deep learning in extracting 
neural signatures of internally induced or memory-induced emotions remains largely  untapped18. This paper 
aims to bridge this gap by presenting a novel deep learning-based approach associated with memory-induced 
emotions evoked by affective words using EEG analysis.

The current challenges in EEG-based emotion analysis are the restriction of natural emotional expression due 
to the requirement of remaining still to avoid movement artifacts during EEG acquisition, the scarcity of research 
applying self-designed models to real-world applications instead of pre-trained models, and the significant effect 
of choice of k-value in cross-validation for model’s generalization ability, particularly with non-random splits 
and small datasets, lead to overfitting and artificially inflated accuracy  rates19. Existing studies utilize auditory 
and visual stimuli to evoke memory-induced emotions, including affective  words20,21. The affective words have an 
inherent ability to evoke personalized semantic association and mental imagery and are more versatile to subjec-
tive experiences compared to images and audio. Despite the advancement in EEG-based emotion recognition 
research, the state-of-the-art requirements include flexibility of EEG acquisition, custom deep learning models 
suitable for EEG signal data, more rigorous evaluation of model performance with leave-one-out validation, 
adaptability of deep learning models for memory-induced emotions, selection of stimuli to evoke memory-
induced emotions, and detailed performance metrics such as accuracy, sensitivity, specificity, and F-measure.

Memory recall-based systems are emerging and challenging for emotion recognition. From existing research 
on emotion recognition, it is evident that emotional memory recall-based systems are never explored with 
deep learning frameworks to improve the performance of emotion recognition and are also not explored with 
emotional memories induced by affective words. Therefore, the affective words to use stimulus for emotional 
memories contributed to the novel dataset. The specific work of this paper includes a dataset to evoke emotional 
memories with affective words, and the use of novel deep learning framework for improved recognition perfor-
mance. In a real-world environment, it is significant to acquire the emotional profile of persons, while they are 
busy with daily activities and think freely about any autobiographical emotional memory. The major contribution 
of this research is summarized as follows. 

1. This research improved recognition performance for the real-world environment of highly subjective mem-
ory-induced emotion with triggering words and a large population size.
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2. One dimensional convolutional neural network followed by the recurrent neural network referred to as 1D 
convolutional recurrent neural network (1D-CRNN) is proposed as a feature extractor with an extreme 
learning machine (ELM) as a classifier for emotion recognition with an ultra-mobile EEG cap.

The remaining part of this article is divided into background literature, dataset acquisition, methodology, results, 
and discussion. The last section then concludes the article with conclusive remarks.

Background
Learning, memory retention, and recall are primary cognitive functions of the human brain. There are two types 
of memories, long-term and short-term memory. Both types have different mechanisms to hold and retrieve 
memory content from the human brain. The physiology of memory recall is reviewed  by1, investigating the inter-
action of brain regions during memory recall tasks using EEG signals. The prefrontal cortex region of the brain, 
associated hippocampus cortices, and their interaction with other lobes are responsible for emotional memory 
recall. Various brain regions are associated with different types of memories. For instance, visual memory links 
with the occipital lobe, episodic memory links with the mammillary body, spatial memory links with the parietal 
lobe, and short-term memories associated with the hippocampus and frontal lobe. Hippocampus also plays a role 
in memory management by moving the short-term memory to long-term memory. The exciting and emotional 
memories are associated with the amygdala part of the brain. The findings encourage the emotion recognition 
process during the natural phase of memory recalls.

Conventional techniques for memory‑induced emotion recognition
The memory-induced emotions are studied using conventional machine learning techniques. An earlier  attempt22 
proposed a combination of support vector machines and linear discriminant analysis to classify three emotions 
(positive, negative, and neutral) from memory recall. The emotions were induced by displaying relevant images 
for 8 seconds and then asking the users to recall relevant memories. EEG data recording utilizes the Biosemi 
Active II system, with 64 electrodes positioned according to the 10-10 system. The authors report the 63% 
classification accuracy for the three positive, negative, and neutral states of emotion. Another  study10 utilized 
conventional strategies such as wavelet transform, principal component analysis (PCA), and support vector 
machine (SVM) to achieve 90% accuracy for the simple binary emotion classification problem, the presence of 
disgust or not. Another  study11 also achieved similar results (90%) for the binary classification of either disgust 
or not through remembering unpleasant odor, but for a relatively larger dataset size of 28 subjects. The com-
prehensive description of the state-of-the-art techniques used for memory-induced emotion recognition using 
EEG signals is provided in Table 1.

A recent  study32 investigates EEG and ECG analysis for emotional memory recall with audio-visual stimuli 
provided in three repetitions. The participants watched movies for 40 seconds and then closed their eyes for 180 
seconds to recall those videos, providing self-assessments on the scale of valence and arousal. The primary finding 
of the research is a delayed response from ECG compared to EEG for pleasant memories compared to a simul-
taneous response of EEG and ECG for unpleasant memories. The study  by33 highlights the significance of EEG 
frequency bands (delta, theta, alpha, beta, and gamma) and each brain region (all electrodes) in the emotional 
memory recall process. They examined EEG-based brain region activity across positive, negative, and neutral 
emotional states during memory recall of words and numbers. In another  study24, the binary and six class clas-
sifications of partially memory-induced emotions (remembering recently experienced movie-induced emotions) 
are analyzed with EEG signals. The authors report the binary classification of positive emotion with 87.36% and 
negative emotion with 54.52% accuracy for six emotion classes. This study did not incorporate multi-class clas-
sification and subjective emotional memory recalls and was based on working memory of audio-visual stimuli.

Limitations of existing datasets for memory‑induced emotions
The existing datasets of emotion recognition such as  AMIGOS25,  DEAP26,  DECAF27,  DREAMER28, MAHNOB-
HCI29 predominantly focus on stimuli-induced emotions rather than emotions evoked by memory recalls as 

Table 1.  State-of-the-art machine learning techniques for memory-induced emotion recognition using EEG 
signals with dataset information, compared with proposed technique and dataset.

Study Method Evoked memory technique Modality Classes Subjects

Chanel et al.22
Temporal and frequency domain features 
with Linear discriminant analysis (LDA) 
classifier

Memory recall relevant to personalized 
stimulus images EEG (62 channels) Three classes (positive, negative, neutral) 10

Iacoviello et al.23
Wavelet transform feature extraction, 
Principal component analysis for feature 
selection, and SVM for classification

Memory recall of unpleasant odors EEG (8 channels) Two classes (Disgust or not disgust) 10

Zhuang et al.24 Differential entropy features, and SVM 
for classification

Memory recall of recently displayed 
video stimulus EEG (62 channels) Six basic emotions 30

Proposed
One dimensional convolutional recur-
rent neural network with combination of 
extreme learning machine (1D-CRNN-
ELM)

Memory recall with displayed words EEG (14 channels) Four emotion classes (HVHA, HVLA, 
LVHA, LVLA) 69
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presented in Table 2. These datasets use visual stimuli to induce emotions and are limited by small sample sizes, 
acquisition without mobility, and the narrow age range of participants. Emotion elicitation through stimulus 
videos is common practice in emotion recognition research, but the natural scenarios are quite different. To 
mimic the natural scenarios, a  study34 focuses on the recollection of emotional experiences because these are 
the reflection of real-world experiences rather than simple reactions to specific stimuli, showing the significance 
of memory-induced emotion compared to immediate stimuli in future works.

In 2021, a  study35 investigates a novel procedure to self-induce memories and recorded facial expressions for 
emotion recognition. The positive, negative, and neutral memory recalls are evoked using two mechanisms. The 
first mechanism includes semi-structured interviews created by expert researchers, and the second mechanism 
involves guided recalls through listening to statements related to interviews conducted five days earlier. Their 
study lacks the empirical analysis of emotion classification performance based on their algorithm. A dataset 
named Imagined Emotions30 is also available reflecting the correspondence between real feel emotions and 
recalled emotions in an autobiographic way. It aimed to recall emotions evoked by audio stimuli and then 
imagine the emotional scenario of recalling the situation. However, the dataset has a limited age range of 18-38 
years from only 32 subjects.

With minimal evoking memory recall, the participant can think about any memory, either pleasant or 
unpleasant. A  study36 of physiological responses investigates the relationship between change in EEG signal 
during free recall of words for different time-scale attention and success or failure of the recalled word. The main 
findings are the higher P300 amplitudes of EEG signals for the recalled words compared to the failure of the recall. 
This study does not incorporate any emotions but suggests the significance of emotional words in evoking free 
memory recalls. However, no available dataset incorporates minimal evoking external stimuli, such as affective 
words, to trigger memory-induced emotions. The dataset with minimal evoking stimuli is required for eliciting 
genuine emotional responses reflective of real-life experiences. Therefore, this study collected the EEG dataset 
with memory-induced emotions evoked by affective words. A comparison of our collected dataset is compared 
against some popular datasets such as  AMIGOS25,  DEAP26,  DECAF27,  DREAMER28, MAHNOB-HCI29, and 
Imagined  Emotions30 is presented in Table 2.

Research gaps
Despite the significance of emotional memory recalls, the existing literature depicts several research gaps. The 
existing literature lacks the exploration of deep learning to improve memory-induced emotion recognition. The 
majority of studies used conventional machine learning techniques, and are limited to binary emotion classi-
fication, and results with small sample sizes. The literature also lacks the EEG dataset with subjective memory 
recalls with minimally evoking emotion. Memory recall from words is more subjective and oriented towards 
real-world scenarios than memory recall from images or audio-visual stimuli. This study addressed the chal-
lenges by proposing a 1D-CRNN-ELM framework and acquiring a dataset by displaying affective words and then 
asking the participants to recall any autobiographical memory related to that word, either positive or negative.

Material and methods
Dataset acquisition
The collected data was part of a large research study investigating the effect of stress on the brain and emotions. 
This dataset is useful in clinical settings, with various cognitive syndromes related to emotional memory. The 
authors assert that all procedures contributing to this work conform to the Malaysian Guideline for Good Clini-
cal Practice (MGGCP), the ethical standards of the institutional committee on human experimentation, and 

Table 2.  Comparison of state-of-the-art emotion databases using physiological signals. M represented male, F 
represent female, µ represents mean and σ represents standard deviation.

Dataset AMIGOS25 DEAP26 DECAF27 DREAMER28 MAHNOB-HCI29
Imagined 
 Emotions30 MEMO

Participants 40 (27M, 13F) 32 (16M, 16F) 30 (16M, 14F) 23 (14M, 9F) 30 (13M, 17F) 32 (13M, 19F) 69 (36M, 33F)

Modalities EEG, ECG, GSR and 
audio-visual

EEG, GSR and 
peripheral signals

ECG and peripheral 
signals EEG, ECG EEG, ECG, GSR and 

peripheral signals EEG, ECG, EMG EEG

Self-assessment 
annotations

Dimensional: 
valence, arousal, 
dominance, lik-
ing, familiarity. 
Categorical: Six basic 
emotions.

Dimensional: 
arousal, valence, lik-
ing, dominance and 
familiarity.

Dimensional: 
valence, arousal and 
dominance.

Dimensional: 
Valence, arousal and 
dominance.

Dimensional: 
valence, dominance.

Categorical: Love, 
joy, anger, fear etc.

Dimensional: 
valence, arousal.

Dimensional scale 1 to 9 Continuous scale 
1 to 9 0 to 5 and − 2 to + 2 1 to 5 1 to 9 Non metric multi-

dimensional scale − 4 to 4

Acquisition
14 Channel EEG, 
Wireless ECG and 
GSR

32 Channel EEG and 
wired GSR 3 channel ECG 14 Channel EEG, 

Wireless ECG
32 Channel EEG and 
wired ECG, GSR

256-Channel Bio-
semi wired

64-channel Wireless 
sports cap (ANT 
Neuro)31

Age (years) 21–40 ( µ = 28.3) 19–37 ( µ = 26.9) (µ = 27.3, σ = 4.3) 22–33 ( µ = 26.6, σ 
= 2.7)

19–40 ( µ = 26.06, σ 
= 4.93)

18–38 ( µ = 25.5, 
σ = 5)

20–56 ( µ = 36.95, 
σ = 9.67)

Stimuli 20 Videos 40 Videos 32 Videos 18 Videos 20 Videos 15 Sounds 16 words Memory 
recall
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the Declaration of Helsinki (1975), as revised in 2008. All trials involving human subjects were approved by the 
Medical Ethics and Research Committee of Prince Court Medical Centre, Malaysia.

This dataset contains EEG signals from 69 participants, including 33 females and 36 males having written 
informed consent. The EEG system used for data collection was ANT Neuro, with  eegoTMsports  model31. It has 
several features, including support for dry wearable EEG caps, wireless data streaming, and storage, a selectable 
sampling rate up to 2048 Hz, an 8-bit trigger input for ERP studies, 64 electrodes according to the international 
10-20 electrode placement  standard31. Based on the EEG-based emotion recognition literature  review37,38 we 
follow most of the studies to incorporate only the 14 most significant channels for emotion  recognition39 such as 
AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4. The 1-sec segments of each of these 14 channels 
for the first participant are presented in Fig. 1. These 14 channels are mapped to topological structure for all the 
four labeled classes of HVHA, HVLA, LVHA, and LVLA as expressed in Fig. 2.

The age of the subjects varies from 20 to 56 years with a mean of 36.95 years. Sixteen different words were 
selected to show to the participants at different times to evoke memories. These words include excited, cheerful, 
bored, unhappy, disappointed, fearful, alert, aroused, idle, lively, calm, relaxed, pleased, still, dulled, and nervous. 
These emotion-denoting words were first described  by41, showing the semantic similarity between induced emo-
tions and the 28 affective words, from which 16 emotion-related words used in the proposed dataset were selected 
 by42, and showed its significance to induce emotions in participants. The emotion-related worlds displayed to 
participants were previously used for fMRI-based and facial emotion recognition tasks  in21  and43.

There was a total of three sessions for each subject. Each session includes a presentation of these sixteen words 
in a random manner. Therefore, 48 words (16 words repeated randomly in three sessions) were presented to each 
subject, while EEG signals were recorded continuously during the whole experiment. The display of words is 
accompanied by event-related potentials (ERPs). The ERPs are used in this study for the sole purpose of getting 
the starting time of continuous EEG signal, where the activity of emotional memory begins. The 10-second EEG 
data after this ERP is segmented and used in the subsequent analysis. After each ERP, subjects were instructed 
to recall their memories for ten seconds relevant to the word displayed. The participants were also provided 
with explicit instructions to keep focus only on the memory of the displayed word to mitigate attention lapses. 
Therefore, the ten seconds of EEG data after each ERP was considered an emotional response to self-induced 
memories. Therefore, from continuous EEG signals, we have segmented a total of 480 s of EEG for 48 words 
( 48× 10 ) for each subject. After ten seconds of display of each word, subjects were given another ten seconds 
to self-annotate their emotions felt during memory recall. The detailed description and timeline of the dataset 
acquisition protocol are presented in Fig. 3. The participants were briefed with the self-assessment manikins 
(SAM)44 to elaborate on the scale of valence (degree of positiveness or negativeness in emotion) and arousal 
(degree of feeling excited). Most of the publicly available  datasets25,26 of EEG for emotion recognition incorporate 
the use of SAMs to visualize the scale of felt emotion. These SAMs are the standard pictorial representations used 
in the literature for the correct understanding of valence and arousal to the participants. Subjects can select values 
of valence (in the range of −4 to 4 from displeasure to pleasure) and values of arousal (in the range of −4 to 4 
from deactivated to activated) from a 2D selection chart as shown in Fig. 4a. Figure 4b represents the mapping 
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Figure 1.  One of the sample of HVHA class of 1-sec EEG data, this figure illustrate the first segment plot (with 
sampling frequency of 128 Hz) of all the 14 channels according to 10–20 international  standard40 of electrode 
placement incorporated in our study.
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Figure 2.  Interclass variation of EEG signals should be noticed for four emotion classes, the color bar represents 
the mean amplitude of 1-sec segment of EEG (a) Topological map of high valence high arousal (HVHA) class 
(b) Topological map of high valence low arousal (HVLA) class (c) Topological map of low valence high arousal 
(LVHA) class (d) Topological map of low valence low arousal (LVLA) class.

Figure 3.  Overall experimental protocol for EEG data acquisition during emotional memory recall for 10-sec 
for each of the 16 affective words.
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of a few examples of affective words with mean values to the four quadrants of valence and arousal such as high 
valence high arousal (HVHA), high valence low arousal (HVLA), low valence high arousal (LVHA), and low 
valence low arousal (LVLA).

The distribution of valence and arousal is correlated with the emotional word displayed to the user. The 
detailed correlation of word-related emotional memories with a mean and standard deviation of arousal and 
valence is presented in Table 3. This Table also summarizes the relation between four classes of HVHA, HVLA, 
LVHA, and LVLA with evoked emotional memories. This study incorporates a wearable cap, which can be 
utilized in daily activities such as running, walking, cycling, reading, and high-intensity exercises. The purpose 
of using this device is to provide an emotion charting solution during any mobility and environment. Different 
brain regions are studied with this device for physical  efforts45, but none of the studies is performed for emotion 
recognition with this ultra-mobile device. The variety of sizes covers the range of users with large, medium, small, 
child, infant, and baby. Another notable property of the acquired dataset is the wide range of age of participants 
and the total number of participants. The mean age of participants is 36.95 years, with a standard deviation of 
9.67 years, which is remarkable compared to other competitive datasets expressed in Table 2.

Methodology
The proposed methodology consists of pre-processing, feature extraction with 1D-CNN and LSTM, and clas-
sification using Extreme Learning Machine classifier. The complete block diagram of the proposed framework 
is presented in Fig. 5.

Figure 4.  (a) The quadrant of valence and arousal (on the scale of −4 to 4) shown to each participant to select 
any single green box for self-annotation. (b) The selected box belongs to one of the quadrant such as high 
valence high arousal (HVHA), high valence low arousal (HVLA), low valence high arousal (LVHA), and low 
valence low arousal (LVLA) representing few examples of affective words with mean values.

Table 3.  Relation between evoked words with self-annotation score of valence and arousal, and with four 
quadrants of HVHA, HVLA, LVHA, LVLA. µ represents mean and σ represents standard deviation of score.

Word Valence ( µ) Valence ( σ) Arousal ( µ) Arousal ( σ) HVHA HVLA LVHA LVLA None

Excited 2.8213 1.3409 2.942 1.3426 191 1 1 4 10

Cheerful 2.8357 1.4588 2.8454 1.3054 190 0 1 4 12

Bored − 1.6763 1.7644 − 0.8019 2.191 22 14 50 109 12

Unhappy − 2.3961 1.7003 − 0.942 2.4329 9 8 52 126 12

Disappointment − 2.3382 1.8829 − 0.913 2.4834 10 8 59 118 12

Fearful − 2.3623 1.6777 − 2.0628 2.6349 14 4 86 92 11

Alert − 0.3671 2.3853 2.3092 1.6073 85 3 98 10 11

Aroused 1.7778 2.2008 2.0676 1.8787 147 9 24 13 14

Idle − 1.0773 1.8018 − 0.4251 1.9738 50 12 39 85 21

Lively 2.5942 1.6219 2.8406 1.2766 183 0 7 3 14

Calm 2.3671 1.5361 1.1304 2.2027 150 37 5 4 11

Relaxed 2.6667 1.5201 1.5894 2.2856 161 30 5 4 7

Pleased 2.8841 1.5092 2.8019 1.4294 186 3 4 3 11

Still − 1.2174 1.8424 − 0.7343 1.8518 36 20 36 98 17

Dulled − 1.7536 1.6641 − 0.9034 1.941 18 8 41 125 15

Nervous − 2.0676 1.7081 0.1787 2.611 19 6 91 81 10

Total – – – – 1471 163 599 879 200
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Pre‑processing
A significant influencing factor for performance enhancement of emotion recognition includes proper de-noising 
of raw EEG signals. However, most research almost standardizes the processing 128 Hz frequency of physiologi-
cal signals, enough for emotion recognition processes. Therefore, the EEG signals were downsampled to 128 
Hz, while the common reference averaging is applied to raw EEG signals for standardization of all channels. 
The EEG is contaminated with low and high-frequency noises. Therefore, a passband filter of 1–50 Hz is applied 
for removing both the low frequency noises from body movements, and high frequency powerline interference 
from EEG signals.

EEG signals were continuously acquired from each subject while ERPs were recorded each time a word is 
displayed to them to evoke relevant emotional memory. The ten seconds of EEG data after each ERP is consid-
ered as a single sample with a unique label mapped on the valence and arousal scale. The ocular artifacts are 
removed by EEGLAB  toolbox46. After filtering, all physiological signals are converted to 1-s segments. Similarly, 
the baseline signal is also subtracted from the signal recorded during memory recall. The baseline removal will 
result in a signal that only incorporate the memory recall-based emotional information. The 10-sec memory 
recall period is segmented into ten separate segments of 1-sec each. The 1-sec of data before the recall period is 
considered as the baseline, where there was no activity of memory recall. This baseline signal is subtracted from 
each of the ten segments of the memory recall period to remove the neutral baseline content and highlight the 
emotional response felt during memory recall as presented in Fig. 6. The signals are then standardized using 
z-score normalization to be ready for input to the deep neural network. In essence, the signals are enhanced by 
removing physiological artifacts, electrical interference, and baseline neutral activity. The EEG rhythms were 
extracted from the z-score normalized EEG signals using a Chebyshev type 2 filter with a stopband ripple of 
10 dB. The resulting EEG rhythms were delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and 
gamma (30–49 Hz).

One dimensional convolutional neural network
The primary reason to use the Convolutional Neural Network (CNN) feature detector from the physiological 
signal is parameter sharing. For instance, a 1x8 CNN filter with trained parameters can detect similar features in 
other parts of the signal and other channels as well. For EEG signals, the input to the 1D-CNN is 14× 128 . There 
are 14 channels of EEG and each channel contains 128 values of 1-s. Compared to 2D-CNN, one-dimensional 
convolutional neural networks offer distinct advantages for sequential and time-series data, such as temporal 
signals or sequences. As physiological signals are continuous, long-term repetitive patterns, a 1D convolutional 
feature detector can make use of parameter sharing. This is because features learned in one part of the signal 
are useful for other parts of the signal as well. At the same time, the parameters learned from one channel can 
be useful for other channels as well. This phenomenon can be explained by the internal representation of con-
volutional features.

Figure 5.  Block diagram of proposed methodology. CNN: Convolutional neural network, LSTM: Long Short-
Term Memory.
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Figure 6.  (a) EEG signal divided into 1 second neutral baseline segment, and 10 segments of 1 sec signal with 
evoked memory recalls (first four are displayed). (b) Each of the segment with recalled emotion selected (here 
first segment is selected) (c) Each of the selected segment is subtracted from baseline segment to highlight only 
the emotional content in the signal, results of segment 1 as signal, and baseline removed version is displayed.

Figure 7.  1D Convolutional kernel applied to sample index 61–68 (values highlighted in yellow color, 
convolved with the kernel weights) of AF3 channel of EEG signal. w1 to w8 represents eight weights of 
convolutional kernel, while b1 represents bias of kernel.
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Figure 7 represent a 1-s preprocessed segment of one of the fourteen channel, known as AF3. Similarly, a 
vector of 1 x 8 is represented as a kernel of 1D-CNN. The values of the kernel are w1,w2, ...,wk , where k represent 
size of the kernel. These eight values of the kernel are known as learnable parameters or weights. For filter 1, 
these values are represented as w1,w2, ...,w8 . There are a total of 16 filters (f(1),f(2),...,f(16)) in the first layer of 
1D-CNN, and each filter contains these eight parameters. The number of 16 CNN filters was empirically selected 
with preliminary experiments. The reduction of CNN filters to 8 or 4 resulted in less performance due to a lack 
of representational capacity or an inability to extract useful repetitive patterns from EEG signals. Similarly, 
increasing filters to 32 or 64 does not improve the classification accuracy at the cost of additional computational 
complexity. Each filter also has one bias value in addition to these weights. Therefore, there are 16 (filters) x 9 
(filter weights + bias) =144 learnable parameters of the first layer of 1D-CNN. z1, z2, ..., zv represent preprocessed 
signal after z-score normalization, where v is the length of the 1-sec signal with 128 values. Therefore, Fig. 7 
represents, one of the 16 kernels (f(1)), convolved with one of the 14 EEG channels. The result of this convolu-
tion is presented in Eq. (1).

The size of the output of 1D-CNN for each of the signal channels is kept the same as the input to the 1D-CNN, 
which is 1 × 128 vector. To accomplish this, padding of the signal is required. Without padding ( p = 0 ) the out-
put length of 1D-CNN will be computed to 121, as given in Eq. (2). sl represent stride length, which is selected 
to 1× 1 . v is 128, k is 8, therefore, ((128+ 0− 8)/1)+ 1 = 121 . The visualization of strides of 1D-convolutions 
can be presented in Fig. 7. In Fig. 7, the f(1) is convolving with signal z, with index values (v) from 61 to 68. The 
next convolution operation will be performed after applying a stride of 1 × 1, therefore, the f(1) is convolving 
with the index values (v) of z from 62 to 69.

p represents the size of padding, and for the same output length, we should apply padding to the signal. The 
p can be calculated using p = k − 1 . Therefore, we should pad the original signal with 7 values. We applied, 
zero padding, therefore, after the signal is padded with seven zero values, the (2) gives the output length of size 
128. It is important to note that, the same filter f(1) will be convolved with the other thirteen channels of EEG 
signals to extract features. This mechanism of the f(1) as well as other kernels applied to each of the 14 channels 
is presented in Fig. 8. For each of the channels, the result of the convolutions will be a 1 × 128 vector. Therefore, 

(1)f (1)v = b1 +

k∑

i=1

(wi ∗ zv+i)

(2)a =
v + p− k

sl
+ 1

Figure 8.  All the 16 1D convolutional kernels, applied on 14 channels of EEG Signal.
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the size of activations computed by f(1) is 14 × 128. We just need to train the bias and weights of the f(1) kernel 
using the back propagation technique for the classification of a specific emotion.

There are 16 different kernels with parameters and bias terms presented in Eqs. (3) and (4), and so on for 
other layers. Each of the 16 kernels computes 14 × 128 activations after the first layer of 1D-CNN. Therefore, 
the total number of activations after layer 1 of 1D-CNN is 14 × 128 × 16. The visual representation of these 16 
kernels applied to 14 channels of 128 values is provided in Fig. 8.

Batch normalization
The input data of the neural network needs to be normalized, to accelerate the learning of parameters, by optimiz-
ing steps of gradient descent. The same phenomenon is critical in the hidden layers of deep neural networks. For 
instance, the normalization of activations of hidden layer 1, will result in efficient learning of parameters in hid-
den layer 2 and so on. Therefore batch normalization of activations of layer l, can improve the learning efficiency 
of parameters between layer l and layer l + 1. In deep learning literature, the common practice is to apply batch 
normalization after computing summations, such as f (1)v , f (2)v , ..., f (16)v before applying activation function. 
Therefore, we use the same standard and applied batch normalization after computing f (1)v , f (2)v , ..., f (16)v 
and before applying ReLU activations. This normalization will be performed by Eq. (5), and so on to other fif-
teen kernels to compute normalizes values such as nf (1)v , nf (2)v , ..., nf (16)v . This equation can be written in a 
generalized form as shown in Eq. (6), where q represents the number of kernels varying from 1 to 16. However, 
we do not want these values with zero means and variance equal to one. We just want to standardize the mean 
and variance of these values. For that purpose, batch normalization adds two learning parameters of γ and β 
for each of the 16 kernels. This can be represented in generalized form in Eq. (7). Therefore, the total number 
of learning parameters for batch normalization is 16 × 2 = 32 parameters. However, the size of activations will 
remain the same as in the previous layer.

Activation function
There are various activation functions that can be used in deep neural networks. It includes sigmoid function, 
tanh function, and ReLU (rectified linear unit) activation function. The mathematical expressions of these acti-
vation functions are presented in Eqs. (8), (10), and (10) respectively.

The sigmoid function is normally used in only the last layers of the deep neural network. Tanh function is a 
shifted version of the sigmoid and is always a better choice compared to the sigmoid function. This is because 
input data to DNN is normalized for zero means, which can easily be incorporated into tanh function. We have 
used sigmoid and tanh activation functions in recurrent layers. However, the drawback of both of these functions 
for CNN layers is their tendency to output values close to zero when the input values are large. This will result 
in the deceleration of gradient descent learning. In contrast, the ReLU activation is a more suitable choice, as it 
calculates the derivative to be zero for negative input, and the derivative to be one for positive input values. We 
have incorporated ReLU function to get the output of aR as shown in Eq. (10. It is also trivial to consider that 
we are using a non-linear activation function because of the complex and non-linear distribution of our multi-
class emotions data. Also, there is no learnable parameter involved in computing activation values and the size 
of activations remains the same as in the previous layer.

Max pooling layer
The pooling layer minimize number of features and hence avoid the problem of over-fitting. We incorporated 
max pooling by setting two hyper-parameters such as stride and filter size. The filter size is set to be 1 × 2, while 

(3)f (2)v =b2 +

8+k∑

i=9

(wi ∗ zv+i)

(4)f (16)v =b16 +

8+k∑

i=121

(wi ∗ zv+i)

(5)nf (1)v =(f (1)v − µ)/σ
2

(6)nf (q)v =(f (q)v − µ)/σ
2

(7)bnf (q)v =γ (q) ∗ nf (q)v + β(q)

(8)aS =
1

1+ e−(bnf (q))

(9)aT =
ebnf (q) − e−bnf (q)

ebnf (q) + e−bnf (q)

(10)aR =max(0, bnf (q))



12

Vol:.(1234567890)

Scientific Reports |        (2024) 14:17080  | https://doi.org/10.1038/s41598-024-61832-7

www.nature.com/scientificreports/

the stride is set to 1 × 1. The padding is used with zero value for the last value of the signal, just to fit the kernel. 
For one dimensional data with a short size kernel and stride length of sl, the max-pooling does not change the 
dimensions of output features. The dimension of the output layer can be computed similarly to the convolutional 
layer by using Eq. 2. In the absence of any padding, the output dimension will be ((128+ 0− 2)/1)+ 1 = 127 . 
Therefore, we only need to pad ( p = 1 ) the last value with zero to make the output length equal to the input. 
However, the main objective of using max pooling for 1D signals is to enhance the generalization property of 
the extracted features and hence avoid overfitting. The output values of max pooling with given parameters 
can simply be computed from Eq. (11. Here, aR,v represents the vth value of the feature after applying the ReLU 
activation function, and mpv represents the vth value of the feature after applying max-pooling of stride one 
and kernel size 2.

Dropout layer
The dropout layer is added to randomly discard features from the current layer. The probability of dropout is 
selected to be 0.5, therefore, 50% of neurons and their corresponding weights will be deactivated. It is critical 
to consider that size of output activations will not be changed, but for every dropout layer with a probability of 
0.5, half of the neurons will be shut off. The dropout will generate a vector of random numbers, with half of the 
values of the total neuron in the current hidden layer, and then discard those randomly selected neurons. The 
random selection is based on the fact that we do not want to rely on any feature in order to generalization the 
performance of neural and thus avoid overfitting.

Long short‑term memory
Long short-term memory (LSTM) is a particular type of recurrent network to conquer the long-term depend-
ency in RNN. The long short-term memory layer is incorporated to extract both short and long-term repeti-
tive pattern-based features. The output of previous 1D-CNN layers is 14 × 128 × 16, which is then flattened 
to a vector of size 1 × 28,672. This is quite a long sequence input, which is difficult to learn from standardized 
backpropagation through time resulting in a vanishing gradient. The gated cells and memory added to LSTM 
solve these problems. Therefore, the 28,672-sized vector is passed as input to the LSTM layer with 32 neurons. 
The total learnable parameters of LSTM layer are (128 × 28,672) + (128 × 32) + 128 = 3,674,240. The sigmoid is 
used as a gate activation function while tanh is used as a state activation function. The input weight of LSTM is 
initialized using the glorot scheme with a small Gaussian value and mean zero. To avoid exploding or vanishing 
gradients, the recurrent weights were initialized using an orthogonal scheme. Unit forget gate bias initializer is 
incorporated to achieve better performance with one-dimensional signals.

Extreme learning machine
The extreme learning  machine47 is a single hidden layer feed-forward neural network with strong generaliza-
tion capability without iterative tuning. Unlike Artificial Neural Networks, the ELM does not require tuning 
and periodically assigns hidden neurons. It randomly chooses biases and input weights of hidden layers and 
determines the output weights using least squares methods, resulting in the low computational time of  ELM48. 
Literature shows that ELM performs better than SVM with CNN-extracted  features49. Therefore the proposed 
framework is improved with the addition of an extreme learning machine that empirically performs better than 
fully connected layers and an SVM classifier for emotion recognition. ELM uses layered architecture for fast 
computations and shows promising results in recognizing EEG-based  emotions50. Extracted features from the 
1D-CRNN fed to ELM for classification. The number of hidden neurons selected to train the ELM classifier is 
9000. The training samples were further divided into 80:20 of training data and validation data, used to train 
and validate the ELM classifier.

Performance evaluation
Performance evaluation and comparative analysis is performed for each of the EEG rhythm using precision, sen-
sitivity, specificity, and F-measure. The computation of precision is presented in Eq. (12). It compute the closeness 
or dispersion of measurement of various classes. Similarly, the performance of our model is also established for 
sensitivity, specificity, and F-measure as measured by Eq. (13, 14, and 15.

(11)mpv = max(aR,v , aR,v+1)

(12)Precision =
TP

TP + FP

(13)Sensitivity =
TP

TP + FN

(14)Specificity =
TN

TN + FP

(15)F −measure =
2 ∗ Precision ∗ Sensitivity

Precision+ Sensitivity
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Results and discussion
The experimentation protocol involved the combination of digital signal processing and deep neural networks. 
The training of the neural network is performed on a Core-i5 machine for 90 epochs. The batch size is selected to 
be 240, with an initial learning rate of 10E-3. The gradient decay factor of 0.99 is used with the ADAM optimizer 
as training parameters. The training of the proposed framework is presented in Fig. 9. The samples in four classes 
have a large difference and thus create the problem of imbalanced classes. The HVLA is the class with the least 
number of 163 samples. After the segmentation step of preprocessing (divide each 10-s segment into ten separate 
1-sec segments), the samples of each class become 10-fold. Therefore, the HVLA class has a minimum of 1630 
samples of 1-s each. To avoid the imbalanced class problem, we randomly discarded additional samples above 
1630 from each class. Therefore, the total number of samples used for experimentation purposes was 1630 × 4 = 
6520. The dataset is randomly divided into train test ratios of 80 and 20 percent respectively. This random split 
is applied three times, and the average results are presented for these three random splits. In EEG-based emotion 
recognition research, there is not a single standard for the selection of k-value in cross-validation, and the 5-fold, 
10-fold, and 15-fold are associated with potential risks based on the randomness of data split when dealing with 
a small dataset, or poor generalization to unseen  data19. The selection of the k-value in cross-validation is signifi-
cant for ensuring the generalizability of the model and therefore, this study further investigates the performance 
with a more rigorous approach by leaving one subject out of validation.

The results are computed by dividing the EEG signals into delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), 
beta (13–30 Hz), and gamma (30–49 Hz) bands. These five EEG bands were created by applying chebyshev type 
2 filter on EEG signals with stopband ripple of 10dB. Delta band is dominant in sleep stages, while theta band 
occurs during deeply relaxed, tiredness and drowsiness states. Alpha rhythms occur during the passive attention 
state, while beta rhythms occur during anxiety and active state of mind. The gamma rhythms usually occur during 
concentration and problem-solving. The division of EEG signals into frequency bands helps feature extraction 
related to specific mental states.

The average accuracy for the four-class classification of HVHA, HVLA, LVHA, and LVLA is 65.5%, 52.1%, 
65.1%, 64.6%, and 65.0% for delta, theta, alpha, beta, and gamma rhythms respectively. The results comparison of 
a softmax layer with an Extreme learning machine is provided in Fig. 10 of the revised manuscript. The empiri-
cal results obtained with this comparison show the significance of ELM compared with softmax layer and other 
classifiers such as Support Vector Machine, k Nearest Neighbors, and Random Forest. By combining these bands 
with the use of ELM, the accuracy is 65.6% for four-class classification. The detailed results with a combination 
of these bands are presented as a confusion matrix in Table 4.

It is significant to perform both class-wise and EEG rhythm-wise performance analysis to get the better insight 
into performance of various parameters involved in this study. Figure 11 shows that HVLA class performs better 
compared to HVHA, LVHA, and LVLA for all the EEG rhythms. We have removed the class imbalance problem 
by removing random samples from each class. The performance of HVLA class is better as it has fewer samples, 
and none of the samples of HVLA were removed during class balance.

Figure 9.  Epoch wise training and validation score. Black line represent validation accuracy and validation loss, 
blue line represent training accuracy, and red line represent training loss.
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The classwise precision results of all of these five rhythms are presented in Fig. 11a. The theta rhythm performs 
less than other rhythms for all four classes of emotions. The specificity of each class for all the rhythms is higher 
compared to sensitivity or recall except HVLA class. Similarly, higher recall or sensitivity is measured for HVHA 
class except for the delta rhythm, where recall of LVLA class is higher. This exception can also be observed in 
higher specificity of HVHA for delta rhythm compared to other EEG rhythms as presented in Fig. 11b,c. A similar 
behavior of HVHA class can be observed in F-measure as shown in Fig. 11d.

Memory-induced emotion recognition is an emerging area and there are very limited studies that incorporate 
the scenarios close to the real-world environment. For  instance22, achieves 63% of accuracy for the three-class 
classification of positive emotion, negative emotion, and neutral. The subjects were shown personalized images 
and asked to recall memories associated with those images. Temporal frequency features were extracted and 
passed through a linear discriminant analysis (LDA) classifier for recognition of two emotion classes and a neu-
tral state. Another  study23 incorporated discrete wavelet transform (DWT) based feature extraction, principal 
component analysis for selection of features, and support vector machine (SVM) for the classification of binary 
classification of feeling disgusted or not. The subjects were asked to remember unpleasant odors and self-annotate 
whether they feel disgusted or not. They achieved 90% accuracy for the presence or absence of single emotion of 
disgust. In a recent  study24, subjects were shown stimulus videos, and after the video stopped, they were asked 
to close their eyes and remember the recently viewed stimulus videos while acquiring their EEG signals. They 
achieved an accuracy of 54.52% for six basic emotions of happy, sad, fear, anger, surprise, and disgust.

Table 5 represents a detailed comparison of the proposed methodology with existing techniques of mem-
ory-induced emotion recognition. The results from 69 participants with only 14 EEG channels exhibit the 

Figure 10.  The accuracy of all EEG rhythms, after feature extraction with 1D-CRNN, and compared with 
Extreme Learning Machine, Support Vector Machine, k Nearest Neighbors and Random Forest Classifiers, 
showing the significance of the use of ELM afer 1D-CRNN.

Table 4.  Confusion matrix of EEG combination of all bands. The boxes shows both the number of samples 
and the percentage of samples to the total number of samples. Similarly, total percentages below the the matrix 
shows the percentage of true positive rate from that specific class, and right side of the matrix with percentages 
of precision, the total percentage value at right bottom shows the overall accuracy of model.

Output class

Target class

TotalHVHA HVLA LVHA LVLA

HVHA 202
15.5%

23
1.8%

82
6.3%

104
8.0%

49.1%

HVLA 12
0.9%

270
20.7%

15
1.2%

9
0.7%

88.2%

LVHA 13
1.0%

24
1.8%

202
15.5%

31
2.4%

74.8%

LVLA 99
7.6%

9
0.7%

27
2.1%

182
14.0%

57.4%

Total 62.0% 82.8% 62.0% 55.8% 65.6%
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generalization of the proposed model. Words were displayed to evoke emotional memories in the participants, 
which can induce subjective memories compared to the odors, images, and stimulus videos based on short-time 
memory recalls. The proposed methodology outperforms conventional machine learning techniques for four 
emotion classes, fewer EEG channels, a large population size, and evoked words for more subjective emotional 
memory recall to mimic the real-world environment.

The leave one subject out validation strategy is used to further investigate the validation of proposed method-
ology and user independence. The extensive experimentation is performed with 69 subjects, while the proposed 
model is trained on 68 subjects and tested on one of the subjects with unseen data. This is repeated for all the 69 
subjects and accuracy of four class classification results are obtained and presented in Fig. 12. This figure shows 
the scatter plot of percentage accuracy against each of the 69 subjects tested with unseen data. The multi-class 
classification accuracy for HVHA, HVLA, LVHA, and LVLA classes are obtained with mean percentage accuracy 
of 54.51 and standard deviation of 6.77. The leave one subject out results are significantly lower than random 
splitting of data, because of the individual differences of EEG signals. Most of the studies incorporated limited 
number of participants, making it difficult to generalize the findings to a larger population. Therefore, these 
results suggests the use of other techniques to minimize the sensitivity of a model to inter-subject variability 
such as contrastive  learning51 in the future studies.

Figure 11.  The performance evaluation of all EEG rhythms against HVHA, HVLA, LVHA, and LVLA. In 
general, HVLA class has the highest precision, sensitivity, specificity, and F-measure values. (a) In precision 
analysis, alpha frequency band performs better compared to other frequency bands. (b) In sensitivity analysis, 
delta frequency band generally has higher sensitivity. (c) In specificity analysis, alpha frequency band generally 
has higher specificity. (d) In F-measure analysis, delta frequency band generally has higher specificity compared 
to other frequency bands.

Table 5.  Comparison of proposed methodology with state-of-the-art techniques with memory-induced 
emotion recognition dataset using EEG signals.

Technique

Temporal and frequency domain 
features with Linear discriminant 
analysis (LDA)  classifier22

Wavelet transform feature 
extraction, Principal component 
analysis for feature selection, and 
SVM for  classification23

Differential entropy features, and 
SVM for  classification24 1D-CRNN-ELM (Proposed)

First random split (%) 52.60 60.58 60.04 65.64

Second random split (%) 53.83 61.12 59.43 66.03

Third random split (%) 54.22 60.97 59.35 65.26

Mean accuracy (%) 53.54 60.89 59.61 65.64

Standard deviation (%) 0.69 0.23 0.31 0.31
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The advantages of the proposed combination of 1D-CRNN-ELM include its inherent property of temporal 
and sequential for analyzing EEG data. It captures both short-term and long-term temporal dependencies in EEG 
signals for improved recognition of challenging memory-induced emotions. Combining 1D-CNN and LSTM 
is significant, because CNN layers facilitate spatial feature extraction, while LSTM enables complex temporal 
patterns related to memory-induced emotions. Similarly, ELM helps in the efficient training of spatiotemporal 
features extracted by CNN and LSTM layers. These advantages help in achieving better emotion recognition per-
formance compared to state-of-the-art techniques for the same dataset of memory-induced emotions. However, 
the proposed framework has the disadvantage of increasing the complexity of the model and less generalization as 
seen with the leave one subject out validation results. The less generalization of the model is observed as around 
10% less mean accuracy by leaving one subject out of validation compared to the mean of three random splits. 
The results of this study are encouraging by supporting our hypothesis that the deep learning model combining 
both CNN and LSTM can improve emotion recognition performance for challenging memory-induced emo-
tions mimicking real-world scenarios. The dataset is challenging because of subjective memory recalls based on 
minimal evoking affective words, and the person can lose concentration while recalling emotional memories 
can contribute to less emotion recognition performance as anticipated with a complex deep learning framework. 
However, the performance can be improved with much more sophisticated deep learning algorithms in future 
work, and with the addition of other modalities such as ECG signals.

Conclusions
This study proposed a deep learning technique for improving memory-induced emotion recognition perfor-
mance and constructed a dataset of EEG signals acquired during highly subjective emotional memory recall. 
Affective words were randomly displayed to participants in three sessions to think about emotional memory for 
ten seconds. The data acquisition is performed with an ultra-portable, wearable cap sensor from 69 subjects with 
self-annotation on the dimensional scale of valence and arousal. The significance of the dataset is explored with 
the proposed framework of 1D-CRNN feature extractor with ELM classifier used to recognize four classes of 
dimensional emotion models known as HVHA, HVLA, LVHA, and LVLA. The proposed algorithm achieved a 
mean accuracy of 65.64% for four class classifications, better than state-of-the-art techniques used for memory-
induced emotion recognition for the same dataset. The benchmark results with five EEG rhythms and their com-
bination show the effectiveness of the proposed deep learning technique for memory-induced affect recognition 
evoked with affective words. The limitation of the acquired EEG dataset is the number of emotion classes and 
only EEG modality. Future work can incorporate more emotion classes and ECG modality with memory-induced 
emotion recognition. It would be of considerable interest to know what changes from baseline in spectral features 
indicate valence and arousal values with contrastive learning methods to overcome intra-subject variability in 
future work. This research will provide a baseline for researchers to develop emotion recognition algorithms 
in less constrained, real-world environments as recalling autobiographical memories during daily activities.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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