
              

City, University of London Institutional Repository

Citation: Bishop, P. & Povyakalo, A. A. (2022). Optimising the Reliability that can be 

Claimed for a Software-based System based on Failure-free Tests of its components. 
Computer Safety, Reliability, and Security, 13414, doi: 10.1007/978-3-031-14835-4 ISSN 
0302-9743 doi: 10.1007/978-3-031-14835-4 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/33531/

Link to published version: https://doi.org/10.1007/978-3-031-14835-4

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Optimising the Reliability that can be Claimed
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Abstract. This paper describes a numerical method for optimising the
conservative confidence bound on the reliability of a system based on
statistical testing of its individual components. It provides an alternative
to the sub-optimal test plan algorithms identified by the authors in an
earlier research paper. For a given maximum number of component tests,
this numerical method can derive an optimal test plan for any arbitrary
system structure.
The optimisation method is based on linear programming which is more
efficient than the alternative integer programming approach. In addi-
tion, the optimisation process need only be performed once for any given
system structure as the solution can be re-used to compute an optimal in-
teger test plan for a different maximum number of component tests. This
approach might have broader application to other optimisation problems.
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1 Introduction

Statistical testing [4, 10, 8] provides a direct estimate of the software probability
of failure on demand (pfd) of a demand-based system to some confidence bound,
and it is recommended in functional safety standards such as IEC 61508 [6]. The
standard approach to deriving a confidence bound on the pfd of a software-based
system is to perform statistical testing on the whole system as a “black-box”. In
practice, performing tests on the entire system may be infeasible for logistical
reasons, such as lack of availability of all component subsystems at the same
time during implementation. For example, the statistical tests performed on the
Sizewell B computer-based Primary Protection System (PPS) were performed on
a single hardware division of the PPS, while the complete fault tolerant system
consists of four divisions with 2-out-of-4 voting [5]. Similar constraints exist for
the statistical testing of the Hinkley Point C protection system [9].

To address the constraint, testing can be restricted to a single component
within the system architectures provided the fault tolerance mechanisms are
pre-defined and static, i.e there is no dependency between components (such



as dynamic fail-over schemes). A general method was developed for deriving
a conservative confidence bound based on independent statistical tests applied
(with zero failures) to individual software-based components within the system
[1]. The approach is completely general – it can be used to derive a conservative
pfd bound for any system architecture (represented by a structure function) for
a given component test plan.

The choice of component test plan affects the pfd bound that can be claimed
under worst case failure dependency conditions. The paper showed that for sym-
metrical architectures (like r-out-of-m vote structures), an even split of N tests
between components always produces the optimal pfd bound, where:

1. if all components have identical software, subjecting each component to N/m
tests produces the same pfd bound as subjecting the full system to N tests;

2. if the software in each component is not identical, subjecting each component
to N/m tests produces the same pfd bound as subjecting the full system to
N(m− r + 1)/m tests.

The first result is unsurprising. If all components have the same software, iden-
tical defects will be present in every component – so it does not matter which
component is tested, the system pfd is determined by the total of number of
tests in all m components.

The second result is counter-intuitive, as a complete system with diverse
components would have the same pfd bound as a non-diverse system when test-
ed as a “black-box”. The difference arises because the components are tested
separately. A worst case example of non-identical failure dependency is shown in
Figure 1 for a 2-out-of-3 vote structure. In this case, there is a common fault in

Fig. 1. Worst failure dependency example: non-identical software. The dark patches
represent defective regions in the input space of two components.

just two of the components, so only the combined number of tests performed on
components c1 and c2 determine the upper confidence bound on the system pfd.
There are other possible common failure mode states like {c1, c3} or {c2, c3},
however in all cases, it was shown in [1] that the system pfd is determined by the



two least tested components, and more generally for a r-out-of-m structure, the
system pfd is determined by smallest total of tests in (m− r + 1) components.

As a result, the optimal test plan is an even split of the available tests across
the components, i.e. if N tests are available, N/m tests are allocated to each
component.

Deriving optimal test plans for arbitrary, asymmetric structures was more
challenging. Two sub-optimal test plan strategies were identified in [1] that are
optimal for some asymmetric structures – but not in general.

This paper presents an alternative to the test plan algorithms described in [1]
that derives an optimal test plan using linear programming. We first summarise
the main elements of the theory presented in [1], and then present our alternative
method for generating an optimal test plan using numerical methods.

2 Confidence Bounds from Component Tests

Failure-free testing over m individual components can be characterised by a test
plan vector

n = (n1, n2, . . . , nm)′ (1)

where m is a number of components, nj is the number of (failure-free) tests for
component j, and the total number of tests is

N =

m∑
j=1

nj . (2)

Failures of the overall system can be characterised by minimal cutsets where
failure of all components in any minimal cutset will cause a system failure.

A general proof given in [1] shows that, for any structure characterised by a
set X of minimal cutsets, the (1− α) upper confidence bound qs for the system
pfd can be conservatively approximated as

qs ≤ min

(
ln(1/α)

Nmin
, 1

)
(3)

where Nmin is the smallest total number of component tests in a minimal cutset,
i.e.:

Nmin = min
∀x∈X

∑
i∈x

ni (4)

where i ∈ x identifies the components in minimal cutset x.

For example, a 2-out-of-3 vote structure with diverse components has three
minimal cutsets {c1, c2}, {c2, c3} and {c1, c3} so

Nmin = min( n1 + n2, n2 + n3, n1 + n3 ).



For a 2-out-of-3 vote structure with identical components, the software failures
in all components coincide, so there is only one minimal cutset: {c1, c2, c3} and

Nmin = (n1 + n2 + n3) = N.

The optimal test plans and confidence bounds derived in [1] for some common
symmetrical structures are summarised in Table 1.

Table 1. Optimum test plan and confidence bounds for symmetrical structures

Structure Software nj Nmin Confidence Bound

Series (m-out-of-m) Diverse
N
m

N
m

m
N
ln 1

α

Vote (r-out-of-m) Diverse
N
m

(m−r+1)N
m

m
(m−r+1)N

ln 1
α

Vote (r-out-of-m) Identical any split N
1
N
ln 1

α

Vote (1-out-of-m) Either any split N
1
N
ln 1

α

The “series” structure is a chain of m components where the failure of any
component causes system failure, so all m components must be functional for
the system to be functional.

The “vote” structure (assuming voter correctness) combines the outputs of
m components so that only r components need to be functional for the overall
system to be functional.

It can be seen that for symmetrical structures, it is always optimal to appor-
tion the N tests equally across the m components.

3 Optimising Test Plans for Asymmetric Structures

An asymmetric structure has a variable number of components in its minimal
cutsets, such as the reliability block diagram (RBD) shown in Figure 2.

For such structures, explicit test plan optimisation is needed to ensure that
the maximum value of Nmin is obtained.

It was shown in [1] that it should always be possible to construct an allocation
of component tests such that:

Nmin ≥ N/kp. (5)

where kp is the length of the shortest possible success path.
For example, in Figure 2, the dashed lines denote the shortest success paths

where kp = 3.
Two sub-optimal allocation plans where identified in [1] that always satisfy

this constraint:



Fig. 2. Reliability block diagram. The dashed lines are the shortest success paths

– Single shortest path, whereN/kp tests are allocated equally to all components
on just one shortest success path.

– Balanced shortest path, where the number of tests per component is propor-
tional to the number of shortest success paths that include the component.

Both allocation methods are optimal for cases where each component appears
only once in the RBD. The balanced path test plan also produces the optimal
result for symmetric r-out-of-m vote structures (where the same component is
present in more than one RBD branch).

Figure 3 shows the result of applying the balanced path allocation procedure
to the RBD shown in Figure 2.

Fig. 3. Allocation of tests to components. The dashed lines are example minimal cutsets
(there are further minimal cutsets).

Component c1 has twice as many tests as the other shortest path components
(because it is present in two shortest paths). It can be seen that the total number
of tests in all minimal cutsets is the same (N/3).



Components c6, c7 and c8 have no tests and could potentially fail on every
demand, but this test plan is optimal because it maximises the number of tests
in each cutset and hence the system reliability that can be claimed.

It proved to be more difficult to identify a general optimal test allocation
strategy that was applicable to any arbitrary asymmetric structure. While fur-
ther test plan allocation algorithms were examined, it was always possible to
identify a counter-example structure where the allocation would be sub-optimal.

An exact optimal test plan could be produced using integer programming
(optimisation of an objective function where the input variables are constrained
to be discrete integer values [2]), but this solution approach is NP hard [12].

We chose a less computationally expensive approach that has been used in
other application contexts (e.g. [3, 7]) where the integer optimisation problem
is mapped to the continuous domain, optimised using linear programming, and
the results converted back to discrete integer values.

In our solution approach, we represent the component tests as continuous-
valued fractions of the total number of tests, maximise the Nmin fraction using
linear programming, then convert the optimal continuous test plan fractions back
to a discrete integer test values for each component. The approach is described
in more detail in the section below, and an example R [11] script implementation
of the method is given in Appendix A.

4 Test Plan Optimisation using Linear Programming

Let us introduce the following notation

m is the number of components;

f = (f1, f2, . . . , fm)′ ∈ Rm is the fraction of tests allocated to each component,
i.e. fj = nj/N, j = 1..m;

s is the number of minimal cutsets;

1s = (1, 1, . . . , 1)′ is a unit vector of size s;

Y is a s×m incidence matrix for minimal cutsets where yij = 1 if component
cj belongs to minimal cutset i, yij = 0 otherwise.

In order to maximise Nmin for a given N , we are looking for the optimal test
plan among all test plans that allocate the same fraction of tests g to all minimal
cutsets in Y , by solving the following linear programming (LP) problem:

g → max (6)

given

Y · f = g · 1s; (7)
m∑
j=1

fj = 1; (8)

fj ≥ 0, j = 1..m, (9)



where Y ·f is the matrix product of matrix Y and vector f that computes the sum
of the component test fractions for every cutset, hence constraint (7) requires
that

∑m
j=1(yij .fj) = g, i = 1..s.

We can now eliminate variable g by defining the following terms:

h = f/g (10)

H = 1/g. (11)

Rewriting the LP problem in these terms, g is maximised when H is min-
imised, i.e.:

m∑
j=1

hj = H → min (12)

given

Y · h = 1s; (13)

hj ≥ 0, j = 1..m. (14)

A simplex LP solver algorithm can be used to derive the solution to this
problem. Conceptually, the feasible region for the solution is a multi-dimensional
polyhedron where each face represents a different constraint. The simplex algo-
rithm finds the optimal solution by locating a vertex of the polyhedron (the
initial feasible point) and moving to the next vertex along an edge that is closer
to the optimal value (in our case, the minimum value of H). In practice how-
ever, the solver can sometimes fail to find a solution when equality constraints
are used – probably because it fails to generate an initial feasible point. To
resolve the issue, we noted that H reaches its unconstrained minimum when
hj = 0, j = 1..m. Therefore, equality constraint (13) can be replaced with an
inequality constraint Y ·h ≥ 1. This makes no difference to the final solution as
the optimisation seeks to minimise H, so the final solution will still satisfy the
constraint Y · h = 1. Thus, the LP problem can be reformulated as follows.∑

j

hj = H → min (15)

given

Y · h ≥ 1s; (16)

hj ≥ 0, j = 1..m. (17)

This optimisation problem can solved by an R script that calls the LP solver
simplex() as shown in Appendix A.

The resultant optimal test allocation fractions for the components are:

fop = hop/Hop (18)

and the optimal minimal cutset fraction gop is:

gop = 1/Hop. (19)



As in general these fractions are real values, the optimal apportionment of com-
ponent tests i.e., n = fopN can be non-integer. An integer component test allo-
cation can be derived by first finding the smallest number of tests, N0, where all
component test fractions scale to integer values, i.e.

bfopN0c = fopN0. (20)

N0 can be found by incrementing an integer number k by 1 until all the
products k · fj , j = 1..m become integer.

It follows that the plan for a total number of tests

N− = N − (N mod N0) (21)

is always integer because it is a multiple of N0.
If there is an option to add extra tests to the plan, one can consider a test

plan for N+ tests where
N+ = N− +N0. (22)

However, we know that the change in Nmin between the plans for N− and
N+ could be greater than one, i.e.

(N+
min −N

−
min) ≥ 1. (23)

For example, if we start with the integer test plan for N− and add one test to
the kp components on a single shortest success path, Nmin increases by one. If
N0 > kp we know this solution is also an integer plan so the increase in Nmin

must be greater than 1.
For structures where N0 > kp, there will be intermediate integer test plans

between N− and N+ where the non-zero component tests in each minimal cutset
are not exactly equal, but the test plan still maximises the value of Nmin for a
given number of tests N .

In principle, there can be structures where N0 � kp, e.g. structures where
the denominators of the component test fractions are differing prime numbers,
so there could be an arbitrarily large number of intermediate test plans between
a pair of perfectly balanced test plans with N− and N+ tests.

It would be possible derive optimal intermediate test plans where the non-
zero component tests in the cutset are unequal, but this would require an entirely
different, more complex algorithm (e.g. using integer programming). In practice,
it is simpler to round up the fractional component tests to the next whole integer,
i.e.

n↑ = dfopNe; (24)

N↑min = min(Y · n↑); (25)

N↑ =
∑

n↑. (26)

This plan for N↑ tests will include no more than m redundant tests to achieve
the same Nmin as a fully optimised integer test plan.



5 Example

Let us consider an example asymmetric structure with the reliability block dia-
gram (RBD) given in Figure 4.

Fig. 4. Example asymmetric RBD

Its minimal cutsets are:

{c1, c2}
{c2, c3}
{c1, c3, c4}
{c5}

and its minimal cutset incidence matrix Y is shown in Table 2, where a “1” in
a row indicates that the component is included in the minimal cutset.

Table 2. Minimal cutset incidence matrix

Cutset Component j

x 1 2 3 4 5

1 1 1 0 0 0

2 0 1 1 0 0

3 1 0 1 1 0

4 0 0 0 0 1

For this minimal cutset incidence matrix, the R script (see Appendix A)
generates the following optimal test allocation fractions:



f1 f2 f3 f4 f5 gop

0.2 0.2 0.2 0.0 0.4 0.4

where zero tests are allocated to component c4.

For this plan, sequential search gives N0 = 5. Therefore, for a test campaign
with a total number of tests N = 20003, the number of tests for an exact integer
test plan is

N− = 20003− (20003 mod 5) = 20000 (27)

with the following allocation of tests to components

n1 n2 n3 n4 n5 N−

4000 4000 4000 0 8000 20000

where the least number of tests allocated to any minimal cutset is

Nmin = gopN
− = 8000.

The R script also generates a rounded-up test plan where the test allocation
is:

n↑1 n↑2 n↑3 n↑4 n↑5 N↑

4001 4001 4001 0 8001 20004

and the least number of tests allocated to any minimal cutset is

N↑min = min(Y · n↑)) = 8001.

This is not completely optimal because Nmin = 8001 is possible with a test
plan where N = 20003 by mapping the same test fraction values to different
integer values, as shown the test plan below (the reduced tests are italicised).

n1 n2 n3 n4 n5 N

4001 4001 4000 0 8001 20003

It can be seen that the simplified integerisation strategy of rounding up to
the next integer only has a marginal impact on the number of tests required to
achieve a given Nmin value. It also allows test plans to be generated for every
Nmin value.

The choice of integerisation strategy only makes a marginal difference to the
optimality of the plan. The main gain is achieved by identifying the optimal
test fractions. For example, if we use the sub-optimal strategy proposed in [1] of
allocating N/kp tests equally to components on a single shortest success path,
such as (c1, c2, c5), then kp = 3. This is clearly sub-optimal as the least tested
cutsets only have Nmin = bN/kpc = b20003/3c = 6667 tests.



6 Discussion and Conclusions

In this paper, we have extended the test planning approach described in [1] so
that optimal test plans can be produced for arbitrary structures by optimising
test plans in the continuous domain. The fractions generated in the continuous
domain are independent of the number of tests, so they only need to be generated
once for any given structure. An integer test plan can be recalculated from these
fractions for any given test budget – reducing the computing resources needed
for a new plan.

We identified two options for converting the test fractions to integer compo-
nent test values. The simplest method is to round up fractional values to the
next whole integer. While not strictly optimal in all cases, there is only a min-
imal (and bounded) increase in the number of tests required to demonstrate a
given confidence bound.

Other integer conversion methods are possible but the differences are marginal
– the optimisation is primarily achieved by identifying the optimal test fractions.

In principle, it would be possible to create a library of optimal test plan
solutions for different structures that can be converted to integer test plans
for any specified total number of component tests. This approach might have
broader application to other optimisation problems.
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A Test Plan Optimisation R Script

The test plan optimisation approach was implemented using the standard sim-
plex solver available in the R statistical analysis library. The use of the test plan
optimiser is illustrated using the non-symmetric structure shown in Figure 4.

library("boot")

#------------------------------------------

# lptplan_example <- function( N, alpha)

# N - total number of tests (default 20003)

# alpha = 1 - confidence level (default 0.05)

#------------------------------------------

lptplan_example <- function(

N=20003,

alpha = 0.05

)

{

# minimal cutset matrix

cutsets <- matrix(

c(

1,1,0,0,0, # cutset: C1, C2

0,1,1,0,0, # cutset: C2, C3

1,0,1,1,0, # cutset: C1, C3, C4

0,0,0,0,1 # cutset: C5

), 4, 5,

byrow=TRUE

)

# Generate optimised test plan

print ( lptestplan(cutsets, N, alpha) )

}

#-----------------------------------------

# lptestplan <- function(Y, N, alpha)

# Y incidence matrix for the minimal cutsets

# columns represent components

# rows represent cutsets

# N total number of tests

# alpha = 1 - confidence level

#-----------------------------------------

lptestplan <- function(Y, N, alpha)

{

# Number of components



m <- ncol(Y)

# Number of minimal cutsets

s <- nrow(Y)

# Unit vectors

uvm <- rep(1,m)

uvs <- rep(1,s)

# Solve LP

lp0 <- simplex(

a = uvm,

A3 = Y,

b3 = uvs

)

H <- as.numeric(lp0$value)

h <- lp0$soln

# Optimal cutset test fraction

g <- 1/H

# Optimal component test fractions

f <- h * g

# Find exact integer test plan (<= N)

k <- 1

r <- 1

while(r>0){

r <- sum ((f*k)%%1)

if(r>0) k <- k+1

}

N0 <- k

N_minus <- N - (N%%N0)

# Generate exact integer test plan

N_min <- N_minus * g

n <- N_minus * f

# Calculate upper confidence bound

q_u <- log(1/alpha)/N_min

# Generate rounded-up integer test plan (>=N)

n_up <- ceiling(N * f)

N_min_up <- min(Y %*% n_up)

N_up <- sum(n_up)



# Calculate rounded-up upper confidence bound

q_u_up <- log(1/alpha)/N_min_up

# Return optimised results

return

(

list(

cutsets=Y,

alpha = alpha,

component_fractions = f,

cutset_fraction = g,

N = N,

N0 = N0,

N_minus = N_minus,

lptest_plan = n,

N_min = N_min,

q_u = q_u,

N_up=N_up,

lptest_plan_up=n_up,

N_min_up=N_min_up,

q_u_up = q_u_up

)

)

}


