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A B S T R A C T

Accurate and reliable cellular steel beam resistance predictions are essential for economical and safe designs
of steel-framed buildings with such beams. This paper proposes a new machine-learning (ML) model based on
the natural gradient boosting (NGBoost) algorithm to predict probabilistic load-bearing capacities of laterally
restrained cellular beams subjected to uniformly distributed loads, considering all possible failure modes and
their interactions. The NGBoost model was developed based on a database with 14,094 numerical simulation
results and interpreted using the SHapley Additive exPlanations (SHAP) method commonly used for ML
model explanation and interpretation. The resistance reduction factors required for the NGBoost model to
meet the reliability requirements of the European and US design frameworks were determined via reliability
analyses using the methods given in the respective standards and the improved Hasofer–Lind–Rackwitz–Fiessler
(iHL-RF) method. Comparisons of the developed NGBoost model with other ML models and existing design
provisions indicate that the former is as accurate as other ML models (while offering probabilistic predictions)
and significantly outperforms the existing design provisions. A web application was developed and deployed
online to predict the ultimate uniform loads of laterally restrained cellular beams with the developed NGBoost
model. The proposed NGBoost model can facilitate preliminary cellular steel beam designs and investigating
parameters affecting their resistance.
1. Introduction

Cellular steel beams, distinguished by regularly spaced circular
web openings, have gained popularity in construction due to their
lightweight and ability to span long distances and integrate services
within the structural floor depth [1,2]. However, the structural design
of such beams is more complex compared with solid-web beams due
to the need to analyze multiple failure modes, such as lateral–torsional
buckling (LTB), beam global shear (BGS), beam global bending (BGB),
Vierendeel bending of the Tees (VBT), web-post shear (WPS), and
web-post buckling (WPB) [1,2].

Many studies investigated the resistance of cellular steel beams
experimentally [3–11] and numerically [5,8–10,12–20]. Based on the
results of the experimental and numerical studies, several design pro-
visions have been developed over the years, including SCI P100 [21],
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ENV 1993-1-1: 1992/A2: 1998 [22], SCI P355 [1], FprEN 1993-1-
13 [23], and AISC Design Guide 31 (AISC DG31) [2]. However, cap-
turing all failure modes by simple empirical formulae that are suitable
for design guides and standards has been found to be challenging
due to the problem complexity. As a result of this, the existing de-
sign provisions do not always predict the resistance of cellular steel
beams accurately [24–26] (by largely underestimating them), which
highlights opportunities for design model improvements.

Machine learning (ML), which has been successfully used in many
structural engineering applications [27–29], can offer design mod-
els for cellular steel beams that are more accurate than those given
within existing design provisions. Over the recent years, several pub-
lications presented ML models for predicting the resistance of cellular
beams [30–36], castellated beams [37], and beams with elliptical [38,
39], and sinusoidal [40] web openings. Some published ML models pro-
duced beam resistances against a single failure mode, such as LTB [30,
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34,36,40], WPB [33,38,39], and lateral–distortional buckling [37],
while others predicted elastic buckling loads [31,32,35] or the beam
resistance covering all possible failure modes [35]. The published
ML models were based on various algorithms, with artificial neural
network (ANN) being the most popular [30,31,33,34,37–40]. The ML
models described in [35] relied on decision tree (DT), random forest
(RF), k-nearest neighbor (KNN), gradient boosting regressor (GBR),
extreme gradient boosting (XGBoost), light gradient boosting machine
(LightGBM), and gradient boosting with categorical features support
(CatBoost). Ly et al. [32] employed adaptive neuro-fuzzy inference
system (ANFIS), while Seghier et al. [36] developed their models based
on least square support vector machine (LSSVM).

All published ML models for predicting the resistance of cellular
steel beams applied to one failure mode, laterally unrestrained beams,
or beams with a lateral restraint provided at mid-span because they
were trained on such data. As a result, the existing ML models covering
all possible failure modes are limited by relatively short spans, further
increase of which is impossible without provision of lateral restraints to
eliminate the LTB failure mode. For example, the ML models presented
in [35] applied to the beams with a maximum span of 7 m, or from
10.0𝐻 for 700-mm deep beams to 16.7𝐻 for 420-mm deep beams,
where 𝐻 is the beam height. In construction, transversely orientated
steel decking restrains cellular beams laterally when it is appropriately
attached to the beam compression flange [2,41]. Laterally restrained
beams possess longer spanning capabilities than unrestrained beams as
LTB is not a critical failure mode. This is reflected in beam spans typi-
cally in excess of 12.0 m [42]. As a result, long-span laterally restrained
cellular beams provide a higher potential for possible interactions of
different failure modes due to the internal force redistribution com-
pared to short-span beams, thereby affecting the beam resistance. All
available publications describe ML models for predicting the deter-
ministic beam resistances, with no reliability-based calibrations of the
models, which are considered necessary to ensure that the models
produce resistances meeting the reliability requirements of respective
building codes.

To address the above issues, this paper proposes an ML model for
predicting probabilistic ultimate uniform loads of laterally restrained
cellular steel beams spanning from 15𝐻 to 30𝐻 , commonly used
in steel-framed construction, especially for multi-storey commercial
developments. The model is based on an extensive database with
14,094 finite element (FE) simulation results and the natural gradient
boosting (NGBoost) algorithm [43], which was previously used in
structural engineering applications [44–50] but not for cellular beams.
NGBoost produces probabilistic outputs (herein beam resistances) that
are unavailable from other ML models previously employed for cellular
steel beams. The proposed NGBoost model for predicting cellular beam
resistances was calibrated via reliability analyses for the Eurocode (EC)
and US design frameworks, which also makes this study novel.

The paper has the following structure. Section 3 describes the
database used for the NGBoost model training and evaluation. Section 4
overviews the NGBoost algorithm, describes the developed NGBoost
model, and presents the results of the model interpretation. Section 5
presents the reliability-based calibration of the NGBoost model. Sec-
tion 6 compares the NGBoost model predictions with those by ML
models based on other ML algorithms and existing design provisions.
A web application featuring the developed NGBoost model is described
in Section 7.

2. Data acquisition

The data for training and evaluating the presented NGBoost model
were obtained from a numerical parametric study that involved geo-
metrically and materially nonlinear FE method analyses with imper-
fections (GMNIA). Similar approaches with ML models trained using

numerical data obtained from FE simulations on validated models have t

2 
been employed by many researchers for steel beams with regularly
spaced web openings [31–40].

This section briefly describes the FE models of the cellular steel
beams with geometric parameters illustrated in Fig. 1 and their val-
idation. The scope of the numerical study is covered by the variable
ranges described in Section 3.

2.1. FE models

The FE analyses were performed in ANSYS on cellular beam models
created using quadrilateral shell elements SHELL181, with a maximum
size of 20 mm, which was reduced by a factor of two in the vicinity
of the openings. The mesh size that provided both the highest accu-
racy and computational efficiency was determined from a convergence
study.

The elastic-perfectly plastic stress–strain diagram with an elastic
modulus of 200 GPa and Poisson’s ratio of 0.3 were assumed for the
steel. Steel plasticity was modeled with isotropic hardening and von
Mises yield criterion.

The model boundary conditions simulated a simply-supported
beam, with symmetric boundary conditions applied at mid-span. The
beam top (compression) flanges were laterally restrained at a spacing
ranging from 300 to 348 mm, simulating steel deck attachments.
Uniformly distributed loads were applied to the beam top flange nodes
at the web location with vertical forces, the magnitude of which was
proportional to the corresponding FE size. Full-height web stiffeners
with a thickness equal to the beam flange thickness were provided at
the beam supports. Fig. 2 shows a typical FE model of a cellular steel
beam used in the study.

The initial geometric imperfections, with a magnitude of 𝐻∕100
for 𝐿∕𝐻 < 10 and 𝐿∕1000 for 𝐿∕𝐻 ≥ 10 [7,18,20], were assumed
to match the beam’s first buckling mode obtained from the elastic
buckling analysis, which preceded the nonlinear analysis.

The residual stresses with the following magnitudes [7,16,51] were
applied to the models. Compressive stresses at the flange edges were
100 MPa for (𝐻 + 𝑡f )∕𝑏f > 1.2 and 150 MPa for (𝐻 + 𝑡f )∕𝑏f ≤ 1.2.

ensile stresses at the flange center were 50 MPa for (𝐻 + 𝑡f )∕𝑏f > 1.2
nd 100 MPa for (𝐻 + 𝑡f )∕𝑏f ≤ 1.2. Tensile stresses in the web were
0𝑏f 𝑡f∕[(𝐻 − ℎo)𝑡w].

Large-deflection effects (geometric nonlinearity) were allowed in
he static analyses in addition to the material nonlinearity. The ultimate
niform loads were obtained by considering criteria C1 and C2 of prEN
993-1-14 [52], which correspond to the maximum load the model
ould support and the largest tolerable strain, respectively. The largest
olerable total strains of 21%, 20%, and 17% were assumed for steel
ith the yield strengths of 275, 355, and 460 MPa, respectively, in
ccordance with EN 10 025-2 [53].

The ultimate uniform load obtained from the FE simulations for
ach beam was treated as the beam resistance; namely, the ability of
he beam to withstand the external uniform load before it fails. In
raditional cellular beam design, beam resistances for different limit
tates, such as bending resistance, shear resistance, web buckling resis-
ance, etc., are usually computed and compared with the internal beam
orces due to the applied external loads. The maximum permissible
xternal load can be determined from the governing resistance using
ngineering mechanics principles, producing the beam resistance in
erms of the applied load. In this paper, the term resistance, mainly
sed to shorten the text, refers to the ultimate uniform load.

.2. Validation of the FE models

Ten physical test results presented in [3–5,9] were used for FE
odel validation. The tests were selected to represent the parametric

tudy variables as closely as possible and cover multiple failure modes

ypical for cellular beams. The parameters of the selected beams and
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Fig. 1. Geometric parameters of cellular steel beams.
Fig. 2. FE model of a cellular steel beam.
Table 1
FE model validation results.

No. Source Test 𝐿∕𝐻 𝐻∕ℎo 𝑠∕ℎo 𝑓y (MPa) FM 𝑃test (kN) 𝑃FEA (kN) 𝑃test∕𝑃FEA

1 [3] 1B 20 1.41 1.50 323 VBT 108.0 109.5 0.99
2 [3] 2B 19 1.34 1.33 343 VBT 117.0 119.6 0.98
3 [3] 3A 9 1.43 1.50 350 VBT 151.0 151.4 1.00
4 [3] 4A 18 1.40 1.23 437 BGB 90.0 90.0 1.00
5 [3] 4B 16 1.40 1.23 360 WPB 114.0 118.2 0.96
6 [5] A1 4 1.39 1.30 360 WPB 288.7 286.8 1.01
7 [5] B1 4 1.39 1.20 360 WPB 255.0 247.0 1.03
8 [4] 1-ss 3 1.52 1.34 338 WPB 500.0 490.9 1.02
9 [9] A1 4 1.23 1.14 415 WPB 76.0 78.8 0.96
10 [9] B6 4 1.63 1.40 390 WPB 299.9 304.2 0.99

Notes: FM = Failure mode; BGB = Beam global bending; VBT = Vierendeel bending of the Tees; WPB = Web-post buckling.
FE model validation results are summarized in Table 1. Comparisons
of the load–displacement curves are shown in Fig. 3.

The information presented in Table 1 and Fig. 3 indicates a good
prediction accuracy of the FE models characterized by the 𝑃test∕𝑃FEA
values ranging from 0.96 to 1.03, with a mean value of 0.99 and a
coefficient of variation (CoV) of 0.022.

The numerical study aimed to investigate the resistance of steel
cellular beams with relatively large dimensions typical of those found
in real steel-framed buildings, whereas test results for smaller beams
have been reported in the literature because testing long-span beams
at full-scale is expensive and not always feasible. As a result, the
dimensions of the beams used for the FE model validation were smaller
than those for the beams considered in the parametric study, but the
relative dimensions, including 𝐿∕𝐻 , 𝐻∕ℎo, 𝑠∕ℎo, and the yield strength
of the tested and simulated beams were comparable. It should also be
noted that the authors are unaware of published test results for cellular
beams subjected to uniformly distributed loads. Therefore, the tests
of the beams under concentrated loads were used for the FE model
validation.
3 
The tested beams failed in three failure modes, including BGB, VBT,
and WPB (see Table 1). The model validation did not include the BGS
and WPS failure modes because the authors are unaware of test results
for these failure modes suitable for FE model validation. The LTB failure
mode was not considered, because the studied beams were laterally
restrained, which prevented this failure mode.

It can be concluded that the developed FE models could accu-
rately predict the resistance and behavior of cellular steel beams with
different dimensions and mechanical properties failing in various fail-
ure modes. Therefore, the FE models were found appropriate for the
numerical parametric study.

2.3. Failure modes observed in the numerical study

The simulated beams demonstrated various failure modes and their
interactions, as can be seen from the images of von Mises stress con-
tours at the beam failures presented in the database [54]. The authors
believe the multiple interactions of the failure modes were facilitated
by the LTB failure mode prevention, which allowed for the internal
force redistribution within long-span beams.
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Fig. 3. Comparisons of the load–displacement curves from the tests and FE simulations (a) 1B [3], (b) 2B [3], 3 A [3], 4 A [3], 4B [3], A1 [5], B1 [5], 1ss [4], A1 [9], and
B6 [9].
Table 2
Statistical parameters of the database variables.

Variables Min. Max. Mean St. Dev. Skewness Kurtosis

𝐻 (mm) 420.0 700.0 560.0 114.3 0.00 −1.50
𝑏f (mm) 162.0 270.0 216.0 44.1 0.00 −1.50
𝑡w (mm) 9.0 15.0 12.0 2.4 0.00 −1.50
𝑡f (mm) 15.0 25.0 20.0 4.1 0.00 −1.50
𝐿/𝐻 15.0 30.0 22.9 5.4 −0.10 −1.27
𝐿 (m) 6.30 21.00 12.84 4.06 0.40 −0.64
𝐻/ℎo 1.25 1.70 1.48 0.19 −0.12 −1.55
𝑠/ℎo 1.10 1.49 1.29 0.16 0.06 −1.58
ℎo (mm) 247.1 560.0 383.9 93.4 0.34 −0.75
𝑠 (mm) 271.8 834.4 495.4 137.0 0.53 −0.25
𝑠o (mm) 24.7 274.4 111.4 70.3 0.54 −0.70
𝑠e (mm) 25.2 960.4 264.6 182.5 1.11 1.14
𝑓y (MPa) 275.0 460.0 363.3 75.8 0.16 −1.50
𝑛o 11.0 46.0 26.0 8.2 0.31 −0.52
𝑃 1.00 2.00 1.38 0.49 0.50 −1.75
𝑤u (kN/m) 6.85 249.96 44.87 31.98 1.64 3.28

The NGBoost model presented in this study predicts the resistance
of cellular beams failing in all possible failure modes and their interac-
tions, while it does not identify the governing failure mode, which is
similar to the ML models presented in [35].

3. Database

The NGBoost model described in this paper was developed using a
database of uniformly distributed ultimate loads, 𝑤u, applied to simply-
supported laterally restrained cellular steel beams [54]. The database
includes 14,094 FE simulation results for the beams with various
depths, 𝐻 , web thicknesses, 𝑡w, flange widths, 𝑏f , and thicknesses, 𝑡f ,
span-to-depth ratios, 𝐿∕𝐻 , depth-to-opening diameter ratios, 𝐻∕ℎo,
opening spacing-to-diameter ratios, 𝑠∕ℎo, and yield strengths, 𝑓y.

Table 2 presents the statistical parameters of the database variables,
with 𝑛o being the number of web openings in each beam and 𝑃
corresponds to the distribution of 𝑛o taken as 1 and 2 for the odd and
even numbers of the openings, respectively. Fig. 4 shows distributions
of the database features. Table 2 and Fig. 4 indicate that the database
covers a wide range of cellular steel beams commonly found in modern
construction.

The correlation matrix in Fig. 5 presents the Pearson correlation
coefficients for the database variables. It indicates that the independent
database variables practically do not correlate with each other (except
for 𝐻 and 𝐿 showing a moderate correlation), making the independent
variables appropriate candidates for the NGBoost model features. Fig. 5
4 
also indicates that 𝐿 and 𝑠/ℎo are moderately correlated with 𝑤u (neg-
atively and positively, respectively), while other independent variables
are weakly correlated with 𝑤u.

4. Natural gradient boosting NGBoost model

4.1. Overview of the NGBoost algorithm

Natural gradient boosting (NGBoost), introduced by Duan et al.
[43], is a supervised learning technique designed to enable probabilis-
tic predictions through the utilization of gradient boosting [55] and
natural gradient algorithms [56].

The traditional regression boosting algorithms, such as XGBoost
[57], LightGBM [58], and CatBoost [59] produce a deterministic scalar
prediction for each set of features, treated as the mean prediction. In
contrast, NGBoost produces the mean and standard deviation for each
feature set. These two parameters and the distribution type, specified
before model training, describe a full probability distribution for each
prediction. NGBoost employs a scoring rule, such as the logarithmic or
continuous ranked probability score, that compares the predicted prob-
ability distribution with the observed data to allow for probabilistic
predictions. Using a scoring rule instead of a loss function differentiates
NGBoost from the traditional boosting algorithms. For a comprehensive
description of the NGBoost algorithm, readers are referred to [43].

NGBoost requires several hyperparameters to be specified before
model training, including those related to the base learner (decision
tree), gradient boosting, and natural gradient.

4.2. Proposed NGBoost model

The NGBoost model for predicting the ultimate uniform loads of
laterally restrained cellular steel beams was developed using an open-
source Python library ngboost (https://github.com/stanfordmlgroup/
ngboost). The model features included 𝐻 , 𝑏f , 𝑡w, 𝑡f , 𝐿, 𝐻∕ℎo, 𝑠∕ℎo, 𝑓y,
and 𝑃 . These nine features were selected based on an exploratory study
where different feature sets were tested. The selected features align well
with the empirical and mechanics-based knowledge of the parameters
affecting the cellular beam resistance. The features were not strongly
correlated between themselves (see Fig. 5, confirming the appropriate
feature selection).

Scikit-learn’s [60] ten-fold cross-validation was employed to vali-
date the model, with 80% and 20% of the data assigned to training
and test sets, respectively. Feature values were standardized before
model training to facilitate convergence of the NGBoost algorithm.
The root-mean-square error (RMSE=

√

(1∕𝑛)
∑𝑛 𝑦 − 𝑥 2, where 𝑛 is
𝑖=1 ( )

https://github.com/stanfordmlgroup/ngboost
https://github.com/stanfordmlgroup/ngboost
https://github.com/stanfordmlgroup/ngboost
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Fig. 4. Distributions of database features.
Fig. 5. Correlation matrix.

the number of observations, 𝑦 is the observed values, and 𝑥 is the
predicted values) and the coefficient of determination (𝑅2 = 1 −
∑𝑛

𝑖=1 (𝑦 − 𝑥)2 ∕
∑𝑛

𝑖=1 (𝑦 − �̄�)2, where �̄� is the mean value of 𝑦) were used
for assessing the NGBoost model performance. The latter error metric
(𝑅2) is considered by some researchers more informative than other
error metrics commonly used for model performance evaluation [61].

The NGBoost model hyperparameters were optimized in Optuna
[62], a Python library for automatic hyperparameter optimization fea-
turing define-by-run programming, efficient sampling and pruning algo-
rithms, and easy-to-setup versatile architecture. Table 3 summarizes hy-
perparameter optimization results. The lognormal distribution, which
was found to be more appropriate than the normal distribution, was
specified as a model hyperparameter, as well as the logarithmic score.

Fig. 6 shows the optimal NGBoost model performance in predicting
mean values of the ultimate uniform load, which can be treated as
5 
Table 3
Hyperparameter optimization results.

Hyperparameter Search range Optimal value

Max_depth 3 to 20 7
Min_samples_split 2 to 50 10
Min_samples_leaf 2 to 50 5
Max_features 2 to 9 6
n_estimators 100 to 3000 2500
Learning_rate 0.01 to 0.20 0.05

the nominal beam resistance. RR in Fig. 6 stands for the resistance
ratio, which is the ratio of the FE simulation results to the NGBoost
model predictions. CoV is the coefficient of variation. Fig. 6 indicates
an exceptional prediction accuracy of the developed model, with no
overfitting seen from the model performance comparison for the train
and test sets.

Table 4 gives performance metrics for the NGBoost model for vari-
ous subsets corresponding to different European steel grades considered
in the study. Table 4 indicates that the model performance worsens
slightly when the steel grade increases based on the RMSE values. How-
ever, the differences in the other performance metrics are relatively
small and practically imperceptible.

Fig. 7 presents RRs for the NGBoost model as functions of the
model features. These graphs allow for visual evaluations of the model
performance along the entire range of the feature values. The zero-
slopes of the linear regression lines in Fig. 7 (shown in red) and
relatively low scatters of the data points indicate accurate predictions
within the model applicability limits, which correspond to the feature
ranges in the database [54] used for model training (see Table 2).

Probabilistic predictions of the NGBoost model for three selected
data samples representing the minimum, mean, and maximum RR
values are shown in Fig. 8, with the sample numbers corresponding
to those in the database [54]. For comparison purposes, Fig. 8 also
shows the 𝑤u values from the FE simulations and those predicted by
the existing design provisions, including SCI P355 [1], FprEN 1993-1-
13 [23] (with both the main and alternative VBT provisions), and AISC
DG31 [2].
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Fig. 6. Performance of the NGBoost model in predicting the mean beam resistance.
Table 4
NGBoost model performance (mean resistance).

Steel grade RMSE (kN/m) 𝑅2 RR mean RR CoV

Train Test All Train Test All Train Test All Train Test All

S275, S355, S460 0.66 1.15 0.79 1.000 0.999 0.999 1.000 1.000 1.000 0.012 0.020 0.014
S275 0.43 1.15 0.64 1.000 0.997 0.999 1.000 0.999 1.000 0.009 0.025 0.014
S355 0.55 1.42 0.80 1.000 0.998 0.999 1.000 0.999 1.000 0.010 0.024 0.014
S460 0.71 1.90 1.06 1.000 0.997 0.999 1.000 1.000 1.000 0.010 0.026 0.014
Fig. 7. Simulation-to-prediction ratios versus database variables.
4.3. NGBoost model interpretation

The developed NGBoost model was interpreted using the SHapley
Additive exPlanations (SHAP) method [63] to provide insights on how
and why the model makes predictions. The SHAP method, which
has been widely used for interpreting models based on various ML
algorithms, relies on the cooperative game theory [64] to estimate the
contribution of each feature to the model output by considering Shapley
values estimated from comparing model predictions with and without
each feature.

Fig. 9 shows a SHAP summary plot, which ranks the features based
on their effects on the model predictions. The colors ranging from
red to blue represent each feature’s value varying from high to low,
respectively. Fig. 9 indicates that the beam span length, 𝐿, and the
6 
relative opening spacing, 𝑠∕ℎo, have the most significant effects on the
ultimate uniform load, 𝑤u, predicted by the model. Longer span beams
and smaller opening spacings correspond to lower beam resistances.
The steel yield strength, 𝑓y; web thickness, 𝑡w; beam height, 𝐻 ; flange
thickness, 𝑡f ; flange width, 𝑏f , and the 𝐻∕ℎo ratio have less significant
impacts on model output than 𝐿 and 𝑠∕ℎo.

Fig. 9 also shows that the predicted 𝑤u values increase when 𝑓y, 𝑡w,
𝐻 , 𝑡f , 𝑏f , and 𝐻∕ℎo increase, which aligns with the mechanics-based
knowledge. The parity of the number of openings affects the NGBoost
model predictions the least, with lower 𝑤u values corresponding to the
beams with an even number of openings, which relates to the web-
post and opening locations relative to the internal beam forces due to
the applied load. In other words, the web-posts and opening centers
of the beams with an even number of openings were located in zones
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Fig. 8. Probabilistic predictions of the nominal beam resistance by the NGBoost model for individual beams.
Fig. 9. SHAP summary plot for the NGBoost model.
with higher internal forces than those of beams with an odd number of
openings.

Fig. 10 presents SHAP dependence plots, illustrating how changes
in each feature value affect model predictions, considering all possible
failure modes covered by the model. The colors in the graphs cor-
respond to the second feature, shown in the secondary vertical axis,
which has the most significant interaction with the analyzed feature.

Figs. 10(a) and (c) indicate that 𝑤u increases when 𝐻 and 𝑡w
increase, with more significance to shorter beam spans. The effect of
𝑡w on 𝑤u can be explained by the higher susceptibility of short-span
beams to web-post buckling and shear failure modes, the resistances
against which are highly dependent on the web thickness.

According to Figs. 10(b), (d), (f), and (h), 𝑤u increases when 𝑏f , 𝑡f ,
𝐻∕ℎo, and 𝑓y increase, with the more significant increase in the beam
resistance corresponding to higher 𝑠∕ℎo values. This can be explained
by the fact that 𝑏f , 𝑡f , 𝐻∕ℎo, and 𝑓y affect the Vierendeel bending
resistance of the Tees (VBT) more significantly than the beam resistance
against other failure modes. The VBT failure mode is more likely to
govern the beam resistance when the opening spacing is relatively
wide, which is consistent with that reported within the literature. When
𝑠∕ℎo is small, the web-post buckling and shear, which are practically
unaffected by 𝑏f , 𝑡f , and 𝐻∕ℎo, govern the beam resistance in many
cases.

Fig. 10(e) indicates that 𝑤u reduced nonlinearly when 𝐿 increased,
with greater declines in 𝑤 corresponding to 𝐿 changing from 6.3
u

7 
to 12.6 m and smaller 𝑤u reductions when 𝐿 increased from 12.6
to 21.0 m. More significant 𝑤u decreases due to an 𝐿 increase were
associated with wider web opening spacings (see the red points in
Fig. 10(e)), which is explained as follows: for small 𝑠∕ℎo values, WPS
and WPB failure modes would likely govern the beam resistance; these
failure modes are affected by 𝐿 less significantly than others.

Fig. 10(g) shows a relatively steep increase in 𝑤u when 𝑠∕ℎo in-
creased from 1.10 to 1.29 and a smaller 𝑤u increase for 𝑠∕ℎo changing
from 1.29 to 1.49. Larger 𝑤u increases are associated with shorter beam
spans, for which increasing the opening spacing resulted in primary
failure modes changes from WPS or WPB to others with higher resis-
tances. For longer spans, widening the opening spacing may also result
in changing the governing failure mode, but the resistances against
BGS, BGB, and VBT are lower than those for shorter spans, resulting
in smaller 𝑤u increases.

According to Fig. 10(i), 𝑤u reduces slightly when the web openings
along the beam span changes from an odd (𝑃 = 1) to an even number
(𝑃 = 2), with a more significant decrease associated with shorter
beam spans when compared with longer spans. The reduction can be
explained by shifting the openings and web-posts to the locations with
higher internal moments and shear forces when the opening number
changes from odd to even and a higher sensitivity of short-span beams
to opening location changes compared to long-span beams.
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Fig. 10. SHAP dependence plots.
Overall, the NGBoost model interpretation results presented in this
section align well with the empirical- and mechanics-based knowl-
edge, indicating that the model can capture important mechanical
relationships occurring in cellular beams under loads from the data.

5. Reliability-based calibrations of the NGBoost model

The NGBoost model described in Section 4 predicts nominal re-
sistances of laterally restrained cellular beams. The model must be
8 
calibrated to ensure that its design predictions satisfy the reliability
requirements of building codes.

This section presents reliability-based calibrations of the NGBoost
model in accordance with the Eurocode (EC) and US design frame-
works using the following two approaches: (1) calculating appropriate
reduction factors with simplified methods presented in appropriate
standards and (2) computing reliability indices, 𝛽, using the improved
Hasofer–Lind–Rackwitz–Fiessler (iHL-RF) method [65–67] for different
live-to-dead load ratios, with subsequent determination of required
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Table 5
Statistical properties of random variables.

Properties Variables Mean (bias) CoV Distribution Reference

Geometry 𝐻∕𝐻n 1.00 0.009 Lognormal [41]
𝑏f∕𝑏fn 1.00 0.009 Lognormal [41]
𝑡w∕𝑡wn 1.00 0.025 Lognormal [41]
𝑡f∕𝑡fn 0.98 0.025 Lognormal [41]
𝐿∕𝐿n 1.00 0.001 Lognormal [74]
ℎo∕ℎon 1.01 0.006 Lognormal [74]
𝑠∕𝑠n 1.00 0.008 Lognormal [74]

Material 𝑓y∕𝑓yn for 𝑓yn = 275 MPa 1.25 0.055 Lognormal [41]
𝑓y∕𝑓yn for 𝑓yn = 355 MPa 1.20 0.050 Lognormal [41]
𝑓y∕𝑓yn for 𝑓yn = 460 MPa 1.15 0.045 Lognormal [41]
𝐸s∕𝐸sn 1.00 0.030 Lognormal [41]

Load 𝐷∕𝐷n (US) 1.05 0.100 Normal [75]
𝐷∕𝐷n (Europe) 1.00 0.100 Normal [76]
𝐿∕𝐿n (US) 1.00 0.250 Gumbel [75]
𝐿∕𝐿n (Europe) 0.60 0.350 Gumbel [76]

Model error 𝑀𝐸 Table 4 Table 4 Lognormal This study
o
s
w
c

𝜙

reduction factors from comparisons of the obtained reliability indices
with their target values specified within standards.

In the first approach, the partial factors required for the NGBoost
model were calculated in accordance with Annex D of EN 1990 [68] for
the EC framework, while the required load and resistance factor design
(LRFD) resistance factors and allowable strength design (ASD) safety
factors were determined in accordance with the AISI S100 [69] Chapter
K requirements, modified to apply to cellular hot-rolled steel beams an-
alyzed in the study. In a similar way to previous studies [70–73], the EN
1990 [68] Annex D and AISI S100 [69] Chapter K reliability analyses
were performed by treating the FE simulation results as experimental
data [54].

The reliability-based calibrations using both approaches were per-
formed considering the statistical properties of random variables pre-
sented in Table 5, with the subscript 𝑛 denoting nominal properties.

5.1. Eurocode framework

In accordance with Annex D of EN 1990 [68], which specifies the
target reliability index for a 50-year reference period, 𝛽50, of 3.8, the
partial factor, 𝛾M, required for the NGBoost model was computed with
Eq. (1) [71–73,77].

𝛾M = 𝑟n∕𝑟d, (1)

where 𝑟n is the nominal resistance predicted by the NGBoost model
based on the nominal feature values, and 𝑟d is the design resistance
determined from Eq. (2).

𝑟d = 𝑏𝑔rt
(

𝑋m
)

exp
(

−𝑘d,∞𝛼rt𝑄rt − 𝑘d,n𝛼𝛿𝑄𝛿 − 0.5𝑄2) , (2)

where 𝑔rt
(

𝑋m
)

is the resistance produced by the NGBoost model using
the mean feature values, which were obtained based on the information
in Table 5, with all other variables are as defined in EN 1990 [68].

𝛼rt , 𝛼𝛿 , 𝑄rt , and 𝑄 in Eq. (2) depend on the CoV, 𝑉rt , which was
determined from Monte Carlo simulations based on 10,000 sets of
random features with the statistical properties from Table 5, similarly
to how that was done in [46,78–81]. The reliability analysis was
performed for each beam from the database.

Table 6 summarizes the results of the reliability-based calibration
of the NGBoost model in accordance with Annex D of EN 1990 [68].
The results indicate that 𝛾M = 1.00, which is specified in the European
design provisions for cellular steel beams [1,23], can be considered
appropriate for the developed NGBoost model.

As can be seen from Eqs. (1) and (2), the partial factor depends
on the mean ratio of the resistances predicted by the NGBoost model
for the nominal and mean feature values, model accuracy (𝑏), and the
resistance variability due to the model error (𝑉 ) and the scatter of the
𝛿
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Table 6
Reliability analysis results for the NGBoost model in accordance with EN 1990 [68]
Annex D.

Sreel grade 𝑛 𝑘d,n 𝑏 𝑉𝛿 𝑉rt 𝑉r 𝛾M
S275 4698 3.04 1.000 0.014 0.056 0.058 0.95
S355 4698 3.04 1.001 0.013 0.088 0.089 1.05
S460 4698 3.04 1.001 0.014 0.001 0.014 1.04
S275, S355,
and S460

– – – – – – 1.05

inputs (𝑉rt). Therefore, the differences in the obtained partial factors
for different steel grades can be explained as follows.

For all considered steel grades the 𝑏 and 𝑉𝛿 values were comparable
and practically did not contribute to the differences in the 𝛾M values.
On the other hand, the 𝑉rt values differed significantly, indicating
different levels of the model sensitivity to the variability of the inputs,
with the highest scatter produced by the model for steel grade S355
(see Table 6). The beam resistances predicted by the NGBoost model
based on the mean values exceeded those based on the nominal values
by approximately 26% on average for steel grades S275 and S355,
mainly due to the relatively high mean values of 𝑓y∕𝑓yn (see Table 5).
Therefore, the smaller resistance variability due to the scatter of the
inputs (𝑉rt), with all other variables being approximately the same,
produced the smaller partial factor for steel grade S275 when com-
pared with steel grade S355. For grade S460 steel, the NGBoost model
was practically insensitive to the input scatter and did not show the
resistance increase due to the use of the mean input values instead of
the nominal input values, resulting in the partial factor approximately
equal to that for steel grade S355. It should be noted that partial factors
smaller than 1.0 were previously obtained by other researchers [82]. A
similar dependence of partial factor values on the steel yield strength
was reported in [71,72,82].

5.2. US framework

In the US, cellular steel beams are designed in accordance with
AISC DG31 [2], which relies on the AISC 360 [83] provisions. Neither
AISC DG31 [2] nor AISC 360 [83] presents a method for evaluating
the LRFD resistance factor, 𝜙, and the ASD safety factor, 𝛺, based
n experimental data. AISI S100 [69], on the other hand, provides a
imple equation for computing the 𝜙-factor based on test data (Eq. (3)),
hich can subsequently be used for obtaining the 𝛺-factor (Eq. (4)), for

old-formed steel structures.

= 𝐶𝜙(𝑀m𝐹m𝑃m)𝑒
−𝛽o

√

𝑉 2
M+𝑉 2

F +𝐶P𝑉 2
P +𝑉

2
Q , (3)

where 𝐶𝜙 is the calibration coefficient; 𝑀m, 𝐹m, and 𝑃m are mean values
of material, fabrication, and professional factors, respectively; 𝑉 , 𝑉 ,
M F
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Table 7
Reliability analysis results for the NGBoost model in accordance with AISI S100 [69]
Chapter K.

Steel grade 𝑛 𝑃m 𝑉P 𝛼 = 1.0 𝛼 = 1.5 𝛼 = 2.0

𝜙 𝛺 𝜙 𝛺 𝜙 𝛺

S275 4698 1.000 0.014 0.89 1.57 0.88 1.64 0.87 1.69
S355 4698 1.000 0.014 0.89 1.57 0.88 1.64 0.87 1.69
S460 4698 1.000 0.014 0.89 1.57 0.88 1.64 0.87 1.69
S275, S355,
and S460

– – – 0.89 1.57 0.88 1.64 0.87 1.69

and 𝑉P are the CoVs of material, fabrication, and professional factors,
espectively; 𝛽o is the target reliability index; 𝐶P = (1 + 1∕𝑛)𝑚∕(𝑚 − 2)
s the correction factor; 𝑛 is the number of samples; 𝑚 = 𝑛 − 1 are the
egrees of freedom; and 𝑉Q is the CoV of load effect.

= (1.2 + 1.6𝛼)∕[𝜙(1 + 𝛼)], (4)

here 𝛼 = 𝐿n∕𝐷n, and 1.2 and 1.6 are the LRFD 𝐷n and 𝐿n load factors,
espectively, in accordance with ASCE 7 [84].

The reliability-based calibrations of the LRFD methods in accor-
ance with AISC 360 [83] and AISI S100 [69] were based on the same
pproach [75,85,86] but different live-to-dead load ratios, 𝛼: from 1.0
o 2.0 for hot-rolled steel structures [85] and 5.0 for cold-formed steel
tructures [69]. Therefore, the 𝐶𝜙 and 𝑉Q values in Eq. (3) had to be
ecalculated for 𝛼 values from 1.0 to 2.0 to apply to hot-rolled steel
eams. The method of determining 𝐶𝜙 and 𝑉Q based on 𝛼, 𝐷∕𝐷n, and
∕𝐿n (see Table 5) given in AISI S100 Commentary [69] resulted in 𝐶𝜙
1.37 and 𝑉Q = 0.13 for 𝛼 = 1.0, 𝐶𝜙 = 1.41 and 𝑉Q = 0.15 for 𝛼 =

1.5, and 𝐶𝜙 = 1.44 and 𝑉Q = 0.17 for 𝛼 = 2.0.
AISI S100 [69] specifies 𝑀m = 1.10, 𝑉M = 0.10, 𝐹m = 1.00, and 𝑉F =

0.05, which are the same values used in the LRFD method calibration
for hot-rolled steel structures [75,85,86]. Therefore, the above values
were used in this study. 𝑃m and 𝑉P are the mean and the CoV of RR
for the entire dataset (see Table 4). The target reliability index, 𝛽o, was
taken as 3.00 according to [75,84,85].

Table 7 summarizes the 𝜙- and 𝛺-factor calculations for different
load ratios in accordance with AISI S100 [69]. Table 7 indicates that the
most conservative 𝜙- and 𝛺-factors of 0.87 and 1.69, respectively, were
obtained for 𝛼 = 2.0. These values are only slightly more conservative
than 𝜙 = 0.90 and 𝛺 = 1.67 required by AISC DG31 [2] and AISC
360 [83] for cellular steel beams.

5.3. iHL-RF reliability method analyses

In the iHL-RF reliability method [65,66], described in detail in [67],
the limit state function is approximated by its first-order Taylor expan-
sion at the design point on the failure boundary. An iterative procedure
based on the negative gradient descent with the step size determined
using a line search algorithm is employed to find the design point.
At each iteration, the Nataf transformation [67,87] is performed to
transform correlated random variables into an equivalent space of
uncorrelated normally distributed variables, where the reliability index,
𝛽, is calculated. This study used the iHL-RF method implemented in a
general-purpose package for structural and system reliability analysis,
Fortuna.jl [88].

The limit state function was defined by the following equation:

𝐺 = 𝑀𝐸 × 𝑅 −𝐷 − 𝐿, (5)

where 𝑀𝐸 is the NGBoost model error; 𝑅 is the beam resistance; 𝐷
and 𝐿 are the applied dead and live loads, respectively.

The NGBoost model error, 𝑀𝐸, corresponds to the mean and CoV
values of RR for the entire set given in Table 4. Analyses of the
RR distributions indicated that they follow lognormal distributions, as
Table 5 shows.
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Table 8
Required resistance reduction factors for the NGBoost model in accordance with the
iHL-RF method.

Steel grade EC framework US framework

𝛾M 𝜙 𝛺

S275 1.00 1.00 1.43
S355 1.00 1.00 1.45
S460 1.27 0.77 1.91
S275, S355,
and S460

1.09 0.92 1.60

The statistical properties of the beam resistance, 𝑅, were obtained as
follows. As a starting point, 500 random samples of the NGBoost model
features were generated following their statistical properties in Table 5.
This number of random samples is considered sufficient for obtaining
the statistical properties of 𝑅 [89,90]. The random samples were gen-
erated using the Latin Hypercube sampling (LHS) technique [91–94]
to ensure that the entire feature ranges and appropriate feature value
combinations are represented by the generated random values, which
allows for reducing the required number of samples compared with the
random sampling. The next step consisted of predicting the ultimate
uniform load by the NGBoost model for each set of random features and
determining the statistics of 𝑅 for each analyzed beam. Analyses of the
obtained resistance histograms using Fitter (https://fitter.readthedocs.
io/en/latest/) indicated that the lognormal distribution is appropriate
for 𝑅.

The statistical properties of 𝐷 and 𝐿 are presented in Table 5. Their
nominal values were obtained from Eqs. (6) and (7).

𝐷n = 𝜙RF𝑅n∕(𝛾D + 𝛾L𝛼) (6)

𝐿n = 𝛼𝜙RF𝑅n∕(𝛾D + 𝛾L𝛼). (7)

here 𝜙RF is the nominal resistance reduction factor, taken as 1∕𝛾M for
he EC framework, and 𝜙 and 1∕𝛺 for the US framework’s LRFD and
SD methods, respectively; 𝛾D is the load factor for the dead load (1.35

or the EC framework [68], and 1.2 and 1.0 for the US framework’s
RFD and ASD methods, respectively [84]); 𝛾L is the load factor for
he live load (1.5 for the EC framework [68], and 1.6 and 1.0 for
he US framework’s LRFD and ASD methods, respectively [84]); and
= 𝐿n∕𝐷n.

The iHL-RF method reliability analyses were performed for all
14,094 beams from the database [54], considering 𝛼 values of 0.11,
0.25, 0.50, 1.0, 1.5, and 2.0, with 𝛼 from 1.0 to 2.0 representing
the typical range of the load ratio for hot-rolled steel structures [85].
The obtained reliability indices were compared with target reliability
indices of 𝛽50 = 3.8 [68] for the EC framework and 3.0 [75,84,85] for
the US framework.

The reliability analyses were initially carried out assuming 𝜙RF =
.0 for both frameworks. Subsequently, the analyses were repeated
ith iterated 𝜙RF values until the calculated reliability indices for
within 1.0 to 2.0 were equal to or exceeded the target reliability

ndices. The obtained 𝜙RF values were considered the resistance re-
uction factors required for the NGBoost model to meet the reliability
equirements.

Fig. 11 shows the reliability indices determined with the iHL-RF
ethod for 𝜙RF = 1.0. It indicates that 𝜙 = 1.0 is sufficient for the
GBoost model to produce safe predictions only for steel grades S275
nd S355 within the EC and US LRFD frameworks.

Table 8 presents values of the resistance reduction factors required
or the NGBoost model to meet the reliability requirements for 𝛼 within

1.0 to 2.0.
It can be seen from this table that the reduction factors become

more restrictive when the steel yield strength increases, which can
be explained by the higher 𝑓y∕𝑓yn values for lower steel grades (see

Table 5). In addition, comparisons of the required reduction factors

https://fitter.readthedocs.io/en/latest/
https://fitter.readthedocs.io/en/latest/
https://fitter.readthedocs.io/en/latest/
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Fig. 11. iHL-RF method analysis results for the resistance predicted by the NGBoost model with no reduction factor (a) EC framework; (b) US framework (LRFD); (c) US framework
(ASD).
Table 9
Performance comparison of the NGBoost model with models based on different ML algorithms (nominal resistance).

Model RMSE (kN/m) 𝑅2 RR mean RR CoV

Train Test All Train Test All Train Test All Train Test All

NGBoost 0.66 1.15 0.79 1.000 0.999 0.999 1.000 1.000 1.000 0.012 0.020 0.014
XGBoost 0.56 1.22 0.74 1.000 0.998 0.999 1.000 1.001 1.000 0.013 0.023 0.016
LightGBM 0.55 1.15 0.71 1.000 0.999 1.000 1.000 1.001 1.000 0.013 0.022 0.015
CatBoost 0.37 1.03 0.57 1.000 0.999 1.000 1.000 0.999 1.000 0.008 0.020 0.012
ANN 0.51 0.92 0.61 1.000 0.999 1.000 1.003 1.003 1.003 0.016 0.026 0.019
from Tables 6, 7, and 8 indicate that the iHL-RF method produced more
conservative 𝛾M values than the EN 1990 [68] Annex D method for
all steel grades. For the US framework, the 𝜙- and 𝛺-factors from the
iHL-RF method were less restrictive than those obtained from the AISI
S100 [69] Chapter K equation.

Based on the reliability analysis results presented in this section,
the following resistance reduction factors can be recommended for the
NGBoost model: 𝛾M = 1.09 for the EC framework (see Table 8), 𝜙 = 0.87
for the US LRFD framework, and 𝛺 = 1.69 for the US ASD framework
(see Table 7).

6. Comparisons of the NGBoost model performance with other ML
models and existing design provisions

Nominal resistance predictions by the NGBoost model were com-
pared with those by other commonly used ML models that previously
demonstrated excellent performance on structural engineering prob-
lems [29], including XGBoost [57], LightGBM [58], CatBoost [59], and
ANN [95] to illustrate the benefits of the proposed model. The XGBoost,
LightGBM, CatBoost, and ANN models were trained and optimized with
the same methods used for the NGBoost model (see Section 4). Table 9
compares ML model performances on the test, train, and entire subsets.
The presented data indicates that all analyzed ML models produced a
similar level of accuracy, with the NGBoost model offering probabilistic
predictions in addition to deterministic point predictions available in
other ML models.

The nominal resistance predictions by the NGBoost model were also
compared with those by the existing design provisions, including SCI
P355 [1], FprEN 1933-1-13 [23] (with both the main and alterna-
tive VBT provisions), and AISC DG31 [2]. The ultimate uniform load
determined in accordance with the design provisions based on the
governing limit state was treated as the beam resistance. All limit states
(failure modes) required by the design provisions were considered in
the calculations. The comparison results are presented in Table 10.

It should be noted that the existing design provisions specify differ-
ent application limits, as follows:

• SCI P355 [1]: ℎo ≤ 0.8ℎ (where ℎ = 𝐻 + 𝑡f ); ℎT ≥ 𝑡f + 30 mm
(where ℎT = (ℎ − ℎo)∕2); 𝑠o ≥ 0.3ℎo; and 𝑠e ≥ 0.5ℎo.

• FprEN 1933-1-13 [23]: ℎo ≤ 0.8ℎ; ℎT ≥ 𝑡f +30 mm; and 𝑠o ≥ 0.1ℎo.
• AISC DG31 [2]: 1.25 ≤ ℎ∕ℎ ≤ 1.75 and 1.08 ≤ 𝑠∕ℎ ≤ 1.5.
o o
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The beams that do not comply with the application limits from the
existing design provisions were excluded from the comparisons. As a
result, Table 10 shows different numbers of beams, 𝑛, for the NGBoost
model, which covers the entire database [54], and the design provi-
sions. Table 10 indicates that the proposed NGBoost model significantly
outperforms the existing design provisions, which produced relatively
high mean and CoV values of the RRs.

Finally, design resistances produced by the NGBoost model and
the existing design provisions were compared. In the comparisons, the
resistance reduction factors determined in Section 5 (𝛾M = 1.09, 𝜙 =
0.87, and 𝛺 = 1.69) were applied to the NGBoost model predictions,
and the resistance reduction factors specified in the design provisions
(𝛾M = 1.00 for SCI P355 [1] and FprEN 1933-1-13 [23], and 𝜙 = 0.90
and 𝛺 = 1.67 for the LRFD and ASD methods of AISC DG31 [2],
respectively) were used for their predictions.

The comparison results are presented in Fig. 12 for the EC and
US frameworks. Significantly smaller scatters of the NGBoost model
predictions than those for the existing design provisions are evident
from Fig. 12. It can also be seen that the mean design resistance
ratio for the NGBoost model is slightly greater than those for the
European design provisions (see Fig. 12(a)). However, a separate study
showed that SCI P355 [1] and FprEN 1933-1-13 [23] do not meet the
reliability requirements of the Eurocodes [41,68], while the NGBoost
model calibration presented in this study ensures its compliance with
the reliability requirements. For the US framework, the mean RR values
of the NGBoost model are noticeably smaller than those for the LRFD
and ASD methods of AISC DG31 [2], demonstrating the economy that
can be achieved by using the calibrated NGBoost model.

7. Web application

The developed NGBoost model has been implemented in a web
application created in Streamlit (https://streamlit.io). The web appli-
cation is available at https://scbra.herokuapp.com/. It allows for rapid
probabilistic predictions of the load-bearing capacities for laterally
restrained cellular steel beams subject to uniformly distributed loads
based on the feature values selected by the user. Only the feature values
within the model applicability limits are available for the selections to
ensure that the model is not used outside its scope corresponding to the
variable ranges in the database [54] used for the model training (see
Table 2). The web application applies to both the EC and US design
frameworks.

https://streamlit.io
https://scbra.herokuapp.com/
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Table 10
Performance comparison of the NGBoost model with the existing design provisions (nominal resistance).

Model 𝑛 RMSE (kN/m) 𝑅2 RR min. RR max. RR mean RR CoV

NGBoost 14 094 0.79 0.999 0.83 1.09 1.00 0.014
SCI P355 [1] 2997 29.43 −0.037 0.88 16.57 1.66 0.647
Fpr EN 1993-1-13a [23] 13 554 21.06 0.551 0.70 16.62 1.37 0.676
Fpr EN 1993-1-13b [23] 13 554 22.92 0.468 0.70 21.99 1.49 0.911
AISC DG31 [2] 10 854 21.69 0.506 0.85 2.77 1.58 0.181

Notes:
a Main provisions for the Vierendeel bending of the Tees.
b Alternative provisions for the Vierendeel bending of the Tees.
Fig. 12. Distributions of the design resistance ratios computed with the NGBoost model and existing design provisions (a) EC framework; (b) US framework.
Fig. 13. GUI interface of the web application.
In the web application, probabilistic point predictions are supple-
mented with interactive plots of the ultimate uniform loads as functions
of the model features, showing probabilistic confidence intervals de-
termined by the NGBoost model. The web application’s graphical user
interface (GUI) is shown in Fig. 13.

8. Conclusions

This paper proposes an NGBoost model for probabilistic predictions
of the ultimate uniform loads of laterally restrained cellular steel
beams. The model was developed using a database of 14,094 numerical
results from FE models validated against test data. The database covers
cellular steel beams with various parameter values representing those
used in construction.

The proposed NGBoost model was optimized by fine-tuning its
hyperparameters for improved prediction accuracy and overfitting min-
imization. The NGBoost model was interpreted with the SHAP method,
which showed that the beam span and the web opening spacing have
the most significant effects on the ultimate loads predicted by the
model. Steel yield strength, web thickness, beam height, flange thick-
ness and width, and web opening diameter affect the predicted ultimate
12 
loads less significantly than the span length and web opening spacing.
The parity of the number of web openings (odd or even) was the least
influential parameter.

The NGBoost model was calibrated for the EC and US design frame-
works via reliability analyses in accordance with the respective design
standards, as well as by using the improved Hasofer–Lind–Rackwitz–
Fiessler (iHL-RF) method. The resistance reduction factors required
for the NGBoost model to meet the reliability requirements of the
respective European and US design standards were determined from
the reliability analyses.

Comparisons of the predictions by the NGBoost model with those by
the XGBoost, LightGBM, CatBoost, and ANN models and the existing
design provisions indicate that the NGBoost model is as accurate as
the other analyzed ML models while offering probabilistic predictions
unavailable in other analyzed ML models. The NGBoost model sig-
nificantly outperforms the existing design provisions, including SCI
P355 [1], FprEN 1993-1-13 [23], and AISC DG31 [2].

It should be noted that the probabilistic model does not offer sig-
nificant benefits over the deterministic ML models for practical design,
which uses deterministic resistance values. However, the probabilistic
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predictions may help the designer better understand the predicted
resistance variability and make informed decisions about the available
margins of safety. The probabilistic predictions also provide insights
into the beam parameters producing high resistance variability, helping
to identify potential opportunities for design optimization.

An NGBoost model-based web application for predicting the nom-
inal and design values of the ultimate uniform load of laterally re-
strained cellular steel beams was developed and published online. In
addition to probabilistic point predictions, the web application pro-
duces plots of the ultimate loads as functions of the input parameters
with probabilistic confidence intervals, contributing to the model’s
explainability and interpretability.

The proposed reliability-based calibrated NGBoost model can be
used to select beam sizes in preliminary designs and investigate the
beam parameters affecting their resistance. The probabilistic NGBoost
model predictions allow for evaluating expected resistance ranges and
selecting the resistance based on a desired confidence interval.
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