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Introductory remarks

Real-world time series data often change their dynamic behavior, such as means and
variances, across different time periods. Sometimes changes may occur in the form of “jumps”,
which are flash, or in the form of “breaks”, which are permanent. A more frequently observed
form of these changes is “regime shifts”, which are both persistent and recurrent so that data
seems to cycle between periods of behavior. Such changes are prevalent in the long-term
trends of many macroeconomic and financial series, and are useful to glean a range of
economic insights related to the cycling of the economy between recession and expansion
periods (see, e.g., Hamilton, 1989; Ang and Bekaert, 2002), “bull” and “bear” markets in
equity returns (see, e.g., Guidolin and Timmermann, 2006; Maheu et al., 2012), and various
contagion phases experienced by financial institutions over time (see, e.g., Billio et al., 2022).
Therefore, modeling and forecasting time series subject to regime shifts constitute a crucial
area of econometrics. The dissertation contributes to this area in time series econometrics
by advancing the application of Markov-switching models; developing Bayesian inference
procedures for efficient model estimation; and providing simulation and empirical applications
to understand modern economic and financial systems. The contributions are presented in
three pieces of self-contained chapters.

Chapter 1 presents a modeling framework and estimation methods for detecting the
regime shifts in the currency-liquidity-timing behavior of globally-diversified funds. Our
approach builds upon the recent developments of regression models with endogenous Markov-
switching parameters (Hwu et al., 2021; Kim and Kang, 2022), which allows for capturing
the potential regime shifts in both direction and strength of funds’ timing behavior together
with underlying drivers that lead to such shifts. An effective Bayesian inference procedure is
implemented for model estimation and selection. By analyzing a sample of 382 international
fixed income mutual funds, we find that these globally-diversified funds on average engage in
currency liquidity timing by adjusting their currency exposure in response to the underlying
liquidity movement; however, this timing behavior exhibits significant regime changes across
varying market conditions: funds time currency liquidity negatively (adjust their currency
exposure in the opposite direction to the liquidity movement) in normal times but switch
to aggressively positive timing (adjust their currency exposure in the same direction to
the liquidity movement with increasing aggressivity) in turbulent market conditions. We
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present evidence that these regime-switching timing behaviors are possibly driven by currency
liquidity deterioration and negative shock on fund returns.

Chapter 2 concerns the problem of measuring connectedness in financial systems, which is
central to modern risk management, including market risk (return connectedness and volatility
connectedness); credit risk (default connectedness); counter-party and gridlock risk (bilateral
and multilateral contractual connectedness); and systemic risk (system-wide connectedness).
The literature on connectedness analysis to date has shown some notable empirical features of
financial connectedness, such as the mixture of contemporaneous and temporal dependences,
high-dimensionality, and regime shifts. However, existing econometric methods at most
capture two of the above features. The novel model we introduce in the second chapter, which
is refereed to as a Markov-Switching Graphical Structural Vector Autoregressive (MS-GSVAR)
model, facilitates a ”full sweep“ of the list of features. An efficient Bayesian graph inference
method is developed to address the computational complexities arising from inference on
graph structures in the context of high model dimension, numerous lags, and multiple regimes.
Simulation studies validate the effectiveness of the proposed framework in recovering many
empirically relevant dependence structures, and in handling large datasets with changing
dependence structures. Our model applied to the volatility series of 96 global banks detects
different connectedness states, identifies systemically important individuals, and uncovers the
frequency-specific source of connectedness, which are relevant to systemic risk management.

Together, the first and second chapter have inspired the focus of the third chapter.
Markov-switching panel models face a major challenge in practical implementation, which is
determining how many regimes are necessary to adequately characterize the observed data.
Existing solutions typically rely on the assumption that the regime dimension is homogeneous
in the cross-section. Such an assumption may be restrictive as individuals are likely to be
characterized only by one or a subset of regimes identified from the panel. Chapter 3 proposes
a general framework to estimate the number of regimes in Markov-switching panel models,
allowing possible heterogeneity in cross-sectional regime dimension. We model individual
heterogeneity via a binary matrix where its column dimension and configuration indicate
respectively the regime dimension of the whole panel and the units. We develop new Bayesian
nonparametric inference to jointly estimate the latent binary matrix and the other model
parameters. Simulation studies validate the effectiveness of the proposed framework under
different panel settings. An application to US state-level macroeconomic indices illustrates
the empirical gains of considering likely heterogeneous regime dimension in the cross-section.



Chapter1

Do International Fixed Income
Mutual Funds Time Currency

Liquidity? Evidence from a
Markov-Switching Model∗

1.1 Introduction

Globally-diversified funds, though their main business is in international security markets,
are subject to nontrivial exposure to currency markets. On the one hand, funds’ currency
exposure may arise from their underlying local-currency denominated foreign assets as returns
on those assets would need to be redenominated in the funds’ home currency. On the other
hand, funds’ currency exposure may arise from their involvement in currency hedging as in
this situation funds directly hold currency assets. One may argue that currency exposure
can be eliminated if funds hold only home-currency denominated foreign assets or fully
currency-hedge their foreign asset positions. Yet doing so is restrictive and expensive (Opie
and Riddiough, 2020) and thus zero currency exposure is almost unreal to be achieved by
funds trading on a global scale (see observations in, e.g., Sialm and Zhu, 2022). As a result,
currency concerns are expected to have a first-order impact on globally-diversified funds’
asset allocation.

This paper contributes to the fund timing literature by providing the first formal in-
vestigation of the timing skills of the globally-diversified funds in the currency markets.
In particular, we take an angle to examine whether funds engaging in international asset
allocation strategically adjust their currency exposure in response to the systematic currency

∗This chapter has been turned into a working paper (joint with G. Urga) entitled “Optimal N -state
endogenous Markov-switching model for currency liquidity timing”.
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liquidity movement, which we call Currency liquidity timing. Among various aspects of timing
abilities, we focus on liquidity timing because there is a clear connection between market-wide
currency liquidity and the performance of globally-diversified funds. For instance, a decline
in currency liquidity might induce higher price impact of trades, thus increasing the volatility
of future exchange rate at which return conversion of local-currency denominated foreign
assets would take place (Ranaldo and de Magistris, 2022). Besides, liquidity deterioration
might cause higher rollover costs, which impair the profitability of currency hedging strategies
(Brunnermeier et al., 2008; Mancini et al., 2013). The important implication of these phenom-
ena for asset management is that globally-diversified funds could avoid such liquidity-induced
risks if they can reliably anticipate systematic currency liquidity movement and adjust their
currency exposure accordingly.

Empirically, we use international fixed income mutual funds as a testing ground to shed
initial light on the currency-liquidity-timing behavior of globally-diversified funds. This choice
is motivated by Sialm and Zhu (2022) who demonstrate that international fixed income
mutual funds often employ dynamic currency hedging strategies and have time-varying
currency exposure. Since one possible mechanism behind funds’ time-varying risk exposure
is timing, international fixed income mutual funds, as a part of globally-diversified funds and
with known currency exposure, provide an ideal platform to study currency liquidity timing.

This paper also makes methodological development by introducing a novel Markov-
switching model, which integrates a liquidity timing model of Cao et al. (2013) and an
N -state endogenous Markov-switching framework of Hwu et al. (2021). Cao et al. (2013) were
among the first to develop a method to measure mutual funds’ liquidity timing ability. The
authors infer timing behavior based on the convexity of fund returns relative to a benchmark
factor model, following the literature on market return timing and volatility timing (see,
e.g., Treynor and Mazuy, 1966; Ferson and Schadt, 1996; Busse, 1999). Their method has
been extended by a growing body of studies in assessing the liquidity timing behavior of
funds from different categories (see, e.g., Bodson et al., 2013; Li et al., 2017; Siegmann and
Stefanova, 2017; Li et al., 2020a). Markov-switching models have been extensively used in
macroeconomics and finance to extract the different regimes, or states, of the data series. In
most of these models, two regimes are introduced with a state process determining one of
the regimes to take place in each period. Moreover, the state process is typically assumed to
be exogenous, meaning that future transitions between regimes are completely determined
by the current regime, and does not rely on the realizations of underlying data series or
other observable variables. Hwu et al. (2021) relax these restrictive features of the standard
Markov-switching models by allowing for N states (i.e., multiple regimes) and endogeneity
in the regime transitions (i.e., endogenous state process). Their model has been shown to
achieve better forecasting and fitting performances (Kim and Kang, 2022).

Methodologically, we extend the Cao et al. (2013) model of equity market liquidity
timing to construct a regression where fund return loadings on the currency risk factors (i.e.,
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factor betas) change with currency liquidity. The currency risk factors include a dollar-risk
factor and a carry-trade risk factor built in Lustig et al. (2011), consistent with the recent
international asset pricing literature (see, e.g., Brusa et al., 2014; Karolyi and Wu, 2021).
Our liquidity measure is the average quoted bid-ask spread in the currency spot market,
which is extensively used in the literature on currency liquidities (see, e.g., Menkhoff et al.,
2012; Karnaukh et al., 2015; Li et al., 2020b). Then, we allow the regression coefficients of
beta-liquidity relation subject to regime shifts, which are modeled using Hwu et al. (2021)’s
Markov-switching framework. In addition to the underlying fund return series, we allow
future transitions between regimes to depend on other observable variables – in our case a
real-time measure of currency liquidity level. This choice is motivated by Li et al. (2020a)
who find that different market liquidity levels affect the changes in funds’ liquidity timing
behavior.

Our approach has several advantages over the existing timing models in the literature.
First, our model feature expands upon the extensive research that assumes static funds’
timing behavior and relies on time-invariant timing models (see, e.g., Treynor and Mazuy,
1966; Cao et al., 2013; Bodnaruk et al., 2019; Bali et al., 2021, among many others). It is
reasonable to be suspicious of the results obtained from time-invariant timing models as such
model specification, which is usually implemented with Ordinary Least Squares regression
(OLS), implicitly assumes that funds either time or not time the market over the time period
under investigation, and thus what it really measures is the timing behavior of funds averaged
over the entire sample period. Consequently, when funds time the market strategically
and intermittently, rather than continuously over the time span of study, the evidence
of the potential timing effect in different time periods may be averaged out, impacting
upon the significance of the results for funds’ timing skills. Our framework overcomes
the methodological issue associated with the time-invariant model specification by directly
modeling and estimating the dynamics of timing abilities. Second, although greater attention
has been directed towards time variation in timing abilities, some important economic insights
are still missing in the literature, which include (i) the rich dynamics of timing behavior, and
(ii) the drivers (i.e., potential economic mechanisms) underlying such dynamics. Naturally,
funds’ timing ability may change at any time and in different ways, including changes in
the existence (e.g., timing/non-timing), directions (e.g., perverse timing/positive timing),
or strengths (e.g., different levels of aggressivity in timing). However, no existing methods
are capable of capturing all these rich dynamics of timing abilities in a unified framework.
Early methods, such as the sub-period tests used in Cao et al. (2013), are limited to the pre-
determined time point at which timing behavior is assumed to change. Recent advances, such
as the changepoint approach adopted by Siegmann and Stefanova (2017) and the Hamilton
Markov-switching model employed in Li et al. (2020a), are restricted to the prior assumption
that timing behavior changes only once or between two regimes. Moreover, funds’ motive to
change to a specific timing behavior may be driven by various sources of information, arising
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from either exogenous market conditions or endogenous fund performance. However, the
understanding of such economic mechanisms explaining time variation in timing abilities is
still at the early stage. Our framework building on the Hwu et al. (2021)’s method makes
it possible to detect any sudden changes in funds’ timing behavior, together with further
analysis of the potential drivers behind such changes.

Using a sample of 382 international fixed income mutual funds drawn from the CRSP
Survivor-Bias-Free US Mutual Fund Database, we analyze the average funds’ currency-
liquidity-timing behavior based on the equal-weighted portfolio of all fund returns over the
period from July 2001 to December 2020. Given that funds may adjust their currency exposure
for other reasons except currency liquidity timing, we also perform various robustness checks
to distinguish the observed currency liquidity timing from artificial evidence. In summary,
our main findings are threefold. First, we find evidence of currency liquidity timing at
the aggregate level for the sample funds, which is not explained away by other reasons
except currency liquidity timing (e.g., currency market return and volatility timing, liquidity
reaction, illiquid holdings, funding constraints, and fund flow). Second, the direction and
the strength of the observed currency-liquidity-timing behavior exhibit significant changes
across varying market conditions. In particular, funds adjust their currency exposure in the
opposite direction to the currency liquidity movement during tranquil market periods, but
adjust their currency exposure towards the same direction to the liquidity movement with
increasing aggressivity during turbulent market periods. This is evidenced by our baseline
results which point to the existence of three distinct states: tranquil market periods are
dominated by the perverse timing state where the coefficients of beta-liquidity relation are
strictly negative; turbulent market periods are dominated by the weak timing and strong
timing states where the coefficients of beta-liquidity relation shift towards largely positive
values. In the robustness checks, the evidence of the three distinct states appears weakening
but the dynamic pattern that funds’ currency-liquidity-timing behavior shifts from a negative
beta-liquidity relation towards a positive relation remains robust. We explain the observed
dynamic pattern of funds’ currency-liquidity-timing behavior based on their currency hedging
practices. Third, the systematic currency liquidity level and shocks to fund returns drive to
some extent the dynamics of funds’ currency-liquidity-timing behavior. Our baseline results
show that funds appear to switch from a negative relation between their currency exposure
and liquidity towards a positive relation in times of currency liquidity deterioration and
negative shock on fund returns. In the robustness checks, the evidence related to shock on
fund returns becomes marginal but the results found for the currency liquidity level are
materially unchanged.

The remainder of this paper is organized as follows. Section 1.2 discusses the data set
used in the paper. Section 1.3 describes the models and methods. Section 1.4 presents the
empirical results and Section 1.5 concludes. Technical details and additional empirical results
are provided in Appendix 1.
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1.2 Data

This section describes the data used in the empirical analysis, including the international
fixed income mutual fund data, factor data, and the measure of systematic currency liquidity.

1.2.1 Fund sample

Data on international fixed income mutual funds are obtained from the CRSP Survivor-
Bias-Free US Mutual Fund Database for the period July 2001-December 2020. As with
Sialm and Zhu (2022), we select funds whose stated objectives indicate that they specialize
in international fixed income investments, and exclude passively-managed index funds and
ETFs from the sample.1 For funds with multiple share classes, we aggregate the total net
asset2 (TNA) of individual share classes and calculate the fund-level variables (such as return,
expense, and turnover ratio) as the TNA-weighted average across different share classes of
the same fund. We retain only the funds with a minimum of 24 monthly returns as well as a
minimum of TNA of $10 million.3 The data filter applied here follows for example Siegmann
and Stefanova (2017) and Bali et al. (2021). Our final sample includes 382 funds.

Panel A of Table 1.1 reports summary statistics of fund characteristics. Age is defined
as the number of years between the fund’s last performance date and the fund’s first offer
date. A fund’s last performance date is taken to be the latest net asset values (NAV) date
across the fund’s share classes while a fund’s first offer date is taken to be the earliest first
offer date across the fund’s share classes. TNA is the total net asset in million US dollars,
expense is the annual expense ratio in percentages, turnover is the annual turnover ratio
in percentages, and return is the monthly return in percentages. Except for age, the fund
characteristic reported are first averaged over time for each fund and then averaged across
funds. On average, an international fixed income mutual fund has TNA of $708 million,
an annual expense ratio of 0.82%, an age of around 13 years, an annual turnover ratio of
112.34%, and a monthly return of 0.372%.

1.2.2 Factor data and liquidity measure

Recent breakthroughs in international macro-finance by Lustig et al. (2011) have found
that the time-series variation in currency returns can be primarily explained by two common

1We select funds whose CRSP objective code (as identified by crsp_obj_cd) is IF, which cover six Lip-
per objectives: Emerging Markets Debt Funds (EMD), Emerging Markets Local Currency Funds (EML),
Global High Yield Funds (GHY), Global Income Funds (GLI), International Income Funds (INI), and Short
World Multi-Market Income Funds (SWM). Among these funds, we exclude funds whose CRSP identifiers
“index_fund_flag” indicates a B, D or E or “et_flag” indicates an ETF or ETN.

2In our sample, 0.49% of share class TNA are flagged as missing. We impute missing TNA by using their
past values, returns, and a factor adjusted for flow rates as in Ibert et al. (2018).

3We include a fund as soon as its inflation-adjusted TNA reached $10 million. Our inflation index is the
Consumer Price Index for All Urban Consumers (CPIAUCSL) series provided by the Federal Reserve Bank of
St. Louis’ FRED database. The data are available from https://fred.stlouisfed.org/series/CPIAUCSL.

https://fred.stlouisfed.org/series/CPIAUCSL
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currency risk factors: a dollar-risk factor (RX), and a carry-trade risk factor (HML_FX). These
two factors are nearly orthogonal and capture two distinct trading strategies. Particularly,
RX is the average portfolio return of a US investor who buys all foreign currencies available in
the forward market, while HML_FX is the return in dollars on a zero-cost strategy that goes
long in the highest interest rate currencies and short in the lowest interest rate currencies.
These two factors have been used to examine global portfolio’s exposure to the currency
market in the recent international asset pricing literature (see, e.g., Brusa et al., 2014; Karolyi
and Wu, 2021). The data of currency risk factors are obtained from the website of Adrien
Verdelhan.4

To control for other factors associated with international fixed income mutual funds’
performances, we follow Sialm and Zhu (2022) and include the following four factors: the
hedged global bond market factor (GMF), emerging bond market factor (EMF), term factor
(TERM), and credit factor (CREDIT). The data for the hedged global bond market factor,
emerging bond market factor, and credit factor are obtained from Bloomberg. The hedged
global bond market factor is measured by the return of the Bloomberg Global Aggregate
Bond Index USD hedged. The emerging bond market factor is measured by the return of
the JPMorgan Emerging Market Bond Index Global. The credit factor is the difference
between the returns of the Bloomberg US Aggregate BAA Index and the Bloomberg US
Aggregate AAA Index. The data for the term factor is obtained from the Board of Governors
of the Federal Reserve System. The term factor is defined as the difference between the
monthly change in the ten-year treasury constant maturity yield minus the one-month
treasury constant maturity yield.

We measure systematic currency liquidity using the proportional quoted bid-ask spread5

which is given by
L(ba) = (PA−PB)/PM , (1.1)

where PA and PB are the quoted ask price and bid price, and PM is the quote midpoint of
the bid and ask prices. The measure of systematic currency liquidity is taken as the negative
average of equation (1.1) across a basket of n currencies under investigation, which is given
by

Lm,t = − 1
n

n∑
i=1

L
(ba)
i,t , (1.2)

where L
(ba)
i,t , computed in equation (1.1), is the proportional quoted bid-ask spread for

currency i at time t, and a low Lm,t indicates that the market is illiquid. We use the currency
4The data are available from http://web.mit.edu/adrienv/www/Data.html.
5We consider the proportional quoted bid-ask spread as our liquidity measure for two reasons. First, this

measure is commonly used in the literature on currency liquidities (see, e.g., Menkhoff et al., 2012; Karnaukh
et al., 2015; Li et al., 2020b). Second, evidence shows that this measure is highly correlated with other existing
liquidity measures for the currency market. For instance, the correlation in Mancini et al. (2013) is 0.853 for
the proportional quoted bid-ask spread and price impact, 0.890 for return reversal, 0.954 for effective costs,
and 0.949 for price dispersion.

http://web.mit.edu/adrienv/www/Data.html
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baskets considered in Lustig et al. (2011). The data of bid and ask prices are sourced from
Thomson Reuters’ Datastream. In addition, because the proportional quoted bid-ask spread
is small in magnitude, we follow Li et al. (2020a) and rescale the liquidity measure Lm,t by
multiplying 1000 to improve numerical stability during the numerical computation in the
empirical analysis in Section 1.4.

Panel B of Table 1.1 reports the descriptive statistics of the factor data and the computed
systematic currency liquidity measure. Data are constructed in monthly frequency and cover
a period from July 2001 to December 2020.

Table 1.1 Descriptive statistics

Mean Std. Dev. P25 P50 P75

Panel A: Fund characteristics
TNA ($ mil.) 708 1,392 46 202 630
Expense (% p.a.) 0.82 0.33 0.63 0.83 1.03
Age (years) 13.3 8.8 6.5 10.4 18.1
Turnover (% p.a.) 112.34 114.71 52.18 78.91 124.12
Return (% p.m.) 0.372 0.248 0.238 0.381 0.497

Panel B: Risk factors and liquidity measure
GMF 0.277 0.798 -0.285 0.328 0.834
EMF 0.575 2.581 -0.390 0.788 1.865
TERM 0.153 0.091 0.082 0.163 0.221
CREDIT 0.193 1.646 -0.385 0.267 0.778
HML_FX 0.434 2.247 -0.823 0.501 1.888
RX 0.185 1.775 -0.830 0.239 1.237
Lm -0.069 0.018 -0.077 -0.066 -0.053

Notes: This table presents a statistical summary of fund characteristics, risk factors and liquidity measure. Panel
A reports the cross-sectional statistics of fund characteristics based on the sample of 382 international fixed income
mutual funds obtained from CRSP Survivor-Bias-Free US Mutual Fund Database. Except for age, values of all fund
characteristics are first averaged over time for each fund, and then computed the statistics across funds. Panel B reports
the descriptive statistics of the factor data and the computed systematic currency liquidity measure. The sample period
is from July 2001 to December 2020.

1.3 Methodology

In this section, we first build a static model for assessing the time-invariant currency-
liquidity-timing ability, following the existing timing models in the mutual fund literature.
Then we incorporate a state process into this model to account for likely shifts in funds’
currency-liquidity-timing behavior.

1.3.1 Model for assessing currency liquidity timing

Analysis for mutual funds’ liquidity timing ability can be traced back to the work of Cao
et al. (2013). To examine how equity mutual funds time aggregate equity market liquidity,
Cao et al. (2013) begin with the Carhart (1997) four-factor model, which explains the time
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series of equity mutual fund returns as follows

Rp,t = αp+βMKT
p,t MKTt+

J∑
j=1

βjpf
j
t +εp,t, (1.3)

where p represents each fund and t represents each month; Rp,t is the return in excess of the
risk-free rate (proxied by US one-month Treasury bill rate); MKTt is the excess return on the
market portfolio; f jt (J=3 in this case) denote, respectively, the size, value and momentum
factors; αp is the risk-adjusted return; βMKT

p,t is the time-varying market beta that measures
the dynamic exposure to the market risk; βjp are the other factor betas; and εp,t is the error
term.

To account for liquidity timing, Cao et al. (2013) specify time-varying market beta as a
linear function of demeaned market liquidity

βMKT
p,t = βMKT

p +λMKT
p (Lm,t− L̄m), (1.4)

where βMKT
p captures the fund’s average market beta without timing; Lm,t is the market

liquidity measure; L̄m is the time series mean of market liquidity measure; and the coefficient
λMKT
p measures fund’s liquidity timing ability. The above equation is parallel to the existing

specifications of market return timing and volatility timing (see, e.g., Treynor and Mazuy,
1966; Ferson and Schadt, 1996; Busse, 1999), except that the market condition considered
here is market liquidity. A positive timing coefficient indicates that the fund has a high (low)
market beta during good (poor) market liquidity conditions.

Substituting equation (1.4) to equation (1.3) yields a timing model that Cao et al. (2013)
use to estimate the liquidity timing ability of equity mutual funds

Rp,t = αp+βMKT
p MKTt+λMKT

p (Lm,t− L̄m)MKTt+
J∑
j=1

βjpf
j
t +εp,t. (1.5)

Our timing model follows Cao et al. (2013) and is based on a multi-factor model, which
explains the time series of international fixed income mutual fund returns as

Rp,t = αp+βHML_FX
p,t HML_FXt+βRX

p,t RXt+
J∑
j=1

βjpf
j
t +εp,t, (1.6)

where p represents each fund and t represents each month; Rp,t is the return in excess of
the risk-free rate (proxied by US one-month Treasury bill rate); HML_FXt and RXt denote,
respectively, the carry and dollar factors; f jt (J=4 in this case) denote the set of additional
bond market risk factors which are defined in Section 1.2.2; αp is the risk-adjusted return;
βHML_FX
p,t and βRX

p,t are the time-varying currency betas that measure the dynamic exposure
to the common currency risk factors; βjp are the other factor betas; and εp,t is the error term.
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In line with the existing timing models in the mutual fund literature, we obtain the
currency-liquidity-timing measure from the following equation

βHML_FX
p,t = βHML_FX

p +µp(Lm,t− L̄m),
βRX
p,t = βRX

p +λp(Lm,t− L̄m),
(1.7)

where βHML_FX
p and βRX

p capture the fund’s average currency betas without timing. Lm,t is
the systematic currency liquidity measure; L̄m is the time series mean of systematic currency
liquidity measure; and the coefficients µp and λp measure fund’s currency-liquidity-timing
ability. A positive timing coefficient indicates that the fund overweights (underweights)
exposure to the corresponding currency risk factor during good (poor) systematic currency
liquidity conditions.

Combining equations (1.6) and (1.7) yields a model for assessing currency liquidity timing

Rp,t =αp+βHML_FX
p HML_FXt+βRX

p RXt+µp(Lm,t− L̄m)HML_FXt+

λp(Lm,t− L̄m)RXt+
J∑
j=1

βjpf
j
t +εp,t.

(1.8)

1.3.2 Markov-switching framework

To capture likely shifts in funds’ currency-liquidity-timing behavior, we allow the timing
coefficients in equation (1.8) to change depending on a state process as follows

Rp,t =αp+βHML_FX
p HML_FXt+βRX

p RXt+µp,st(Lm,t− L̄m)HML_FXt+

λp,st(Lm,t− L̄m)RXt+
J∑
j=1

βjpf
j
t +σεp,t, εp,t ∼ i.i.d. N (0,1),

(1.9)

where st ∈ {1,2, ...,N} is a discrete regime indicator indicating which of N different regimes
is realized at time t; and εp,t is the error term assumed to be independent of each other, with
a zero mean and variance σ2, i.e., σεp,t ∼ i.i.d. N (0,σ2). The above equation is similar to
equation (1.8) but here the timing coefficients µp,st and λp,st are assumed to take different
values for each state of the regime.

We formulate the state process st based on the Markov-switching model of Hwu et al.
(2021). The unique feature of their approach is that they allow for endogeneity in the regime
transitions, which means that future transition between regimes depends on the current
regime as well as two sources of information: (i) the information coming from some exogenous
variables expected to influence the regime transitions, and (ii) the information contained
in the regression error as it may include the missing regressors that are correlated with the
regime transitions. This is in sharp contrast to the conventional Markov-switching model
based on Hamilton (1989), in which the future transition is completely determined by the
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current regime. Hwu et al. (2021) show that neglecting endogeneity in regime-switching
incurs not only a substantial bias, but also a significant information loss, in estimating model
parameters.

In the Markov-switching model of Hwu et al. (2021), st takes the following form

st|s∗
t ,st−1 =



1 if 0 = max
{

0,s∗
1,t,s

∗
2,t, ...,s

∗
N−1,t

}
|st−1

2 if s∗
1,t = max

{
0,s∗

1,t,s
∗
2,t, ...,s

∗
N−1,t

}
|st−1

...
N if s∗

N−1,t = max
{

0,s∗
1,t,s

∗
2,t, ...,s

∗
N−1,t

}
|st−1

(1.10)

This equation parameterizes N possible outcomes of st as the outcome of the values of N −1
auxiliary continuous random variables, denoted by s∗

t = (s∗
1,t,s

∗
2,t, ...,s

∗
N−1,t)′.6

To incorporate the first source of information into the state process, each of the N − 1
auxiliary random variables is defined by

s∗
i,t = γ̄i,st−1 + z′

tγ
z
i,st−1 +ηi,t,

ηi,t ∼ i.i.d. N (0,1),
i= 1,2, ...,N −1,

(1.11)

where zt is a vector of exogenous variables affecting the regime transitions. The parameter
γ̄i,st−1 denotes the average value of the ith auxiliary variable s∗

i,t. The parameter γzi,st−1

denotes a vector of coefficients of zt. For both γ̄i,st−1 and γzi,st−1 , the subscript st−1 suggests
that the parameters take different values, depending on the past regime. ηi,t denotes an error
term, which is drawn from an independently distributed standard normal distribution.

Based on equation (1.11), the information variables zt indirectly influences the realization
of st through s∗

i,t. Specifically, with a positive γzi,st−1 , a higher value of zt leads to a higher
value of s∗

i,t. Thus, s∗
i,t is more likely to become the maximum among all the N − 1 auxiliary

random variables. As a result, there is an increased probability that the regime at time
t shifts to (i+ 1) according to equation (1.10). The interpretation for a negative γzi,st−1 is
similar. In general, the effects of zt on the regime transitions are associated with combinations
of γzi,st−1 , for i= 1,2, ...,N −1 and st−1 = 1,2, ...,N .

6For instance, consider the case of two regimes (i.e., N = 2), we have

st|s∗
t ,st−1 =

{
1 if s∗

1,t ≤ 0|st−1
2 if s∗

1,t > 0|st−1

and consider the case of four regimes (i.e., N = 4), we have

st|s∗
t ,st−1 =


1 if (s∗

1,t < 0,s∗
2,t < 0,s∗

3,t < 0)|st−1
2 if (s∗

1,t > 0,s∗
1,t > s∗

2,t,s
∗
1,t > s∗

3,t)|st−1
3 if (s∗

2,t > 0,s∗
2,t > s∗

1,t,s
∗
2,t > s∗

3,t)|st−1
4 if (s∗

3,t > 0,s∗
3,t > s∗

1,t,s
∗
3,t > s∗

2,t)|st−1
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To account for endogeneity arising from the regression error term, all the N − 1 elements
in s∗

t and the regression error term εp,t are assumed to be generated simultaneously from a
joint Gaussian distribution. We denote by θ the collection of model parameters, including all
the parameters in equations (1.9) and (1.11) and those in the Gaussian distribution specified
below. We denote by Yt the observations of the dependent variables through time t, i.e.,
Yt = {Rp,i}ti=1. Then, the joint distribution of s∗

t and εp,t, given (st−1,Yt−1,zt,θ), is simply
given by [

s∗
t

εp,t

]
|st−1,Yt−1,zt,θ ∼ N

( (
γ̄st−1 + z′

tγ
z
st−1

0

)
,

(
Ω ρ

ρ′ 1

) )
, (1.12)

where γ̄st−1 = (γ̄1,st−1 , γ̄2,st−1 , ..., γ̄N−1,st−1)′ and γzst−1 = (γz1,st−1 ,γ
z
2,st−1 , ...,γ

z
N−1,st−1

)′. ρ is
an (N − 1) × 1 vector of conditional correlations, i.e., ρ = (ρ1,ρ2, ...,ρN−1)′, where ρi =
corr(s∗

i,t,εp,t|st−1,Yt−1,zt) is the conditional correlation between the ith auxiliary variable
and the regression error term. Ω is an (N − 1) × (N − 1) conditional variance-covariance
matrix of s∗

t , which can be obtained as follows

Ω =


1 ρ1ρ2 · · · ρ1ρN−1

ρ2ρ1 1
...

... . . . ρN−2ρN−1

ρN−1ρ1 · · · ρN−1ρN−2 1

 . (1.13)

Based on equation (1.12), the presence of some non-zero correlation coefficients in ρ

implies endogeneity in the regime transitions. In particular, when ρi is positive, the regression
error term εp,t at time t becomes positively correlated with the ith auxiliary variable. This
means that a largely positive εp,t is associated with a higher value of s∗

i,t, and thus results in
an increased probability of st = i+ 1. The converse is also true. Similar to the case of zt,
endogenous regime shifts are associated with combinations of ρi, for i= 1,2, ...,N −1.

In summary, the timing model in equation (1.9) and the Markov-switching model of Hwu
et al. (2021) in equations (1.11)-(1.13) constitute the Markov-switching framework used in the
empirical analysis. Our framework is estimated with a simulation-based Bayesian procedure.
A detailed discussion of each step is provided in Appendix 1.A.

1.4 Results

In this section, we first select the best fitting model among alternative models with
different number of regimes and regime-switching restrictions. Then, we analyze the potential
drivers that lead to the shifts of funds’ currency-liquidity-timing behavior across regimes.
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Finally, we study the time path of the identified currency-liquidity-timing regimes. We
provide additional robustness checks for the empirical findings in Appendix 1.C.

To our knowledge, literature has explored funds’ timing ability at the aggregate level
(e.g., Boney et al., 2009), individual level (e.g., Cao et al., 2013), or both (e.g., Cao et al.,
2013). In this paper, we focus on an aggregate-level analysis which is implementable under
our current modeling framework7 and sheds initial light on the full picture of the dynamic
currency-liquidity-timing behavior among the sample funds. To do so, we estimate the timing
coefficients for an equal-weighted portfolio of all funds in the sample, similar as in Boney
et al. (2009).

1.4.1 Model selection and identification of regimes

We select the best fitting model specification among variants of the timing model in
equation (1.9), which differ across two dimensions: the regime-switching restrictions and the
number of regimes. In terms of the regime-switching restrictions, we consider three model
specifications: the first and second model specification allow only one timing coefficient to
be regime-dependent but the other timing coefficient to be constant, while the third model
specification is the most restricted one in which both timing coefficients are regime-dependent.
The three model specifications are presented as follows:

Model 1: It is assumed that only the timing coefficient with respect to RX (denoted by
λ) changes regimes.

Rp,t =αp+βHML_FX
p HML_FXt+βRX

p RXt+µp(Lm,t− L̄m)HML_FXt+

λp,st(Lm,t− L̄m)RXt+
J∑
j=1

βjpf
j
t +σεp,t, εp,t ∼ i.i.d. N (0,1),

(1.14)

Model 2: It is assumed that only the timing coefficient with respect to HML_FX
(denoted by µ) changes regimes.

Rp,t =αp+βHML_FX
p HML_FXt+βRX

p RXt+µp,st(Lm,t− L̄m)HML_FXt+

λp(Lm,t− L̄m)RXt+
J∑
j=1

βjpf
j
t +σεp,t, εp,t ∼ i.i.d. N (0,1),

(1.15)

7By construction, the proposed model and the associated estimation/selection procedure can be applied
to each of the individual funds. However, in practice this would be very time-consuming since the overall
model-fitting process has to be repeated for hundreds or thousands of funds. Thus, our current modeling
framework is implementable only when the overall model-fitting process can be repeated few times, which is
the case favored by an aggregate-level analysis. An individual-level analysis can be a methodological extension
and topic of future research, including for example adapting the current modeling framework to a multivariate
Markov-switching structure.
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Model 3: It is assumed that all the timing coefficients change regimes.

Rp,t =αp+βHML_FX
p HML_FXt+βRX

p RXt+µp,st(Lm,t− L̄m)HML_FXt+

λp,st(Lm,t− L̄m)RXt+
J∑
j=1

βjpf
j
t +σεp,t, εp,t ∼ i.i.d. N (0,1),

(1.16)

For each model specification, we further estimate and compare the specifications with
two, three and four regimes. Our motivation draws from the available evidence that funds
show stronger liquidity timing ability under certain market conditions (see, e.g., Cao et al.,
2013; Luo et al., 2017; Li et al., 2017). Therefore, one may argue that two regimes may not
be enough to capture the dynamic features of liquidity timing behavior. To deal with this
conjecture, we compare the fitness of the two-regime model against that of the alternative
models involving a higher number of regimes. Overall, we have different combinations of
regime-switching restrictions and the number of regimes, which finally include nine models.

For a given model, we implement the simulation-based Bayesian method and compute
150,000 iterations starting from the prior distribution of the parameters specified in Appendix
1.A. We discard the first 25,000 iterations and compute results using the remaining 125,000
iterations. In order to reduce the serial correlation of the draws, we keep every 10th draw to
compute the posterior moments of the parameters, following Kaufmann (2015). Our posterior
estimates are finally derived from an MCMC sample containing 12,500 iterations in total.

We also impose regime identifying restrictions to avoid the label-switching problem.
Label-switching is a well-known and fundamental problem in Bayesian estimation of mixture
or hidden Markov-switching models. In case that the prior distribution of the model
parameters is the same for all states, then both the likelihood and posterior distribution are
invariant to permutations of the parameters. This property makes Markov chain Monte Carlo
(MCMC) samples simulated from the posterior distribution non-identifiable. See Frühwirth-
Schnatter (2001) for further discussion. Specifically, we impose inequality constraints on
the timing coefficients associated with different regimes. For Models 1 and 2, we restrict
either λp,st=1 <λp,st=2 < ... < λp,st=N or µp,st=1 <µp,st=2 < ... < µp,st=N , such that the higher
number of regimes correspond to the states where funds demonstrate stronger liquidity timing
ability with respect to one currency risk factor. For Model 3, we impose similar restrictions
on all the timing coefficients, such that the higher number of regimes is characterized by
the stronger ability of funds to time all the currency risk factors.8 These restrictions are

8For Model 3, it is possible to impose restrictions only on λ or µ for regime-identification. In this case,
funds may employ different timing strategies with respect to the two currency risk factors at the same time.
For example, they may show stronger motivation to time one factor but weaker motivation to time the other
when switching to the higher number of regimes. We examine whether our identification constraints are
too restricted. According to our empirical experiment, in the case of the three-regime, the log marginal
likelihoods for Model 3 with restrictions on λ or µ alone are 904.301 and 895.508, respectively. These values
are substantially small than that of Model 3 with both restrictions, 920.402. The same results are observed in
the case of two-regime and four-regime. Therefore, our restrictions for Model 3 seem to be appropriate.
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imposed via rejection sampling, following Kim and Kang (2022). In particular, we accept and
update the simulated values of the parameters for which the above restrictions are satisfied.
Otherwise, we retain the values of the parameters drawn from the last MCMC iteration.

Because we rely on a Bayesian approach, we can conduct a model selection based on
the marginal likelihoods of the models and their ratios, namely the Bayes factors. The
Bayes factor, introduced by Kass and Raftery (1995), trades off the improved fit resulting
from adding more parameters as the number of regimes grows against the model over-fitting
brought by the additional regimes. Following the common practice in the Bayesian literature,
we compute the Bayes factor based on the marginal likelihood derived in Appendix 1.A.

BF(i, j) = p(YT |Mi)
p(YT |Mj)

, (1.17)

where BF(i, j) denotes the Bayes factor in favor of the reference model Mi over the alternative
model Mj ; Yt = {yi}Ti=1 represents the time series of observations; and p(YT |M) denotes
the marginal likelihood of the respective model. We set Model 1 with two regimes (hereafter
M1,N=2) as the reference model.9

Table 1.2 presents the pairwise log-Bayes factor in favor of the reference model M1,N=2

over the nine alternative models, M1,N=2, M1,N=3, M1,N=4, M2,N=2, M2,N=3, M2,N=4,
M3,N=2, M3,N=3, and M3,N=4. For the convenience of comparison, we follow Jeffreys (1961,
Appendix B) and convert Bayes factor into the logarithm scale (i.e., log10(BF(i, j)) in equation
(1.17)). The log-Bayes factor of the reference model versus itself is thus equal to zero. Kass
and Raftery (1995) suggest interpreting the log-Bayes factor between 0 and 0.5 as weak
evidence in favor of the reference model, between 1 and 2 as strong evidence, and greater
than 2 as decisive evidence. The negative log-Bayes factor of the same magnitude is said to
favor the alternative model by the same amount (Jiang et al., 2013).

Given these criteria, the results in Table 1.2 give rise to several interesting observations.
First, we look at the log-Bayes factors listed in each row of Table 1.2. Here, we select among
the models with different regime-switching restrictions. We find that Bayes factors tend to
favor models in which all the timing coefficients are allowed to change regimes. For example,
in the case of two regimes (see the first row of Table 1.2), the Bayes factor of 4.0 indicates
that model M2,N=2 is less preferred compared to the reference model. In contrast, the Bayes
factor of -3.9 provides substantial evidence in favor of model M3,N=2 against the reference
model. Similar patterns are observed for the models with three and four regimes. This
implies that the regime-switching restriction in Model 3 is most supported by the fund data.
Next, we pay attention to each column of Table 1.2. Here, we compare the fitness of models
with a different number of regimes. We observe that three regimes are sufficient to describe
the shifts in funds’ currency-liquidity-timing behavior in all cases. Taking Model 2 (see the

9Alternative choices of the reference model (e.g., Model 1 with three regimes, Model 2 with two regimes)
leave the conclusions from our model comparison unchanged.
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second column of Table 1.2) as an example, the three-regime specification achieve the lowest
log-Bayes factors at 3.0. Thus, although all the specifications under Model 2 underperform
the reference model in terms of the log-Bayes factors, the improved model fit is much smaller
when moving from model M2,N=3 to the reference model. Combining these findings, we
observe Model 3 with three regimes (M3,N=3) yields the lowest log-Bayes factor. We therefore
set this model specification as the model with the best fit.

Table 1.2 Pairwise log-Bayes factor

N M1,N M2,N M3,N

2 0.0 4.0 -3.9
3 -2.6 3.0 -8.1
4 -1.7 4.6 -7.0

Notes: This table presents the pairwise log-Bayes factor in favor of the reference model M1,N=2 over the nine alternative
models, M1,N=2, M1,N=3, M1,N=4, M2,N=2, M2,N=3, M2,N=4, M3,N=2, M3,N=3, and M3,N=4. Bayes factors
are reported in logarithm scale (i.e., log10(BF(i, j)) in equation (1.17)).

Table 1.3 presents the posterior summary of the previously selected model based on 12,500
MCMC iterations. We report the posterior means, standard errors, 95% credibility intervals
(CI) and convergence statistics of the model parameters. The convergence of our MCMC
sampler is measured by the inefficiency factors and the p-value of convergence diagnostics test
proposed by Geweke (1992). The inefficiency factor is the ratio of the numerical variance of
the posterior sample mean to the variance of the hypothetical sample mean from uncorrelated
draws. With an inefficiency factor of m, we need to draw MCMC samples m times to
generate uncorrelated draws. In Kim and Kang (2022), where the three-regime multivariate
endogenous Markov-switching model was estimated for US stock and bond return data, the
inefficiency factors were found between 5 and 61 (Kim and Kang, 2022, Tables 14-15). From
all panels in Table 1.3, the inefficiency factors are generally in a similar range as reported in
Kim and Kang (2022), suggesting that our proposed sampler is highly effective. Geweke’s
convergence diagnostics test assesses the null hypothesis that the average draws computed
with the first 20% and last 40% of the sample of retained draws are statistically equivalent.
From all panels in Table 1.3, the p-values are all greater than 0.05, implying that there is
no significant evidence against the convergence of the distribution of MCMC samples to the
posterior distributions, according to Omori and Watanabe (2008). Overall, these convergence
statistics indicate a well-mixing and efficient sampler.

Having determined the number of regimes, we next provide their economic interpretation.
We place particular focus on the results contained in Panel B of Table 1.3, which presents the
posterior summary of the switching coefficients µst and λst in the selected model. For both
timing coefficients, we observe that the 95% CIs nearly do not overlap in the three regimes.
This confirms the presence of three distinct currency-liquidity-timing regimes. Based on the
posterior estimates, each identified regimes has a clear economic interpretation. Regime 1
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can be viewed as a perverse timing state10, given that the posterior means and the 95%
CIs of µst=1 and λst=1 are strictly negative. Regime 2 can be identified as a weak timing
state as the 95% CIs of µst=2 and λst=2 are more concentrated in the positive region, though
these 95% CIs also include zero. Regime 3 corresponds to a strong timing state because the
posterior means and the 95% CIs of µst=3 and λst=3 are strictly positive.

Table 1.3 Estimation results of the selected model M3,N=3

st/st−1 Mean s.e. 95% CI Ineff p-val

Panel A: Non-switching coefficients in the timing model
α (%) 0.083 0.011 0.082 0.124 68.900 0.816
βGMF 0.054 0.009 0.052 0.091 68.467 0.718
βEMF 0.065 0.003 0.065 0.074 61.332 0.922
βTERM 1.479 0.071 1.195 1.496 70.630 0.691
βCREDIT 0.108 0.009 0.105 0.144 69.826 0.679
βHML_FX -0.001 0.005 -0.019 0.000 68.773 0.783
βRX 0.179 0.007 0.150 0.180 71.379 0.717
σ 0.004 0.000 0.004 0.005 1.932 0.296

Panel B: Switching coefficients in the timing model
µst 1 -0.076 0.018 -0.136 -0.072 69.515 0.672

2 0.086 0.038 -0.032 0.096 71.740 0.669
3 0.633 0.117 0.283 0.663 71.959 0.674

λst 1 -0.813 0.091 -0.836 -0.544 69.586 0.677
2 0.874 0.246 -0.072 0.939 73.790 0.658
3 1.767 0.269 0.834 1.838 72.721 0.662

Panel C: Parameters in the Markov model
γ̄1,st−1 1 -1.342 0.198 -1.671 -1.022 6.355 0.730

2 1.150 0.199 0.825 1.481 5.190 0.693
3 -0.136 0.208 -0.486 0.201 1.203 0.942

γz
1,st−1 1 0.026 0.255 -0.399 0.442 2.453 0.846

2 -0.445 0.271 -0.886 0.003 5.983 0.693
3 -0.179 0.295 -0.670 0.301 1.439 0.896

γ̄2,st−1 1 -2.001 0.220 -2.362 -1.643 3.508 0.533
2 -0.645 0.200 -0.974 -0.318 2.209 0.677
3 1.295 0.211 0.948 1.640 2.218 0.650

γz
2,st−1 1 -0.167 0.278 -0.627 0.287 2.409 0.733

2 -0.199 0.278 -0.663 0.256 1.653 0.842
3 -0.277 0.281 -0.741 0.183 1.450 0.758

ρ1 -0.431 0.251 -0.682 0.203 52.937 0.676
ρ2 0.009 0.208 -0.353 0.339 14.468 0.624

Notes: This table presents the posterior summary of the selected model M3,N=3, i.e., the three-regime timing
model in equation (1.16). We report results for an equal-weighted portfolio of all sample funds for the period of July
2001-December 2020. Results are based on 12,500 MCMC iterations. st/st−1 are, respectively, the regime indicator at
time t and t− 1, Mean is the posterior mean, s.e. is the posterior standard error, 95% CI is the 95% credibility interval,
Ineff is the inefficiency factor, and p-val is Geweke (1992) p-value.

10Timing the market in the opposite way is referred to as perverse timing by the literature (see, e.g., Ferson
and Schadt, 1996; Boney et al., 2009; Alda et al., 2015).
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1.4.2 Endogenous regime transitions

After identifying the best fitted timing model, we now investigate the potential drivers
that lead to the shifts of funds’ currency-liquidity-timing behavior across regimes.

We begin with the first source of information coming from some exogenous variables
expected to influence the regime transitions. Following Li et al. (2020a), we investigate how
different levels of systematic currency liquidity affect the changes in the state process. We
consider the exogenous variable to be a binary variable representing the current level of
systematic currency liquidity. Specifically, we assume that zt in equation (1.11) takes either 1
or 0 based on whether the current level of systematic currency liquidity at time t above/below
its historical mean

zt =
{

1 if Lm,t > L̄m

0 otherwise
(1.18)

Hence, the parameter γzi,st−1 in equation (1.11) captures the regime-dependent effect of the
current level of systematic currency liquidity on the ith auxiliary variable s∗

i,t.
Panel C of Table 1.3 presents the posterior summary of the parameters γzi,st−1 , for

i= 1,2, ...,N −1 and st−1 = 1,2, ...,N . In our previously selected three-regime timing model
(i.e., N = 3), the parameters γzi,st−1 consist of two elements γz1,st−1 and γz2,st−1 . Each of
the element takes different values, depending on which of the three regimes was realized
previously, i.e., st−1 = 1,2,3. We observe that the posterior means of γz1,st−1 and γz2,st−1 for
st−1 = 1,2,3 are generally negative and the corresponding 95% CIs lie more in the negative
region. Besides, as shown in Figure 1.1, while we assume the distributions of γz1,st−1 and
γz2,st−1 are centered on zero a priori, the posterior distributions of the parameters appear
to shift towards negative region. Overall, the results indicate a minor negative effect of the
current level of systematic currency liquidity on the state process.

To further illustrate the effects of systematic currency liquidity on the transition distribu-
tion, we compute the unconditional transition probability matrix formulated in Appendix
1.B. In doing so, we characterize the state process using the information coming from the
currency market liquidity conditions alone, regardless of the information contained in the
regression error term. For the scenario where the systematic currency liquidity is low (i.e.,
zt = 0), we can obtain the unconditional transition probability matrix

Pt(zt = 0) =


p11,t p12,t p13,t

p21,t p22,t p23,t

p31,t p32,t p33,t

=


0.890 0.089 0.022
0.092 0.828 0.080
0.054 0.139 0.807

 , (1.19)

where pij,t = Pr(st = j|st−1 = i,zt = 0,θ) is the unconditional transition probability from
regime i at time t−1 to j at time t, given that zt = 0.
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Figure 1.1 Prior-posterior distributions of the parameters γz
i,st−1

. This figure plots the marginal
posterior distributions (solid line) of the parameters γz

i,st−1
, where i= 1,2 and st−1 = 1,2,3, against

their prior distributions (dashed line) for the selected model M3,N=3, i.e., the three-regime timing
model in equation (1.16). Results are based on 12,500 MCMC iterations.

Similarly, when the current currency market liquidity level is high (i.e., zt = 1), we can
obtain the unconditional transition probability matrix

Pt(zt = 1) =


p11,t p12,t p13,t

p21,t p22,t p23,t

p31,t p32,t p33,t

=


0.892 0.094 0.014
0.192 0.719 0.088
0.096 0.143 0.761

 , (1.20)

where pij,t = Pr(st = j|st−1 = i,zt = 1,θ) is the unconditional transition probability from
regime i at time t−1 to j at time t, given that zt = 1.

Based on equation (1.19), when the overall currency market is relatively illiquid, the
international fixed income mutual funds stay in the weak timing and strong timing states, with
probabilities of 0.828 and 0.807, respectively. In the meantime, they switch from the weak
timing and strong timing states to the perverse timing state with probabilities of 0.092 and
0.054, respectively. Based on equation (1.20), when the overall currency market is relatively
liquid, the international fixed income mutual funds stay in the weak timing and strong timing
states, with probabilities of 0.719 and 0.761, respectively. In this case, they switch from
the weak timing and strong timing states to the perverse timing state with probabilities of
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0.192 and 0.096, respectively. Obviously, the lower level of systematic currency liquidity is
associated with a higher probability that the international fixed income mutual funds will
continue to stay in the weak timing and strong timing states, and hence a lower probability
that they will switch to the perverse timing state. This explains how the current level of
systematic currency liquidity adversely affects the state process. Nevertheless, marginal
differences are observed between the two unconditional transition probability matrices, which
also points to a minor effect of the systematic currency liquidity on the regime transitions.

Next, we turn to the second source of information. At the bottom of Panel C in Table
1.3, we report the posterior summary of the parameters ρi for i= 1,2, ...,N −1. According to
equation (1.12), these parameters represent the conditional correlations between the regression
error term εp,t and the ith auxiliary variables s∗

i,t. In our previously selected three-regime
timing model (i.e., N = 3), the parameters ρi are composed by two elements ρ1 and ρ2. We
observe that the posterior mean of ρ1 is sizable and displays a negative sign, while that of
ρ2 is almost zero. This is confirmed in Figure 1.2 where the posterior distribution of ρ1 has
larger mass in the negative region while that of ρ2 is centered around zero. Overall, the
results indicate between s∗

1,t and εp,t, but a zero correlation between s∗
2,t and εp,t.
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Figure 1.2 Prior-posterior distributions of the parameters ρi. This figure plots the marginal posterior
distributions (solid line) of the parameters ρi, where i= 1,2, against their prior distributions (dashed
line) for the selected model M3,N=3, i.e., the three-regime timing model in equation (1.16). Results
are based on 12,500 MCMC iterations.

To explain the conditional correlations in more detail, we compute the conditional
transition probability matrix formulated in Appendix 1.B. We further eliminate the transition
dependence on zt (i.e., current level of systematic currency liquidity) by imposing zero
values on the parameters γz1,st−1 and γz2,st−1 , for st−1 = 1,2,3. In doing so, we characterize
the state process using the information coming from the regression error term only. We
randomly generate 12,500 artificial εp,t covering a wide range from -10 to 10. Figure 1.3 plots
conditional transition probabilities against alternative realizations of εp,t. Focusing on the
diagonal entries, we find that the conditional probability of continuing in the weak timing
state (p22,t) increases rapidly as εp,t moves from a positive value toward a negative value.
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The persistence probabilities of the perverse timing (p11,t) and the strong timing states (p33,t)
however display opposite shifts as opposed to p22,t when εp,t is varied. Similarly, there is a
sharp increase in the probabilities of moving from other regimes to the weak timing state
(p12,t and p32,t), but a gradual decrease in the probabilities of moving out of the weak timing
state (p21,t and p23,t) as εp,t falls to a largely negative value. These patterns of probabilities
suggest that larger negative values of εp,t are associated with an increased likelihood of the
weak timing state occurring relative to both perverse timing and strong timing states. Such a
negative relationship between the regression error term and the weak timing state is reflected
in the sign of parameter ρ1. We also observe that the variation of the conditional probabilities
associated solely with the perverse timing and strong timing states (p13,t and p31,t) is not as
dramatic as that of the probabilities involving the weak timing state. This implies that the
realization of εp,t seems to be unrelated to the likelihood of the strong timing state occurring
relative to the perverse timing state. Such a weak relationship between the regression error
term and the strong timing state can be possibly attributed to the insignificance of parameter
ρ2.

Overall, the results show that both sources of information affect to some extent the
probabilities that funds switch from one currency-liquidity-timing regime to others. We
identify the current level of systematic currency liquidity as one potential financial force that
drives to some extent funds’ motives for currency liquidity timing. This finding confirms what
reported in Li et al. (2020a) based on the global hedge funds data. One possible explanation
is that when sudden shocks of currency liquidity crisis occur, systematic currency liquidity
starts to become an important consideration for the international fixed income mutual funds,
who then observe and time the liquidity level as closely as possible to reduce the currency
exposure if possible. We also observe the negative relationship between the regression error
term and the probability of the weak timing state occurring. In our setting, regression
error term can be viewed as shocks to the international fixed income mutual fund returns.
Therefore, the regime shifts from other states to the weak timing state seem to interact with
a negative shock to the fund returns. Sialm and Zhu (2022) argue that international fixed
income mutual funds may face higher costs of outflows when holding illiquid assets and are
thus more incentivized to hedge their currency risks in response to their poor performance.
This coincides with our finding and explains why funds’ currency-liquidity-timing behavior is
sensitive to downside returns.

1.4.3 Time path of the currency liquidity timing regimes

We now provide a graphical analysis to visualize the identified currency-liquidity-timing
regimes. To do so, we classify any time period t to be the perverse timing, weak timing or
strong timing state if the posterior probability of being in a particular state is greater than
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Figure 1.3 Conditional transition probabilities against alternative realizations of εp,t. This figure
plots the transition probabilities (solid line) conditional on the regression error term εp,t inside
the selected model M3,N=3, i.e., the three-regime timing model in equation (1.16). The x-axis
measures alternative values of εp,t ∈ [−10,10]. The y-axis measures alternative values of conditional
transition probabilities pij,t ∈ [0,1], where pij,t = Pr(st = j|st−1 = i,εp,t,θ) is the conditional transition
probability from regime i at time t− 1 to j at time t, given εp,t. Results are based on 12,500 MCMC
iterations.

50% at time t.11 Figure 1.4 plots shaded areas associated with the periods of funds being
in a particular currency-liquidity-timing regime. For the 19-year sample period and using a

11We choose to adopt a threshold of 50% for the presentation of results for two reasons. First, a threshold
of 50% is extensively used in the Markov-switching literature (see, e.g., Chan et al., 2011; Jutasompakorn
et al., 2014) in determining the regime. A particular regime is identified by the smoothed posterior probability
exceeding 50%. Second, using a threshold of 50% minimizes the occurrence of type I and type II errors which
involve selecting too low and too high threshold, respectively. An inappropriately low threshold may result
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50% threshold probability, we observe that international fixed income mutual funds spend
61.11%, 18.80% and 3.42% of days in the perverse timing, weak timing and strong timing
states respectively. There are 16.67% of days where we cannot determine the regime as each
regime has smoothed probability of less than 50%.
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Figure 1.4 Time path of the currency liquidity timing regimes. This figure plots shaded areas
associated with the periods of funds being in a particular regime. The light gray bars, dark gray bars,
and black bar correspond to the periods of funds being in regimes 1-3, respectively. The empty white
bars correspond to the periods during which the model cannot determine the regime as each regime
has smoothed probability of less than 50%. Based on the selected model M3,N=3, regimes 1-3 can be
viewed as perverse timing, weak timing and strong timing states, respectively. The sample period is
from July 2001 to December 2020.

From Figure 1.4, we find that international fixed income mutual funds normally stay in
the perverse timing state during which the overall financial market is calm. Interestingly,
they unusually switch to the weak timing and strong timing states during which the overall
financial market becomes more turbulent. We observe nine periods of weak timing state: July
2001-August 2001, December 2002-May 2003, September 2004-December 2004, July 2011-
February 2012, August 2013-January 2014, December 2014-May 2015, August 2015-December
2015, August 2018-December 2018, May 2020-July 2020, and one period of strong timing
state: May 2009-December 2009. The weak timing state covers the early 2000s recession,
several rounds of US Quantitative Easing (QE) programs from 2009 to 2015, and the Covid-19
crisis in early 2020. The strong timing state corresponds to the aftermath of the sub-prime
crisis; for example, the credit crisis with Greece’s Bailout taking place after 2009.

The following mechanism emerges from our findings. When the overall financial market
is calm, international fixed income mutual funds possibly do not care about their currency
exposure as exchange rate fluctuations are relatively stable. Therefore, they tend to only
hedge their currency exposure when the hedging costs are low but leave their currency
exposure unhedged when the hedging costs are high. Since hedging costs are adversely
correlated with liquidity, the above behavior implies that funds’ currency exposure decreases
due to hedging in times of increased currency liquidity; by contrast, funds’ currency exposure

in an overestimated number of a particular regime, whereas an overly stringent threshold could cause an
underestimated number of a particular regime.
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increases due to less hedging in times of decreased currency liquidity. As a result, the perverse
timing state is associated with the tranquil periods and under this circumstance funds adjust
their currency exposure in the opposite direction to the liquidity movement. Conversely,
when the overall financial market becomes more turbulent, international fixed income mutual
funds are possibly concerned about their currency exposure as exchange rate fluctuations are
relatively volatile. Therefore, they tend to hedge their currency exposure even though the
hedging costs are high. Moreover, in episodes of global financial stress, currency liquidity
is likely to worsen jointly with the liquidity of underlying assets. Consequently, funds’ risk
appetite falls and they seek to rebalance their global portfolio more frequently than they do
during the tranquil periods, inducing higher currency hedging activities. The above behavior
implies that the further reduction in currency liquidity, the more increase in currency hedging
and thus the more decrease in funds’ currency exposure. As a result, the weak timing and
strong timing states are associated with the turmoil periods and under these circumstances
funds adjust their currency exposure towards the same direction to the liquidity movement.

1.5 Conclusions

This paper provided the first formal investigation of the currency-liquidity-timing behavior
of globally-diversified funds. Using a sample of international fixed income mutual funds
as a testing ground, we analyzed aggregate timing behavior based on the equal-weighted
portfolio of all funds over the period from July 2001 to December 2020. To capture dynamics
in funds’ timing behavior and the potential drivers behind such dynamics, we proposed a
novel Markov-switching model that allows for multiple regimes and endogeneity in the regime
transitions. We found that the sample funds on average engage in currency liquidity timing by
adjusting their currency exposure in response to the systematic currency liquidity movement.
Interestingly, this timing behavior appeared to change with market conditions, in that funds
time currency liquidity negatively (adjust their currency exposure in the opposite direction
to the liquidity movement) in normal times but switch to aggressively positive timing (adjust
their currency exposure in the same direction to the liquidity movement with increasing
aggressivity) in turbulent market conditions. We observed that the dynamics of currency
liquidity timing are possibly driven by currency liquidity deterioration and negative shocks to
fund returns. We proposed a potential explanation of the dynamic currency-liquidity-timing
behavior based on funds’ currency hedging practices.

There are many possible avenues for future work. First, an important next step is to dig
deeper into whether funds with distinct fund characteristics (e.g., age, size, expense ratio,
turnover ratio) differ in their dynamic currency-liquidity-timing behavior. In this respect,
one way is to estimate timing coefficients directly for funds grouped by characteristics (see,
e.g., Boney et al., 2009; Siegmann and Stefanova, 2017), while an alternative is to run a cross-
sectional regression of timing coefficients estimated for the individual funds on certain fund



26 Chapter 1

characteristics (see, e.g., Cao et al., 2013; Chen and Liang, 2007). Under our current modeling
framework, the former is implementable whereas the latter calls for a multivariate extension
of the proposed Markov-switching structure that can be applied directly to individual funds.
Second, a study concerning the implications of dynamic currency-liquidity-timing behavior on
fund performance is likely to be promising. For example, by applying the proposed method
to fund subgroups sorted by fund performance, the new insight we may bring to this issue
is whether funds with superior performance and those with inferior performance behave
differently to time currency liquidity.
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Appendix 1.A

This appendix gives the technical details of the Bayesian Markov chain Monte Carlo
(MCMC) algorithm utilized to estimate the model. We first discuss the specification of
prior distributions in Appendix 1.A.1. We then outline the posterior sampling procedure
in Appendix 1.A.2. Finally, we provide a detailed derivation of the marginal likelihoods
used for model comparison in Appendix 1.A.3. Appendices 1.A.2 and 1.A.3 follow closely
Kim and Kang (2022, Appendices A and B) who develop an efficient MCMC algorithm for
the estimation of the multivariate endogenous Markov-switching models. We adjust their
formulations to accommodate for our model structure.

We use the following notations in this appendix. Consider the timing model in equation
(1.9) of the paper, we denote by Yt = {yi}ti=1 and Xt = {xi}ti=1 the observations of the
dependent variables and covariates through time t. Besides, we denote by β a vector
containing all the non-switching and switching coefficients in the timing model other than σ.
Consider the Markov model in equation (1.11) of the paper, we denote by St = {si}ti=0, and
S∗
t = {s∗

i }
t
i=1 the time series of the regime indicators and the auxiliary variables through time

t. Then, we denote by Zt = {zi}ti=1 the time series of exogenous information variables through
time t. Moreover, we denote by γ a vector containing all the elements in γi,st−1 , where
γi,st−1 = (γ̄i,st−1 ,γ

z
i,st−1) for i = 1,2, ...,N − 1 and st−1 = 1,2, ...,N . Consider the Gaussian

distribution in equation (1.12) of the paper, we denote by ρ a vector of conditional correlations,
i.e., ρ = {ρi}N−1

i=1 . Finally, we let θ =
{
β,γ,ρ,σ2} be the collection of all parameters to be

estimated in the model.

1.A.1 Prior distributions

We specify a standard set of prior distributions for the model parameters, as shown in
Table 1.A.1. We assume that the model parameters are mutually independent, a priori.

The prior on β is assumed to be Gaussian with the mean of β̄ and variance V̄β. We set
the hyper-parameters of β̄ and V̄β to be rather uninformative to avoid the case in which the
regimes are identified by the prior information rather than by the data, i.e., β̄ = 0K×1, V̄β =
IK , where 0K×1 is a K-dimensional vector of zeros, IK is a K×K identity matrix and K

denotes the number of coefficients contained in β.
The prior on γ is also assumed to be Gaussian. Specifically, for each i= 1,2, ...,N −1, we

assume that the vector (γi,st−1=1,γi,st−1=2, ...,γi,st−1=N )′ are normally distributed with the
mean of Γ̄i and variance V̄Γi . As for γ̄i,st−1 , we impose prior means to be regime-specific
and set the hyper-parameters similar as in Kim and Kang (2022), who show that this prior
choice is successful in capturing a certain persistence of each regime. Besides, we set the prior
variances of γ̄i,st−1 to have tight hyper-parameters, which are equal to 0.05 across regimes. As
for γzi,st−1 , we impose priors centered on zero and with sharp shrinking (i.e., prior variances
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equal to 0.1). These priors show that we are largely uninformative about the effect of the
exogenous information variable on the regime transitions.

The prior on σ2 is assumed to be inverse Gamma with the shape parameter ν0 and the
scale parameter R0. The formulations of ν0 and R0 imply that the prior mean for σ2 is
concentrated around the standard OLS estimate of the error variance for the regression, i.e.,
ν0 =R0/ŝ+1, R0 = ŝ(ŝ2/σ2

ŝ)+1, where ŝ denotes the residual standard error obtained via
the OLS estimation and σ2

ŝ denotes the variance of the residual standard error. We set σ2
ŝ

equal to 0.25, which seems to be appropriate to reflect an ex ante plausible range for the
values of ŝ.

Finally, we assume a beta prior for 0.5×(ρi+1), for i= 1,2, ...,N−1. We specify the same
hyper-parameters as in Kim and Kang (2022) such that the prior means for the correlation
coefficients ρi are equal to zero.

Table 1.A.1 Prior specifications

Parameter Prior distribution Hyper-parameters

β N (β̄, V̄β) β̄ = 0K×1, V̄β = IK

γ N (Γ̄i, V̄Γi
) N = 2: Γ̄1 = (γ̄1,1,γ

z
1,1, γ̄1,2,γ

z
1,2)’ = (-1.5, 0, 1.5, 0)’,

V̄Γ1 = IN ⊗ diag(0.05,0.1)
N = 3: Γ̄1 = (γ̄1,1,γ

z
1,1, γ̄1,2,γ

z
1,2, γ̄1,3,γ

z
1,3)’

= (-1.5, 0 1.5, 0, 0, 0)’, V̄Γ1 = IN ⊗ diag(0.05,0.1)
Γ̄2 = (γ̄2,1,γ

z
2,1, γ̄2,2,γ

z
2,2, γ̄2,3,γ

z
2,3)’

= (-2, 0, -0.5, 0, 1.5, 0)’, V̄Γ2 = IN ⊗ diag(0.05,0.1)
N = 4: Γ̄1 = (γ̄1,1,γ

z
1,1, γ̄1,2,γ

z
1,2, γ̄1,3,γ

z
1,3, γ̄1,4,γ

z
1,4)’

= (-2.5, 0, 1.5, 0, -1.5, 0, 0, 0)’, V̄Γ1 = IN ⊗ diag(0.05,0.1)
Γ̄2 = (γ̄2,1,γ

z
2,1, γ̄2,2,γ

z
2,2, γ̄2,3,γ

z
2,3, γ̄2,4,γ

z
2,4)’

= (-2, 0, 0.5, 0, 1.5, 0, -0.5, 0)’, V̄Γ2 = IN ⊗ diag(0.05,0.1)
Γ̄3 = (γ̄3,1,γ

z
3,1, γ̄3,2,γ

z
3,2, γ̄3,3,γ

z
3,3, γ̄3,4,γ

z
3,4)’

= (-1.5, 0, 0, 0, -0.5, 0, 1.5, 0)’, V̄Γ3 = IN ⊗ diag(0.05,0.1)

σ2 IG(ν0,R0) ν0 =R0/ŝ+ 1, R0 = ŝ(ŝ2/σ2
ŝ) + 1

0.5 × (ρi + 1) Beta(a0, b0) a0 = 4, b0 = 4

Notes: This table presents the prior specifications of the model parameters for the empirical application. All of the
model parameters, apart from γ, are given common hyper-parameters across regimes.

1.A.2 Posterior sampling

Let θ−β denote the collection of model parameters, excluding β. Similarly, let θ−γ , θ−ρ,
and θ−σ2 denote the collections of model parameters except γ, ρ, and σ2, respectively. Our
posterior sampling procedure is summarized as follows:

Algorithm 1: Posterior Sampling Procedure



Appendix 1.A 29

Step 1: Sample ST |YT ,XT ,ZT ,θ.
Step 2: Sample S∗

T |ST ,YT ,XT ,ZT ,θ.
Step 3: Sample β|ST ,S∗

T ,YT ,XT ,ZT ,θ−β .
Step 4: Sample γ|ST ,S∗

T ,YT ,ZT ,θ−γ .
Step 5: Sample ρ|ST ,S∗

T ,YT ,XT ,ZT ,θ−ρ.
Step 6: Sample σ2|ST ,S∗

T ,YT ,XT ,ZT ,θ−σ2 .

The details of each step are provided in the following subsections.

1.A.2.1 Sampling regime indicators

We sample the time series of the regime indicators from its full conditional distribution
based on the multi-move method proposed by Chib (1998). This method is implemented in
two stages. In the first stage, we carry out a forward recursion to obtain the filtered probability,
denoted by Pr(st|Yt,Xt,Zt,θ) for t= 1,2, ...,T . In the second stage, we operate a backward
recursion, which is initialized by sampling the regime at time T , sT , from its filtered probability
Pr(sT |YT ,XT ,ZT ,θ). We then sample the remaining regimes st for t= T −1,T −2, ...,1,0,
using its full conditional distribution, denoted by Pr(st|st+1,Yt+1,Xt,Zt,θ). We describe the
details as follows:

Algorithm 2: Multi-Move Sampling of the Regimes
First stage: Forward Recursion
Step 1: At t= 0, compute the initial filtered probability. Following the usual practice (see,
e.g., Hamilton, 1989; Hwu et al., 2021; Kim and Kang, 2022), we use the unconditional
probabilities of the initial regime s0 as the initial filtered probability. Specifically, we
denote by P the unconditional transition probability matrix, in which the (i, j)th element is
Pr(st = j|st−1 = i,zt,θ) obtained in equations (1.B.9) and (1.B.11). Following Amisano and
Fagan (2013), we assume zt = 0 for t= 1,2, ..,T . Given P , the initial filtered probability is
obtained as

p(s0 = j|θ) = (P̄ ′P̄ )−1P̄ ′
[

0N×1

1

]
where P̄ =

[
IN −P ′

1′
N

]
, (1.A.1)

where N represents the number of regimes, IN is an N ×N identity matrix, and 1′
N is an

N ×1 vector of ones. After initializing the filtered probability at time 0, we implement Steps
2 to 6 recursively for t= 1,2, ...,T .
Step 2: For j,q = 1,2, ...,N , compute the conditional joint density of (yt,st),

p(yt,st = j|st−1 = q,Yt−1,Xt,Zt,θ) = N (yt|x′
tβj ,σ

2)Pr(st = j|st−1 = q,εp,t,zt,θ), (1.A.2)

where Pr(st = j|st−1 = q,εp,t,θ) is the conditional transition probability derived from equations
(1.B.4) and (1.B.6).
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Step 3: For j = 1,2, ...,N , compute the joint predictive density of (yt,st),

p(yt,st = j|Yt−1,Xt,Zt,θ) =
N∑
q=1

[p(yt,st = j|st−1 = q,Yt−1,Xt,Zt,θ)Pr(st−1 = q|Yt−1,Xt−1,Zt−1,θ)] ,

(1.A.3)
where Pr(st−1 = q|Yt−1,Xt−1,Zt−1,θ) is the filtered probability at time t−1.
Step 4: Compute the predictive density,

p(yt|Yt−1,Xt,Zt,θ) =
N∑
j=1

p(yt,st = j|Yt−1,Xt,Zt,θ). (1.A.4)

Step 5: For j,q = 1,2, ...,N , compute the joint conditional density of (st,st−1),

Pr(st = j,st−1 = q|Yt,Xt,Zt,θ) = p(yt,st = j|st−1 = q,Yt−1,Xt,Zt,θ)Pr(st−1 = q|Yt−1,Xt−1,Zt−1,θ)
p(yt|Yt−1,Xt,Zt,θ)

.

(1.A.5)
Step 6: For j = 1,2, ...,N , compute the filtered probability,

Pr(st = j|Yt,Xt,Zt,θ) =
N∑
q=1

Pr(st = j,st−1 = q|Yt,Xt,Zt,θ). (1.A.6)

Second stage: Backward Recursion
Step 1: Sample the regime at time T , sT , from its filtered probability Pr(sT |YT ,XT ,ZT ,θ)
and repeat Step 2 for t= T −1,T −2, ...,1.
Step 2: For j,q = 1,2, ...,N , sample st = j using the full conditional distribution,

Pr(st = j|st+1 = q,Yt+1,Xt,Zt,θ) = Pr(st+1 = q,st = j|Yt+1,Xt+1,Zt+1,θ)
Pr(st+1 = q|Yt+1,Xt+1,Zt+1,θ)

, (1.A.7)

where Pr(st+1 = q,st = j|Yt+1,Xt+1,Zt+1,θ) is the joint conditional density of (st+1,st) and
Pr(st+1 = q|Yt+1,Xt+1,Zt+1,θ) is the filtered probability of st+1. Both are obtained in Steps
5 and 6 of the forward recursion, respectively.

1.A.2.2 Sampling auxiliary variables

We sample the time series of the auxiliary variables from its full conditional distribution,
denoted by p(s∗

t |st,st−1,Yt,Xt,Zt,θ). As shown in equation (1.10) of the paper and equation
(1.B.2), s∗

t is composed by
{
s∗
i,t

}N−1

i=1
, which are mutually independent given the error term

εp,t. Therefore, the full conditional distribution p(s∗
t |st,st−1,Yt,Xt,Zt,θ) is simply given by

the product of
{
p(s∗

i,t|st,st−1,Yt,Xt,Zt,θ)
}N−1

i=1
. For h= 0,1, ..., i− 1, i+ 1, ...,N − 1, the full
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conditional density of p(s∗
i,t|st,st−1,Yt,Xt,Zt,θ) is proportional to

N (s∗
i,t|γ̄i,st−1 + z′

tγ
z
i,st−1 + e′

iρεp,t,1−ρ2
i )×

[I(s∗
i,t > s∗

h,t|st)Pr(I(s∗
i,t > s∗

h,t|st))+ I(s∗
i,t ≤ s∗

h,t|st)Pr(I(s∗
i,t ≤ s∗

h,t|st))],
(1.A.8)

where ei is a vector of zeros with a one in the ith position and I(·) is an indicator function.
The above equation has different functional forms depending on the realization of st.

Consider the case that st = j, where j = 1, all auxiliary variables should be negative. This
reflects in equation (1.A.8) that I(s∗

q,t>s
∗
0,t|st) = 0, Pr(I(s∗

q,t>s
∗
0,t|st)) = 0, I(s∗

q,t ≤ s∗
0,t|st) = 1,

and Pr(I(s∗
q,t ≤ s∗

0,t|st)) = 1 for q = 1,2, ...,N −1, s∗
0,t = 0. Thus, the full conditional density

of s∗
q,t is given by

N (s∗
q,t|γ̄1,st−1 + z′

tγ
z
1,st−1 + e′

1ρεp,t,1−ρ2
1)× I(s∗

q,t ≤ s∗
0,t|st). (1.A.9)

This indicates that s∗
q,t are sampled from the truncated conditional normal distributions over

(−∞,0]

s∗
q,t|st = 1,st−1,εp,t,zt,θ ∼ T N (−∞,0](γ̄q,st−1 + z′

tγ
z
q,st−1 + e′

qρεp,t,1−ρ2
q). (1.A.10)

For 2 ≤ st = j+ 1 ≤ N , the jth auxiliary variables should be positive. Thus, the full
conditional density is given by

N (s∗
j,t|γ̄j,st−1 + z′

tγ
z
j,st−1 + e′

jρεp,t,1−ρ2
j )× I(s∗

j,t > s∗
0,t|st). (1.A.11)

This indicates that the jth auxiliary variables are sampled from the truncated conditional
normal distributions over (0, ∞]

s∗
j,t|st = j+1,st−1,εp,t,zt,θ ∼ T N (0,∞](γ̄j,st−1 + z′

tγ
z
j,st−1 + e′

jρεp,t,1−ρ2
j ). (1.A.12)

Besides, the jth auxiliary variables should be greater than the other auxiliary variables. Thus,
given the sample of s∗

j,t, the full conditional density of the remaining variables is given by

N (s∗
h,t|γ̄h,st−1 + z′

tγ
z
h,st−1 + e′

hρεp,t,1−ρ2
h)× I(s∗

h,t < s∗
j,t|st), (1.A.13)

for h= 1,2, ..., j−1, j+1, ...,N −1. This indicates that s∗
h,t are sampled from the truncated

conditional normal distributions over (−∞,s∗
j,t]

s∗
h,t|st = j+1,st−1,s

∗
j,t,εp,t,zt,θ ∼ T N (−∞,s∗

j,t](γ̄h,st−1 + z′
tγ
z
h,st−1 +ρ′

hεp,t,1−ρ2
h). (1.A.14)

We repeat the above procedures for t= 1,2, ...,T .
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1.A.2.3 Sampling β

We sample β from its full conditional distribution. To begin with, we use the joint
distribution of (s∗

t ,εp,t) in equation (1.12) of the paper to derive the conditional distribution
of εp,t, which is given by

εp,t|s∗
t ,st−1,Yt−1,zt,θ ∼ N (ρ′Ω−1(s∗

t − γ̄st−1 − z′
tγ
z
st−1),1−ρ′Ω−1ρ). (1.A.15)

It follows that the conditional distribution of yt is given by

yt|St,S∗
t ,Yt−1,Xt,Zt,θ ∼ N (x′

tβst +σρ′Ω−1(s∗
t − γ̄st−1 −z′

tγ
z
st−1),σ(1−ρ′Ω−1ρ)σ′). (1.A.16)

This can be rewritten as

y∗
t |St,Yt−1,Xt,θ ∼ N (x′

tβst ,σ(1−ρ′Ω−1ρ)σ′), (1.A.17)

where y∗
t = yt−σρ′Ω−1(s∗

t − γ̄st−1 − z′
tγ
z
st−1). equation (1.A.17) suggests that the conditional

distribution of y∗
t is linear to βst . Therefore, given the normal prior distribution of βst , the

full conditional distribution of β = (β′
st=1,β

′
st=2, ...,β

′
st=N )′ can be written as

β|ST ,S∗
T ,YT ,XT ,ZT ,θ−β ∼ N (B1A,B1), (1.A.18)

with

Xt =
[
(I(st = 1) I(st = 2) · · · I(st =N)) ⊗x′

t

]′
,

B1 = (V̄ −1
β +

T∑
t=1

Xt(σ(1−ρ′Ω−1ρ)σ′)−1X ′
t)−1,

A= (V̄ −1
β β̄+

T∑
t=1

Xt(σ(1−ρ′Ω−1ρ)σ′)−1y∗
t ).

1.A.2.4 Sampling γ

We sample γ from its full conditional distribution. To begin with, we rewrite equation
(1.B.2) as

s∗
i,t|st−1,εp,t,zt,st,θ ∼ N (γ̄i,st−1 + z′

tγ
z
i,st−1 + e′

iρεp,t,1−ρ2
i ). (1.A.19)

It follows that

s∗
i,t− e′

iρεp,t|st−1,εp,t,zt,st,θ ∼ N (γ̄i,st−1 + z′
tγ
z
i,st−1 ,1−ρ2

i ). (1.A.20)

The above equation suggests that the conditional distribution of s∗
i,t − e′

iρεp,t is linear to
γ̄i,st−1 , γzi,st−1 , and the vector γi,st−1 defined at the beginning of this appendix. Therefore,
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for each i= 1,2, ...,N − 1, the full conditional distribution of γ = (γi,1,γi,2, ...,γi,N )′ can be
written as

γ|ST ,S∗
T ,YT ,ZT ,θ−γ ∼ N (Bi,1Ai,Bi,1), (1.A.21)

with

It =
[
(I(st−1 = 1) I(st−1 = 2) · · · I(st−1 =N)) ⊗x′

t

]′
,

xt = [1,zt]′,

Bi,1 = (
T∑
t=1

(1−ρ2
i )−1ItI′

t+ V̄ −1
Γi

)−1,

Ai = (
T∑
t=1

(1−ρ2
i )−1It(s∗

i,t− e′
iρεp,t)+ V̄ −1

Γi
Γ̄i).

1.A.2.5 Sampling ρ

We sample ρ from its full conditional distribution p(ρ|ST ,S∗
T ,YT ,XT ,ZT ,θ−ρ), which is

proportional to p(S∗
T ,YT |ST ,XT ,ZT ,θ)×π(ρ). The prior density π(ρ) is computed as

π(ρ) =
N−1∏
i=1

Beta((ρi+1)/2|a0, b0), (1.A.22)

where Beta(·|a0, b0) is the beta distribution with the hyper-parameters (a0, b0). From equation
(1.A.16), the joint conditional density p(S∗

T ,YT |ST ,XT ,ZT ,θ) is given by

p(S∗
T ,YT |ST ,XT ,ZT ,θ) =

T∏
t=1

p(yt,s∗
t |st,st−1,Yt−1,Xt,Zt,θ)

=
T∏
t=1

N (
[

s∗
t

σ−1(yt−x′
tβst)

]
|( γ̄st−1 + z′

tγ
z
st−1

0
),( Ω ρ

ρ′ 1
)).

(1.A.23)

However, the computation of p(ρ|ST ,S∗
T ,YT ,XT ,ZT ,θ−ρ) is not feasible because Ω is non-

linear to ρ, as shown in equation (1.13) of the paper. Therefore, we sample ρ by using a
Metropolis-Hastings algorithm, described as follows:

Algorithm 3: Sampling ρ Through a Metropolis–Hastings Algorithm
Step 1: Let ρ(g−1) denote the (g−1)th MCMC draw of ρ. At each MCMC iteration, repeat
the following steps.
Step 2: Maximize the log full conditional density with respect to ρ with the constraint

1−ρ′Ω−1ρ > 0. (1.A.24)
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Step 3: Find its mode, ρ̄, and compute the inverse of the negative hessian matrix of the log
full conditional density at ρ̄

Vp = (−∂2 ln{p(S∗
T ,YT |ST ,XT ,ZT , ρ̄,θ−ρ)π(ρ̄)}

∂ρ∂ρ′ )−1. (1.A.25)

Step 4: Draw a candidate, denoted by ρ∗, from the multivariate normal distribution with
mean ρ̄, variance Vp, and domain(−1,1)

ρ∗ ∼ N(−1,1)(ρ̄,Vp). (1.A.26)

Step 5: If ρ∗ violates the constraint in equation (1.A.24) it is rejected immediately. Otherwise,
calculate the acceptance probability

α(ρ(g−1),ρ∗|YT ,ST ,XT ,ZT ,θ−ρ) (1.A.27)

= min
{

1,
p(S∗

T ,YT |ST ,XT ,ZT ,ρ∗,θ−ρ)×Beta(ρ∗|a0, b0)×N(−1,1)(ρ(g−1)|ρ̄,Vp)
p(S∗

T ,YT |ST ,XT ,ZT ,ρ(g−1),θ−ρ)×Beta(ρ(g−1)|a0, b0)×N(−1,1)(ρ∗|ρ̄,Vp)

}
.

Step 6: Generate a uniform random number u∈ [0,1]. if u≤α(ρ(g−1),ρ∗|YT ,ST ,XT ,ZT ,θ−ρ),
then accept the candidate draw and set ρ(g) = ρ∗. Otherwise, reject the candidate draw and
set ρ(g) = ρ(g−1).

1.A.2.6 Sampling σ2

We sample σ2 from its full conditional distribution p(σ2|ST ,S∗
T ,YT ,XT ,ZT ,θ−σ2), which

is proportional to p(YT |ST ,S∗
T ,XT ,ZT ,θ)×IG(σ2|ν0,R0), where

p(YT |ST ,S∗
T ,XT ,ZT ,θ) =

T∏
t=1

p(yt|st,s∗
t ,Yt−1,Xt,Zt,θ)

=
T∏
t=1

N (y∗
t |x′

tβst ,σ(1−ρ′Ω−1ρ)σ′).
(1.A.28)

However, the computation of p(σ2|ST ,S∗
T ,YT ,XT ,ZT ,θ−σ2) is not feasible because σ appears

in both the conditional mean and the variance of the observations, as shown in equation
(1.A.16). Therefore, similar to ρ, we sample σ2 by using a Metropolis–Hastings Algorithm,
described as follows:

Algorithm 4: Sampling σ2 Through a Metropolis–Hastings Algorithm
Step 1: Let σ2,(g−1) denote the (g−1)th MCMC draw of σ2. At each MCMC iteration, repeat
the following steps.
Step 2: Maximize the log full conditional density with respect to σ2 with the positive
constraint.



Appendix 1.A 35

Step 3: Find its mode, σ̄2, and compute the inverse of the negative hessian matrix of the log
full conditional density at σ̄2

Vσ2 = (−∂2 ln
{
p(YT |ST ,S∗

T ,XT ,ZT , σ̄2,θ−σ2)π(σ̄2)
}

∂σ2∂(σ2)′ )−1. (1.A.29)

Step 4: Draw a candidate, denoted by σ2,∗, from the multivariate normal distribution with
mean σ̄2, variance Vσ2 , and the positive definite constraint

σ2,∗ ∼ N (σ̄2,Vσ2). (1.A.30)

Step 5: If σ2,∗ violates the positive constraint it is rejected immediately. Otherwise, calculate
the acceptance probability

α(σ2,(g−1),σ2,∗|YT ,ST ,S∗
T ,XT ,ZT ,θ−σ2) (1.A.31)

= min
{

1, p(YT |ST ,S∗
T ,XT ,ZT ,σ2,∗,θ−σ2)×IG(σ2,∗|ν0,R0)×N (σ2,(g−1)|σ̄2,Vσ2)

p(YT |ST ,S∗
T ,XT ,ZT ,σ2,(g−1),θ−σ2)×IG(σ2,(g−1)|ν0,R0)×N (σ2,∗|σ̄2,Vσ2)

}
.

Step 6: Generate a uniform random number u∈ [0,1]. if u≤α(σ2,(g−1),σ2,∗|YT ,ST ,S∗
T ,XT ,ZT ,θ−σ2),

then accept the candidate draw and set σ2,(g) = σ2,∗. Otherwise, reject the candidate draw
and set σ2,(g) = σ2,(g−1).

1.A.3 Marginal likelihood computation

The log marginal likelihood of model M, denoted by logp(YT |M), is computed as

logp(YT |M) = logp(YT |θ̂,M)+ logπ(θ̂|M) − logπ(θ̂|YT ,M), (1.A.32)

where θ̂ = (β̂, γ̂, ρ̂, σ̂2) is the posterior mode. The first term of equation (1.A.32) is equal to
the sum of the log conditional densities of the observations given in equation (1.A.4). That is,

logp(YT |θ̂,M) =
T∑
t=1

logp(yt|Yt−1,Xt,Zt, θ̂,M). (1.A.33)

The second term is the prior density at θ̂, which is equal to the sum of all log prior distributions
of the parameters, as defined in Appendix 1.A.1. The third term is the log posterior density
of θ̂, which can be obtained from a marginal conditional decomposition proposed by Chib
and Jeliazkov (2001),

logπ(θ̂|YT ,M) =logπ(β̂|YT , θ̂−β ,M)+ logπ(γ̂|YT , σ̂
2, ρ̂,M)

+ logπ(ρ̂|YT , σ̂
2,M)+ logπ(σ̂2|YT ,M).

(1.A.34)
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The details of each term of equation (1.A.34) are discussed in the following subsections.

1.A.3.1 β̂ conditional density

The first term π(β̂|YT , θ̂−β ,M) of equation (1.A.34) is computed by integrating the joint
density π(β̂,ST ,S∗

T |YT ,XT ,ZT , θ̂−β ,M) over (ST ,S∗
T ). That is,

π(β̂|YT , θ̂−β ,M) =
∫
π(β̂|YT , θ̂−β ,ST ,S∗

T ,XT ,ZT ,M)p(ST ,S∗
T |YT ,XT ,ZT , θ̂−β ,M)d(ST ,S∗

T )

≈ n−1
1

n1∑
g=1

N (β̂|B(g)
1 A(g),B

(g)
1 ),

(1.A.35)

with

y
∗,(g)
t = yt− σ̂ρ̂′Ω̂−1(s∗,(g)

t − γ̄
s

(g)
t−1

− z′
tγ
z

s
(g)
t−1

),

B
(g)
1 = (V̄ −1

β +
T∑
t=1

Xt(σ̂(1− ρ̂′Ω−1ρ̂)σ̂′)−1X ′
t)−1,

A(g) = (V̄ −1
β β̄+

T∑
t=1

Xt(σ̂(1− ρ̂′Ω−1ρ̂)σ̂′)−1y
∗,(g)
t ).

where the superscript (g) denotes the gth draw from reduced MCMC runs and n1 denotes
the MCMC size beyond the burn-in. Note that (β,ST ,S∗

T ) are simulated from the reduced
MCMC run while (γ,ρ,σ2) are fixed at their mode, (γ̂, ρ̂, σ̂2).

1.A.3.2 γ̂ conditional density

The second term π(γ̂|YT , σ̂
2, ρ̂,M) of equation (1.A.34) is computed in a similar way of

β̂ conditional density, which is given by

π(γ̂|YT , σ̂
2, ρ̂,M) =

∫
π(γ̂|YT , ρ̂, σ̂

2,β,ST ,S∗
T ,XT ,ZT ,M)p(β,ST ,S∗

T |YT , ρ̂, σ̂
2,XT ,ZT ,M)d(β,ST ,S∗

T )

≈ n−1
1

n1∑
g=1

N (γ̂|B(g)
i,1 A

(g)
i ,B

(g)
i,1 ),

(1.A.36)
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with

B
(g)
i,1 = (

T∑
t=1

(1− ρ̂2
i )−1ItI′

t+ V̄ −1
Γi

)−1,

ε
(g)
t = σ̂−1(yt−x′

tβ
(g)
s

(g)
t

),

A
(g)
i = (

T∑
t=1

(1− ρ̂2
i )−1It(s∗,(g)

i,t − e′
iρ̂ε

(g)
p,t )+ V̄ −1

Γi
Γ̄i).

Here, (γ,β,ST ,S∗
T ) are simulated from the reduced MCMC run while (ρ,σ2) are fixed at

their mode, (ρ̂, σ̂2).

1.A.3.3 ρ̂ conditional density

The third term π(ρ̂|YT , σ̂
2,M) of equation (1.A.34) is computed based on the algorithm

of Chib and Jeliazkov (2001). We first write π(ρ̂|YT , σ̂
2,M) as

π(ρ̂|YT , σ̂
2,M) =

∫
α(ρ(g), ρ̂|YT , σ̂

2)×N (ρ̂|ρ̄,Vρ)×π(ρ|YT , σ̂
2)dρ∫

α(ρ̂,ρ|YT , σ̂2)×N (ρ|ρ̄,Vρ)dρ
. (1.A.37)

It follows that a simulation-consistent estimate of π(ρ̂|YT , σ̂
2,M) is given by

n−1
1
∑n1
g=1

[
α(ρ(g), ρ̂|YT ,S(g)

T ,β(g),γ(g), σ̂2)×T N (−1,1)(ρ̂|ρ̄,Vρ)
]

n−1
1
∑n1
g=1

[
α(ρ̂,ρ(g)|YT ,S(g)

T ,β(g),γ(g), σ̂2)
] . (1.A.38)

For the numerator, (S(g)
T ,β(g),γ(g),ρ(g)) are drawn via the reduced MCMC runs, where σ2 is

fixed at σ̂2. For the denominator, (S(g)
T ,β(g),γ(g)) are simulated from the reduced MCMC

runs with the fixed value (ρ̂, σ̂2), and ρ(g) is sampled from its proposal distribution, N (ρ̄,Vρ).

1.A.3.4 σ̂2 conditional density

Similar to the conditional density of ρ̂, the last term π(σ̂2|YT ,M) of equation (1.A.34) is
approximated as

n−1
1
∑n1
g=1

[
α(σ2,(g), σ̂2|YT ,S(g)

T ,θ
(g)
−σ2)×IG(σ̂2|σ̄2,Vσ2)

]
n−1

1
∑n1
g=1

[
α(σ̂2,σ2,(g)|YT ,S(g)

T ,θ
(g)
−σ2)

] . (1.A.39)

(S(g)
T ,σ2,(g),θ

(g)
−σ2) in the numerator are the outputs generated from the reduced MCMC runs.

(S(g)
T ,θ

(g)
−σ2) in the denominator are simulated from the reduced MCMC runs with the fixed

value σ̂2.
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Appendix 1.B

This appendix derives the transition probabilities of the regimes, which are a generalization
of Hwu et al. (2021, Appendix B).

As shown in equation (1.12) of the paper, the unconditional distribution of s∗
t is given by

s∗
t |st−1,Yt−1,zt,θ ∼ N (γ̄st−1 + z′

tγ
z
st−1 ,Ω). (1.B.1)

Similarly, the conditional distribution of s∗
t is given by

s∗
t |st−1,Yt−1,εp,t,zt,θ ∼ N (γ̄st−1 + z′

tγ
z
st−1 +ρεp,t,R), (1.B.2)

where

R=


1−ρ2

1 0 · · · 0

0 1−ρ2
2

...
... . . . 0
0 · · · 0 1−ρ2

N−1

 . (1.B.3)

This suggests that s∗
t are mutually uncorrelated, conditioned on εp,t.

Given s∗
t , we now compute the transition probabilities of the regimes. We first derive the

conditional transition probabilities of the regimes, denoted by Pr(st|st−1,εp,t,zt,θ). Next, we
derive the unconditional transition probabilities of the regimes, denoted by Pr(st|st−1,zt,θ).

We start by using the parameterization in equation (1.10) of the paper and the conditional
distribution of s∗

t in equation (1.B.2) to derive the conditional transition probabilities of the
regimes. For st = 1, all auxiliary variables in equation (10) should be negative. Thus, given
the conditional independence in equation (1.B.2), the conditional transition probability is
equal to the product of the probabilities that s∗

i,t is negative for all i= 1,2, ...,N−1. Formally,
we have

Pr(st = 1|st−1,εp,t,zt,θ) = Pr(s∗
1,t < 0,s∗

2,t < 0, ...,s∗
N−1,t < 0|st−1,εp,t,zt,θ)

=
N−1∏
i=1

Φ

−γ̄i,st−1 − z′
tγ
z
i,st−1 − e′

iρεp,t√
1−ρ2

i

 , (1.B.4)

where Φ(·) is the cumulative density function (CDF) of the standard normal distribution,
and ei is a vector of zeros with a one in the ith position.

Then, for the case of st = j ∈ {2, ...,N}, the j−1th auxiliary variable should be positive
and greater than the other auxiliary variables. For simplicity of exposition, we denote
by S∗

−(j−1),t = (s∗
0,t,s

∗
1,t, ...,s

∗
j−2,t,s

∗
j,t, ...,s

∗
N−1,t)′ an (N − 1)-dimensional vector of auxiliary

variables, excluding the j−1th element s∗
j−1,t. Formally, the conditional transition probability



Appendix 1.B 39

is given by

Pr(st = j|st−1,εp,t,zt,θ)

= Pr
(
s∗
j−1,t−s∗

0,t > 0,s∗
j−1,t−s∗

1,t > 0, ...,s∗
j−1,t−s∗

j−2,t > 0,
s∗
j−1,t−s∗

j,t > 0,s∗
j−1,t−s∗

j+1,t > 0, ...,s∗
j−1,t−s∗

N−1,t > 0

∣∣∣∣∣ st−1,εp,t,zt,θ

)

= Pr
(
S∗

−(j−1),t−s∗
j−1,t < 0(N−1)×1|st−1,εp,t,zt,θ

)
.

(1.B.5)

Because equation (1.B.2) indicates that S∗
−(j−1),t − s∗

j−1,t follows an (N − 1)-dimensional
multivariate normal distribution, we can rewrite equation (1.B.5) as

Pr(st = j|st−1,εp,t,zt,θ) = F (0(N−1)×1|cj−1,t,Vj−1), (1.B.6)

where F (·|cj−1,t,Vj−1) denotes the CDF of the multivariate normal distribution with mean
cj−1,t and variance-covariance Vj−1. We derive cj−1,t as follows

cj−1,t =



−γ̄j−1,st−1 − z′
tγ
z
j−1,st−1 − e′

j−1ρεp,t

γ̄1,st−1 − γ̄j−1,st−1 + z′
t(γz1,st−1 −γzj−1,st−1)+(e1 − ej−1)′ρεp,t

...
γ̄j−2,st−1 − γ̄j−1,st−1 + z′

t(γzj−2,st−1 −γzj−1,st−1)+(ej−2 − ej−1)′ρεp,t

γ̄j,st−1 − γ̄j−1,st−1 + z′
t(γzj,st−1 −γzj−1,st−1)+(ej − ej−1)′ρεp,t

γ̄j+1,st−1 − γ̄j−1,st−1 + z′
t(γzj+1,st−1 −γzj−1,st−1)+(ej+1 − ej−1)′ρεp,t

...
γ̄N−1,st−1 − γ̄j−1,st−1 + z′

t(γzN−1,st−1
−γzj−1,st−1)+(eN−1 − ej−1)′ρεp,t



, (1.B.7)

and Vj−1 is given by

Vj−1 =


1−ρ2

j−1 1−ρ2
j−1 · · · 1−ρ2

j−1

1−ρ2
j−1 2−ρ2

j−1 −ρ2
1

...
... . . . 1−ρ2

j−1
1−ρ2

j−1 · · · 1−ρ2
j−1 2−ρ2

j−1 −ρ2
N−1

 . (1.B.8)

Similarly, we employ the parameterization in equation (1.10) of the paper and the
unconditional distribution of s∗

t in equation (1.B.1) to compute the unconditional transition
probabilities of the regimes. For st = 1, all auxiliary variables in equation (10) should be
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negative. That is,

Pr(st = 1|st−1,zt,θ) = Pr(s∗
1,t < 0,s∗

2,t < 0, ...,s∗
N−1,t < 0|st−1,zt,θ)

= Pr(s∗
t < 0(N−1)×1|st−1,zt,θ)

= F (0(N−1)×1|γ̄st−1 + z′
tγ
z
st−1 ,Ω).

(1.B.9)

Then, for the case of st = j ∈ {2, ...,N}, the auxiliary variable s∗
j−1,t should be positive

and greater than all elements of S∗
−(j−1),t. Formally, we have

Pr(st = j|st−1,zt,θ) = Pr
(
s∗
j−1,t−S∗

−(j−1),t > 0(N−1)×1|st−1,zt,θ
)

= Pr
(
S∗

−(j−1),t−s∗
j−1,t < 0(N−1)×1|st−1,zt,θ

)
.

(1.B.10)

Based on equation (1.B.1), we can rewrite equation (1.B.10) as

Pr(st = j|st−1,zt,θ) = F (0(N−1)×1|c̄j−1,t, V̄j−1), (1.B.11)

where the mean c̄j−1,t is given by

cj−1,t =



−γ̄j−1,st−1 − z′
tγ
z
j−1,st−1

γ̄1,st−1 − γ̄j−1,st−1 + z′
t(γz1,st−1 −γzj−1,st−1)

...
γ̄j−2,st−1 − γ̄j−1,st−1 + z′

t(γzj−2,st−1 −γzj−1,st−1)
γ̄j,st−1 − γ̄j−1,st−1 + z′

t(γzj,st−1 −γzj−1,st−1)
γ̄j+1,st−1 − γ̄j−1,st−1 + z′

t(γzj+1,st−1 −γzj−1,st−1)
...

γ̄N−1,st−1 − γ̄j−1,st−1 + z′
t(γzN−1,st−1

−γzj−1,st−1)



, (1.B.12)

and the variance-covariance V̄j−1 is formulated as

V̄j−1 =



1 1−ρ1ρj−1 · · · 1−ρN−1ρj−1

1−ρ1ρj−1 2(1−ρ1ρj−1)
...

... . . . 1+ρN−1ρN−2

−ρN−1ρj−1 −ρN−2ρj−1

1−ρN−1ρj−1 · · ·
1+ρN−1ρN−2

−ρN−1ρj−1 −ρN−2ρj−1
2(1−ρN−1ρj−1)


.

(1.B.13)
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Appendix 1.C

This appendix presents additional robustness checks for our empirical findings obtained
from the selected three-regime timing model in equation (1.16) of the paper.

1.C.1 Controlling for market return and volatility timing

Our timing model focuses on the adjustment of fund currency betas in response to
systematic currency liquidity. However, fund managers may use a sophisticated set of timing
strategies to hedge risks in financial markets, such as return timing and volatility timing (see,
e.g., Chen and Liang, 2007; Bodson et al., 2013). In the literature, there is some evidence
that the currency market liquidity has a positive relation with currency market return and a
negative relation with currency market volatility (see, e.g., Melvin and Taylor, 2009; Menkhoff
et al., 2012; Mancini et al., 2013). Thus, it is possible that the evidence on currency liquidity
timing can be partially attributed to fund managers’ activities of timing currency market
return or currency market volatility. To address this concern, we control for market-return
and volatility timing in our selected three-regime timing model.

Table 1.C.1 presents the posterior summary of the selected three-regime timing model
with controls for market-return and volatility timing. From Panel B, we observe the evidence
of perverse timing becomes weaker in regime 1 as the 95% CIs of µst=1 and λst=1 are not
strictly negative. Similarly, we find the evidence of weak timing becomes indecisive in regime
2 as the 95% CI of one of the timing coefficients appears to be strictly positive. These findings
agree with Cao et al. (2013) who document that controlling for market-return and volatility
timing reduces the significance of negative liquidity timing. Moreover, there is virtually no
difference between the results from Panel C of Table 1.C.1 and those reported in Table 1.3 of
the paper. Specifically, the current level of systematic currency liquidity and shock to fund
returns highlight their pivotal roles in driving regime switches of funds’ currency liquidity
timing behavior. Figure 1.C.1a plots the time path of the currency liquidity timing regimes
after controlling for return and volatility timing. Comparing with its counterpart in Figure
1.4 of the paper, we can see that the captured switches of currency liquidity timing behavior
are similar. Overall, though the evidence of perverse timing is not as strong as previously
observed, both market-return and volatility timing do not affect the regime-switching behavior
of currency liquidity timing among the international fixed income mutual funds.

1.C.2 Liquidity timing versus liquidity reaction

Cao et al. (2013) argue that fund managers may also change their portfolio exposures
based on lagged values of liquidity. If fund managers use observed liquidity in month t−1
to derive a predictable component of liquidity and adjust their fund beta accordingly, they
have no timing skill but simply react to public information (Ferson and Schadt, 1996). Given
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this conjecture, our evidence on currency liquidity timing might rather reflect fund managers’
response to lagged currency market liquidity conditions. To distinguish liquidity timing skill
from liquidity reaction, we follow Cao et al. (2013) and adapt our selected three-regime
timing model to the model including both liquidity timing and liquidity reaction terms.

Table 1.C.2 presents the posterior summary of the selected three-regime timing model
with controls for liquidity reaction. From Panel A, we observe significant evidence of liquidity
reaction among international fixed income mutual funds as the 95% CIs of the liquidity
reaction coefficients ψHML_FX and ψRX do not include zero. However, Panel B shows that the
inference about regime-dependent currency liquidity timing ability remains largely unchanged
even when we take liquidity reaction into account. Specifically, regime switches from regime 1
to regime 3 are characterized by a stronger tendency of funds to positively time the carry-trade
and dollar risk factors. From Panel C, we find that the current level of systematic currency
liquidity continues to show adverse effects on the regime transitions, which are reflected in
the overall negative estimates of γz1,st−1 and γz2,st−1 . Unlike the original results, the effect of
regression error term on the regime transitions becomes less evident as the 95% CIs of ρ1

and ρ2 are nearly centered around zero. Figure 1.C.1b plots the time path of the currency
liquidity timing regimes after controlling for liquidity reaction. We observe the occurrence of
the weak timing and strong timing states becomes less frequent than those in Figure 1.4 of
the paper, implying that some periods of positive currency liquidity timing are partly results
of funds’ reaction to past currency liquidity conditions. Overall, these findings suggest a
certain level of liquidity reaction among the international fixed income mutual funds, but
funds’ currency liquidity timing ability cannot be fully attributed to liquidity reaction.

1.C.3 Controlling for illiquid holdings

Choi et al. (2022) show strong evidence of persistent staleness in the pricing of fixed
income mutual funds, possibly due to the illiquidity of funds’ holdings. This phenomenon
leads to thin or nonsynchronous trading that may bias estimates of fund beta (see, e.g.,
Scholes and Williams, 1977; Dimson, 1979). In their study on bond mutual funds market
timing, Chen et al. (2010) find that if the extent of stale pricing is related to the market
factor (a case they call systematic stale pricing), then the inference about timing ability can
also be biased. Cao et al. (2013) and Osinga et al. (2021) address systematic stale pricing
when measuring the timing ability of hedge funds, and they find that controlling for this bias
is important. In the same spirit of Cao et al. (2013) and Osinga et al. (2021), we reexamine
the currency liquidity timing skill by augmenting our selected three-regime timing model
with lagged values of currency risk factors and interaction terms between lagged values of
currency risk factors and that of systematic currency liquidity.

Table 1.C.3 presents the posterior summary of the selected three-regime timing model
with controls for illiquid holdings. From Panel A, we observe that HML_FXt−1, HML_FXt−2,
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RXt−1 and RXt−2 enter the regression significantly, indicating illiquid holdings in international
fixed income mutual funds. From Panel B, we find the 95% CIs of µst and λst in the three
regimes overlap more substantially relative to those reported in Table 1.3 of the paper,
implying that the evidence of distinct regimes is somewhat weaker when controlling for funds’
illiquid holdings. The results of γz1,st−1 and γz2,st−1 in Panel C do not change materially. The
evidence of endogeneity in the regime transitions, as shown in ρ1, is marginal in this case.
Figure 1.C.1c plots the time path of the currency liquidity timing regimes after controlling
for illiquid holdings. We note that the captured switches of liquidity timing behavior are still
highly comparable to those in Figure 1.4 of the paper.

1.C.4 Controlling for funding constraints

Financial leverage is commonly believed to play a trivial role in the performance of
mutual funds, since these funds generally make very limited use of debt financing (see,
e.g., Almazan et al., 2004; Boguth and Simutin, 2018; Fricke and Wilke, 2020). However,
recent developments in the bond mutual fund sector challenge this traditional view. Given
low investment returns, debt levels in bond funds have increased after the financial crisis
(Avalos et al., 2015). Vivar et al. (2023) show that bond mutual funds’ use of leverage,
normally provided by prime brokers through short-term funding, exposes funds to the risk of
sudden margin calls that can force them to liquidate positions. It is possible that the our
sample funds’ reduction of currency risk exposure during liquidity crisis periods is merely
caused by a deterioration of funding liquidity because prime brokers have cut funding or
increased borrowing costs. In this case, tightened funding constraints might be misidentified
as liquidity timing. To control for the impact of funding constraints, we use the TED
measure, which is measured by the difference between the three-month London Interbank
Offered Rate (LIBOR) and the three-month Treasury bill rate. The TED spread reflects the
market perceived counterparty default risk and a wider TED spread indicates an increase
of counterparty default risk. This may impact the cost that the prime broker would charge
when providing higher borrowing leverages to the mutual funds. We follow Cao et al. (2013)
and Luo et al. (2017) and include an additional interaction term between the TED spread
and currency risk factors in our selected three-regime timing model.

Table 1.C.4 presents the posterior summary of the selected three-regime timing model
with controls for funding constraints. Unlike the original results, here we observe more
pronounced overlap among the 95% CIs of µst and λst in the three regimes, implying that the
pattern of distinct regimes is less evident when controlling for funds’ funding constraints. The
results in Panel C of Table 1.C.4 are again highly similar to those in Table 1.3 of the paper,
though the evidence of endogeneity in the regime transitions captured by ρ1 is marginal in
this case. Figure 1.C.1d plots the time path of the currency liquidity timing regimes after
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controlling for funding constraints. We note that the captured switches of liquidity timing
behavior are highly comparable to those in Figure 1.4 of the paper.

1.C.5 Controlling for fund flow

In addition to changes in financial leverage, external funding constraints can be caused by
investor redemptions, which present another mechanism by which a fund’s market exposure
could change rapidly. It is possible that when bonds do well, money flows into international
fixed income mutual funds. The managers may take some time to allocate new money and
thus it appears that the funds have more cash holdings regardless of the manager’s actual
investment skill. In the opposite case, when the market declines, investors withdraw their
capital, the managers may unwind their positions, leading to a decrease in market exposure.
Therefore, fund flow can bias the true timing ability of fund managers, which is called the
“cash-flow” hypothesis in the literature (see, e.g., Warther, 1995; Ferson and Schadt, 1996;
Edelen, 1999; Alda et al., 2015). To address this issue, we follow Cao et al. (2013) and
examine a subsample of funds having low fund-flow volatility. Specifically, we examine funds
whose monthly flow volatility is below the median level of peer funds. Funds with low flow
volatility should be less affected by investor flows. Following prior research (see, e.g., Sirri
and Tufano, 1998), we measure fund flows as the percentage change in total net assets (TNA)
after adjusting for fund returns. The subsample contains 185 funds (or 48% of the overall
sample), which is not exactly 50% of the entire sample because some funds do not report
TNA.

Table 1.C.5 presents the posterior summary of the selected three-regime timing model
applied to funds whose monthly flow volatility is lower than the median level of peer funds.
Figure 1.C.1e plots the time path of the currency liquidity timing regimes based on the
sub-sample funds. Overall, the analysis with the selected sample of funds leads to results
similar to those obtained when using the full sample, suggesting that fund flows cannot
explain our findings of currency liquidity timing behavior.

1.C.6 Discussion

We draw several conclusions from the above robustness checks. First, various controls
appear to show some foreseeable impacts on the identification of the regimes and regime
endogeneity. Specifically, we observe the weakening evidence of the three distinct regimes in
the various robustness checks. Moreover, we observe the diminishing evidence that shocks
to fund returns drive the shifts in regimes when controls are in place. These observations
are expected in our robustness checks because a number of extra controls which are added
to the original regression tend to capture part of the explanatory power of the variables
already included and leave few information in the regression error term. Thus, it is natural to
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anticipate a reduction in the significance of timing coefficients12 as well as that of conditional
correlations between the regression error term and regime transitions. Second, the main
findings of the paper are materially unchanged under all the robustness tests: (i) the evidence
on currency liquidity timing behavior among the sample funds is not explained away by
other reasons except currency liquidity timing. This is supported by the observation that
for both timing coefficients, their 95% CIs in the three regimes, although include zero, are
not exactly centered around zero; (ii) the dynamic pattern that currency liquidity timing
behavior shifts from a negative beta-liquidity relationship towards a positive relationship
remains robust under different controls. This is evidenced by the observation that for both
timing coefficients, their 95% CIs which cover a larger negative region in regime 1 appear to
move towards the positive region in regimes 2-3; (iii) systematic currency liquidity continues
to show minor adverse effects on the regime transitions in funds’ timing behavior. This is
reflected by the overall negative estimates of γz1,st−1 and γz2,st−1 .

12Similar observations have been reported, for instance, by Chen et al. (2010) where the timing coefficients
which are significantly negative in the original regression are found to appear neutral to weakly positive with
several controls for non-timing-related nonlinearity.
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Table 1.C.1 Estimation results: Robustness 1

st/st−1 Mean s.e. 95% CI Ineff p-val

Panel A: Non-switching coefficients in the timing model
α (%) 0.093 0.056 -0.013 0.209 67.796 0.616
βGMF 0.094 0.025 0.027 0.122 62.741 0.601
βEMF 0.059 0.013 0.025 0.067 57.632 0.607
βTERM 1.581 0.247 1.129 2.079 66.398 0.614
βCREDIT 0.106 0.034 0.061 0.184 67.802 0.541
βHML_FX 0.033 0.021 -0.006 0.047 70.074 0.072
βRX 0.140 0.018 0.130 0.177 65.711 0.217
ψHML_FX -1.422 0.349 -1.653 -0.516 64.826 0.574
ψRX -0.216 0.516 -1.254 0.081 65.589 0.351
δHML_FX -0.113 0.145 -0.448 0.049 64.781 0.465
δRX 0.033 0.199 -0.095 0.469 69.850 0.093
σ 0.004 0.000 0.004 0.004 12.100 0.950

Panel B: Switching coefficients in the timing model
µst 1 0.075 0.081 -0.105 0.120 65.196 0.230

2 0.142 0.087 -0.025 0.311 63.225 0.695
3 0.544 0.205 0.087 0.798 69.615 0.306

λst 1 -0.870 0.427 -1.130 0.118 71.188 0.149
2 0.610 0.254 0.035 1.009 63.467 0.892
3 1.264 0.407 0.843 2.497 62.678 0.628

Panel C: Parameters in the Markov model
γ̄1,st−1 1 -1.366 0.212 -1.726 -1.025 12.591 0.120

2 1.178 0.199 0.852 1.504 4.546 0.526
3 -0.134 0.208 -0.474 0.206 2.053 0.618

γz
1,st−1 1 0.102 0.288 -0.391 0.556 17.813 0.202

2 -0.301 0.274 -0.751 0.151 9.110 0.772
3 -0.165 0.292 -0.650 0.314 2.130 0.647

γ̄2,st−1 1 -1.974 0.223 -2.337 -1.606 6.009 0.462
2 -0.637 0.203 -0.972 -0.305 3.691 0.053
3 1.270 0.213 0.923 1.624 3.210 0.470

γz
2,st−1 1 -0.093 0.292 -0.581 0.378 4.841 0.139

2 -0.237 0.277 -0.696 0.220 4.293 0.320
3 -0.305 0.288 -0.781 0.164 2.622 0.097

ρ1 -0.315 0.252 -0.635 0.186 44.187 0.193
ρ2 0.011 0.238 -0.374 0.402 16.746 0.363

Notes: This table presents the posterior summary of the selected three-regime timing model with controls for market-
return and volatility timing. The model is given by

Rp,t =αp +βHML_FX
p HML_FXt +βRX

p RXt +µp,st (Lm,t − L̄m)HML_FXt +λp,st (Lm,t − L̄m)RXt +ψHML_FX
p HML_FX2

t

+ψRX
p RX2

t + δHML_FX
p (σm,t − σ̄m)HML_FXt + δRX

p (σm,t − σ̄m)RXt +
J∑

j=1

βj
pf

j
t +σεp,t,

where p represents each fund and t represents each month; Rp,t is the return in excess of the risk-free rate; HML_FXt

and RXt denote, respectively, the carry and dollar factors; fj
t (J=4 in this case) denote the set of additional bond market

risk factors; Lm,t is the systematic currency liquidity measure and L̄m is the time series mean of systematic currency
liquidity measure; σm,t is the Menkhoff et al. (2012) currency volatility measure and σ̄m is the time series mean of
currency market volatility; αp is the risk-adjusted return; the coefficients µp,st and λp,st measure the regime-dependent
fund’s currency liquidity timing ability; the coefficients ψHML_FX

p and ψRX
p measure fund’s currency market-return

timing ability; the coefficients δHML_FX
p and δRX

p measure fund’s currency volatility timing ability; and εp,t is the error
term. We report results for an equal-weighted portfolio of all sample funds for the period of July 2001-December 2020.
Results are based on 12,500 MCMC iterations. st/st−1 are, respectively, the regime indicator at time t and t− 1, Mean
is the posterior mean, s.e. is the posterior standard error, 95% CI is the 95% credibility interval, Ineff is the inefficiency
factor, and p-val is Geweke (1992) p-value.
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Table 1.C.2 Estimation results: Robustness 2

st/st−1 Mean s.e. 95% CI Ineff p-val

Panel A: Non-switching coefficients in the timing model
α (%) 0.049 0.007 0.044 0.049 53.281 0.937
βGMF 0.110 0.014 0.071 0.113 71.062 0.750
βEMF 0.065 0.008 0.067 0.071 72.798 0.776
βTERM 1.495 0.045 1.497 1.504 66.598 0.751
βCREDIT 0.098 0.008 0.070 0.100 69.139 0.703
βHML_FX 0.020 0.014 0.016 0.067 73.609 0.586
βRX 0.146 0.006 0.145 0.145 69.095 0.827
ψHML_FX -0.071 0.038 -0.199 -0.065 71.733 0.822
ψRX 0.107 0.019 0.050 0.112 66.746 0.625
σ 0.004 0.000 0.004 0.005 20.831 0.540

Panel B: Switching coefficients in the timing model
µst 1 0.033 0.349 -0.930 0.154 74.053 0.542

2 0.238 0.270 -0.394 0.328 72.121 0.566
3 0.382 0.098 0.352 0.677 70.956 0.598

λst 1 -1.136 0.104 -1.145 -0.807 64.076 0.882
2 -0.060 0.297 -0.154 0.753 72.767 0.586
3 2.086 0.371 0.831 2.210 73.605 0.559

Panel C: Parameters in the Markov model
γ̄1,st−1 1 -1.531 0.211 -1.882 -1.184 3.903 0.589

2 1.299 0.205 0.960 1.638 2.071 0.631
3 -0.134 0.207 -0.470 0.206 0.964 0.998

γz
1,st−1 1 -0.036 0.285 -0.513 0.424 3.023 0.826

2 -0.272 0.281 -0.731 0.191 2.023 0.867
3 -0.129 0.289 -0.611 0.347 1.031 0.951

γ̄2,st−1 1 -1.921 0.214 -2.272 -1.570 2.843 0.627
2 -0.585 0.204 -0.919 -0.251 1.428 0.797
3 1.218 0.210 0.880 1.567 2.979 0.706

γz
2,st−1 1 -0.052 0.291 -0.531 0.419 2.126 0.788

2 -0.165 0.279 -0.627 0.294 1.446 0.919
3 -0.315 0.288 -0.785 0.170 1.357 0.099

ρ1 0.183 0.253 -0.245 0.588 8.403 0.399
ρ2 -0.196 0.190 -0.473 0.147 18.487 0.603

Notes: This table presents the posterior summary of the selected three-regime timing model with controls for liquidity
reaction. The model is given by

Rp,t =αp +βHML_FX
p HML_FXt +βRX

p RXt +µp,st L̃m,tHML_FXt +λp,st L̃m,tRXt +ψHML_FX
p (Lm,t−1 − L̄m)HML_FXt

+ψRX
p (Lm,t−1 − L̄m)RXt +

J∑
j=1

βj
pf

j
t +σεp,t,

where p represents each fund and t represents each month; Rp,t is the return in excess of the risk-free rate; HML_FXt

and RXt denote, respectively, the carry and dollar factors; fj
t (J=4 in this case) denote the set of additional bond market

risk factors; Lm,t−1 is the one-month lagged systematic currency liquidity measure and represents past information;
L̄m is the time series mean of systematic currency liquidity measure prior to month t− 1; L̃m,t is the innovation in
systematic currency liquidity from an AR(2) process and represents the unpredictable component of systematic currency
liquidity; αp is the risk-adjusted return; the coefficients µp,st and λp,st measure the regime-dependent fund’s currency
liquidity timing ability; the coefficients ψHML_FX

p and ψRX
p measure funds’ currency liquidity reaction; and εp,t is the

error term. We report results for an equal-weighted portfolio of all sample funds for the period of July 2001-December
2020. Results are based on 12,500 MCMC iterations. st/st−1 are, respectively, the regime indicator at time t and t− 1,
Mean is the posterior mean, s.e. is the posterior standard error, 95% CI is the 95% credibility interval, Ineff is the
inefficiency factor, and p-val is Geweke (1992) p-value.
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Table 1.C.3 Estimation results: Robustness 3

st/st−1 Mean s.e. 95% CI Ineff p-val

Panel A: Non-switching coefficients in the timing model
α (%) 0.043 0.050 -0.034 0.130 38.988 0.545
βGMF 0.104 0.039 0.051 0.167 32.501 0.898
βEMF 0.087 0.026 0.048 0.140 51.273 0.627
βTERM 0.940 0.263 0.604 1.376 37.155 0.971
βCREDIT 0.090 0.028 0.053 0.134 37.551 0.847
βHML_FX 0.009 0.017 -0.016 0.038 40.691 0.949
βHML_FX,lag1 0.035 0.012 0.015 0.052 30.044 0.999
βHML_FX,lag2 0.024 0.016 0.001 0.047 41.755 0.771
βRX 0.144 0.022 0.117 0.184 42.984 0.808
βRX,lag1 0.089 0.015 0.065 0.115 29.498 0.682
βRX,lag2 0.113 0.015 0.088 0.135 33.118 0.841
µlag1 -0.049 0.053 -0.144 0.030 24.496 0.628
µlag2 0.032 0.052 -0.064 0.099 29.107 0.971
λlag1 -0.071 0.068 -0.191 0.041 27.322 0.502
λlag2 -0.091 0.083 -0.208 0.048 47.423 0.121
σ 0.004 0.000 0.003 0.004 29.215 0.262

Panel B: Switching coefficients in the timing model
µst 1 -0.065 0.054 -0.161 0.019 20.287 0.749

2 0.008 0.075 -0.100 0.119 30.371 0.783
3 0.444 0.368 -0.016 1.052 50.267 0.266

λst 1 -0.442 0.490 -1.200 0.400 49.222 0.614
2 0.477 0.299 0.077 0.999 38.849 0.535
3 0.881 0.500 0.228 1.656 39.513 0.320

Panel C: Parameters in the Markov model
γ̄1,st−1 1 -1.475 0.223 -1.841 -1.109 10.034 0.317

2 1.247 0.210 0.902 1.594 6.666 0.002
3 -0.121 0.207 -0.461 0.218 1.796 0.959

γz
1,st−1 1 0.009 0.305 -0.507 0.501 13.706 0.132

2 -0.239 0.291 -0.712 0.241 8.208 0.824
3 -0.179 0.285 -0.657 0.285 2.570 0.817

γ̄2,st−1 1 -2.012 0.217 -2.370 -1.656 3.783 0.638
2 -0.627 0.207 -0.961 -0.286 4.338 0.922
3 1.314 0.213 0.963 1.663 2.369 0.854

γz
2,st−1 1 -0.075 0.294 -0.556 0.405 4.346 0.689

2 -0.181 0.280 -0.646 0.282 4.570 0.757
3 -0.266 0.290 -0.730 0.221 3.785 0.782

ρ1 -0.140 0.293 -0.593 0.376 29.756 0.294
ρ2 -0.021 0.262 -0.464 0.400 16.031 0.184

Notes: This table presents the posterior summary of the selected three-regime timing model with controls for illiquid
holdings. The model is given by

Rp,t =αp +βHML_FX
p HML_FXt +βRX

p RXt +µp,st (Lm,t − L̄m)HML_FXt +λp,st (Lm,t − L̄m)RXt +
2∑

k=1

[βHML_FX,lagk
p HML_FXt−k

+βRX,lagk
p RXt−k +µlagk

p (Lm,t−k − L̄m)HML_FXt−k +λlagk
p (Lm,t−k − L̄m)RXt−k] +

J∑
j=1

βj
pf

j
t +σεp,t,

where p represents each fund; t, t− 1 and t− 2 represent the current time period, one-month lagged period and
two-month lagged period. For each time period t, t− 1 and t− 2, L̄m is the time series mean of systematic currency
liquidity measure prior to this period. The coefficients µp,st and λp,st measure the regime-dependent fund’s currency
liquidity timing ability. We report results for an equal-weighted portfolio of all sample funds for the period of September
2001-December 2020. The data on July 2001 and August 2001 are used to compute the initial two lags of variables.
Results are based on 12,500 MCMC iterations. st/st−1 are, respectively, the regime indicator at time t and t− 1, Mean
is the posterior mean, s.e. is the posterior standard error, 95% CI is the 95% credibility interval, Ineff is the inefficiency
factor, and p-val is Geweke (1992) p-value.
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Table 1.C.4 Estimation results: Robustness 4

st/st−1 Mean s.e. 95% CI Ineff p-val

Panel A: Non-switching coefficients in the timing model
α (%) 0.091 0.053 0.001 0.152 54.089 0.174
βGMF 0.086 0.036 0.027 0.132 49.320 0.794
βEMF 0.046 0.033 0.008 0.098 66.551 0.555
βTERM 1.268 0.275 0.896 1.692 51.587 0.183
βCREDIT 0.147 0.039 0.090 0.185 62.802 0.507
βHML_FX 0.026 0.024 -0.008 0.071 57.331 0.784
βRX 0.102 0.030 0.059 0.156 50.905 0.857
ψ -0.056 0.041 -0.122 0.030 54.449 0.518
δ 0.124 0.057 0.015 0.212 54.891 0.850
σ 0.004 0.000 0.004 0.005 20.795 0.106

Panel B: Switching coefficients in the timing model
µst 1 -0.047 0.080 -0.209 0.036 51.559 0.973

2 0.075 0.119 -0.135 0.282 55.659 0.763
3 0.353 0.216 -0.020 0.551 58.401 0.911

λst 1 -0.514 0.432 -0.935 0.248 58.886 0.701
2 0.607 0.369 0.073 1.086 52.492 0.039
3 1.808 0.687 0.507 2.719 57.618 0.860

Panel C: Parameters in the Markov model
γ̄1,st−1 1 -1.429 0.215 -1.784 -1.079 9.843 0.955

2 1.207 0.210 0.865 1.553 6.525 0.672
3 -0.146 0.212 -0.492 0.198 2.199 0.501

γz
1,st−1 1 0.034 0.303 -0.471 0.523 16.348 0.256

2 -0.310 0.291 -0.777 0.184 10.075 0.624
3 -0.192 0.291 -0.674 0.281 3.224 0.507

γ̄2,st−1 1 -1.944 0.225 -2.315 -1.571 7.945 0.276
2 -0.622 0.203 -0.954 -0.290 3.637 0.963
3 1.263 0.209 0.920 1.606 3.633 0.558

γz
2,st−1 1 -0.101 0.293 -0.591 0.374 5.367 0.725

2 -0.189 0.277 -0.645 0.264 4.257 0.907
3 -0.286 0.284 -0.752 0.180 2.364 0.852

ρ1 -0.221 0.327 -0.690 0.342 49.806 0.684
ρ2 -0.040 0.249 -0.475 0.355 27.149 0.032

Notes: This table presents the posterior summary of the selected three-regime timing model with controls for funding
constraints. The model is given by

Rp,t =αp +βHML_FX
p HML_FXt +βRX

p RXt +µp,st (Lm,t − L̄m)HML_FXt +λp,st (Lm,t − L̄m)RXt +ψpHML_FXtTEDt

+ δpRXtTEDt +
J∑

j=1

βj
pf

j
t +σεp,t,

where p represents each fund and t represents each month; Rp,t is the return in excess of the risk-free rate; HML_FXt

and RXt denote, respectively, the carry and dollar factors; fj
t (J=4 in this case) denote the set of additional bond

market risk factors; Lm,t is the systematic currency liquidity measure and L̄m is the time series mean of systematic
currency liquidity measure; αp is the risk-adjusted return; the coefficients µp,st and λp,st measure the regime-dependent
fund’s currency liquidity timing ability; the coefficients ψp and δp measure the impact of TED; and εp,t is the error
term. We report results for an equal-weighted portfolio of all sample funds for the period of July 2001-December 2020.
Results are based on 12,500 MCMC iterations. st/st−1 are, respectively, the regime indicator at time t and t− 1, Mean
is the posterior mean, s.e. is the posterior standard error, 95% CI is the 95% credibility interval, Ineff is the inefficiency
factor, and p-val is Geweke (1992) p-value.
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Table 1.C.5 Estimation results: Robustness 5

st/st−1 Mean s.e. 95% CI Ineff p-val

Panel A: Non-switching coefficients in the timing model
α (%) 0.101 0.035 0.041 0.133 66.694 0.923
βGMF 0.106 0.040 0.043 0.134 70.030 0.477
βEMF 0.038 0.026 0.016 0.073 71.125 0.420
βTERM 1.140 0.187 0.931 1.518 65.999 0.000
βCREDIT 0.154 0.026 0.099 0.196 68.623 0.241
βHML_FX 0.040 0.030 -0.006 0.066 72.893 0.386
βRX 0.136 0.025 0.075 0.157 70.137 0.706
σ 0.004 0.000 0.004 0.004 13.418 0.714

Panel B: Switching coefficients in the timing model
µst 1 -0.146 0.046 -0.208 -0.083 52.807 0.399

2 -0.058 0.043 -0.119 0.026 53.661 0.157
3 0.067 0.064 0.031 0.216 58.327 0.410

λst 1 -0.673 0.273 -0.896 -0.223 69.366 0.282
2 0.158 0.149 -0.046 0.405 56.299 0.839
3 1.267 0.443 0.498 1.592 70.494 0.479

Panel C: Parameters in the Markov model
γ̄1,st−1 1 -1.477 0.207 -1.822 -1.142 4.095 0.872

2 1.282 0.204 0.947 1.618 3.123 0.880
3 -0.184 0.203 -0.518 0.147 1.962 0.928

γz
1,st−1 1 -0.015 0.284 -0.482 0.454 3.866 0.929

2 -0.118 0.289 -0.598 0.346 12.195 0.458
3 -0.180 0.288 -0.651 0.293 2.375 0.977

γ̄2,st−1 1 -1.891 0.216 -2.251 -1.543 4.049 0.993
2 -0.610 0.206 -0.956 -0.276 4.478 0.431
3 1.287 0.204 0.947 1.624 4.556 0.380

γz
2,st−1 1 -0.046 0.294 -0.536 0.440 4.310 0.959

2 -0.193 0.276 -0.654 0.255 5.052 0.436
3 -0.297 0.285 -0.759 0.173 2.642 0.393

ρ1 -0.018 0.267 -0.402 0.488 36.944 0.532
ρ2 0.012 0.227 -0.384 0.369 26.580 0.370

Notes: This table presents the posterior summary of the selected three-regime timing model applied to funds whose
monthly flow volatility is lower than the median level of peer funds. We report results for an equal-weighted portfolio of
the subsample funds with low flow volatility for the period of July 2001-December 2020. Results are based on 12,500
MCMC iterations. st/st−1 are, respectively, the regime indicator at time t and t−1, Mean is the posterior mean, s.e. is
the posterior standard error, 95% CI is the 95% credibility interval, Ineff is the inefficiency factor, and p-val is Geweke
(1992) p-value.
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(d) Robustness 4
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(e) Robustness 5

Figure 1.C.1 Time path of the currency liquidity timing regimes. This figure plots shaded areas
associated with the periods of funds being in a particular regime. The light gray bars, dark gray bars,
and black bar correspond to the periods of funds being in regimes 1-3, respectively. The empty white
bars correspond to the periods during which the model cannot determine the regime as each regime
has smoothed probability of less than 50%. The sample period for Robustness 3 is from September
2001 to December 2020 because the data on July 2001 and August 2001 are used to compute the
initial two lags of variables. The sample period for the remaining robustness tests is from July 2001
to December 2020.



Chapter2

Markov-Switching Graphical
Structural VAR†

2.1 Introduction

This paper concerns the problem of measuring connectedness in financial systems, which
is central to many areas of research, including risk management, portfolio allocation, and
business cycle analysis. Our main contribution is to propose a novel Markov-Switching
Graphical Structural Vector Autoregressive (MS-GSVAR) model, which simultaneously
captures some salient empirical features of financial connectedness, such as the mixture of
contemporaneous and temporal dependences, high-dimensionality, and abrupt structural
changes.

The literature on connectedness analysis to date has shown some stylized facts of financial
connectedness. First, financial connectedness can arise from either the contemporaneous
(instantaneous) or temporal (lagged) dependences among financial variables. This is evidenced
by a handful of papers detecting connectedness based on contemporaneous dependence (see,
e.g., Acharya et al., 2012; Adrian and Brunnermeier, 2016; Acharya et al., 2017), and also
indicated by much of the studies using temporal dependence for measuring connectedness (see,
e.g., Billio et al., 2012; Diebold and Yılmaz, 2014, 2015; Baruník and Křehlík, 2018). Second,
the scale of financial connectedness can be very large. This is reflected by a growing body of
literature using large datasets (between 10 and 100 series) to analyze financial connectedness,
systemic risk and contagion effects (see Billio et al., 2019, for a review). Third, the sparsity
and strength of financial connectedness may undergo abrupt structural changes. This is
particularly pointed out by a recent research stream exploring the topological structure of
financial networks (see, e.g., Billio et al., 2021, 2022).

†This chapter has been turned into a working paper (joint with G. Urga) entitled “Markov-Switching
Graphical Structural VAR”.
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Many methodological advances have been made in capturing one of the above features, with
only a few efforts attempting to capture more than one relevant features. For joint modeling of
the contemporaneous and temporal dependences, some authors combine a Bayesian graphical
approach with vector autoregressive (VAR) models (see, e.g., Ahelegbey et al., 2016a;
Casarin et al., 2020; Ahelegbey and Giudici, 2022). For measurement of connectedness with
large datasets, see for example Billio et al. (2019), who propose a Bayesian nonparametric
Lasso VAR (BNP-Lasso VAR) model to extract the Granger causality networks of a high-
dimensional time series through clustering and shrinking effects. For extensions concerning
time variation in connectedness, see for example, Markov-switching models (Billio et al.,
2016; Casarin et al., 2018; Billio et al., 2022) and Bayesian time-varying parameter vector
autoregressions (TVP-VAR) (Ciccarelli and Rebucci, 2007; Guidolin et al., 2019; Poon and
Zhu, 2022). With regards to the modeling of contemporaneous and temporal dependences in
high-dimensional settings, Barigozzi and Brownlees (2019) apply the dimension reduction
technique LASSO into a large VAR system to extract both the Granger causality and
partial correlation structures. In respect of handling the structural changes in both the
contemporaneous and temporal dependences, Ahelegbey et al. (2021) propose a change-point
technique for turning point detection in a Bayesian graphical piece-wise VAR model that
approximates the contemporaneous and temporal dependences between financial variables.
As for measuring the time-varying connectedness in large-scale financial systems, Massacci
(2017) and Massacci (2023) propose regime changes in high-dimensional factor models through
a threshold mechanism and measure connectedness based on covariance matrices. Moreover,
Bianchi et al. (2019) assume a latent Markov chain process driving covariance restrictions in
high-dimensional SUR models and study connectedness based on network.

The model we put forward facilitates an integrated analysis of all the aforementioned
features of financial connectedness. The usefulness of our model is reflected in many empirical
aspects. First, one can implement the model to detect different states of system connectivity
and date turning points of the connectedness level over the study period. Such information
can be viewed as early warning signals of how contagion-prone the system will be. Second,
the model allows us to quantify the risk transmission and reception capacity of each entity
in the system, which assists to identify systemically important individuals. Third, our
framework allows for a decomposition of the overall connectedness into the contemporaneous
and temporal components. This means one can look deeper into the frequency-specific source
of connectedness (e.g., the instantaneous, short-term or long-term connectedness), which
helps to monitor the accumulation of systemic risk. Fourth, the model is fast and easy to
implement for multivariate time series with dimension up to around 100 series. Thus, the
model may find application in a wide spectrum of research where connectedness analysis on
large financial datasets is of interest.

Methodologically, we build on the expanding literature on Bayesian Graphical model for
multivariate systems (see, e.g., Ahelegbey et al., 2016a,b; Giudici and Spelta, 2016; Bianchi
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et al., 2019; Billio et al., 2019; Casarin et al., 2020; Agudze et al., 2022). In particular, Aheleg-
bey et al. (2016a) combine a Bayesian graphical approach with structural vector autoregressive
(SVAR) models, which allows to capture the contemporaneous and temporal dependences
among multivariate time series under directed acyclic graphs. Their method also presents an
automatic way to achieve dimensionality reduction since relevant variables that need to be
included in an SVAR can be identified from the graphical representation of the model. We ex-
tend the framework of Ahelegbey et al. (2016a) by incorporating Markov-switching dynamics
into the graph structures and coefficients of an SVAR system. The resulting model is referred
to as a Markov-Switching Graphical Structural Vector Autoregressive (MS-GSVAR) model,
which integrates an SVAR to capture both contemporaneous and temporal dependences, a
graphical representation to tackle high-dimensionality, and a hidden Markov chain process to
account for structural changes in graph structures and coefficients. In addition, we propose
an identification scheme for different states of connectedness by exploiting the centrality
properties of a weighted directed graph that unionizes the contemporaneous and temporal
dependence structures in each state. Specifically, we provide a graph centrality measure in
the spirit of the out version of the Pagerank score, proposed by Zhang et al. (2022) for nodes
of weighted directed graphs. Such score assigns relative centrality to each node according
to its risk-transmitting ability, which accounts not only for the number and strength of its
out-going edges, but also for the centrality of other nodes it directs towards. We formally
show that the average node score for our weighted directed graphs is equal under different
states. Given this property, a comparable centrality measure of the graph for each state can
be developed using the average score of the leading risk-transmitting nodes (i.e., those nodes
with scores exceeding the average node score). Different states are then separated according
to the state-specific graph centrality, which by construction quantifies the risk-propagation
level of the graph. Since systemic risk by its minimal definition is more associated with risk
propagation than with absorption (Benoit et al., 2017), the states of connectedness identified
by our model are naturally linked to the states of systemic risk.

Another contribution of this paper is to address the computational complexity arising
from inference on graphs in the context of high model dimension, numerous lags, and multiple
states. In our MS-GSVAR, the number of graphs to be estimated depends on the number of
lag orders and states specified for the model, and the time needed for learning each graph
increases super-exponentially with the number of variables in the model. To provide a high
quality estimation with a reasonable computational time, we develop a graph inference method
building on a hybrid Markov chain Monte Carlo (Hybrid-MCMC) algorithm introduced by
Kuipers et al. (2022) for high-dimensional Bayesian graphical models. The attractive property
of Hybrid-MCMC is a combination of two well-established graph inference methods, namely
the PC algorithm of Spirtes et al. (2000) and the Order-MCMC algorithm of Friedman and
Koller (2003). Such property exhibits several advantages over the Structure-MCMC algorithm
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(Madigan et al., 1995; Giudici and Castelo, 2003) applied most often in the literature on
Bayesian Graphical model for multivariate systems.

Through simulations, we demonstrate that our graph search method relying on Hybrid-
MCMC provides more reliable graph inference in much less time than Structure-MCMC in
all simulation settings we consider. The improved accuracy and efficiency gain achieved by
our method are substantial particularly in the high-dimensional settings. In the context of a
large dataset with changing dependence structures, we show that our model produces more
accurate parameter estimates and better replicates the simulated data than a conventional
Markov-Switching specification without the graphical representation. Moreover, standard
convergence statistics support the effectiveness of our model inference procedure. In a
real-data illustration, we apply the model to measure the volatility connectedness in a global
banking system consisting of 96 banks. Our model provides a data-driven detection of different
connectedness states that best describe the historical evolution of the global banking volatility
network. In addition, the systemic risk profiles of individual banks, featured by their risk
transmission and reception capacity, is readily inferred from the model output. The model
also offers deeper insights about the frequency-specific source of volatility connectedness,
explaining the build-up of the overall volatility connectedness and identifying the primary
role played by the contemporaneous dependence.

The remainder of this paper is organized as follows. Section 2.2 introduces the model
specification. Section 2.3 provides an identification scheme for different states of connectedness.
Section 2.4 discusses the model inference procedure. Section 2.5 provides an empirical
illustration and Section 2.6 concludes. Simulation results, technical details and additional
empirical discussions are provided in Appendix 2.

2.2 Model specification

Consider a connectedness analysis for Yt = (Y1,t,Y2,t...,Yn,t)′, an n-dimensional multivariate
time series. To jointly capture the contemporaneous and temporal dependences among series,
our baseline formulation relies on a pth-order SVAR

Yt =B0Yt+
p∑
i=1

BiYt−i+εt, t= 1, ...,T, (2.1)

where B0 is an n×n structural matrix with zero diagonals that determines the contempora-
neous dependence; Bi with 1 ≤ i≤ p is an n×n autoregressive matrix that specifies the lag-i
temporal dependence conditional on the contemporaneous dependence; εt is an n-dimensional
vector of structural errors with diagonal covariance matrix Σε, that is εt ∼ i.i.d. N (0,Σε).

The number of coefficients in (2.1) is n(np+n), which can be large for high-dimensional
multivariate time series. To work with a parsimonious model specification, we employ a
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graphical representation of the SVAR proposed by Ahelegbey et al. (2016a). Their graphical
representation is concerned with representing the contemporaneous and temporal dependence
structures underlying an SVAR system through directed acyclic graphs (DAGs).1 A DAG
is expressed by G = (V,E), where V is the set of nodes and E is the set of directed edges
that contains no directed cycles. Given an SVAR(p) model as in (2.1), the set of nodes V is
{1, ...,n,n+1, ...,2n, ...,np+1, ...,np+n}, where each element corresponds to a component of
Yt and its lagged observations (i.e., {Y1,t, ...,Yn,t,Y1,t−1, ...,Yn,t−1, ...,Y1,t−p, ...,Yn,t−p}), while
the set of directed edges E is a subset of V × V such that the pair (r, l) ∈ E if and only
if the components r and l are linked by an directed edge. Ahelegbey et al. (2016a) show
that a natural graphical representation of the SVAR model is based on the union of two
different types of DAG: the first DAG contains directed edges representing contemporaneous
(instantaneous) dependences, whereas the second contains directed edges denoting temporal
(lagged) dependences. We label the two graphs respectively as the contemporaneous and
temporal graphs with the following definition.

Definition 2.2.1 (Contemporaneous graph). Under a structural matrix in (2.1), the associ-
ated graph is G0 = (V0,E0) with V0 = {1, ...,n} and

E0 = {(r, l) ∈ V0 ×V0 :Arl,i ̸= 0 for i= 0}, (2.2)

where r, l ∈ V0 and r ̸= l; Arl,0 is the entry of an n×n binary matrix (or so called the adjacency
matrix) A0, and encodes the presence of an edge (r, l) ∈ E0.

Remark 2.2.1. In this graph, each element of V0 corresponds to a component of Yt (i.e.,
{Y1,t, ...,Yn,t}), while an edge (r, l) ∈ E0 exists if and only if Yl,t instantaneously causes Yr,t;
that is the SVAR coefficients Brl,0 is not null.

Remark 2.2.2. The Markov equivalence principle of contemporaneous directed graphs (An-
dersson et al., 1997) states that two or more graphs with similar correlation structures but
different edge directions may have the same marginal likelihood. This implies that Ahelegbey
et al. (2016a)’s contemporaneous graph does not provide a unique solution to the SVAR
identification problem. Therefore, following the suggestion of Ahelegbey et al. (2016a), the
researcher should choose among the graphs in the equivalent classes by using other arguments
(e.g., economic theory or other external sources of information).

Definition 2.2.2 (Temporal graph). Under an autoregressive matrix in (2.1), the associated
graph is Gi = (Vi,Ei) with Vi = {1, ...,n,ni+1, ...,ni+n} and

Ei = {(r, l) ∈ Vi×Vi :Arl,i ̸= 0 for 1 ≤ i≤ p}, (2.3)
1Formal definitions of graph theory concepts are provided in Appendix 2.A.
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where r, l ∈ Vi and 1 ≤ r ≤ n, ni+ 1 ≤ l ≤ ni+n; Arl,i is the entry of an n×n binary matrix
(or so called the adjacency matrix) Ai for 1 ≤ i ≤ p, and encodes the presence of an edge
(r, l) ∈ Ei.

Remark 2.2.3. In this graph, each element of Vi corresponds to a component of Yt and its
observations at lag i (i.e., {Y1,t, ...,Yn,t,Y1,t−i, ...,Yn,t−i}), while an edge (r, l) ∈ Ei exists if and
only if Yl,t−i Granger causes Yr,t; that is the SVAR coefficients Brl,i is not null.

Based on definitions 2.2.1-2.2.2, the coefficient matrices of the SVAR in (2.1) can be
reparameterized as

Bi =Ai ◦Φi, 0 ≤ i≤ p, (2.4)

whereAi is an n×n binary adjacency matrix; operator ◦ is the element-by-element Hadamard’s
product; Φi is an n×n matrix of coefficients such that its entry represents the value of the
effect of Yl,t−i on Yr,t. Thus, (2.1) can be reformulated as

Yt = (A0 ◦Φ0)Yt+
p∑
i=1

(Ai ◦Φi)Yt−i+εt, t= 1, ...,T (2.5)

where (A0 ◦ Φ0) and (Ai ◦ Φi) are the graphical model coefficient matrices whose nonzero
elements describe the value associated with the contemporaneous and temporal dependences,
respectively. Clearly, non-zero (zero) entries in Ai can be interpreted as indicators of relevant
(not-relevant) variables to be included (excluded) in (from) the model. These zero entries
restrictions allow us to avoid estimating all the coefficients in the SVAR model. It thus
presents an automatic way to achieve dimensionality reduction and variable selection.

To account for potential structural changes, we extend the framework of Ahelegbey
et al. (2016a) by incorporating Markov-switching dynamics into the graph structures and
coefficients of an SVAR system. The resulting model is referred to as a Markov-Switching
Graphical Structural Vector Autoregressive (MS-GSVAR) model. The MS(K)-GSVAR(p)
model with K states and p lags is specified as

Yt = (A0(st)◦Φ0(st))Yt+
p∑
i=1

(Ai(st)◦Φi(st))Yt−i+εt, t= 1, ...,T (2.6)

where εt ∼ i.i.d. N (0,Σε(st)); st is a discrete Markov chain process with states 1, ...,K, i.e.,
st ∈ {1, ...,K}. The properties of st are fully governed by an K×K matrix of transition
probabilities P . The (i, j)th element of P is the probability of switching to state j at time t,
given that at time t− 1 the process is in state i, pij = Pr(st = j|st−1 = i), for i, j ∈ {1, ...,K},
and ∑K

j=1 pij = 1. Our model specification in (2.6) portrays a switching dependence structure.
The state-specific adjacency matrices and coefficient matrices record respectively changes in
the edge existence and the edge strength of the contemporaneous and temporal dependence
structures. Moreover, the state-dependent feature of the covariance matrix addresses potential
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heteroskedasticity biases that are typical of correlation-based measures, as discussed in Forbes
and Rigobon (2002).

The estimatable reduced-form representation of (2.6) can be expressed as

Yt =
p∑
i=1

B∗
i (st)Yt−i+µt, t= 1, ...,T (2.7)

where B∗
i (st) = B(st)(Ai(st) ◦ Φi(st)) is an n×n matrix of reduced-form coefficients, with

B(st) = (In−A0(st)◦Φ0(st))−1, and In denoting an n×n identity matrix; µt =B(st)εt is an
iid n×1 vector of reduced-form errors, with covariance matrix Σµ(st) =B(st)Σε(st)B(st)′,
i.e., µt ∼ i.i.d. N (0,Σµ(st)).

Throughout the paper, we denote by Yτ :t = (Yτ , ...,Yt) and Sτ :t = (sτ , ...,st) the sequence
of observations and states between time τ and t. We let A = (A0:p(1), ...,A0:p(K)) be
the collections of state-specific adjacency matrices, with A0:p(k) denoting the collection
of lag-specific adjacency matrices for the state k. We let Θ = (Θ(1), ...,Θ(K)) be the
collections of state-specific model parameters, with Θ(k) = (B0(k),B∗

1:p(k),Ωε(k),Ωµ(k),p(k))
denoting the collections of parameters for the state k, where B0(k) is a vector that collects
structural coefficients, B∗

1:p(k) is a vector that collects lag-specific reduced-form coefficients,
Ωε(k) = Σε(k)−1 is the precision matrix of the structural errors, Ωµ(k) = Σµ(k)−1 is the
precision matrix of the reduced-form errors, and p(k) is the kth row of the transition matrix
P .

2.3 States identification scheme

We propose an identification scheme for different states of connectedness by exploiting the
centrality properties of a graph that unionizes the contemporaneous and temporal dependences
in each state. In our MS-GSVAR model, the information about the existence of a linkage
between pairs of nodes in state k is encoded by the adjacency matrices A0:p(k), while the
strength of this linkage is described by the absolute value of the corresponding structural
coefficient in matrices B0:p(k). This allows us to define a null-diagonal matrix Ã(k) ∈ Rn×n,
with (r, l)th entry given by

Ãrl(k) =
{ ∑p

i=0 |Brl,i(k)| if ∑p
i=0Arl,i(k) ̸= 0

0 if ∑p
i=0Ai,rl(k) = 0

, r, l = 1, ...,n, ∀r ̸= l, (2.8)

that is the weight Ãrl(k) assigned to each pair of nodes (Yr,t,Yl,t) of Yt is equal to a sum of
the structural and autoregressive coefficients in absolute values, if there is a contemporaneous
or temporal directed edge between them in state k ∈K. Thus, Ã(k) can be considered as an
adjacency matrix of a weighted directed graph which unionizes the contemporaneous and
temporal dependences for the state k.
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The connectivity features of Ã(k) can be characterized by node centrality, a concept
developed in graph theory to assess who occupies critical positions in a graph, and to
identify systemically important individuals. Classical node centrality measures include degree,
closeness, betweenness, eigenvector centrality, Katz centrality, and PageRank (see Newman,
2010, for a review). However, no measures are ideal for weighted directed graphs. Degree
centrality simply counts the number of connections each node maintains, without effectively
discriminating the relative importance of these connections with respect to the whole graph
structure. Closeness and betweenness centrality measures are based on the shortest paths
between one node and all other nodes in the graph. These measures implicitly assume
simplistic and pre-determined paths, though in real world the transition mechanism of
economic shocks are unlikely to be restricted to follow specific paths. Eigenvector centrality,
which accounts for all possible paths connecting two nodes, turns out to be trivial for directed
graphs as it gives non-zero centralities only to nodes that fall in strongly connected graphs
(i.e., a graph structure where each node is reachable from every other node). Katz centrality
generalizes the concept of eigenvector centrality to directed graphs that are not strongly
connected. Despite that, this measure has one undesirable feature: if a node with high
centrality score has edges pointing to many others then those others also get high centrality
score, regardless of whether themselves have high centrality score. A popular variant of
Katz centrality is PageRank, with which all nodes adjacent to a high-centrality node will
only receive a portion of that node’s centrality score. Although this measure complements
Katz centrality to provide more reliable centrality evaluation for directed graphs, it does not
account for edge weight in definition and, thus, unable to deal with weighted directed graphs.

Our node centrality measure is based on weighted PageRank (WPR) generalized by Zhang
et al. (2022) for weighted directed graphs. WPR gives each node in a weighted directed graph
two different centrality scores, the weighted OutPageRank (WOutPR) and the weighted
InPageRank (WInPR) scores. From a financial viewpoint, nodes with high WOutPR scores
are the influencers (risk transmitters), and high WInPR scoring nodes are strongly influenced
by others (risk receivers). Since systemic risk by its minimal definition is more associated
with risk propagation than with absorption (Benoit et al., 2017), we use the out version of
Zhang et al. (2022)’s Pagerank score, namely the WOutPR score, to identify different states
of connectedness which are thus naturally linked to states of systemic risk. The relative
WOutPR score for the lth node in the kth state graph Ã(k), denoted by ωout

l (k), can be
defined as2

ωout
l (k) = γ

n∑
r=1

(
θ
Ãrl(k)
sin
r

+(1 −θ)
I
(
Ãrl(k) ̸= 0

)
din
r

)
ωout
r (k)+ 1−γ

n
, (2.9)

2The WInPR score, ωin
l (k), can be derived by replacing Ãrl(k), sin

r , and din
r in (2.9) by the transpose

(Ãrl(k))T, sout
r =

∑n
l=1(Ãrl(k))T, and dout

r =
∑n

l=1 I
(
(Ãrl(k))T ̸= 0

)
.
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where I(·) is an indicator function that takes a value of one when Ãrl(k) is nonnull and zero
otherwise; sin

r =∑n
l=1 Ãrl(k) is the total weight of edges towards the rth node from any other

nodes in the graph; din
r =∑n

l=1 I
(
Ãrl(k) ̸= 0

)
is the total number of edges towards the rth

node from any other nodes in the graph; γ ∈ [0,1) is a dampening factor, that is the portion
of score that is transferred by a node; θ ∈ [0,1] is a tuning parameter balancing between the
relative importance of edge weights with respect to the number of edges; we choose γ = 0.85
and θ = 0.5 throughout the paper, as recommended in Zhang et al. (2022).

Proposition 2.3.1. For any specified state k, ωout
l (k) ∈ (0,1) and ∑n

l=1ω
out
l (k) = 1.

Proof of Proposition 2.3.1. Consider nodes in a graph as states in a Markov chain. Let E be
the transition matrix of the associated Markov chain for WOutPR, with (r, l)th entry given
by

erl =
{
θÃrl(k)/sin

r +(1 −θ)I
(
Ãrl(k) ̸= 0

)
/din

r if din
r ̸= 0

1/n if din
r = 0

(2.10)

Notice that
n∑
l=1

(
θ
Ãrl(k)
sin
r

+(1 −θ)
I
(
Ãrl(k) ̸= 0

)
din
r

)
= θ+(1 −θ) = 1. (2.11)

That is matrix E is non-negative and column stochastic. Let W = (ωout
1 ,ωout

2 , ...,ωout
n )′ be a

column vector collecting the WOutPR for each node. In matrix terms, (2.9) is equivalent to

W = γEW +(1 −γ)1∗

= (γE+(1 −γ)J)W
= E∗W,

(2.12)

where 1∗ = 1/∥1∥1 is the normalization of an all-ones vector with ∥ ·∥1 denoting the L1-norm;
J is an n-dimensional matrix whose columns given by 1∗. It is obvious that J is also
column stochastic, rendering that E∗ is strictly positive and column stochastic. By the
Perron–Frobenius theorem3, the largest eigenvalue of E∗ is equal to one, and the unique
solution to (2.12) is the corresponding eigenvector. Such a eigenvector is positive and the
sum of its entries equal to one. This completes the proof.

From proposition 2.3.1, the node’s WOutPR score for any state-specific graph Ã(k) is
bounded between zero and one, with the average equal to 1/n. Given this property, a
comparable centrality measure of the graph for each state can be developed using the average
score of the leading risk-transmitting nodes (i.e., those nodes with their own scores exceeding
1/n). In this aspect, the relative WOutPR score of the kth state graph Ã(k), denoted by

3See, e.g., Horn and Johnson (2013), Theorem 8.2.5, 8.2.6, for details and proofs.
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qout(Ã(k)), can be defined as

qout(Ã(k)) = 1∑n
l=1 I

(
ωout
l (k)> 1

n

) n∑
l=1

ωout
l (k)I

(
ωout
l (k)> 1

n

)
. (2.13)

where I(·) is an indicator function that takes a value of one when ωout
l (k) > 1/n and zero

otherwise. (2.13) suggests that a graph Ã(k) of state k would get a high WOutPR score with
respect to graphs of other states if it has a small number of nodes with WOutPR scores that
greatly exceed the average. Intuitively, the measure we propose considers the whole system
(graph) to be more contagious when it is more vulnerable to targeted attacks from a few
systemically important entities (nodes). This is consistent with the connectivity patterns
commonly observed during periods of high systemic risk in real-world financial systems,
such as the S&P100 system (e.g., Bianchi et al. (2019)), EuroStoxx-600 realized volatility
system (e.g., Ahelegbey et al. (2016b)) and the intersectoral system of the US economy (e.g.,
Acemoglu et al. (2012)).

Subsequently, states identification is based on the restriction

qout(Ã(1))< ... < qout(Ã(K)). (2.14)

This restriction directly separates the states according to the level of risk propagation for
each state-specific graph, which allows us to give a clear economic interpretation to the
states: the first state is characterized by the lowest WOutPR score of the graph and hence
corresponds to the lowest level of connectedness, the second state corresponds to the next
lowest level of connectedness, and so on, with the last state associated with the highest level
of connectedness.

2.4 Model inference

The MS-GSVAR model is estimated with a Markov Chain Monte Carlo (MCMC) proce-
dure. Specifically, we approximate the posterior distribution of the model by implementing a
multi-move Gibbs sampling algorithm (see, e.g., Roberts and Sahu, 1997; Casella and Robert,
2004), where the graphs, the hidden states, and the parameters are all sampled in blocks.
Denote with Tk = {t : st = k} the index set for observations in state k. At each iteration, the
Gibbs sampler iterates over the following steps

Step 1: sample S1:T given Y1:T ,Θ,A.
Step 2: sample A0:p(k) given YTk

,STk
, for k = 1, ...,K.

Step 3: sample B∗
1:p(k) given YTk

,STk
,A0:p(k),Ωµ(k), for k = 1, ...,K.

Step 4: sample B0(k) given YTk
,STk

,A0(k),Ωε(k),B∗
1:p(k), for k = 1, ...,K.

Step 5: sample Ωε(k) given YTk
,STk

,B0(k),B∗
1:p(k), for k = 1, ...,K.
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Step 6: sample Ωµ(k) given YTk
,STk

,B∗
1:p(k), for k = 1, ...,K.

Step 7: sample P given S1:T .

We use 1,000 iterations of the Gibbs sampler and discard the first 100 iterations as burn-in
for all of our simulation and empirical exercises. The simulation studies in Appendix 2.C
illustrate the effectiveness of our Gibbs sampler, and suggest that the number of iterations and
burn-in we choose is sufficient to have MCMC samples close to i.i.d. draws. Also note that
from Step 2 to 6, the sampling under regimes k ∈ {1, ...,K} is parallelized and implemented
in MATLAB on one node at the High-performance computing (HPC) cluster provided by
City University of London; each node has 2 CPUs (Intel Xeon Gold 6248R) with 24 cores
and 384 GB RAM. In the following we describe the different steps of the Gibbs sampler.

2.4.1 Inference on graphs: the Hybrid-MCMC algorithm

The Hybrid-MCMC algorithm is a search algorithm used to build DAGs. In the Bayesian
network structure learning literature 4, there are a few variants of this algorithm (see, e.g.,
Tsamardinos et al., 2006; Nandy et al., 2018; Kuipers et al., 2022). In this paper, we focus
on the Hybrid-MCMC algorithm recently advanced by Kuipers et al. (2022) for learning the
DAGs underlying high-dimensional Bayesian network models. The attractive property of
their algorithm is a combination of two well-established graph search algorithms, namely
the PC algorithm and the Order-MCMC algorithm. The PC algorithm (named after the
authors Peter Spirtes and Clark Glymour from Spirtes et al. (2000)) is one of the most
popular constraint-based structure learning methods. It learns the edges of the graph based
on conditional independence (CI) tests (e.g. Fisher’s z-statistic) given the property of DAGs
that edges encode conditional dependences. The Order-MCMC algorithm, proposed by
Friedman and Koller (2003), is a classical type of the score-and-search structure learning
methods. It first samples a node order by running the Metropolis-Hastings algorithm on the
order space, which are possible topological orderings (or permutations) of the node labels;
it then draws a DAG compatible with a given sampled order. According to Kuipers et al.
(2022), one can start with the PC algorithm to reduce the order space on which a subsequent
Order-MCMC algorithm runs for posterior sampling of graphs. The resulting algorithm is
well-suited for fast searching and sampling much larger DAGs (e.g., Kuipers et al. (2022)
shows the feasibility of their hybrid algorithm when node dimension is up to 200).

We adapt the Hybrid-MCMC algorithm of Kuipers et al. (2022) to our model inference
scheme. At each iteration, when the Gibbs sampler moves to Step 2, we generate a sample of
A0:p(k) for a given k ∈ {1, ...,K} based on a three-stage procedure as follows. Details of the
algorithm at each stage are provided in Appendix 2.A.

4See Appendix 2.A for a brief review of current state-of-the-art methods for structure learning of Bayesian
networks.
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Input: an n× (np+n) all-ones matrix A0:p(k).
Stage 1 (Initialization): run the PC algorithm to recursively remove (or not) edges between
nodes based on CI tests. This step initializes a configuration of the binary entries of A0:p(k).
Stage 2 (Structure learning): run the Order-MCMC algorithm sequentially for each lag-specific
adjacency matrix stacked in the initialized A0:p(k) (i.e., A0(k),A1(k),...,Ap(k)) through a
number of iterations. This step yields a number of posterior samples of A0:p(k).
Stage 3 (Bayesian model averaging): follow Ahelegbey et al. (2016a) to employ Bayesian
model averaging for building a single sample of A0:p(k) from the set of posterior samples
generated as before.
Output: a sample of A0:p(k) for a given k ∈ {1, ...,K}, which is subsequently used to determine
which entries of B∗

1:p(k) and B0(k) to be estimated in Steps 3-4 of the Gibbs sampler.

Standard graph inference methods adopted in the literature on Bayesian Graphical model
for multivariate systems normally rely on the Structure-MCMC algorithm (see,e.g., Ahelegbey
et al., 2016a,b; Giudici and Spelta, 2016; Bianchi et al., 2019; Billio et al., 2019; Casarin et al.,
2020; Agudze et al., 2022). The Structure-MCMC algorithm (proposed by Madigan et al.
(1995), later refined by Giudici and Castelo (2003)) is also a classical type of the score-and-
search structure learning methods. It samples a graph by running the Metropolis-Hastings
algorithm on the graph space, which are possible configurations of edges (i.e., addition,
deletion, or reversion of edges) between nodes. It is worth noting that due to the use of
the Hybrid-MCMC algorithm, our graph inference method exhibits several advantages over
the Structure-MCMC algorithm. The first advantage relates to the computational efficiency,
which lies in two aspects. Compared with Structure-MCMC, our method offers considerable
runtime saving, particularly for larger graphs, due to an initialization stage where the search
space is reduced by the PC algorithm, and to a subsequent structure learning stage based
on Order-MCMC that operates in the much smaller space of node orders.5 Besides, since
node order imposes acyclicity, our method relying on Order-MCMC does not require an
additional stage to validate graph acyclicity, which however is required for Structure-MCMC
as shown in previous implementations (see, e.g., Ahelegbey et al., 2016a; Casarin et al.,
2020). The second advantage is associated with the improved accuracy in the graph inference,
achieved by means of the inclusion of Order-MCMC which is known to have better mixing
and convergence than Structure MCMC (Friedman and Koller, 2003). A formal comparison
of our method and the Structure-MCMC algorithm is provided in Appendix 2.C.

2.4.2 Inference on parameters

Except for Step 2 (described in the previous section), the remaining steps of the Gibbs
sampler are executed by sampling from the full conditional distributions of the parameters.

5Consider a graph with n nodes, order space has complexity 2O(n log(n) which is considerably smaller than
2Ω(n2) for graph space (Friedman and Koller, 2003).
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These steps are standard and we provide exact forms of the full conditional distributions
as well as their sampling methods in Appendix 2.B. Below we discuss our choice of the
prior distributions that are used to derive the full conditional distributions. We assume
independent priors for the parameters and use a standard set of prior distributions as follows

B0(k),B∗
1:p(k)|A0:p(k) ∼ N (m(k),M(k)),

Ωε(k) ∼ WG(νε(k),Rε(k)),
Ωµ(k) ∼ W(νµ(k),Rµ(k)),
p(k) ∼ Dir(ck1, ..., ckK).

(2.15)

We assume the prior distributions for B0(k) and B∗
1:p(k) conditional on A0:p(k) are Gaussian.

We set the hyperparameters to be rather uninformative and common across states, i.e.,
m(k) = 000 and M(k) = 100In for each k = 1, ...,K. We assume the prior for Ωε(k) is a G-
Wishart distribution with prior expectation νε(k)−1Rε(k) and νε(k) > n. The G-Wishart
distribution is the conjugate prior for the precision matrix over the set of all symmetric,
positive definite matrices with zeros in the off-diagonal elements that correspond to missing
edges in the graph associated with εt. Since by assumption, the elements of εt are mutually
independent, its associated graph is empty, which implies that Ωε(k) is a diagonal positive
random matrix. We set the hyperparameters to be fairly vague, i.e., νε(k) = n+ 2 and
Rε(k) = νε(k)In for each k = 1, ...,K. We assume the prior for Ωµ(k) is a Wishart distribution
with prior expectation νµ(k)−1Rµ(k) and νµ(k)> n. We set the hyperparameters to be fairly
vague, i.e., νµ(k) = n+2 and Rµ(k) = νµ(k)In for each k = 1, ...,K. The prior distribution for
the kth row of the transition matrix P , i.e., p(k) = (pk1, ...,pkK)′, are set independently and are
given by K-dimensional Dirichlet distributions. The hyperparameters of these distributions,
ckm, for m ∈ {1, ...,K}, are all set to 1 except those corresponding to the diagonal entries of
the matrix P , denoted by ckk, which are set to 0.98(K−1)/(1−0.98). This choice similar to
that in Sims et al. (2008) expresses a prior belief about the persistence of states.

2.5 Empirical illustration

This section provides an empirical illustration of the proposed MS-GSVAR model. In the
spirit of Demirer et al. (2018), we consider a connectedness analysis on a high-dimensional
global banking dataset. The dataset consists of weekly logarithmic stock return volatilities
of 96 banks, and the sample period is from September 12, 2003 to December 9, 2022 (1,005
observations). See Appendix 2.D for data details.

We start by searching for the model specification that best fits the empirical dataset. The
proposed model inference procedure and graph inference method described in Section 2.4 allow
us to undertake an extensive model estimation and selection in a reasonable time. Specifically,
we estimate different model specifications in (2.6) based on a range of combinations of the
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number of states and lag orders: K = 1,2,3,4 and p= 1,2,3. The in-sample fits of each model
specification are assessed and compared using the Deviance Information Criterion (DIC).6

The DIC results in Table 2.1 are clearly in favor of MS(3)-GSVAR(2), a model specification
with three states K = 3 and two lag orders p= 2. Given the states identification restriction
in (2.14), we label the three estimated states as the low, high, and extreme connectedness
states, respectively.

Table 2.1 In-sample fits of MS(K)-GSVAR(p) models

K = 1 K = 2 K = 3 K = 4

p= 1 177155 172143 165092 166480
p= 2 175663 169259 161210 163687
p= 3 178633 167676 165877 162574

Notes: This table presents the Deviance Information Criterion (DIC) of the competing MS(K)-
GSVAR(p) models. The best fitting model which is highlighted in bold is the one with the smallest
DIC.

We proceed by investigating how the global banking system historically evolved across
the estimated states. Such historical pattern identified by our model reflects the systemic
risk developments and may behave as an early warning signal for how contagion-prone the
system will be. The estimated states (gray bars) and their smoothed probabilities (black line)
are given in Figure 2.1. Our model suggests that the evolution of the global banking system
experiences long periods of low volatility connectedness (state 1), alternated by sporadic
events of high and extreme volatility connectedness (states 2-3). A clear trend emerges:
the states of high and extreme connectedness become less active and more short-lived in
the second half of our sample, indicating that volatility connectedness and systemic risk of
global banks to a certain extent were alleviated over the last decade. Model-implied turning
points of the high and extreme connectedness states line up consistently with many financial,
economic and political events that previously hit the banking system at different scale and
magnitude. For instance, the events with known local-scale impact (e.g., a set of sovereign
debt crises in European countries) are properly identified as the high connectedness state,
while the events covering a much larger global scale (e.g., the global financial crisis, and the
COVID-19) are correctly classified to the extreme connectedness state. Further discussions
of these examples and other relevant events are provided in Appendix 2.D.

Under the states identification scheme outlined in Section 2.3, it is also possible to
compute the state-specific WOutPR (WInPR) scores for each entity in the system based on
(2.9). These scores can be used to explore individuals’ systemic risk profiles, featured by their
risk transmission and reception capacity. Table 2.2 shows the top 15 risk-transmitting (risk-

6The DIC has been successfully applied to discriminate between competing Markov-switching model
specifications (see, e.g., Ardia, 2009; Raggi and Bordignon, 2012; Hur, 2017; Huber and Fischer, 2018; Billio
et al., 2022). Since our model includes latent state variables, we adopt the modifications of the DIC, the DIC3,
introduced in Celeux et al. (2006, sec. 3.1).
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(a) State 1: low connectedness state

(b) State 2: high connectedness state

(c) State 3: extreme connectedness state

Figure 2.1 Estimated states. We present the mean posterior smoothed probability of the low (panel
(a)), high (panel (b)) and extreme (panel (c)) connectedness states. Gray bars in each plot correspond
to the periods where the probability of the corresponding state is the maximum. Model-implied turning
points of the high and extreme connectedness states: 1) the high connectedness state (month/year):
11/09-12/09; 04/10; 09/10-11/10; 01/11; 03/11; 01/12-02/12; 05/12; 10/12; 10/14; 06/21; 03/22-04/22;
10/22-12/22. 2) the extreme connectedness state (month/year): 10/07-11/07; 01/08; 03/08-04/08;
06/08-07/08; 09/08-08/09; 05/10; 08/11-11/11; 03/20; 06/20. See the Internet Appendix D for
discussions of the turning points.

receiving) banks, ranked according to the posterior median of the WOutPR (WInPR) scores
given in parenthesis. First, the North American banks, particularly the US banks, are major
risk transmitters while the European and Asian banks are major risk receivers, as evidenced by
the rankings in state 1 and state 3 which in total cover most of our sample. Despite that, the
European and Asian banks occasionally replace the North American banks as the leading risk
transmitters while remaining as the primary risk receiver, according to the rankings in state 2.
This finding is not surprising since state 2 (the high connectedness state), as shown in Figure
2.1, is active during periods of local-scale events when the volatility shocks were expected
to be absorbed within the region. Second, the three states are distinguishable in terms
of banks’ risk transmission capacity rather than their risk reception capacity. Clearly, the
WOutPR scores of high-ranked banks (e.g., see banks in 1-5 positions) increase largely from



68 Chapter 2

Table 2.2 Centrality ranking of individual banks

Rank Risk transmitters Risk receivers
State 1 State 2 State 3 State 1 State 2 State 3

1 rf.us kbc.be hban.us seba.se axis.in inga.nl
(0.0255) (0.0280) (0.0670) (0.0188) (0.0300) (0.0272)

2 usb.us shgp.cn wfc.us inga.nl gle.fr lloy.gb
(0.0185) (0.0235) (0.0387) (0.0175) (0.0217) (0.0200)

3 hban.us pab.cn rf.us d05.sg rbs.gb dan.dk
(0.0166) (0.0201) (0.0284) (0.0158) (0.0172) (0.0183)

4 gle.fr gle.fr bk.us bnp.fr seba.se ry.ca
(0.0156) (0.0187) (0.0209) (0.0157) (0.0161) (0.0166)

5 bac.us mzh.jp inga.nl hdfc.in sbk.kr shf.kr
(0.0152) (0.0186) (0.0192) (0.0146) (0.0159) (0.0165)

6 wfc.us key.us ms.us ubsn.ch ucg.it ffg.jp
(0.0151) (0.0179) (0.0164) (0.0143) (0.0158) (0.0159)

7 d05.sg bp.it stt.us jpm.us icici.in uob.sg
(0.0149) (0.0152) (0.0154) (0.0136) (0.0153) (0.0154)

8 td.ca ucg.it ubsn.ch cbb.jp shgp.cn mtbh.jp
(0.0139) (0.0151) (0.0142) (0.0133) (0.0145) (0.0146)

9 bbt.us bmps.it gs.us ucg.it pab.cn seba.se
(0.0137) (0.0139) (0.0130) (0.0132) (0.0143) (0.0139)

10 ry.ca bac.us pnc.us sbin.in sab.es kbc.be
(0.0129) (0.0138) (0.0123) (0.0128) (0.0131) (0.0135)

11 aib.ie rbs.gb c.us anz.au ubsn.ch na.ca
(0.0127) (0.0136) (0.0117) (0.0126) (0.0125) (0.0134)

12 ubsn.ch cmsb.cn gle.fr ry.ca smt.jp nor.fi
(0.0125) (0.0134) (0.0115) (0.0123) (0.0122) (0.0126)

13 c.us ms.us ucg.it aca.fr sbin.in barc.gb
(0.0123) (0.0124) (0.0113) (0.0122) (0.0120) (0.0125)

14 icici.in smt.jp cmsb.cn swe.se puj.in kb.kr
(0.0120) (0.0120) (0.0111) (0.0121) (0.0118) (0.0123)

15 fitb.us mtbh.jp smf.jp key.us cbb.jp cba.au
(0.0115) (0.0116) (0.0105) (0.0120) (0.0117) (0.0122)

Notes: This table presents the top 15 risk transmitters (receivers) in each state. The rankings are
based on the posterior median of the WOutPR (WInPR) scores given in parenthesis.

state 1 to state 3 while the WInPR scores of those banks are rather difficult to differentiate
across states. This confirms that systemic risk is more associated with risk propagation than
with absorption and thus validates our use of WOutPR for states identification. Third, the
higher the connectedness level of the state, the larger contribution of risk transmission is
concentrated on few top-ranked banks. For instance, comparing the total WOutPR scores
of 1-5 and 10-15 ranked banks, the difference rises from 1.5 times to more than 2.5 times
from state 2 to state 3. This confirms that the presence of a small number of entities, known
as hubs or systemically important nodes, characterizes periods of high systemic risk, thus
empirically supporting our intuition behind (2.13).
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The just-completed analysis is based on the overall connectedness built in (2.8). Ap-
parently, it suggests a picture that reveals how systemic risk changed over the sample and
which individual is the main driver of systemic risk movements. In addition to learning the
aggregate information embedded in the overall connectedness, a different perspective of (2.8)
is to instead inspect the frequency-specific components of overall connectedness, which offer
deeper insights explaining the build-up of systemic risk.

Information about the frequency-specific source of connectedness is encoded by the state-
specific structural and autoregressive matrices of our model. The selected MS(3)-GSVAR(2)
model specification implies that the global banking overall volatility graph at time t is created
by contemporaneous graph (time t), short-term temporal graph (lag t−1), and long-term
temporal graph (lag t− 2). From the estimated entries of structural and autoregressive
matrices, we visualize the underlying temporal and contemporaneous graphs in Figures
2.2-2.3, respectively:

Temporal graph. In the low connectedness state, both lag t−1 and lag t−2 graphs are
formed by many small, separate clusters with relatively loose intra-cluster connections. At lag
t− 1, clusters are observed for banks in the same nations, such as the one related to the US
and Australia, and for those in the same regions, such as the one located in Southern Europe
and Northern Europe. Banks in Asian countries, such as those from India, Japan, and China,
form three main groups, loosely connected with few US and European banks. At lag t−2,
national clusters are only clearly observed for the US banks, and regional clusters appear
less visible. Several banks in Asia Pacific and Europe merge together into larger clusters. In
the high connectedness state, both lag t−1 and lag t−2 graphs are formed by fewer large,
linked clusters with relatively dense intra-cluster connections. At lag t−1, banks from the
North America, Europe, the Asian developing countries and Australia form one connected
component, with the US banks (e.g., rf.us, key.us) creating a bridge transmitting volatility
shocks between different geographical banking clusters. Banks in Japan and Korea form
another independent cluster, with the Japanese bank mzh.jp being the center. Indian banks
axis.in and hdfc.in, whose nodes are dark blue colored, generate strong volatility spillover to
other domestic banks. At lag t− 2, major Japanese and Korean banks (e.g., shf.kr, kb.kr,
mzh.jp) attach to the US/European banking cluster. US banks bac.us and rf.us, as indicated
by the dark blue colored nodes, generate very high volatility connectedness to both the
domestic banks and their European counterparts. In the extreme connectedness state, both
lag t− 1 and lag t− 2 are formed by one or two US-bank-dominated clusters. At lag t− 1,
two main clusters are led respectively by the US banks hban.us and rf.us. At lag t− 2, a
large cluster is clearly visible, with the US banks bbt.us, fitb.us and wfc.us being central.

Contemporaneous graph. In the low connectedness state, the contemporaneous graph
exhibits clear clustering at both national and regional levels. The national banking cluster
is ubiquitous, ranging from countries with many banks in our sample (e.g., USA, Canada,
Japan, India) to those with only two or three (e.g., Ireland, Singapore, Malaysia). The
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(a) State 1: low connectedness state
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(c) State 3: extreme connectedness state

Figure 2.2 Temporal graphs. We present the maximum a posterior (MAP) estimates of the short-term
(left column) and long-term (right column) temporal graphs in the low (panel (a)), high (panel (b))
and extreme (panel (c)) connectedness states. Gephi, an open-source software, is used for graph
visualization. In each plot: node naming is the bank code given in the Internet Appendix D; node
size indicates bank asset size; node color indicates its WOutPR score; node location, as suggested by
Demirer et al. (2018), is determined by the ForceAtlas2 algorithm in Gephi; clockwise-oriented curves
indicate directed edges between pairs of nodes; both curve thickness and edge arrow size indicate edge
strength. The darker the color of the node, the higher its contribution to risk propagation.

regional cluster is obvious throughout the graph, whose left side tends to contain banks of
western countries, and whose middle and right side tend to contain banks of eastern countries.
The left side breaks into a large European banking cluster and a smaller US/Canadian
cluster, both of which are closely located with each other. The middle is segmented by the
Singaporean/Australian, Korean, Indian/Malaysian and Chinese banking clusters, with the
first two locating near the western banking groups. The right side is dominated by a separate
Japanese cluster, scattering farther away from its Asian neighbors. In the high connectedness
state, national and regional banking clusters remain but the relative location of clusters
change. The Japanese cluster moves closer to banks of other eastern countries, while the
Chinese cluster almost detaches from its regional group. The US/Canadian cluster seems to
serve as a bridge connecting the European banks to the eastern banking groups. Aside from
these changes, several clusters appear to have central nodes, or hubs (e.g., gle.fr, mzh.jp),
the ones that display the stronger volatility spillover to others as indicated by their darker
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(a) State 1: low connectedness state
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(c) State 3: extreme connectedness state

Figure 2.3 Contemporaneous graphs. We present the maximum a posterior (MAP) estimates of the
contemporaneous graphs in the low (panel (a)), high (panel (b)) and extreme (panel (c)) connectedness
states. Gephi, an open-source software, is used for graph visualization. In each plot: node naming
is the bank code given in the Internet Appendix D; node size indicates bank asset size; node color
indicates its WOutPR score; node location, as suggested by Demirer et al. (2018), is determined by
the ForceAtlas2 algorithm in Gephi; clockwise-oriented curves indicate directed edges between pairs
of nodes; both curve thickness and edge arrow size indicate edge strength. The darker the color of the
node, the higher its contribution to risk propagation.

colored nodes. In the extreme connectedness state, the relative position of clusters varies
once again. Many Asian-Pacific banks (e.g., Malaysia, India, Australia) are now part of the
US/Canadian cluster. Japanese banks, although geographically close to the Asia-Pacific
region, move towards the European cluster. Banks from China and Singapore are separately
grouped in two clusters, not connected at all with other banks. The most central bank nodes
in terms of risk-spreading capability are inga.nl and hban.us. It is also noticeable that both
intra- and inter-cluster connections become much stronger, as indicated by the thicker edges.

Overall, both temporal and contemporaneous graphs show some similarities that the state
with higher level of connectedness is characterized by larger cross-geography banking clusters,
stronger system-wide connections, and a few central banks dominating the volatility propaga-
tion. Distinctions between both graphs are also visible. In all three states, contemporaneous
graphs are noticeably denser than temporal graphs, indicating that the dynamics of the global
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banking overall volatility connectedness is mainly driven by changes in its contemporaneous
component.

2.6 Conclusions

We proposed a Markov-Switching Graphical Structural Vector Autoregressive (MS-
GSVAR) model, which facilitates an integrated analysis of some salient empirical features of
financial connectedness, such as the mixture of contemporaneous and temporal dependences,
high-dimensionality, and abrupt structural changes. Methodologically, our model synthesized
a structural vector autoregression (SVAR) to jointly capture the contemporaneous and tem-
poral dependence structures of a multivariate system, a graphical representation to generate
parsimonious parameterization, and a hidden Markov chain process to account for potential
structural changes in coefficients and dependence (graph) structures underlying the model.
Building on this modeling framework, an identification scheme for different states of system
connectivity was proposed by exploiting the centrality properties of a weighted directed graph
that unionizes the contemporaneous and temporal graph structures in each state. Model
inference was performed following a Markov Chain Monte Carlo (MCMC) procedure. An
efficient graph inference method was developed to address the computational complexities
arising from inference on graph structures in the context of high model dimension, numerous
lags, and multiple states. Simulation studies validated the effectiveness of the proposed
framework in recovering many empirically relevant graph structures, and in handling large
datasets with changing graph structures. The MS-GSVAR model applied to the volatility
series of 96 global banks detected different connectedness states, identified systemically
important individuals, and uncovered the frequency-specific source of connectedness, which
are relevant to systemic risk management.
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Appendix 2.A

This appendix provides technical details on the graph inference method.

2.A.1 Graph theory concepts

Suppose that we have a set of random variables, {1, ...,n}, and the number of observations
is T . We denote the T ×n data matrix by D. Variables and conditional dependences among
these variables can be represented by nodes and edges in a graph G with the following
definition:

Definition 2.A.1 (Graphical model). A graphical model G = (V,E) is a system of nodes (or
vertices) V = {1, ...,n} and connecting edges (or lines) E ⊂ V ×V , where n is the number of
nodes in the system.

A graph can be classified as either undirected, i.e., when the edges have no orientation, or
directed, when the edges are arrows indicating the direction of the relation. Based on these
notions, two main types of graphs can be defined; namely, undirected and directed graphs. A
special case of directed graphs corresponds to the so called Directed Acyclic Graph (DAG),
which has received attention in the SVAR literature since the graphical representation of a
recursive system is given by a DAG. For this reason, in this paper, we particularly focus on
DAGs. We further adopt the following convention from DAGs regarding edge definitions. An
edge (r, l) ∈ E is called directed if (r, l) ∈ E but (l, r) /∈ E , for some r, l ∈ V. If both (r, l) ∈ E
and (l, r) ∈ E , the edge is called undirected. In the former case, the directed edge is denoted
as l → r, while in the latter case the undirected edge is denoted as l− r.

Formal definitions of both undirected and DAG graphs are given as follows. An undirected
graph, G = (V,E) consists of the set V of nodes and E of edges, which are unordered pairs of
elements of V. Formally,

Definition 2.A.2 (Undirected graph). A graph G = (V,E) is called undirected if ∀r, l ∈
V,(r, l) ∈ E if and only if (l, r) ∈ E .

The definition of Directed Acyclic Graph is based on the following two concepts:

Definition 2.A.3 (Directed cycle). A graph G = (V,E) has a directed cycle, if exists a
sequence of directed edges {(r1, r2),(r2, r3), ...,(rn−1, rn)}, such that (rj , rj+1) ∈ E for each
j ∈ {1, ...,n−1}, with r1 = rn.

A directed graph, G = (V,E) consists of the set V of nodes and E of edges, which are
ordered pairs of elements of V. Formally,

Definition 2.A.4 (Directed graph). A graph G = (V,E) is directed if ∀r, l ∈ V if (r, l) ∈ E
then (l, r) /∈ E .
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Now we are in condition to define a DAG:

Definition 2.A.5 (Directed Acyclic Graph). A graph G = (V,E) is called a Directed Acyclic
Graph (DAG) if all edges are directed and there are no directed cycles.

Whenever we want to focus on the structure of a DAG regardless of the direction of
connectivity, the following concept is used:

Definition 2.A.6 (Skeleton of a DAG). The graph generated by replacing all directed edges
of a DAG with undirected edges is called a skeleton.

Besides, a related concept of DAG is the notion of Bayesian networks (or graphs):

Definition 2.A.7 (Bayesian networks (or graphs)). A class of graphical model with DAGs
as their underlying structure is called Bayesian networks (or graphs).

We also introduce the following notations, which are invoked by the graph inference
method developed in this paper.

If nodes r, l ∈ V and there is a directed edge l → r, node l is said to be a parent of node r.
For each r ∈ V , denote Par the set of parents of r.

The adjacency set of node r in graph G, denoted by Adj(G, r), are all nodes l which are
connected to r by an edge (either directed or undirected). The elements of Adj(G, r) are also
called neighbors of r.

Graph G with n nodes can be represented through an n-dimensional binary matrix A,
called adjacency matrix7. Each entry Arl in A is equal to 1 if l → r with r, l ∈ V, and 0
otherwise; where r ̸= l, since self-loops are not allowed.

Any DAG has at least one topological order, denoted by ≺, which is simply a permutation
of the n node labels. We associate a permutation π≺ with each order. A DAG is said to be
compatible with an order, denoted by G ∈≺, if the parents of each node have a higher index
in the permutation. Mathematically,

G ∈≺ def⇐⇒ ∀r,∀{l : l ∈ Par},π≺[r]< π≺[l]. (2.A.1)

Visually, when we place n nodes in a linear chain from left to right according to π≺, the
parents of r can only come from r+1, r+2, ...,n; that is parents are chosen only from nodes
that follow r in the order. For example, if for n= 3, we choose the order 3, 1, 2 then node 3
could have either of the others (or both or none) as parents. Node 1 may only have node
2 (or none) as parents while node 2 is forced to have no parents. The possible choices of
parents can be represented as an adjacency matrix where the rows and columns are labeled

7In this paper, we use the terms graph and adjacency matrix interchangeably.
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according to the order,

A =


A1,1 = 0 A1,2 = {0,1} A1,3 = 0
A2,1 = 0 A2,2 = 0 A2,3 = 0
A3,1 = {0,1} A3,2 = {0,1} A3,3 = 0

 , (2.A.2)

so that each choice for the entries in A is a different DAG and there are therefore eight
different DAGs compatible with this order of three nodes.

Finally, we use | · | for the set cardinality and ·\{·} for the set difference.

2.A.2 State-of-the-Art structure learning methods

Structure learning in graphical models refers to inference on their underlying graphs based
on an observed data sample. Existing methods to structure learning fall into three categories:

1. Constraint-based methods use conditional independence (CI) tests to learn the edges of
the graph. Examples are the PC (Spirtes et al., 2000; Kalisch and Bühlman, 2007),
and RFCI algorithms (Colombo et al., 2012).

2. Score-and-search methods rely on an efficient search algorithm in the space of graphs (or
node orders) and a score function to find the graph which best explains the data. The
most basic method is Structure-MCMC (proposed by Madigan et al. (1995), later refined
by Giudici and Castelo (2003)), where each step involves adding, deleting or reversing
an edge and accepting the move according to a Metropolis–Hastings probability. Order-
MCMC (Friedman and Koller, 2003) spearheads a path to reduce the search space by
combining large collections of DAGs together, namely all DAGs compatible with the
same topological ordering of the nodes. Other approaches to score-and-search include
for example the greedy equivalence search (Chickering, 2002), dynamic or integer linear
programming approaches (Koivisto and Sood, 2004), and Partition MCMC (Kuipers
and Moffa, 2017).

3. Hybrid methods bring together the ease of constraint-based methods and the per-
formance of score-and-search methods, to benefit from their individual advantages
(Tsamardinos et al., 2006; Nandy et al., 2018; Kuipers et al., 2022).

For further material on the up-to-date Bayesian network structure learning methods, we
refer the reader to Kitson et al. (2023).
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2.A.3 Sample A0:p(k)

From definitions 2.2.1-2.2.2 of the paper, A0(k) and Ai(k) underlying the MS-GSVAR
model takes the following form

A0(k) =


0 A1,2(k) · · · A1,n(k)

A2,1(k) 0 · · · A2,n(k)
...

... . . . ...
An,1(k) An,2(k) · · · 0

 ,

Ai(k) =


A1,ni+1(k) A1,ni+2(k) · · · A1,ni+n(k)
A2,ni+1(k) A2,ni+2(k) · · · A2,ni+n(k)

...
... . . . ...

An,ni+1(k) An,ni+2(k) · · · An,ni+n(k)

 , for 1 ≤ i≤ p.

(2.A.3)

Given a data matrix D of dimension |Tk| × (np+n) (note that Tk has been defined in
Section 2.4 of the paper), our goal is to learn the configuration of the binary entries of
each lag-specific adjacency matrix A0(k), ...,Ap(k) from the observed data. To sample these
adjacency matrices, we implement a three-stage procedure based on the Hybrid-MCMC
algorithm proposed by Kuipers et al. (2022) (as discussed in Section 2.4.1 of the paper).
Details of each stage are provided in the following subsections.

2.A.3.1 Stage 1 (Initialization)

In Stage 1, we initialize a configuration of the binary entries of each adjacency matrix
through the PC algorithm described in Spirtes et al. (2000, p.117-119).8 This leads to a
massive reduction in the space of graphs to be searched in Stage 2. The pseudo-code of Stage
1 is given in Algorithm 1. The implementation details are illustrated as follows:

The starting point is to form a complete undirected graph, which assumes all nodes of
the system are connected. Particularly, we set those matrices in (2.A.3) to

A0(k) =


0 1 · · · 1
1 0 · · · 1
...

... . . . ...
1 1 · · · 1

 , Ai(k) =


1 1 · · · 1
1 1 · · · 1
...

... . . . ...
1 1 · · · 1

 , for 1 ≤ i≤ p. (2.A.4)

and stack them into a matrix A0:p(k) with dimension n× (np+n).
8The PC algorithm (Spirtes et al., 2000) has two main steps. In the first step, it learns from data a skeleton

of DAG, which contains only undirected edges. In the second step, it orients the undirected edges to form a
class of equivalent DAGs. Consistent with Kuipers et al. (2022), our Stage 1 simply involves the first step to
avoid mistakes in orienting edges.
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Using a |Tk| × (np+n) data matrix D as an input, edges between nodes in A0:p(k) are
then removed or retained based on the conditional independence (CI) tests. For each edge,
the CI tests decide if the pair of nodes connected by the edge, r and l, are independent
conditioning on a subset s of all neighbors of r and l:

• In the case of continuous multivariate Gaussian data, the CI tests use Fisher’s z statistic
(Fisher, 1915) to test for significance from zero

z(r, l|s) = 1
2 log

(1+ ρ̂r,l|s
1− ρ̂r,l|s

)
, (2.A.5)

where ρ̂r,l|s is the sample partial correlation between r and l given s. To conduct a
two-sided hypothesis test at significance level α, one may test if√

T −|s|− 3z(r, l|s) ≤ Φ−1(1−α/2), (2.A.6)

where T = |Tk| is the sample size of data in state k; |s| denotes the cardinality of s; Φ−1

is the inverse CDF of N (0,1). As with Kuipers et al. (2022), we use a conservative
significance level α= min(0.2,10/n) throughout the paper to avoid Stage 1 initializes
too many false positive edges for large-scale graphs.

The CI tests are organized by levels (based on the size of the conditioning sets, e.g. the
depth d). At the first level (d= 0), all pairs of nodes are tested conditioning on the empty
set. Some of the edges would be deleted and the algorithm only tests the remaining edges in
the next level (d= 1). The size of the conditioning set, d, is progressively increased (by one)
at each new level until d is greater than the size of the adjacent sets of the testing nodes.
The output graph is a skeleton of A0:p(k) (APC

0:p (k) hereafter).

2.A.3.2 Stage 2 (Structure learning)

In Stage 2, we run the Order-MCMC algorithm sequentially for each lag-specific adjacency
matrix stacked in the initialized APC

0:p (k) (i.e., APC
0 (k),APC

1 (k),...,APC
p (k)) through M iterations.

For expositional convenience, each lag-specific adjacency matrix is labeled as A(k) hereafter
in this section and Section 2.A.3.3. In all of our simulation and empirical exercises, we set
M = 40,000 with 20% burn-in samples. Thus, a total of 32,000 iterations are used as the
basis for graph inference, which is a reasonable number for the MCMC chain to converge9

while still controlling the runtime.
The pseudo-code of Stage 2 is given in Algorithm 2. The implementation details are

illustrated as follows:
9Similar to Ahelegbey et al. (2016a), the convergence of the MCMC chain with the selected number of

iterations is monitored by the potential scale reduction factor (PSRF) and the multivariate PSRF (MPSRF).
The MCMC chain is said to have properly converged if PSRF(MPSRF) ≤ 1.2. In all of our simulation and
empirical exercises, PSRF and MPSRF are generally less than 1.1 in the case of 32,000 iterations.
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Algorithm 1 Initializing the skeleton via the PC algorithm
Input: Data sample D, CI test Test(r, l|s,D) with significance level α.
Output: a skeleton APC

0:p (k).
Start with a complete undirected graph A0:p(k).
Let depth d= 0
repeat

for each ordered pair of adjacent nodes r and l in A0:p(k) do
if |Adj(A0:p(k), r)\{l}| ≥ d then

for each subset s⊆Adj(A0:p(k), r)\{l} and |s| = d do
Test(r, l|s,D)
if Test(r, l|s,D) accepts then

Update A0:p(k) by removing l− r from A0:p(k)
break

end if
end for

end if
end for
Let d= d+1

until |Adj(A0:p(k), r)\{l}|< d for every pair of adjacent nodes in A0:p(k)

For m= 1,2, ...,M
Step (a). Use the Metropolis–Hastings algorithm to sample the order according to its
posterior probability defined in Kuipers et al. (2022, eq. (18))

p(≺ |D) ∝
n∏
r=1

∑
Par⊆hr

Par∈≺

S(r,Par|D)+
∑
l /∈hr

π≺[r]<π≺[l]

S(r,{Par, l}|D)

 , (2.A.7)

where

• the first sum is restricted to parent subsets compatible with the order

Par ∈≺ def⇐⇒ ∀{l : l ∈ Par},π≺[r]< π≺[l], (2.A.8)

together with the additional constraint that all elements in the parent sets must belong
to a set of possible parents hr initialized through Stage 1

Par ⊆ hr with hr = {l :APC
r,l (k) = 1} (2.A.9)

• the second sum is used for adding edges beyond a predefined skeleton, allowing for the
correction of errors where edges may be missed in Stage 1. In particular, the possible
parent sets of every node also include one additional parent from among the nodes
outside its predefined parent sets according to the order, that is l /∈ hr, π≺[r]< π≺[l].
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• S(·|D) is a score function evaluating on each node and its parents. Since this paper
assumes continuous multivariate Gaussian data, S(·|D) is formulated based on the
Bayesian Gaussian equivalent (BGe) score function, as suggested by Kuipers et al.
(2014).

• For the efficient computation of the sum, we follow Kuipers et al. (2022, sec. 2.7) to
pre-compute and tabulate every score quantity S(·|D) needed for (2.A.7). During each
Order-MCMC iteration, we then simply need to look up the relevant scores providing a
very efficient sampler.

From the order ≺[m−1] at the previous iteration [m−1] (The initial order ≺[0] is generated
by randomly permuting the n nodes), a new order ≺′ at the current iteration [m] is proposed
based on three types of permutation (Kuipers et al., 2022):

• global swap: swapping two random nodes in ≺[m−1].

• local transposition: swapping two adjacent nodes in ≺[m−1].

• node relocation: sequentially transpose a random node with its adjacent nodes. Further
details are provided in Kuipers et al. (2022, sec. 2.4).

To reduce computational complexity, the three types of permutation are mixed into a single
scheme by selecting each of them at each iteration with a probability of ( 6

n+7 ,
n
n+7 ,

1
n+7),

respectively.
If the new order is generated from the first two permutations, the new order is accepted, that
is, ≺[m]=≺′, with the Metropolis-Hastings probability

min
{

1, p(≺′ |D)
p(≺[m−1] |D)

}
. (2.A.10)

where p(≺′ |D) has been defined in (2.A.7).
If the new order is generated from the last permutation, the new order is always accepted.

Step (b). Sampling a graph structure A(k)[m] at the current iteration [m] by sampling the
parents of each node independently according to the scores of its admissible parent sets in
≺[m], namely S(r,Par|D) where Par ∈≺[m].

2.A.3.3 Stage 3 (Bayesian model averaging)

In Stage 3, we follow Ahelegbey et al. (2016a) to employ Bayesian model averaging for
building a single sample of every lag-specific adjacency matrix from their own posterior
samples generated in Stage 2.
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Algorithm 2 Sampling the graphs via the Order-MCMC algorithm
Input: Data sample D, initial skeleton APC

0:p (k), initial order ≺[0], precomputed scores S(·|D).
Output: posterior samples A(k)[1], ...,A(k)[M ]

For m= 1,2, ...,M :
(a) Generate a new order ≺′ by randomly permuting the nodes in ≺[m−1] based on three

types of permutation: global swap, local transposition, and node relocation;
(i) If the new order is generated from the first two permutations, the new order is

accepted, that is, ≺[m]=≺′, with the Metropolis-Hastings probability

min
{

1, p(≺′ |D)
p(≺[m−1] |D)

}
.

(ii) If the new order is generated from the last permutation, the new order is always
accepted.

(b) Sample a graph A(k)[m] from the space of DAGs compatible with the order ≺[m]

generated as before.

For each lag-specific adjacency matrix, the posterior estimate for an edge from node l to
node r in state k, i.e., Ar,l(k), is defined as

Ar,l(k) =
{

1 if qr,l,1−α(k)> ρ

0 otherwise
(2.A.11)

with

qr,l,1−α(k) = Ār,l(k)− z1−α

√
Ār,l(k)(1 − Ār,l(k))

neff
(2.A.12)

where Ār,l(k) is the posterior probability of the edge Ar,l(k) and is approximated based on the
average of posterior samples obtained in Stage 2; ρ is the posterior probability of edge inclusion.
In simulation of Section 2.C.1, we examine ρ ∈ {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99}
following Kuipers et al. (2022). In simulation of Section 2.C.2 and the empirical illustration,
we use ρ= 0.5 since this values balance well the true positives and false positives according
to our examination; z1−α is the z-score of the standard normal distribution at significance
level 1−α where α= 0.05; neff is the effective sample size (see Casella and Robert, 2004, pp.
499–500) representing the number of independent posterior samples.
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Appendix 2.B

This appendix introduces the posterior computation of model parameters.

2.B.1 Sample S1:T

We sample the whole path S1:T from their joint full conditional distribution based on
a forward-filtering backward-sampling (FFBS) algorithm (see Frühwirth-Schnatter, 2006,
chap. 13). The FFBS algorithm consists of two stages. In the first stage, we carry out a
forward recursion to obtain the filtered probability. In the second stage, we compute the
joint full conditional density of S1:T using the filtered probabilities, and randomly draw S1:T

from its full conditional distribution through a backward recursion. The stages of the FFBS
algorithm are described in the following. First, the filtered probability at time t, t= 1, ...,T ,
is determined by implementing the forward recursion

p(st = j|Y1:t−1,Θ,A) =
K∑
i=1

pijp(st−1 = i|Y1:t−1,Θ,A), (2.B.1)

for j = 1, ...,K, where pij is the conditional probability of switching from state i at time
t− 1 to state j at time t. We initialize for t = 1, P (s0 = j|Θ) to be equal to the ergodic
probabilities. The filtered probability for all j = 1, ...,K is computed as

p(st = j|Y1:t,Θ,A) = p(Yt|st = j,Y1:t−1,Θ)p(st = j|Y1:t−1,Θ,A)
p(Yt|Y1:t−1,Θ) , (2.B.2)

where the denominator is the marginal predictive likelihood defined as

p(Yt|Y1:t−1,Θ) =
K∑
i=1

p(Yt|st = i,Y1:t−1,Θ)p(st = i|Y1:t−1,Θ,A).

The smoothing probabilities are obtained recursively and backward in time, once all the
filtered probabilities p(st = j|Y1:t,Θ,A) for t = 1, ...,T are calculated. If t = T , smoothing
probability and filtered probability are equal. For t= T −1,T −2, ...,1 and for all j = 1, ...,K
the backward recursion proceeds as follows

p(st = j|Y1:T ,Θ,A) =
K∑
i=1

p(st = j,st+1 = i|Y1:T ,Θ,A)

=
K∑
i=1

p(st = j|st+1 = i,Y1:t,Θ,A)p(st+1 = i|Y1:T ,Θ,A)
(2.B.3)

where
p(st = j|st+1 = i,Y1:t,Θ,A) = pjip(st = j|Y1:t,Θ,A)p(st = j|Y1:t,Θ,A)

p(st+1 = i|Y1:T ,Θ,A) .
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2.B.2 Sample B∗
1:p(k)

From (2.7) of the paper, the adjacency matrices associated with B∗
1:p(k) can be expressed

as A∗
1:p(k) = (In−A0(k))−1A1:p(k). Let matrix A∗(k) be a stacked form of A∗

1(k), ...,A∗
p(k)

such that A∗(k) is of dimension n×np. Denote with πr(k) = {l = 1, ...,np :A∗
rl(k) = 1} the

index set of non-zero entries in the rth row of A∗(k), and with |πr(k)| its cardinality. We
define the selection matrix Er(k) = (ej1 , ...,ej|πr(k)|), where Er(k) is of dimension np×|πr(k)|,
ji is an element of the index set πr(k), i.e., ji ∈ πr(k), and ei is an np×1 vector of zeros with
a one in the ith position. Let Zt = (Y ′

t−1, ...,Y
′
t−p) be a 1×np vector of explanatory variables.

The set of selected explanatory variables that predict the rth element of Yt (i.e., Yr,t) can
be represented by Zr,t = ZtEr(k). We sample B∗

1:p(k) from its full conditional distribution,
which is defined as

p(B∗
1:p(k)|YTk

,STk
,A0:p(k),Ωµ(k)) ∝ N (M(k)∗(

∑
t∈Tk

Z∗
t Ωµ(k)Yt),M(k)∗), (2.B.4)

where Z∗
t = diag(Z1,t, ...,Zn,t) is an n×

∑n
r=1 |πr(k)| matrix in block diagonal form, and

M(k)∗ = (∑t∈Tk
Z∗
t Ωµ(k)(Z∗

t )′ +M(k)−1)−1 with M(k) = 100I∑n

r=1 |πr(k)| given the prior
specified in Section 2.4.2 of the paper.

2.B.3 Sample B0(k)

Given the sampled adjacency matrix A0(k), we denote with πr(k) = {l= 1, ...,n :Arl,0(k) =
1} the index set of non-zero entries in the rth row of A0(k) and with |πr(k)| its cardinality. We
define the selection matrix Er(k) = (ej1 , ...,ej|πr(k)|), where Er(k) is of dimension n×|πr(k)|,
ji is an element of the index set πr(k), i.e., ji ∈ πr(k), and ei is an n× 1 vector of zeros with
a one in the ith position. It can be seen from (2.7) of the paper that µt =B0(k)µt+εt, where
µt = Yt−Z∗

tB
∗
1:p(k). The set of selected explanatory variables that predict the rth element of

µt (i.e., µr,t) can be represented by Ur,t = µtEr(k). We sample B0(k) from its full conditional
distribution, which is defined as

p(B0(k)|YTk
,STk

,A0(k),Ωε(k),B∗
1:p(k)) ∝ N (M(k)∗(

∑
t∈Tk

U∗
t Ωε(k)µt),M(k)∗), (2.B.5)

where U∗
t = diag(U1,t, ...,Un,t) is an n×

∑n
r=1 |πr(k)| matrix in block diagonal form, and

M(k)∗ = (∑t∈Tk
U∗
t Ωε(k)(U∗

t )′ +M(k)−1)−1 with M(k) = 100I∑n

r=1 |πr(k)| given the prior
specified in Section 2.4.2 of the paper.
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2.B.4 Sample Ωε(k)

Denote with |Tk| its cardinality. We sample Ωε(k) from its full conditional distribution,
which is defined as

p(Ωε(k)|YTk
,STk

,B0(k),B∗
1:p(k)) ∝ WG(νε(k)+ |Tk|,Rε(k)+

∑
t∈Tk

εtε
′
t), (2.B.6)

with εt = µt−U∗
t B0(k).

2.B.5 Sample Ωµ(k)

We sample Ωµ(k) from its full conditional distribution, which is defined as

p(Ωµ(k)|YTk
,STk

,B∗
1:p(k)) ∝ W(νµ(k)+ |Tk|,Rµ(k)+

∑
t∈Tk

µtµ
′
t). (2.B.7)

2.B.6 Sample P

We sample p(k), the kth row of the transition matrix P , from its full conditional distribu-
tion, which is defined as

p(p(k)|S1:T ) ∝ Dir(ck1 +Nk1, ..., ckK +NkK), (2.B.8)

where Nkm, m ∈ {1, ...,K}, is the empirical distribution which counts the transition between
the kth and the mth latent discrete states, i.e., Nkm =∑T

t=1 I(st =m)I(st−1 = k), where I(·)
is an indicator function.
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Appendix 2.C

This appendix includes two simulation studies that highlight key features of our framework.
The first simulation study aims to illustrate the validity of the proposed graph inference
method in recovering empirically relevant graphs under different settings of data dimensions
and sample sizes. The second aims to illustrate the performance of the proposed MS-GSVAR
model and the effectiveness of its estimation procedure in handling large datasets with
changing dependence structures.

2.C.1 Simulation study to compare graph inference methods

In this simulation, we evaluate the ability of our method to recover the true graphs
underlying the SVAR(p) process in (2.1) of the paper. For simplicity, we simulate data from
an SVAR(1) process with a unit diagonal covariance matrix. We consider four empirically-
relevant scenarios of the true graph structures, each of which corresponds to a different form
of the coefficient matrices Bi, 0 ≤ i≤ 1, of the SVAR(1). The first three are the sparse, dense,
and weak edge strength scenarios, similar to the set-ups in Kuipers et al. (2022), and the
fourth one is the community (or block) scenario, which has been considered in Billio et al.
(2019)

1. Sparse: we assume the true graph structure underlying each of the coefficient matrices
to be a random DAG with relatively sparse pattern. The setting described corresponds
to a random matrix Bi in which the non-zero entries are drawn from the Erdős-Rényi
model with an average of two parents per node and their values are sampled uniformly
in the interval [−0.7,−0.3] ∪ [0.3,0.7].

2. Dense: we assume the true graph structure underlying each of the coefficient matrices
to be a random DAG with relatively dense pattern. The setting described corresponds
to a random matrix Bi in which the non-zero entries are drawn from the Erdős-Rényi
model with an average of three parents per node and their values are sampled uniformly
in the same interval as the scenario Sparse.

3. Weak edge strength: we assume the true graph structure underlying each of the coefficient
matrices to be a random DAG with relatively weak edge strengths. The setting described
corresponds to a random matrix Bi in which the non-zero entries are drawn from the
Erdős-Rényi model again with an average of two parents per node while their values
are sampled uniformly in the interval [−0.3,−0.1] ∪ [0.1,0.3].

4. Community: we assume the true graph structure underlying each of the coefficient
matrices to be a random DAG with block pattern. The setting described corresponds
to a block-diagonal matrix Bi in which the number of blocks is n/4 and each block has
the same structure as the scenario Sparse.
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For each scenario, we consider a total of six simulation settings based on different combinations
of node dimensions and sample sizes: n ∈ {20 (small),40 (medium),80 (large)} and T ∈
{5n,10n}. For each setting, we replicate the simulation and estimation exercises 50 times,
with different randomly sampled graphs and data. All the results reported are aggregated
based on 50 replications.

We consider the Structure-MCMC algorithm as a benchmark for comparison.10 Both
Structure-MCMC algorithm and our own algorithm are run for 8,000 iterations of burn-in,
followed by 32,000 iterations as the basis for inference. To evaluate the performance of
both algorithms, we use the true positive rate (TPR) and false positive rate (FPRp) as in
Kuipers et al. (2022). Plotting TPR versus FPRp over varying thresholds on the posterior
probability of edge inclusion produces a ROC curve, with curves close to the top left corner
indicating better performance at returning the true graph structure. Figures 2.C.1-2.C.4
display respectively the ROC curves under the four scenarios. Within each scenario, our
method yields better performance for all settings considered. It achieves a similarly high
level of TPR as Structure-MCMC but notably lower level of FPRp across varying posterior
probabilities of edge inclusion. This finding is particularly noticeable in the large-dimensional
setting when n = 80. Moreover, the small interquartile ranges for TPR suggest that our
method is stable across simulation replications. Figures 2.C.5-2.C.8 plot respectively the
average runtimes for both algorithms under the four scenarios. It indicates the computational
gain of using our method in the large-dimensional setting: when n= 80, our algorithm is more
than 18 times faster than Structure-MCMC. Overall, our method relying on Hybrid-MCMC
provides more reliable graph inference in much less time than Structure-MCMC in all cases
we consider. The improved accuracy and the efficiency gain achieved by our method are
substantial particularly in the higher dimension up to the case of 80 series.

10For the implementation of the Structure-MCMC algorithm, we use the code provided in Ahelegbey et al.
(2016a), which is available in the Journal of Applied Econometrics Data Archive.
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Figure 2.C.1 ROC curves under the scenario Sparse. We compare the performance of our method
relying on Hybrid-MCMC (blue line with cross markers) to Structure-MCMC (red line with triangle
markers). Under different settings of node dimensions and sample sizes, we compute the median TPR
along with the first and third quartiles and plot versus the median FPRp over 50 replications for each
algorithm under comparison. The markers on each graph indicate the following thresholds on the
posterior probability of edge inclusion: ρ ∈ {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99}.

Figure 2.C.2 ROC curves under the scenario Dense. We compare the performance of our method
relying on Hybrid-MCMC (blue line with cross markers) to Structure-MCMC (red line with triangle
markers). Under different settings of node dimensions and sample sizes, we compute the median TPR
along with the first and third quartiles and plot versus the median FPRp over 50 replications for each
algorithm under comparison. The markers on each graph indicate the following thresholds on the
posterior probability of edge inclusion: ρ ∈ {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99}.
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Figure 2.C.3 ROC curves under the scenario Weak edge strength. We compare the performance of our
method relying on Hybrid-MCMC (blue line with cross markers) to Structure-MCMC (red line with
triangle markers). Under different settings of node dimensions and sample sizes, we compute the median
TPR along with the first and third quartiles and plot versus the median FPRp over 50 replications
for each algorithm under comparison. The markers on each graph indicate the following thresholds on
the posterior probability of edge inclusion: ρ ∈ {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99}.

Figure 2.C.4 ROC curves under the scenario Community. We compare the performance of our method
relying on Hybrid-MCMC (blue line with cross markers) to Structure-MCMC (red line with triangle
markers). Under different settings of node dimensions and sample sizes, we compute the median TPR
along with the first and third quartiles and plot versus the median FPRp over 50 replications for each
algorithm under comparison. The markers on each graph indicate the following thresholds on the
posterior probability of edge inclusion: ρ ∈ {0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95,0.99}.
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Figure 2.C.5 The runtimes under the scenario Sparse. We compare the performance of our method
relying on Hybrid-MCMC (blue line) to Structure-MCMC (red line). Under different settings of
node dimensions and sample sizes, we average the runtimes (in seconds) over 50 replications for each
algorithm under comparison. These results are then average over the two sample sizes T ∈ {5n,10n}
for each of the node dimensions listed.

Figure 2.C.6 The runtimes under the scenario Dense. We compare the performance of our method
relying on Hybrid-MCMC (blue line) to Structure-MCMC (red line). Under different settings of
node dimensions and sample sizes, we average the runtimes (in seconds) over 50 replications for each
algorithm under comparison. These results are then average over the two sample sizes T ∈ {5n,10n}
for each of the node dimensions listed.
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Figure 2.C.7 The runtimes under the scenario Weak edge strength. We compare the performance of
our method relying on Hybrid-MCMC (blue line) to Structure-MCMC (red line). Under different
settings of node dimensions and sample sizes, we average the runtimes (in seconds) over 50 replications
for each algorithm under comparison. These results are then average over the two sample sizes
T ∈ {5n,10n} for each of the node dimensions listed.

Figure 2.C.8 The runtimes under the scenario Community. We compare the performance of our
method relying on Hybrid-MCMC (blue line) to Structure-MCMC (red line). Under different settings
of node dimensions and sample sizes, we average the runtimes (in seconds) over 50 replications for each
algorithm under comparison. These results are then average over the two sample sizes T ∈ {5n,10n}
for each of the node dimensions listed.
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2.C.2 Simulation study to assess model performance

In this simulation, we illustrate the performance of the proposed MS-GSVAR model
and the effectiveness of its estimation procedure in handling large datasets with changing
dependence structures. We simulate data from an SVAR(1) process where the true graph
structures are assumed to change across two states. In particular, we assume the true
graph structure underlying each of the coefficient matrices B0:p(k) follows the structure
of scenario Sparse in state k = 1 and of scenario Dense in state k = 2. Moreover, the
edge values are sampled uniformly in the interval [−0.5,−0.3]∪ [0.3,0.5] in state k = 1 and
[−0.7,−0.3]∪ [0.3,0.7] in state k = 2. Due to its relatively dense pattern as well as strong edge
strengths, state k = 2 corresponds to a state with the higher level of connectedness. The true
covariance matrix Σε(k) is set to 0.2In in state k = 1 and In in state k = 2, which are roughly
the same as our estimates for the global banking dataset analyzed in Section 2.5 of the
paper. We generate the trajectory of the Markov process assuming a transition matrix with
rows p(k) = (0.95,0.05) for k = 1 and p(k) = (0.05,0.95) for k = 2. We consider two different
high-dimensional settings described in Section 2.C.1: n = 80 and T ∈ {5n,10n}. For each
setting, we replicate the simulation and estimation exercises 50 times, with different randomly
sampled graphs and data. All the results reported are aggregated based on 50 replications. To
illustrate the gain from our graphical representation, we compare the proposed MS-GSVAR
model to a standard MS-SVAR model of Sims et al. (2008) in which each of the coefficient
matrices is full.

We begin with the accuracy of the parameter estimates. The accuracy is evaluated using
the Mean Square Deviation (MSD), which is defined as the average squared difference between
the true value of the parameter and its posterior mean. Figure 2.C.9 shows the quartiles
and median of the MSD statistics based on 50 replications by means of box plots. In all
settings, it is clear that MS-GSVAR offers large gains over MS-SVAR in recovering the true
model parameters since the interquartile ranges (i.e., the boxes) do not overlap. The gains
are particularly significant when the ratio between the node dimension and the sample size
(n/T ) is relatively large.

To investigate the model fitness and detect potential misspecification, we perform a
posterior predictive checking procedure suggested in Billio et al. (2022). Posterior predictive
checking is based on the idea that, if the model fits, then data simulated from the model
should look similar to observed data. Therefore, this procedure consists in (i) simulating data
from the model, then (ii) measuring the discrepancy between these samples to the observed
data via suitable test quantities. Denote with T (Y ) a test quantity that depends only on
the data. We consider the following test quantities: (i) average density of Yt over time, i.e.,
T (Y ) = 1/(nT )∑r

∑
tYr,t, (ii) cross-sectional average of the temporal standard deviation of

Yt, i.e., T (Y ) = 1/n∑r

√
1
T

∑
t(Yr,t− Ȳr)2, (iii) cross-sectional average of the autocorrelation

at lag i = 1, ...,p, denoted by γr(i), of the entries in Yt, i.e., T (Y ) = 1/(np)∑r

∑p
i=1 γr(i),
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(a) MSD for B0:p(k)

(b) MSD for Σε(k)

Figure 2.C.9 Mean Square Deviation (MSD) of the estimated parameters from their true values.
Shown are boxplots of MSD based on 50 replications, for two estimators: MS-GSVAR and MS-SVAR,
two different sample sizes: T = 5n,10n, and two sets of model parameters: B0:p(k) (panel (a)) and
Σε(k) (panel (b)), for k = 1,2. On each box, the central mark indicates the median, while the bottom
and top edges of the box are the 25th and 75th percentiles, respectively. The whiskers extend to the
most extreme points and the outliers are plotted using ◦.

and (iv) cross-sectional average of the pairwise cross-correlation at lag 0, denoted by ςrl(0),
of the entries in Yt, i.e., T (Y ) = 2/(n(n−1))∑l

∑
r=l+1 ςrl(0). We visualize the discrepancy
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between the test quantity computed on the simulated and the observed data by means of
histogram. Under correct model specification, the histogram should be centered around 0.
The results for our MS-GSVAR model and the MS-SVAR model are shown in Figure 2.C.10.
We find that MS-GSVAR performs well in all the settings, being able to replicate all of the
test quantities of the observed data. Conversely, the MS-SVAR model yields substantial bias
in recovering the standard deviation of the observed data, and this performance deteriorates
when n/T is relatively large.

To assess the effectiveness of our model estimation procedure, we use the coda functions
provided in the Econometrics toolbox11 of LeSage (1999). Specifically, we rely on the
diagnostic criteria including the autocorrelation function (ACF) at different lags, Geweke’s
test of equal mean, and Geweke’s diagnostic based on the relative numerical efficiency (RNE).
All criteria are first computed for each parameter of the model individually, and then averaged
across all parameters of the model. Table 2.C.1 reports these diagnostic statistics, averaged
over 50 replications and over the two simulation settings considered. The ACF values are
small enough to be indicative of the i.i.d. nature of the parameter estimates, as suggested for
example by Casarin et al. (2018). The Geweke’s p-values are greater than 0.05 and the RNE
values are close to 1, which are good signs of efficiency for the MCMC procedure according
to previous studies (see, e.g., Billio et al., 2022). Overall, these criteria indicate well-mixing
and convergence properties of our model estimation procedure.

Table 2.C.1 Diagnostic criteria

average ACF average p-value Geweke test average RNE
lag 1 lag 5 lag 10 lag 50 4%

taper
8%

taper
15%
taper

4%
taper

8%
taper

15%
taper

0.056 0.023 0.021 0.013 0.471 0.468 0.460 0.957 0.998 1.108

Notes: This table presents the autocorrelation function (ACF) at different lags, p-value of the
Geweke test, and relative numerical efficiency (RNE), averaged over 50 replications and over the two
simulation settings considered. Each statistic is an average across all parameters of the proposed
model.

11The code is available in https://www.spatial-econometrics.com.

https://www.spatial-econometrics.com
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(a) T = 5n

(b) T = 10n

Figure 2.C.10 Posterior predictive checking based on 50 replications for the MS-GSVAR model
(first row) and the MS-SVAR model (second row). Performance on a simulated dataset of dimension
n= 80, with two different sample sizes T = 5n (panel (a)), = 10n (panel (b)). Each plot shows the
posterior distribution of the discrepancy between the test quantity computed on the simulated and
the observed data, averaged over all MCMC iterations for each replication.
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Appendix 2.D

This appendix contains a description of the data used in the empirical illustration and
further discussions of the estimation results.

2.D.1 Data details

Our dataset consists of weekly bank stock return volatilities, constructed using daily
high–low-open-close prices of 96 banks obtained from Datastream. The dataset spans from
September 12, 2003 to December 9, 2022 (1,005 observations). Our banks are those in the
world’s top 150 by assets that were publicly traded throughout the sample. They include all
those designated as “globally systemically important banks” (“G-SIBs,” as designated by
the Basel Committee on Banking Supervision as of November 2022), except for four Chinese
banks (Bank of China, Industrial and Commercial Bank of China, Agricultural Bank of China
and China Construction Bank) and one French bank (Groupe BPCE), which we exclude
because they were not publicly traded as of September 2003. Details on our sample banks
regarding market capitalization (as of November 15, 2022 in billions of US dollars), bank
code12, and Reuters ticker, by bank assets (as of December 31, 2021 in billions of US dollars)
are provided in Table 2.D.1 and by country are provided in Table 2.D.2.

Raw daily stock prices (high–low-open-close prices) for bank i are used to compute its
weekly range-based realized volatility as proposed in Garman and Klass (1980)

σ̂2
i,t =0.511(Hi,t−Li,t)2 −0.383(Ci,t−Oi,t)2

−0.019[(Ci,t−Oi,t)(Hi,t+Li,t−2Oi,t)−2(Hi,t−Oi,t)(Li,t−Oi,t)],
(2.D.1)

where Hi,t is the weekly logarithmic high price, Li,t is the weekly logarithmic low price,
Oi,t is the weekly logarithmic opening price, and Ci,t is the logarithmic closing price. The
weekly prices are obtained by taking in a given week the maximum among the daily high
prices (weekly High Price), the minimum among the daily low prices (weekly Low Price), the
opening price of the first available day in a week (weekly Opening Price), and the closing
price of the last available day in a week (weekly Closing Price). Besides, volatilities tend to
be distributed asymmetrically with a right skew, and approximate normality is often obtained
by taking natural logarithms (Andersen et al., 2003). Hence we use weekly logarithmic
volatilities as the final datasets.

12Our bank codes are easier to interpret than the Reuters tickers, particularly as regards identifying banks’
countries, so we use them in our empirical illustration.
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Table 2.D.1 Global Bank Detail (Ordered by Assets)

Bank Name Country Mcap Asset Bank Code Reuters Ticker

JP MORGAN CHASE & COMPANY US 389.9 3,744 jpm.us JPM
MITSUBISHI UFJ FINANCIAL GROUP Japan 68.9 3,175 mtbh.jp 8306.T
BANK OF AMERICA US 302.4 3,160 bac.us BAC
BNP PARIBAS France 67.1 2,991 bnp.fr BNPP.PA
HSBC HOLDINGS UK 114.0 2,956 hsba.gb HSBA.L
CREDIT AGRICOLE France 30.4 2,354 aca.fr CAGR.PA
CITIGROUP US 95.0 2,262 c.us C
SUMITOMO MITSUI FINANCIAL GROUP Japan 44.1 2,176 smf.jp 8316.T
MIZUHO FINANCIAL GROUP Japan 29.5 1,957 mzh.jp 8411.T
WELLS FARGO & CO US 178.0 1,948 wfc.us WFC
BARCLAYS UK 29.7 1,869 barc.gb BARC.L
BANCO SANTANDER Spain 45.4 1,793 san.es SAN.MC
SOCIETE GENERALE France 21.5 1,661 gle.fr SOGN.PA
DEUTSCHE BANK Germany 22.1 1,499 dbk.de DBKGn.DE
GOLDMAN SACHS GROUP US 129.7 1,464 gs.us GS
CHINA MERCHANTS BANK China 97.6 1,438 cmb.cn 600036.SS
TORONTO-DOMINION BANK Canada 119.7 1,367 td.ca TD.TO
ROYAL BANK OF CANADA Canada 137.1 1,349 ry.ca RY.TO
SHANGHAI PUDONG DEVELOPMENT BANK China 29.5 1,267 shgp.cn 600000.SS
INTESA SANPAOLO Italy 43.1 1,198 isp.it ISP.MI
LLOYDS BANKING GROUP UK 35.0 1,197 lloy.gb LLOY.L
MORGAN STANLEY US 153.0 1,188 ms.us MS
UBS GROUP Switzerland 65.3 1,109 ubsn.ch UBSG.S
CHINA MINSHENG BANKING China 17.5 1,083 cmsb.cn 600016.SS
ING GROEP Netherlands 44.1 1,081 inga.nl INGA.AS
NATWEST GROUP UK 28.8 1,058 rbs.gb NWG.L
UNICREDIT Italy 27.4 1,029 ucg.it CRDI.MI
BANK OF NOVA SCOTIA Canada 62.3 936 bns.ca BNS.TO
COMMONWEALTH BANK OF AUSTRALIA Australia 122.3 834 cba.au CBA.AX
STANDARD CHARTERED UK 19.9 828 stan.gb STAN.L
CREDIT SUISSE GROUP Switzerland 12.0 825 csgn.ch CSGN.S
BANK OF MONTREAL Canada 67.4 781 bmo.ca BMO.TO
PING AN BANK China 33.1 766 pab.cn 000001.SZ
BANCO BILBAO VIZCAYA ARGENTARIA Spain 33.8 737 bbva.es BBVA.MC
AUSTRALIA AND
NEW ZEALAND BANKING GROUP Australia 49.1 710 anz.au ANZ.AX
STATE BANK OF INDIA India 66.1 697 sbin.in SBI.NS
WESTPAC BANKING Australia 56.8 679 wbc.au WBC.AX
NATIONAL AUSTRALIA BANK Australia 65.2 671 nab.au NAB.AX
CANADIAN IMPERIAL BANK COMMERCE Canada 43.0 663 cm.ca CM.TO
RESONA HOLDINGS Japan 10.3 662 rsnh.jp 8308.T
NORDEA BANK Finland 37.7 647 nor.fi NDASE.ST
DANSKE BANK Denmark 14.3 602 dan.dk DANSKE.CO
HUAXIA BANK China 11.4 575 hxb.cn 600015.SS
US BANCORP US 65.0 573 usb.us USB
KB FINANCIAL GROUP Korea 15.4 558 kb.kr 105560.KS
PNC FINANCIAL SERVICES GROUP US 66.2 557 pnc.us PNC
SUMITOMO MITSUI TRUST HOLDINGS Japan 11.2 554 smt.jp 8309.T
SBERBANK OF RUSSIA Russia 48.2 548 sber.ru SBER.MM
SHINHAN FINANCIAL GROUP Korea 14.3 545 shf.kr 055550.KS
TRUIST FINANCIAL US 61.5 541 bbt.us TFC
COMMERZBANK Germany 10.4 534 cbk.de CBKG.DE
DBS GROUP HOLDINGS Singapore 66.5 508 d05.sg DBSM.SI
BANK OF NEW YORK MELLON US 35.4 444 bk.us BK
BANQUE NATIONALE DE BELGIQUE Belgium 0.4 409 bnab.be BNAB.BR
OVERSEA-CHINESE BANKING Singapore 41.1 402 ocbc.sg OCBC.SI
KBC GROUP Belgium 22.4 386 kbc.be KBC.BR
SVENSKA HANDELSBANKEN Sweden 19.7 370 shba.se SHBa.ST
SKANDINAVISKA ENSKILDA BANKEN Sweden 24.5 365 seba.se SEBa.ST
ERSTE GROUP BANK Austria 12.9 349 ebs.at ERST.VI
UNITED OVERSEAS BANK Singapore 36.9 340 uob.sg UOBH.SI
BANCO DO BRASIL Brazil 19.6 337 bbas.br BBAS3.SA
INDUSTRIAL BANK OF KOREA Korea 6.0 335 ibk.kr 024110.KS
DNB BANK Norway 28.5 331 dnb.no DNB.OL

Continued on next page
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Table 2.D.1 – continued from previous page
Bank Name Country Mcap Asset Bank Code Reuters Ticker

STATE STREET US 29.2 314 stt.us STT
SWEDBANK Sweden 17.9 304 swe.se SWEDa.ST
NATIONAL BANK OF CANADA Canada 24.4 281 na.ca NA.TO
BANCO DE SABADELL Spain 4.9 279 sab.es SABE.MC
BANK OF GREECE Greece 0.3 270 bg.gr BOGr.AT
HDFC BANK India 111.3 268 hdfc.in HDBK.NS
FUKUOKA FINANCIAL GROUP Japan 3.4 252 ffg.jp 8354.T
ICICI BANK India 78.4 226 icici.in ICBK.NS
BANCO BPM Italy 5.0 223 bp.it BAMI.MI
MALAYAN BANKING Malaysia 22.5 213 may.my MBBM.KL
SVB FINANCIAL GROUP US 14.2 211 svb.us SIVB.O
FIFTH THIRD BANCORP US 25.0 211 fitb.us FITB.O
KEYCORP US 17.9 186 key.us KEY
PUNJAB NATIONAL BANK India 6.0 179 puj.in PNBK.NS
BANK OF IRELAND GROUP Ireland 8.4 175 bir.ie BIRG.I
HUNTINGTON BANCSHARES US 21.8 174 hban.us HBAN.O
STANDARD BANK GROUP Korea 17.0 170 sbk.kr SBKJ.J
BANK OF BARODA India 10.4 168 bob.in BOB.NS
CANARA BANK India 6.9 165 can.in CNBK.NS
REGIONS FINANCIAL NEW US 21.6 163 rf.us RF
CHIBA BANK Japan 4.6 161 cbb.jp 8331.T
BANCA MONTE DEI PASCHI Italy 2.4 156 bmps.it BMPS.MI
M&T BANK US 29.3 155 mt.us MTB
AXIS BANK India 32.5 152 axis.in AXBK.NS
HOKUHOKU FINANCIAL GROUP Japan 0.8 150 hkf.jp 8377.T
UNION BANK OF INDIA India 5.3 149 ubi.in UNBK.NS
CIMB GROUP HOLDINGS Malaysia 12.7 149 cimb.my CIMB.KL
AIB GROUP Ireland 8.0 142 aib.ie AIBG.I
SHIZUOKA FINANCIAL GROUP Japan 3.9 127 shzb.jp 5831.T
FIRSTRAND Korea 20.9 124 fsrj.kr FSRJ.J
BANKINTER Spain 5.3 122 bkt.es BKT.MC
HACHIJUNI BANK Japan 1.7 121 hach.jp 8359.T
PUBLIC BANK Malaysia 18.7 111 pubm.my PUBM.KL
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Table 2.D.2 Global Bank Detail (Ordered by Country)

Bank Name Country Mcap Asset Bank Code Reuters Ticker

JP MORGAN CHASE & COMPANY US 389.9 3,744 jpm.us JPM
BANK OF AMERICA US 302.4 3,160 bac.us BAC
CITIGROUP US 95.0 2,262 c.us C
WELLS FARGO & CO US 178.0 1,948 wfc.us WFC
GOLDMAN SACHS GROUP US 129.7 1,464 gs.us GS
MORGAN STANLEY US 153.0 1,188 ms.us MS
US BANCORP US 65.0 573 usb.us USB
PNC FINANCIAL SERVICES GROUP US 66.2 557 pnc.us PNC
TRUIST FINANCIAL US 61.5 541 bbt.us TFC
BANK OF NEW YORK MELLON US 35.4 444 bk.us BK
STATE STREET US 29.2 314 stt.us STT
SVB FINANCIAL GROUP US 14.2 211 svb.us SIVB.O
FIFTH THIRD BANCORP US 25.0 211 fitb.us FITB.O
KEYCORP US 17.9 186 key.us KEY
HUNTINGTON BANCSHARES US 21.8 174 hban.us HBAN.O
REGIONS FINANCIAL NEW US 21.6 163 rf.us RF
M&T BANK US 29.3 155 mt.us MTB
MITSUBISHI UFJ FINANCIAL GROUP Japan 68.9 3,175 mtbh.jp 8306.T
SUMITOMO MITSUI FINANCIAL GROUP Japan 44.1 2,176 smf.jp 8316.T
MIZUHO FINANCIAL GROUP Japan 29.5 1,957 mzh.jp 8411.T
RESONA HOLDINGS Japan 10.3 662 rsnh.jp 8308.T
SUMITOMO MITSUI TRUST HOLDINGS Japan 11.2 554 smt.jp 8309.T
FUKUOKA FINANCIAL GROUP Japan 3.4 252 ffg.jp 8354.T
CHIBA BANK Japan 4.6 161 cbb.jp 8331.T
HOKUHOKU FINANCIAL GROUP Japan 0.8 150 hkf.jp 8377.T
SHIZUOKA FINANCIAL GROUP Japan 3.9 127 shzb.jp 5831.T
HACHIJUNI BANK Japan 1.7 121 hach.jp 8359.T
STATE BANK OF INDIA India 66.1 697 sbin.in SBI.NS
HDFC BANK India 111.3 268 hdfc.in HDBK.NS
ICICI BANK India 78.4 226 icici.in ICBK.NS
PUNJAB NATIONAL BANK India 6.0 179 puj.in PNBK.NS
BANK OF BARODA India 10.4 168 bob.in BOB.NS
CANARA BANK India 6.9 165 can.in CNBK.NS
AXIS BANK India 32.5 152 axis.in AXBK.NS
UNION BANK OF INDIA India 5.3 149 ubi.in UNBK.NS
TORONTO-DOMINION BANK Canada 119.7 1,367 td.ca TD.TO
ROYAL BANK OF CANADA Canada 137.1 1,349 ry.ca RY.TO
BANK OF NOVA SCOTIA Canada 62.3 936 bns.ca BNS.TO
BANK OF MONTREAL Canada 67.4 781 bmo.ca BMO.TO
CANADIAN IMPERIAL BANK COMMERCE Canada 43.0 663 cm.ca CM.TO
NATIONAL BANK OF CANADA Canada 24.4 281 na.ca NA.TO
HSBC HOLDINGS UK 114.0 2,956 hsba.gb HSBA.L
BARCLAYS UK 29.7 1,869 barc.gb BARC.L
LLOYDS BANKING GROUP UK 35.0 1,197 lloy.gb LLOY.L
NATWEST GROUP UK 28.8 1,058 rbs.gb NWG.L
STANDARD CHARTERED UK 19.9 828 stan.gb STAN.L
KB FINANCIAL GROUP Korea 15.4 558 kb.kr 105560.KS
SHINHAN FINANCIAL GROUP Korea 14.3 545 shf.kr 055550.KS
INDUSTRIAL BANK OF KOREA Korea 6.0 335 ibk.kr 024110.KS
STANDARD BANK GROUP Korea 17.0 170 sbk.kr SBKJ.J
FIRSTRAND Korea 20.9 124 fsrj.kr FSRJ.J
CHINA MERCHANTS BANK China 97.6 1,438 cmb.cn 600036.SS
SHANGHAI PUDONG DEVELOPMENT BANK China 29.5 1,267 shgp.cn 600000.SS
CHINA MINSHENG BANKING China 17.5 1,083 cmsb.cn 600016.SS
PING AN BANK China 33.1 766 pab.cn 000001.SZ
HUAXIA BANK China 11.4 575 hxb.cn 600015.SS
BANCO SANTANDER Spain 45.4 1,793 san.es SAN.MC
BANCO BILBAO VIZCAYA ARGENTARIA Spain 33.8 737 bbva.es BBVA.MC
BANCO DE SABADELL Spain 4.9 279 sab.es SABE.MC
BANKINTER Spain 5.3 122 bkt.es BKT.MC
INTESA SANPAOLO Italy 43.1 1,198 isp.it ISP.MI
UNICREDIT Italy 27.4 1,029 ucg.it CRDI.MI
BANCO BPM Italy 5.0 223 bp.it BAMI.MI
BANCA MONTE DEI PASCHI Italy 2.4 156 bmps.it BMPS.MI

Continued on next page
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Table 2.D.2 – continued from previous page
Bank Name Country Mcap Asset Bank Code Reuters Ticker

COMMONWEALTH BANK OF AUSTRALIA Australia 122.3 834 cba.au CBA.AX
AUSTRALIA AND
NEW ZEALAND BANKING GROUP Australia 49.1 710 anz.au ANZ.AX
WESTPAC BANKING Australia 56.8 679 wbc.au WBC.AX
NATIONAL AUSTRALIA BANK Australia 65.2 671 nab.au NAB.AX
SVENSKA HANDELSBANKEN Sweden 19.7 370 shba.se SHBa.ST
SKANDINAVISKA ENSKILDA BANKEN Sweden 24.5 365 seba.se SEBa.ST
SWEDBANK Sweden 17.9 304 swe.se SWEDa.ST
DBS GROUP HOLDINGS Singapore 66.5 508 d05.sg DBSM.SI
OVERSEA-CHINESE BANKING Singapore 41.1 402 ocbc.sg OCBC.SI
UNITED OVERSEAS BANK Singapore 36.9 340 uob.sg UOBH.SI
MALAYAN BANKING Malaysia 22.5 213 may.my MBBM.KL
CIMB GROUP HOLDINGS Malaysia 12.7 149 cimb.my CIMB.KL
PUBLIC BANK Malaysia 18.7 111 pubm.my PUBM.KL
BNP PARIBAS France 67.1 2,991 bnp.fr BNPP.PA
CREDIT AGRICOLE France 30.4 2,354 aca.fr CAGR.PA
SOCIETE GENERALE France 21.5 1,661 gle.fr SOGN.PA
UBS GROUP Switzerland 65.3 1,109 ubsn.ch UBSG.S
CREDIT SUISSE GROUP Switzerland 12.0 825 csgn.ch CSGN.S
BANK OF IRELAND GROUP Ireland 8.4 175 bir.ie BIRG.I
AIB GROUP Ireland 8.0 142 aib.ie AIBG.I
DEUTSCHE BANK Germany 22.1 1,499 dbk.de DBKGn.DE
COMMERZBANK Germany 10.4 534 cbk.de CBKG.DE
BANQUE NATIONALE DE BELGIQUE Belgium 0.4 409 bnab.be BNAB.BR
KBC GROUP Belgium 22.4 386 kbc.be KBC.BR
SBERBANK OF RUSSIA Russia 48.2 548 sber.ru SBER.MM
DNB BANK Norway 28.5 331 dnb.no DNB.OL
ING GROEP Netherlands 44.1 1,081 inga.nl INGA.AS
BANK OF GREECE Greece 0.3 270 bg.gr BOGr.AT
NORDEA BANK Finland 37.7 647 nor.fi NDASE.ST
DANSKE BANK Denmark 14.3 602 dan.dk DANSKE.CO
BANCO DO BRASIL Brazil 19.6 337 bbas.br BBAS3.SA
ERSTE GROUP BANK Austria 12.9 349 ebs.at ERST.VI

2.D.2 Discussions of the states turning points

This section provides further details on the states turning points shown in Figure 2.1 of
the paper.

From the beginning of the sample period to the late 2007, the global banking system
stayed in the state of low connectedness with no sign of volatility contagion. The substantial
increase in the system-wide connectedness was observed in late October 2007 when the model
generates the first sign of an extreme connectedness state. This state transition reflected the
heightened risk perceived by investors at the time, in part due to the the worsening in the
third quarter financial statements of major US banks and the sudden resignation of CEOs
from Merrill Lynch and Citigroup.

Since then until late August 2008, the global banking system lingered in the extreme
connectedness state for most of the periods but transited back to the low connectedness state
at times roughly corresponding to the main policy actions. The first of these transitions
coincided with the initiation of the Term Auction Facility (TAF) program, which was
instituted by the Federal Reserve on December 12, 2007 to alleviate financial strains in the
inter-bank money market. The second transition took place around February 2008, when the
Economic Stimulus Act of 2008 was enacted with aim to boost consumer spending in US.
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The next transition was partly attributable to a $75 billion expansion of the TAF program
on May 2, 2008. The last transition followed the enactment of the Housing and Economic
Recovery Act of 2008 on July 30, 2008, which was designed primarily to support Fannie Mae
and Freddie Mac, the two large US suppliers of mortgage funding.

From September 2008 until August 2009, the global banking system entered a long period
of extreme connectedness state without temporarily returning to the low connectedness state.
During this time, the subprime mortgage crisis expanded into a global one with the failures
of Lehman Brothers, AIG, Fannie Mae, Freddie Mac, Merrill Lynch and many others. It was
then clear that the global economy was in its worst shape since the Second World War as
evidenced by the announcement by the World Bank in mid-2009 that global production would
decline for the first time since that war. Consequently, pessimism seems to continuously
grip the bank stock market, leading to the period in which the extreme connectedness state
persisted.

In the last quarter of 2009 and throughout 2010, the European sovereign debt crisis drove
the global banking system continually out of the low connectedness state. Since this crisis
is incomparable to the previous global financial crisis regarding the scale and magnitude of
its effects, the banking system usually ended up at the high connectedness state, with two
exceptions that it went into the extreme connectedness state. The high connectedness state
was firstly observed during November-December 2009, when concerns about some EU member
states’ debts started to grow following the Dubai sovereign debt crisis. In the first quarter of
2010, the system briefly turned back to the low connectedness state in response to the launch
of Greece’s Stability and Growth Program and its first austerity plan. However, as the Greek
debt crisis intensified and concerns started to build about other heavily indebted countries in
Europe - Portugal and Spain, the system transited again to the high connectedness state
in April and then rushed to the extreme connectedness state in May. Over the subsequent
three months, austerity measures put in effect by the Italian government as well as the
IMF and ECB’s endorsement of an additional €9 billion payment to Greece calmed the
markets down, prompting the banking system back to the low connectedness state. The next
high-connectedness state appeared in late September due to the worsening of Ireland’s fiscal
conditions. After two months of negotiation, the EU and IMF approved a €85 billion bailout
package for Ireland, inducing the banking system to re-entering the low connectedness state
in December.

Sovereign debt troubles of Greece and Portugal continued in early 2011, when the Greek
sovereign debt was downgraded to junk status in January and Portuguese government
collapsed in a fight over austerity measures in March. These events contributed to two
high-connectedness states emerging in the corresponding month. After that, some good news
about the approvement of €78 billion bailout package for Portugal and the launch of the
permanent rescue fund the European Stability Mechanism relieved the markets, bringing
on a low connectedness state until the end of July. From August onwards, unimpressed
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with EU countries’ recovery in the wake of the previous bailout package, rating agencies
further downgraded the sovereign debt ratings of Italy, Spain, Belgium and Portugal. An
international alarm over a Eurozone crisis grew, when the US president Barack Obama
stated on 26 September the debt crisis in Europe was “scaring the world”. As a result,
global investors became increasingly skittish about Europe’s prospects for resolving its crisis,
contributing to an extreme connectedness state occurring around August-November. In
the last month of 2011, the system returned to the low connectedness state, which may be
associated with the announcement of the Long-Term Refinancing Operation through which
the European Central Bank offered three-year loans to more than 500 Euro Area banks.

The first half of 2012 was marked by two high-connectedness states, taking place around
February and May respectively. The former was largely driven by Moody’s cut of the debt
ratings of six European countries, along with a pessimistic outlook of the EU economy
according to the European Commission. The latter was partly attributable to an escalated
political crisis in Greece. In the summer of 2012, European Central Bank president Mario
Draghi delivered the famous “Whatever it takes” speech, which marked the turnaround of
the euro crisis. Since then, investor sentiment has gradually recovered and the bank stock
market has steadily returned to stability. Therefore, the global banking system tended to
stay in the low connectedness state toward the end of the year, with one exception that a
short-lived high-connectedness state occurred in October following the announcement of a
near junk status of Spain’s sovereign credit rating.

The subsequent period 2013-2019 was primarily characterized by the low connectedness
state. In mid-October 2014, the global banking system transited to the high connectedness
state for a short while due to the flash crash in the US Treasury bill market.

The global banking system was once in the extreme connectedness state in March 2020
and the first half of June of 2020, coinciding with the first major wave of COVID-19 around
the world. At this time, banks were exposed to a large panel of issues related to the financing
of the real economy, a decrease in assets due to the repayment delay of SMEs, volatility of
assets under management, a reduced amount of capital exchanged because of the lockdown,
and volatility of reserves resulting from exchange rate volatility. The year following 2020
was characterized by one fleeting high-connectedness state in early June, possibly due to
the advance of the delta variant of the coronavirus in Europe and the potential drag this
could have on the normalization of activity (e.g., for tourism). With the combination of
geopolitical disruption and soaring inflation in 2022, the banking system transited to the
high connectedness state twice during March-April and October-December. The former
transition was driven by the heightened Russia-Ukraine conflict and the continued energy
market pressures. The latter was associated with the announcement of rising interest rates
in most developed economies.
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Determination of Regime
Dimension in Markov-Switching

Panel Models

3.1 Introduction

In Markov-switching (MS) panel models, several latent regimes can summarize the
dynamics of data from observational units (such as workers, firms, and countries). This is
achieved by allowing individuals within a given regime to share similar distributions (e.g.,
the means and the variances), while distributions can differ across the regimes. From the
identified regimes, such models are useful to glean a range of economic insights, which may
relate to the business cycle synchronization among countries or regions in the economy
(Agudze et al., 2022), the propagation of macroeconomic shocks on a panel of equity returns
(Zhu et al., 2017), the dynamic transitions across business model groups for a collection
of financial institutions (Joao et al., 2023), and many others. Despite the usefulness of
the MS panel models, one major challenge exists when applying them in practice, which is
determining how many regimes are necessary to adequately characterize the observed data.

Existing solutions for the determination of the number of regimes in MS panel models
typically employ the assumption that the regime dimension is homogeneous in the cross-
section. In other words, the same set of regimes characterizes all individual units. With
this assumption, the problem of determining the regime dimension for an MS panel model
is treated as the problem of finding out the value of a variable that represents the regime
dimension for the whole panel. Sometimes, the value of such a single variable can be dictated
by the actual applications. For example, two regimes are often considered for macroeconomic
panel data when investigating the business cycle phases (see, e.g., Hamilton and Owyang,
2012; Francis et al., 2017; Casarin et al., 2018; Owyang et al., 2022; Agudze et al., 2022). For
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more general applications where there is no external information on the number of regimes, a
common approach to determine the regime dimension follows a model selection procedure.
This generally consists in estimating the MS panel model for increasing values of the regime
dimension variable up to an upper bound and then choosing the optimal value of the variable
by using a model selection criterion (see, e.g., Billio et al., 2016). Apparently, estimation of
the model needs to be repeated several times for different values of regime dimension, which
makes the overall procedure time-consuming and computationally demanding. Moreover, the
choice of both the upper bound of the regime dimension and the model selection criterion
suffers from a degree of subjectivity. These limitations motivate an alternative approach,
which is based on Bayesian nonparametric (BNP) inference and aims to estimate the unknown
regime dimension variable in MS panel models (see, e.g., Casarin et al., 2024). The idea of
this BNP inference approach is to extend the finite number of regimes of the MS panel model
to the case in which this number goes to infinity, thus transforming the parametric MS panel
framework into a nonparametric structure. A direct consequence is that the regime transition
matrix has an infinite dimension. Then with a proper nonparametric prior (e.g, the Dirichlet
process or its variant, the Pitman-Yor process) imposed on this infinite-dimensional matrix,
the superfluous matrix dimension can be emptied during estimation and the non-empty
dimension finally indicates the finite regime dimension of the panel.

Assuming homogeneous regime dimension across the cross-section, however, may be
restrictive as individuals are likely to be characterized only by one or a subset of regimes
identified from the panel. For example, in spite of the wide-spreading effects of the 1997
Asian financial crisis, both China and India were not victims as opposed to most Asian
economies (Park et al., 2010). Similarly, for the recent Global Financial Crisis after 2007,
some US states were heavily affected, such as Michigan, while other states were essentially
unaffected, such as Texas, which benefited from high oil prices in 2009 and 2010. Together,
these observations imply that the regimes available in the panel do not necessarily affect all
units and the set of regimes owned by individuals might be of heterogeneous dimension.

This paper proposes a general framework to estimate the number of regimes in MS
panel models, allowing possible heterogeneity in cross-sectional regime dimension. We model
individual heterogeneity via a binary matrix, where each row corresponds to a panel unit, each
column corresponds to a regime, and an entry of one indicates a given unit owns a particular
regime available in the panel. Hence, the column dimension of this binary matrix indicates the
total number of regimes for the panel, and the number of nonzero entries in a particular row of
this binary matrix indicates the number of regimes for the individual units. Importantly, our
framework includes the MS panel models with cross-sectional homogeneous regime dimension
as a special case where the binary matrix has all one entries. To maintain an unbounded
number of regimes in the panel, we then model the binary matrix nonparametrically by
letting its column dimension go to infinity. As a result, the problem of determining the
number of regimes for an MS panel model is recast as the problem of estimating the unknown



Chapter 3 105

column dimension and configuration of a binary matrix with a finite number of rows and an
infinite number of columns.

Methodologically, we develop new BNP inference to jointly estimate the latent binary
matrix and the other parameters in MS panel models. In particular, we specify the bi-
nary matrix using a nonparametric prior based on an Indian buffet process (Griffiths and
Ghahramani, 2005, 2011), which allows an infinite total number of regimes in the panel
while encouraging the sharing of regimes across units. We formulate the unit-specific regime
transition matrix via the usual Beta-to-Dirichlet transformation and a prior based on the
zero-inflated Beta distribution, which constraints individuals to transit among its set of
present regimes informed by the binary matrix. We place a hierarchical conjugate prior
over the unit-specific regime-switching parameters, which enables units within the same
regime to share similar dynamics and helps deliver a closed-form data marginal likelihood
that improves posterior computation efficiency. To accomplish the estimation, we present
a six-step Markov chain Monte Carlo procedure that exploits a combination of multi-move
Gibbs, Metropolis-Hasting and reversible jump samplers.

Our inference approach makes contributions that relate to two branches of literature.
First, it contributes to the expanding literature on Bayesian nonparametric Markov-switching
models concerning an infinite number of regimes. Existing studies routinely use the Dirichlet
process or its variants to infer the regime dimension from the finite dimension of one single
common transition matrix. For this reason, previous BNP solutions to the regime dimension
determination problem are limited to univariate models (see, e.g., Otranto and Gallo, 2002;
Song, 2014; Dufays, 2016; Bauwens et al., 2017; Jin et al., 2019; Luo et al., 2022), and
multivariate models assuming common regimes and transitions for all individuals (see, e.g.,
Hou, 2017; Casarin et al., 2024). Our approach complements these BNP solutions by utilizing
the Indian buffet process as an alternative to the Dirichlet process, and estimating the regime
dimension for multivariate models in the presence of possibly heterogeneous regimes occurring
to some individuals. Second, the proposed inference approach contributes to the Bayesian
nonparametrics literature on applications of the Indian buffet process (IBP). The IBP so
far has received considerable attention in latent feature modeling (see, e.g., Broderick et al.,
2013; Ročková and George, 2016; James, 2017; Ni et al., 2020; Lui et al., 2023), yet only a
few studies have considered the IBP in MS modeling. A closely related work is Fox et al.
(2014), which employs the IBP as a prior on the infinite-dimensional binary representation of
the unknown regime pattern underlying multiple time series. Our approach differs in two
main aspects. On the one hand, Fox et al. (2014) model the unit-specific regime transition
matrix via a Gamma-to-Dirichlet transformation, which requires sampling an extra scaling
factor for normalizing the transition probabilities. We bypass the additional sampling and
normalization steps by using a more straightforward Beta-to-Dirichlet transformation. On the
other hand, Fox et al. (2014) assume the regime-switching parameters are identical between
individuals. Instead, we explicitly model the unit-specific regime-switching parameters via
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a hierarchical conjugate prior, which allows individuals’ dynamics within a given regime to
be quite similar but not the same. Therefore, our approach, benefiting from more suitable
priors on the transition matrix and regime-switching parameters, improves the flexibility and
applicability of the IBP in the field of MS multivariate modeling.

Through simulations, we examine the effectiveness of our framework under a range of panel
settings, differing in the cross-section dimensions, the time series dimensions, the degrees of
cross-sectional heterogeneity in the regime dimension, and the degrees of individual dynamics
across regimes. For panels with homogeneous regime dimension in the cross-section, our
approach can efficiently recover the true regime dimension of the whole panel, no matter the
size of cross-section, the length of time series, and the stability of individual regime-switching
dynamics. For panels with weak and strong levels of cross-sectional heterogeneity in the
regime dimension, regardless of how unstable the individual regime-switching dynamics are,
our approach continues to perform well in estimating the total number of regimes so long as
the sample size of the panel is not too large. In every case where the total number of regimes
for the panel is correctly estimated, our framework can further precisely estimate the regime
dimension and the regime-switching dynamics for each unit.

An application to 50 US state-level macroeconomic indices over the period 1979-2023
demonstrates the empirical gains of relaxing the assumption of cross-sectional homogeneous
regime dimension in MS panel models. Our framework that assumes cross-sectional het-
erogeneous regime dimension identifies seven regimes of the whole panel over the 40-year
sample. About 25% of US states possess five of the identified seven regimes whereas the
remaining states possess all seven regimes, indicating our assumption is plausible empirically.
From the turning points of the identified regimes, it appears that our framework produces
accurate timing of recessions that agrees with the NBER-designated cycle dates and is fully
flexible in capturing the noncommon and non-synchronized dynamics underlying individual
US states. A recursive out-of-sample forecasting exercise shows that the MS panel (or
multivariate) framework assuming cross-sectional homogeneous regime dimension as well as
the MS univariate framework are unable to rival the forecast accuracy generated from our
MS panel framework allowing for likely heterogeneous regime dimension in the cross-section.

The remainder of this paper is organized as follows. Section 3.2 introduces the methodology.
Section 3.3 conducts Monte Carlo simulations and Section 3.4 provides an empirical application
to US state-level macroeconomic indices. Section 3.5 concludes. Technical details, further
simulation results and additional material on the empirical illustration are provided in
Appendix 3.
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3.2 Methodology

3.2.1 Model

We consider a panel with i= 1, ...,N units and t= 1, ...,T time periods that is subject
to an unknown number of regimes, denoted by K. We consider an unbounded number of
regimes by letting K go to infinity. The i-th unit may own just a single one or a subset or
all of the K regimes over the T time periods. Let fik denote a unit-specific binary indicator
which equals one if the i-th unit owns the k-th regime and zero otherwise. The k-th regime
contains Nk =∑N

i=1 fik number of units, subject to 1 ≤Nk ≤N . The set Nk = {i : fik = 1}
of dimension Nk thus collects those units possessing the k-th regime. The i-th unit possesses
Ki = ∑K

k=1 fik number of regimes, subject to 1 ≤ Ki ≤ K. The set Ki = {k : fik = 1} of
dimension Ki thus collects those regimes possessed by the i-th unit. Let fff i = {fi1, ...,fiK}
denote a K-dimensional vector collecting all the unit-specific binary indicators. Given fff i,
the set of regimes possessed by a panel can be further expressed in the form of a binary
matrix F = {fff1, ...,fffN}′ with a finite number of rows (N) and an infinite number of columns
(K). Conditional on this infinite-dimensional binary matrix F , for units i= 1, ...,N , a simple
nonparametric MS panel model with possibly cross-sectional heterogeneous regime dimension
takes the following form1

yit = µi,sit +σi,sitεit, εit ∼ i.i.d. N (0,1)
sit|sit−1 = k,Pi ∼ pppi,k,

(3.1)

where yit is the time series from the i-th observational units; N (µ,σ2) denotes the Gaussian
distribution with mean µ and variance σ2; sit is a hidden Markov chain process with values in
the set Ki; Pi is a Ki×Ki regime transition matrix; pppi,k = (pi,k1, ...,pi,kl, ...) is the k-th row of
Pi which collects the transition probabilities out of regime k, i.e., pi,kl = Prob(sit = l|sit−1 = k),
for l,k ∈ Ki. The functional form for the regime-switching parameters is

µi,sit =
∑
k∈Ki

µi,kI(sit = k), σ2
i,sit

=
∑
k∈Ki

σ2
i,kI(sit = k). (3.2)

where I(·) is the indicator function which takes value one if the chain sit in the regime k and
zero otherwise.

1Similar to several studies in the literature (see, e.g., Hamilton and Owyang, 2012; Agudze et al., 2022;
Casarin et al., 2024), we regard the parsimonious MS panel framework in (3.1) to illustrate the proposed
methodology. There is no conceptual problem with adding autoregressive terms, exogenous predictors, or
cross-section error correlations to this equation, though that would greatly increase the number of parameters
for which one needs to draw an inference.
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3.2.2 Model intuition and comparison with similar approaches

To illustrate the importance of assuming cross-sectional heterogeneity in the regime
dimension, we display in Figure 3.1 three hypothetical regime patterns the panel may exhibit.
In the left and middle plots, the number of regimes is homogeneous in the cross-section (all
four units own over time the three regimes in the panel). The left and middle plots differ in
the time at which the three regimes hit the units, with the former considering synchronized
regimes (hitting individuals simultaneously) while the latter permitting non-synchronized
regimes (hitting individuals with different delays). In the right plot, the number of regimes
is heterogeneous in the cross-section (unit owns over time a single one or two or all of the
three regimes in the panel) and non-synchronized regimes are permitted. The regime pattern
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Figure 3.1 Illustration of three hypothetical regime patterns the panel may exhibits.

in the left plot is the result of applying the existing BNP MS multivariate frameworks to
the panel considered (see, e.g., Hou, 2017; Casarin et al., 2024). The next one in the middle
plot can be identified by a standard MS panel model, with the number of regimes K = 3
being set through prior belief (see, e.g., Hamilton and Owyang, 2012; Francis et al., 2017;
Casarin et al., 2018; Owyang et al., 2022; Agudze et al., 2022) or a model selection procedure
(see, e.g., Billio et al., 2016). The last one in the right plot cannot be captured by any of the
above frameworks but could be captured to some extent by the existing BNP MS univariate
frameworks, when applied separately to each unit in the cross-section (see, e.g., Otranto and
Gallo, 2002; Song, 2014; Dufays, 2016; Bauwens et al., 2017; Jin et al., 2019; Luo et al., 2022).
The identified regimes from such univariate approaches, however, are specific to individual
units and thus overlook information in the cross-section. By allowing for cross-sectional
heterogeneous regime dimension in MS panel models, our methodology therefore has the
benefit of accommodating the last regime pattern as the BNP MS univariate framework while
still preserving much of the increased power derived from the cross-section. Our approach
is also fully flexible in its ability to encompass the regime patterns in the left and middle
plots since after estimation the binary matrix may have all-one entries and the unit-specific
Markov chain process may (or not) be synchronized with each other.
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3.2.3 Prior distributions

We now specify the prior distributions over the latent binary matrix and the other
parameters in the proposed nonparametric MS panel framework.

3.2.3.1 Prior on infinite-dimensional binary matrix

For a prior on the infinite-dimensional binary matrix F , we adopt the Indian buffet
process (IBP) (Griffiths and Ghahramani, 2005, 2011). The IBP is based on a culinary
metaphor in which customers arrive at an infinitely long buffet line of dishes. By viewing
customers as panel units and dishes as regimes, we show our proposed infinite-dimensional
binary matrix can be specified through a procedure by which customers (units) choose dishes
(regimes):

1. Imagine a sequence of N customers entering an Indian buffet restaurant. Each customer
selects a finite number of dishes (i.e., Ki), chosen from a limitless supply of potential
dishes to taste (i.e., K).

2. The first customer starts at the left of the buffet and takes a serving from each dish,
stopping after a Pois(β) number of dishes. The dishes are labeled 1, ...,K1. This gives

K1 ∼ Pois(β),
K1 = {1, ...,K1},

(3.3)

where Pois(·) denotes the Poisson distribution; β > 0 is called the mass parameter,
which controls the total number of dishes tried by N customers.

3. For every i > 1, the i-th customer chooses which dishes to taste in two parts. First,
for each dish k that has previously been tasted by any customer in 1, ..., i− 1, the i-th
customer tastes disk k or not (i.e., fik) according to its popularity which is specified as
the probability f1k+f2k+...+fi−1k

c+i−1 . Having reached the end of all previously tasted dishes,
the i-th customer then chooses a Pois( βc

c+i−1) number of new dishes to try. The new
dishes receive unique labels Mi−1 + 1,Mi−1 + 2, ...,Mi−1 +K+

i . Here Mi represents the
number of tasted dishes after i customers and K+

i denotes the number of new dishes.

Let Mi = K1 ∪K2...∪Ki be the set of previously tasted dishes after i customers. The
cardinality of Mi is Mi. Let Ni,k = f1k + f2k + ...+ fik be the number of customers
indexed 1, ..., i who have tasted dish k. The above behavior of customer i gives

Ki =
∑

k∈Mi−1

fik +K+
i , with fik ∼ Bern( Ni−1,k

c+ i−1), K+
i ∼ Pois( βc

c+ i−1),

Ki = {k : fik = 1,k ∈ Mi−1}∪{Mi−1 +1,Mi−1 +2, ...,Mi−1 +K+
i },

(3.4)
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where Bern(·) denotes the Bernoulli distribution; c > 0 is called the concentration
parameter, which controls the average number of dishes per customer.

4. After N customers, the total number of tasted dishes is MN =MN−1 +K+
N .

An example of the infinite-dimensional binary matrix produced by the above procedure is
shown in Figure 3.2. The first customer tasted four dishes: K1 = 4,K1 = {1,2,3,4},M1 = K1

and M1 = 4. The second customer tasted two of those dishes, and then tried two new dishes:
K2 = 4,K2 = {2,4} ∪ {5,6},M2 = K1 ∪ K2 = {1,2,3,4,5,6},M2 = 6 and K+

2 = 2. Vertically
concatenating the choices of the N = 5 customers produces the binary matrix shown in the
figure.

Through the illustration of the Indian buffet metaphor, the probability of any particular
infinite-dimensional binary matrix F̂ is the result of the Poisson distribution for the number
of new dishes times the Bernoulli distributions for the choice of existing dishes. Formally,

p(F̂ ) =
N∏
i=1

fPois(K+
i ; βc

c+ i−1)×
MN∏
k=1

N∏
i=1

fBern(fik;
Ni−1,k
c+ i−1), (3.5)

where fA denotes the probability mass function of a distribution A.

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8...
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Figure 3.2 Illustration of an infinite-dimensional binary matrix produced by IBP. The buffet consists
of an infinitely long vector of dishes, corresponding to regimes. Each customer—corresponding to
a panel unit—who enters first decides whether or not to eat dishes that the other customers have
already tasted and then tries a random number of new dishes, not previously tasted by any customer.
A red box in position (i,k) indicates dish k has been chosen by customer i, a white box indicates the
dish has not been chosen by the customer, and a box marked with × indicates dish k has not yet
been chosen by anyone.

From Figure 3.2, we also see that two dishes k= 2 and k= 4 are tasted by exactly the same
set of customers; i.e., N2 = {1,2,3,5} and N4 = {1,2,3,5}. Therefore, random permutations
of columns k = 2 and k = 4 will yield the same infinite-dimensional binary matrix F̂ shown in
the figure. Taking this into account, a random infinite-dimensional binary matrix F will refer
to the class of all particular matrices F̂ that exhibit the same left-orderings (Griffiths and
Ghahramani, 2005, 2011). Hence, a combinatoric term is augmented to the probability mass
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functions in (3.5) such that the probability of random matrix F is unaffected by changing
the order of its columns

p(F = F̂ ) =
∏N
i=1K

+
i !∏2N −1

h=1 K̃h!
×p(F̂ ),

= (
2N −1∏
h=1

K̃h!)−1(βc)MN exp(−βc
N∑
i=1

(c+ i−1)−1)
MN∏
k=1

Γ(Nk)Γ(N −Nk + c)
Γ(N + c) ,

(3.6)

where K̃h represents the number of columns in F for the h-th possible configuration. The
cardinality of all possible non-zero binary columns in F of length N is 2N −1 so ∏2N −1

h=1 K̃h!
iterates over the sample space of all distinct non-zero columns in F . It is also clear that
the probability mass function specified in (3.6) has no dependence on the ordering of the
indices in N . Hence, the distribution of F is invariant under permutations of the indexes
of columns and rows in F . Overall, the prior on our infinite-dimensional binary matrix F

follows an IBP(β,c) distribution2 with the probability mass function specified in (3.6). To
infer the values of the IBP parameters β and c, we additionally place gamma priors so that
β ∼ G(aβ , bβ) and c∼ G(ac, bc), where G(a,b) denotes the gamma distribution with shape and
scale parameters a and b.

3.2.3.2 Prior on zero-embedded regime transition matrix

Previous studies (see, e.g., Casarin et al., 2018; Agudze et al., 2022; Casarin et al., 2024)
show that the unit-specific regime transition matrices Pi within the panel are usually specified
by a common Dirichlet distribution as follows

pppi,k = (pi,k1, ...,pi,kK) ∼ i.i.d. Dirichlet(α1, ...,αK), i= 1, ...,N, k = 1, ...,K (3.7)

where pppi,k is the k-th row of Pi; α1, ...,αK are Dirichlet distribution parameters.
In our context assuming cross-sectional heterogeneous regime dimension, each unit transits

only between its set of present regimes informed by the identified binary vector fff i (i.e., the
i-th row of the infinite-dimensional binary matrix F ) with dimension up to max(Ki). This
means the unit-specific probability vector pppi,k is now defined over the finite set of regimes
l ∈ {1, ...,max(Ki)}, but assigns nonzero probabilities only at regimes l where fil = 1. In

2In this paper, we use the two-parameter IBP, i.e., IBP(β,c), under which the asymptotic behavior of MN

(i.e., the total number of regimes) is O(logN) (Griffiths and Ghahramani, 2005) (for fixed β and c) and it is
clear that MN grows slowly with N . Hence, the two-parameter IBP is suitable for many MS applications in
macroeconomics and finance where a small total number of regimes is usually observed. For applications where
one expects the distribution of the total number of regimes to exhibit a heavy tail with N , a three-parameter
IBP (Teh and Gorur, 2009; Broderick et al., 2012) can be used since asymptotically MN is O(Nd) (0< d < 1)
and grows with N faster than the two-parameter case.
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other words, the entry pi,kl in pppi,k now takes the form

{
pi,kl = 0 if fil = 0
pi,kl > 0 if fil = 1

(3.8)

for l ∈ {1,2, ...,max(Ki)}, and satisfies ∑l pi,kl = 1. As a result, (3.8) leads to a zero-embedded
regime transition matrix which is different from the standard one in (3.7) where all entries
are nonzero.

To specify a prior on our zero-embedded regime transition matrix, we start by following
Connor and Mosimann (1969) and Ishwaran and James (2001) to rewrite (3.7) based on a
set of mutually independent Beta variables zzzi,k = (zi,k1, ....,zi,kK−1)

pi,k1 = zi,k1, pi,kl = zi,kl

l−1∏
m=1

(1− zi,km) for l = 2, ...,K−1,

and pi,kK = 1−
K−1∑
m=1

pi,km,

(3.9)

where zi,kl ∼ i.i.d. Beta(αl,
∑K
m=l+1αm) for l = 1, ...,K − 1 and K = max(Ki). To make

transition matrix conditional on the identified binary vector fff i, we instead employ a zero-
inflated Beta (ZIB) distribution (see, e.g., Tang and Chen, 2019) for the Beta variables zzzi,k,
that is {

zi,kl = 0 if fil = 0
zi,kl|fil = 1 ∼ i.i.d. Beta(αl,

∑K
m=l+1αm) if fil = 1

(3.10)

Consequently, transforming those zero-inflated Beta variables to pppi,k through (3.9) gives a
zero-embedded regime transition matrix. As many macroeconomic and financial time series
evolve with high persistence, we further follow the sticky version of Fox et al. (2011) to
define αk = γ+κδk in (3.10), where δk is the measure of a point mass of one at k. The term
κδk indicates that to element αk (i.e., the k-th parameter in the Dirichlet distribution) is
added κ ≥ 0. Through κ, regime self-transition can be reinforced. To infer the values of
the ZIB parameters γ and κ, we additionally place gamma priors so that γ ∼ G(aγ , bγ) and
κ∼ G(aκ, bκ).

3.2.3.3 Prior on regime-switching parameters

For priors on the regime-switching parameters (µi,k,σi,k), we specify a hierarchical conju-
gate normal–gamma distribution

µi,k|σ−2
i,k ∼ N (µk,(σ−2

i,k )−1h−1
k ),

σ−2
i,k ∼ G(νk2 ,2V

−1
k ),

(3.11)
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with

µk ∼ N (µ,(h−2)−1),

hk ∼ G(d2 ,2c
−1),

νk ∼ Exp(λ),

Vk ∼ G(ν2 ,2V
−1),

(3.12)

where Exp(λ) is the exponential distribution with mean λ−1. The hierarchical conjugate
prior distribution for (µi,k,σi,k) has several advantages. First, given (3.11), there is a degree
of similarity in the regime-switching parameters of those units that share the same regime
since parameters are shrunk towards the regime-specific common value (µk,Vk). Second, due
to conjugacy, the regime-switching parameters can be integrated analytically to derive the
marginal likelihood of yit. This property provides a closed-form function of the joint posterior
distribution of data observations, binary matrix and regime sequences, which can be used to
simplify the posterior sampling of the infinite-dimensional binary matrix F as detailed in
Appendix 3.A.

3.2.4 Posterior Approximation

Let Yτ :t = (yyyτ , ...,yyyt) and Sτ :t = (sssτ , ...,ssst) be the collection between time τ and t of
observation vectors yyyt = (y1t, ...,yNt) and of hidden Markov chain vectors ssst = (s1t, ...,sNt),
respectively. Let Θ = ({µi,k}Ni=1,{σ

−2
i,k }Ni=1,µk,hk,νk,Vk) be the collection of regime-specific

parameters in the hierarchical conjugate normal–gamma distribution. Let ΘIBP = {β,c} and
ΘZIB = {γ,κ} be the collection of parameters in the IBP and ZIB distributions, respectively.
Let P = {Pi}Ni=1 be the collection of regime transition matrices.

Our framework is estimated using a Markov chain Monte Carlo (MCMC) procedure.
Specifically, we approximate the posterior distribution of the proposed BNP MS panel model
by implementing a multi-move Gibbs sampling algorithm, where the infinite-dimensional
binary matrix, the hidden regime sequences, and the parameters are all sampled in blocks.
At each iteration, the Gibbs sampler iterates over the following six steps. Computational
details of each step are given in Appendix 3.A.

Step 1: Sampling the infinite-dimensional binary matrix F given Θ,ΘIBP,P,S1:T ,Y1:T .
Step 2: Sampling the hidden regime sequences S1:T given F,Θ,P,Y1:T .
Step 3: Sampling the regime transition matrices P given F,ΘZIB,S1:T .
Step 4: Sampling the regime-specific parameters Θ given F,S1:T ,Y1:T .
Step 5: Sampling the IBP parameters ΘIBP given F .
Step 6: Sampling the ZIB parameters ΘZIB given P .
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In MS modeling, one has to deal with the nonidentifiability of the regimes, which is
commonly called the label-switching problem. See, for example, Frühwirth-Schnatter (2001)
for a discussion on the effects that the label switching and the lack of identification have
on the results of MCMC-based Bayesian inference. To avoid the label-switching problem,
in this paper we impose the regime identifying restriction µ1 < µ2 < ... < µK , which implies
that a number of K regimes are separated and identified according to the means the regime
characterize. This restriction follows to a large extent the application of MS panel models in
macroeconomics where data are growth rate of economic variables and is related to the natural
interpretation of the different regimes as different phases (e.g., recession and expansion) of
the business cycle (see, e.g., Billio et al., 2016; Casarin et al., 2018). Alternative identifying
restrictions based on volatilities or other statistical properties of the regimes can also be
considered in our framework for applications in which one wants to discover regimes with
some specific economic interpretation.

3.3 Simulation study

This section illustrates the ability of our BNP MS panel framework to correctly estimate
(i) K, namely the total number of regimes available in the panel; (ii) F , namely the regime
pattern the panel exhibits (i.e., the regime dimension for the individuals); (iii) the individual
regime-switching dynamics, namely its regime-switching parameters and hidden regime
sequence.

3.3.1 Simulation design

We consider time series dimensions (T ) of 150, 250, and 500, which correspond to
approximately ten, twenty and forty years of monthly data. We consider cross-section
dimensions (N) of 25, 50, and 100. We assume there are K = 3 regimes in the panel. We
consider many empirically relevant panel settings, examining the sensitivity of our approach
to panels with different degrees of cross-sectional heterogeneity in the regime dimension
and with various degrees of individual dynamics across regimes. This is investigated via six
different data generating processes (DGPs). The first two differ from the last four in the
regime patterns of the panel. Among each two, they further differ from each other in the
regime transition matrices and the degrees of separation in the regime-specific parameters.
More specifically, we consider three scenarios for the regime patterns of the panel, which are
reflected in the configuration of F

1. Homogeneous F (HoF): this scenario specifies an N ×K matrix F with all one entries,
which implies that the regime dimension is homogeneous in the cross-section.
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2. Weak Heterogeneous F (WHeF): this scenario specifies an N×K matrix F with random
binary entries for 25% of units in the panel and all one entries for the remaining units,
which implies a weak level of cross-sectional heterogeneity in the regime dimension.

3. Strong Heterogeneous F (SHeF): this scenario specifies an N×K matrix F with random
binary entries for 50% of units in the panel and all one entries for the remaining units,
which implies a strong level of cross-sectional heterogeneity in the regime dimension.

Further, we consider two settings of regime-specific parameters and regime transition matrices,
where parameter values are set based on the in-sample estimation results obtained from the
empirical section

1. Weakly Separated Regimes (WS): this setting mimics individual regime-switching dy-
namics over tranquil periods.

µi,1 = −0.2+0.01ηi,1, µi,2 = 0+0.01ηi,2, µi,3 = 0.2+0.01ηi,3.
σ2
i,1 = 0.015+0.012ζi,1, σ

2
i,2 = 0.003+0.012ζi,2, σ

2
i,3 = 0.01+0.012ζi,3.

(3.13)

where ηi,k ∼ i.i.d. N (0,1) and ζi,k ∼ i.i.d. N (0,1) for i= 1, ...,N and k= 1, ...,K. When
1 <Ki ≤ K, each row in the transition matrix Pi is sampled from a Ki-dimensional
Dirichlet distribution with the mean of the regime self-transition probabilities equaling
to 0.95; i.e., E(pi,kk) = 0.95 for k ∈ Ki. This implies that an expected duration of each
regime is equal to 20(=1/(1 −pi,kk)) observations which represents nearly two years of
monthly data. When Ki = 1, the transition matrix Pi is set equal to one since the unit
stays in one regime all the time.

2. Weakly Separated Regimes + Short-lived Strongly Separated Regimes (WSSS): this setting
mimics individual regime-switching dynamics over tranquil and turbulent periods. The
regime k = 1 corresponds to the turbulent periods.

µi,1 = −0.6+0.01ηi,1, µi,2 = 0+0.01ηi,2, µi,3 = 0.2+0.01ηi,3.
σ2
i,1 = 0.1+0.012ζi,1, σ

2
i,2 = 0.003+0.012ζi,2, σ

2
i,3 = 0.01+0.012ζi,3.

(3.14)

where ηi,k ∼ i.i.d. N (0,1) and ζi,k ∼ i.i.d. N (0,1) for i= 1, ...,N and k= 1, ...,K. When
1 <Ki ≤ K, each row in the transition matrix Pi is sampled from a Ki-dimensional
Dirichlet distribution, with the mean of the regime self-transition probabilities equaling
to 0.75 for the regime k = 1 and 0.95 for the remaining regimes; i.e., E(pi,11) = 0.75,
E(pi,22) = 0.95 and E(pi,33) = 0.95. This implies that the expected durations of the
regime k = 1 and the other regimes are equal to 4(=1/(1−pi,11)) months and nearly
two years of monthly data, respectively. When Ki = 1, the transition matrix Pi is set
equal to one.
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Overall, the six DGPs are labelled as HoF + WS, HoF + WSSS, WHeF + WS, WHeF
+ WSSS, SHeF + WS, and SHeF + WSSS. Each DGP is simulated from (3.1) with cross-
section dimensions N = 25,50,100, time series dimensions T = 150,250,500 and the true
number of regimes K = 3. For each DGP with a specific value of N and T , we conduct 20
independent experiments, simulating different panels. For each simulated panel, we estimate
our framework by running the proposed MCMC procedure for 5,000 iterations. To reduce
the serial correlation among the MCMC samples and to mitigate the dependence on the
initial conditions, we discard the first 500 iterations as burn-in and thin the remaining 4,500
iterations at an interval of five. This leaves 900 MCMC samples for each simulated panel
and a total of 18,000 MCMC samples across the 20 different simulated panels.

We specify the following values for the hyperparameters in the prior distributions described
in Section 3.2.3. We set aβ = 2, bβ = 1, ac = 1, and bc = 1 in the gamma priors on the IBP
parameters. We set aγ = 10, bγ = 1, aκ = 10, and bκ = 1 in the gamma priors on the ZIB
parameters. Finally, we set the hyperparameters in the hierarchical conjugate distribution
on the regime-switching parameters as follows3: µ = 0, h = 100; d = (2/1) ∗ (s/0.0001)2,
c = (2/1) ∗ (s/0.0001) with s denoting the average sample variance of Y1:T ; λ = 1/1000;
ν = (2/1002)∗ (s/λ)2, V = (2/1002)∗ (s/λ).

3.3.2 Simulation results

Table 3.1 illustrates, for all DGPs and different values of N and T , the estimation
accuracy of the main variables and parameters. The error eK evaluates the frequency of
correctly estimating the true total number of regimes in the panel across experiments. The
estimate of the number of regimes K is approximated as the posterior mode of the nonempty
column dimension that the estimator of F exhibits through MCMC iterations. The errors
eF and eS1:T evaluate the Hamming distance between their corresponding estimates and the
truths. The estimate of the infinite-dimensional binary matrix F is approximated based
on the posterior probability of each entry therein, which is computed as the average of
each entry’s MCMC samples. We set an entry of F equal to 0 if its posterior probability
is less than 0.5 and to 1 otherwise. The estimate of the hidden regime sequences S1:T is
approximated as the maximum a posteriori (MAP) estimate of their MCMC samples. The

3Given the specified hyperparameters and the priors in (3.12), the mean of µk is equal to 0 and its variance
is equal to 1002, which are rather uninformative. The mean of hk is equal to s/0.0001 and its variance is equal
to 1, which according to (3.11) implies µi,k for those units i that share the same regime k is concentrated on
µk with a small variance around 0.0001. The mean of νk is equal to 1000, which according to (3.11) implies
σ−2

i,k /σ
−2
j,k follows an F-distribution (i.e., σ−2

i,k /σ
−2
j,k ∼ F(1000,1000), i ̸= j) and the probability that the ratio

σ−2
i,k /σ

−2
j,k is less than 0.9 or greater than 1 is about 0.1. Therefore, the ratio σ−2

i,k /σ
−2
j,k is close to 1, suggesting

σ−2
i,k for those units i that share the same regime k are quite similar. The mean of Vk is equal to s/λ (i.e.,
s∗ E(νk)) and its variance is equal to 1002, which according to (3.11) implies σ2

i,k is concentrated on s (i.e.,
the average sample variance) but is rather uninformative for different regimes k given a large variance around
1002.
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error eθ evaluates the average mean square error (MSE) between the estimates and the truths
for all regime-switching parameters (µi,k,σi,k), where k ∈ Ki and i= 1, ...,N . The estimate of
θ = (µi,k,σi,k) is approximated as the posterior means of their MCMC samples. In the table,
the results reported for eK are in percentage, and for eF , eθ, and eS1:T are averages over the
experiments that detect the true regime dimension of the panel.

Table 3.1 Summary of estimation errors

eK (%) eF eθ eS1:T

N = 25 50 100 25 50 100 25 50 100 25 50 100

DGP 1 (HoF + WS)
T = 150 100 95 85 0 0 0 4 × 10−5 4 × 10−5 4 × 10−5 0.02 0.02 0.02
250 100 95 100 0 0 0 4 × 10−5 4 × 10−5 4 × 10−5 0.02 0.02 0.02
500 100 95 100 0 0 0 3 × 10−5 3 × 10−5 3 × 10−5 0.02 0.02 0.02

DGP 2 (HoF + WSSS)
150 95 95 85 1 × 10−3 0 0 1 × 10−4 9 × 10−5 8 × 10−5 0.02 0.02 0.02
250 90 100 90 1 × 10−3 3 × 10−4 1 × 10−3 9 × 10−5 9 × 10−5 5 × 10−5 0.02 0.02 0.02
500 100 95 85 0 7 × 10−4 2 × 10−4 7 × 10−5 5 × 10−5 4 × 10−5 0.02 0.02 0.02

DGP 3 (WHeF + WS)
150 95 95 85 2 × 10−2 1 × 10−2 2 × 10−2 3 × 10−4 5 × 10−4 2 × 10−4 0.03 0.05 0.03
250 95 95 90 2 × 10−3 2 × 10−3 2 × 10−3 4 × 10−5 4 × 10−5 3 × 10−5 0.02 0.01 0.01
500 100 70 80 0 0 2 × 10−2 3 × 10−5 3 × 10−5 2 × 10−4 0.01 0.01 0.03

DGP 4 (WHeF + WSSS)
150 100 95 100 8 × 10−3 9 × 10−3 9 × 10−3 2 × 10−4 1 × 10−4 8 × 10−5 0.01 0.02 0.01
250 90 100 90 7 × 10−4 3 × 10−3 3 × 10−3 1 × 10−4 6 × 10−5 6 × 10−5 0.01 0.01 0.01
500 75 55 30 0 0 0 8 × 10−5 6 × 10−5 4 × 10−5 0.01 0.01 0.01

DGP 5 (SHeF + WS)
150 95 90 85 2 × 10−2 9 × 10−3 7 × 10−3 6 × 10−4 4 × 10−5 4 × 10−5 0.05 0.01 0.01
250 95 90 85 0 4 × 10−4 1 × 10−3 4 × 10−5 3 × 10−5 3 × 10−5 0.01 0.01 0.01
500 95 85 40 0 0 0 2 × 10−5 2 × 10−5 2 × 10−5 0.01 0.01 0.01

DGP 6 (SHeF + WSSS)
150 95 95 100 4 × 10−3 7 × 10−3 4 × 10−3 1 × 10−4 6 × 10−5 6 × 10−5 0.01 0.01 0.01
250 80 70 70 3 × 10−3 1 × 10−3 1 × 10−3 2 × 10−4 7 × 10−5 5 × 10−5 0.01 0.01 0.01
500 60 20 30 0 0 0 7 × 10−5 4 × 10−5 4 × 10−5 0.01 0.01 0.01

Notes: The table reports, for all DGPs and different values of N and T , the estimation accuracy of the main variables
and parameters. The results reported for eK are in percentage, and for eF , eθ, and eS1:T are averages over the
experiments that detect the true number of regimes.

We first examine how well the proposed framework performs in estimating the total
number of regimes in the panel. For DGP 1 (HoF + WS) and DGP 2 (HeF + WS), our
approach manages to detect the correct total number of regimes in more than 85% case, even
with a relatively short time series (T = 150) and large panel (N = 100). This shows that
when individuals are quite alike (i.e., panel exhibits homogeneous regime dimension in the
cross-section), our method can efficiently estimate the regime dimension of the whole panel,
no matter the size of cross-section, the length of times series, and the stability of individual
regime-switching dynamics. In DGP 3 (WHeF + WS) and DGP 4 (WHeF + WSSS), the
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correct detection rate is also high in most cases, although it drops quickly in large sample
(T = 500) as N increases. Allowing a stronger level of cross-sectional regime heterogeneity in
DGP 5 (SHeF + WS) leads to less accurate estimation of the overall regime dimension for
large panel and sample (N = 100 and T = 500). Nevertheless, our approach still manages
to maintain high correct detection rates (with correct detection rates of more than 85%) in
other cases of N and T . Further, introducing more instability to individual regime-switching
dynamics as in DGP 6 (SHeF + WSSS) makes the estimation accuracy more sensitive to N in
large sample (T = 500). These results indicate that as long as the sample size is not too large,
our approach continues to perform well in cases with slightly or very distinct individuals (i.e.,
panel exhibits weak or strong levels of cross-sectional heterogeneity in the regime dimension),
regardless of how notable individual dynamics differ across regimes. Also in such cases, once
the sample size grows, our approach suffers from an increasing loss of estimation accuracy4 in
larger panels, especially with unstable individual regime-switching dynamics. This is possibly
because at the same level of cross-sectional heterogeneity in the regime dimension, the larger
panels result in more individuals subject to likely heterogeneous regimes, the more unstable
individual regime-switching dynamics lead those heterogeneous regimes to be more distinct
from each other, and the longer sample means the heterogeneous regimes may appear more
often and visible. These reasons jointly contribute to the difficulty in overlapping many
individual-specific heterogeneous regimes, with the aim of finally delivering a sparse set of
regimes that can be shared across the panel. For applications involving such panel data sets
(i.e., large panel and sample, very different and unstable individual dynamics), two additional
implementations based on our framework may be preferable: the user could either (i) specify
the hyperparameters aβ , bβ , ac, and bc in the gamma priors on the IBP distribution at small
values to favor more overlapping (or sharing) of regimes in the cross-section, as suggested in
Griffiths and Ghahramani (2011), or (ii) augment our MCMC procedure with the split-merge
Metropolis-Hasting algorithm (see, e.g., Smith, 2023) that allows large changes in the regime
assignment across individuals at each iteration.

We now examine the accuracy of the parameter estimates obtained from our framework.
When the total number of regimes in the panel is correctly estimated, we observe that the
errors eF , eθ, and eS1:T , in every case of N and T , are equal or close to zero under all
DGPs considered. This indicates that our framework is able to precisely estimate the regime
pattern (i.e., the regime dimension for the individuals) and the unit-specific regime-switching
dynamics.

In Appendix 3.B, we also evaluate the convergence and stability of the regime dimension
estimators K and F for those successful experiments that detect the true regime dimension
of the panel. We provide the MCMC trace plots of the estimated number of regimes K and
of the estimation error eF under all DGPs with different values of N and T . In general, the

4Unreported results suggest that when our approach fails to estimate the true number of regimes of the
whole panel in DGPs 3-6, it typically overestimates them by one extra regime.
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regime dimension estimators K and F are converged since the median values (red line) of
K and eF obtained from different experiments remain respectively at the true value K = 3
and eF = 0 across MCMC iterations. Moreover, the estimators K and F are generally stable
since the 10th and 90th quantile (grey line) values of K and eF obtained from different
experiments sweep through small regions5 around the true value K = 3 and eF = 0 across
MCMC iterations.

3.4 Empirical illustration

MS panel models have been widely used in analyzing business cycles. Under an as-
sumption of homogeneous regime dimension in the cross-section, normally two regimes with
interpretations of expansion and recession are determined for business cycles at the region
or global level (see, e.g., Casarin et al., 2018; Owyang et al., 2022; Agudze et al., 2022). In
this section, we revisit the dataset analyzed in Agudze et al. (2022), which includes a large
panel of US state-level macroeconomic indices. Our aim is to illustrate the incremental value
added for business cycle analysis by relaxing the assumption of cross-sectional homogeneous
regime dimension in the MS panel model. To this aim, some in-sample posterior estimates
from our BNP MS panel framework with cross-sectional regime heterogeneity compared with
those from the framework without this feature (see, e.g., Hou, 2017; Casarin et al., 2024)
are first analyzed. We further compare out-of-sample forecasts produced by the above two
frameworks along with those generated by a standard two-regime MS panel model and a BNP
MS univariate framework applied separately to each unit in the cross-section. Benchmark
model specifications are detailed in Appendix 3.C.

3.4.1 Data and implementation

Our sample consists of N = 50 states in the US. We download monthly state-level
coincident indices from the Federal Reserve Bank of Philadelphia (FED)6 between October
1979 and October 2023, implying T = 529. Following Agudze et al. (2022), we transform all
indices into stationary growth rates by the log-first-difference. Data details regarding state
name, abbreviation, and summary statistics are provided in Appendix 3.C. The proposed
framework is implemented with the same prior hyperparameter values and MCMC samples
specified in the simulation study.

3.4.2 In-sample estimations

We start by addressing the problem of determining the number of regimes for the MS
panel model. Under the assumption of cross-sectional homogeneous regime dimension, the

5We see that K is overestimated by only 1 or 2 and eF deviates zero by no more than 0.4.
6Data are available at https://philadelphiafed.org/research-and-data/regional-economy/indexes/coincident.

https://philadelphiafed.org/research-and-data/regional-economy/indexes/coincident
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problem of determining the number of regimes for an MS panel model is treated as the
problem of knowing the nonempty dimension of an infinite-dimensional transition matrix
P . Under our assumption of cross-sectional heterogeneous regime dimension, the problem
of determining the number of regimes for an MS panel model is recast as the problem of
knowing the nonempty column dimension and the configuration of an infinite-dimensional
binary matrix F . Figure 3.3 plots the posterior distribution of the regime dimension for the
whole panel (i.e., K) inferred respectively from the nonempty column dimension of F in our
BNP MS panel framework (plot (a)) and the nonempty dimension of P in the BNP MS panel
framework assuming cross-sectional homogeneous regime dimension (plot (b)). The figure
shows that both methods take the uncertainty of regime dimension into account. Moreover,
it is obvious that the shapes of these posterior distributions are quite different from each
other. The posterior mode under our framework peaks at K = 7 regimes while that under the
benchmark framework points to K = 2 regimes. As the BNP MS panel framework assuming
cross-sectional homogeneous regime dimension treats the dynamics of all individuals equally,
it is not surprising that it tends to use less regimes to characterize the panel dynamics. The
potential harm of ignoring the heterogeneous regimes is that those regimes occurring to only
a part of units may be averaged out, thus acting against the correct estimation of panel’s
regime dimension.

(a) BNP MS panel with regime heterogeneity (b) BNP MS panel with regime homogeneity

Figure 3.3 Posterior distribution of the regime dimension for the panel.

Given the identified seven regimes in the panel, the configuration of binary matrix F is
shown as an N ×K heatmap in Figure 3.4. The results imply that our assumption about
heterogeneous regime dimension in the cross-section is plausible empirically. Specifically,
about 25% of US states possess five of the identified seven regimes in the panel, supporting
our assumption that the regime dimension for the individuals can be less than the regime
dimension for the whole panel. Compared with those owning five regimes, the remaining US
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states possess all seven regimes, corroborating our assumption that the regime dimension for
the individuals may exhibit cross-sectional heterogeneity. Besides, the US states exhibiting

Figure 3.4 Heatmap of the estimated binary matrix. The columns are regimes in the panel and
the rows are 50 US states. The value of each cell is the posterior probability, which is obtained by
averaging the posterior estimates of each entry in F across MCMC samples. Dark and light cells
represent 0 (absent regime) and 1 (present regime), respectively.

five regimes appear to own the same set of regimes, including all except regimes 2-7. Those
US states therefore share the same set of dynamics over the entire sample period, and
behave unlike others exhibiting seven regimes. The BNP MS panel framework assuming
cross-sectional homogeneous regime dimension lacks the flexibility to capture these features.

We proceed by evaluating the parameter estimates under different assumptions of regime
dimension. Figure 3.5 displays the scatterplots of the posterior means of the regime-switching
parameters (i.e., µi,k,σ2

i,k) for each regime identified from our framework (plot (a)) and the
benchmark framework (plot (b)). Focusing on plot (a), it is evident that the seven regimes
differ mainly in the regime-specific means whereas the regime-specific variances are quite
similar for most regimes except regime 1. This indicates that the identified regimes are
generally well separated for the mean dynamics they characterize and validates our regime
identification restriction on means. Turning to plot(b), it is obvious that the BNP MS panel
framework that ignores regime dimension heterogeneity results in parameters being pooled
across all units in every identified regime. This inability to allow the degree of pooling to
vary across regimes leads to imprecise parameter estimates if some units behave unlike any
other.
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(a) BNP MS panel with regime heterogeneity (b) BNP MS panel with regime homogeneity

Figure 3.5 Scatterplots of the posterior means of the regime-switching parameters for each of the
identified regimes.

We further investigate how data are categorized into different regimes over time by plotting
an N ×T heatmap in Figure 3.6. For a comparative assessment, the figure also displays the
NBER-referenced chronology, which serves as the standard for business cycle dates. It is
worth noting that our framework locates those regimes with negative means (i.e., regimes
1-3) exactly around the recession periods according to the NBER dating. This illustrates the
ability of our framework to provide accurate inferences about the recession turning points that
agree with the NBER-designated cycle dates. In addition, Figure 3.6 confirms our intuition in
Section 3.2.2 that the empirical gain brought by our framework comes from the identification
of heterogeneity and non-synchronization in regimes. As for the heterogeneity in regimes, the
figure suggests that many oil-producing states (e.g., Louisiana-LA, Oklahoma-OK, Texas-TX,
and Wyoming-WY) have never entered regime 2 and regime 7, with the former exploding
considerably during the crisis period (e.g., the 1980, 1981-1982 national recessions and the
Global Financial Crisis) and the latter occurring mostly during the subsequent recovery period
after crises. This finding, consistent with the evidence in Baumeister et al. (2024), points out
the noncommon dynamics of the regional economy. Regarding the non-synchronization in
regimes, the figure shows that most recessions correspond to non-synchronized regimes (i.e.,
regimes 2-3) that impact US states with different delays, with the COVID-19 pandemic being
a notable exception where almost all states are hit around the same time. This result, in
line with the observation in Owyang et al. (2005), distinguishes the synchronization level of
regional economic downturn. Furthermore, the magnitude of the identified regimes (i.e., the
regime-specific means) accurately reflects the severity of the different recessionary episodes,
with the 1990-1991 and 2001 recessions being milder compared to the Global Financial Crisis
and the COVID-19 recession. Relative to our framework, the BNP MS panel framework
assuming cross-sectional homogeneous regime dimension treats the regime pattern of all units
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no differently (see Figure 3.1 in Section 3.2.2) and thus lacks the flexibility to capture the
noncommon and non-synchronized dynamics of individuals.
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Figure 3.6 Estimated regimes over time. The top heatmap displays the maximum a posteriori (MAP)
estimates of the regime indicators sit of the 50 US states. Seven levels of colors indicate periods of
the identified seven regimes, with red, green, and gray colors representing negative, positive, and
zero valued means the regimes characterize, i.e., µk, for k = 1, ...,7. The bottom heatmap displays
the NBER-referenced business cycle dates, with black (white) color indicating periods of recession
(expansion).

3.4.3 Out-of-sample evaluation

We consider a recursive forecasting exercise to remain close to the majority of the literature
(see, e.g., Bauwens et al., 2017; Hou, 2017; Luo et al., 2022). About 2/3 sample which covers
a total of 352 months is selected as the in-sample period and the remaining 1/3 sample
which covers 177 months is employed for the out-of-sample evaluations. We recursively move
through the sample one month at a time generating forecasts at each point using only the
data available at the time the forecast is made.

The comparative forecasting performance of our framework relative to each of the bench-
marks is measured for the i-th US state by the popular out-of-sample R2

i value

R2
i = 1−MSEi,HeF /MSEi,Bmk, (3.15)
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in which MSEi,HeF and MSEi,Bmk denote the mean squared forecast errors for the i-th US
state obtained from our BNP MS panel framework assuming cross-sectional heterogeneous
regime dimension and the given benchmark framework. Positive R2

i values indicate our
framework is outperforming the benchmark, while negative values reflect underperformance.
For ease of illustration, all reported R2

i values are multiplied by 100 as in Smith (2023). Each
plot in Figure 3.7 corresponds to a different benchmark and displays the R2

i relative to that
benchmark across the 50 US states. Our framework delivers positive R2

i values for 42 of the
50 cases relative to the BNP MS panel framework assuming cross-sectional homogeneous
regime dimension (plot (a)). Compared with the two-regime MS panel model (plot (b)),
equally strong outperformance is observed as 45 cases have positive R2

i . Relative to the BNP
MS univariate framework (plot (c)), our panel framework outperforms a majority of times,
delivering positive R2

i values for 35 cases.

(a) BNP MS panel with regime
homogeneity

(b) Two-regime MS panel (c) BNP MS univariate

Figure 3.7 R2
i values. Each plot displays the R2

i values obtained from comparing the forecasting
performance of our proposed framework (BNP MS panel with regime heterogeneity) with the benchmark
labeled in the subcaption for each of the 50 US states.

To evaluate the statistical significance of any out- or under-performance delivered by
our framework, we use the test statistic of Clark and West (2007) which adjusts for the
Diebold–Mariano test-statistic (Diebold and Mariano, 1995) possibly having a nonstandard
distribution as a result of nested frameworks. The results are displayed in Table 3.2. The left
panel of the table displays the number of the US states for which our methodology significantly
underperforms (−∗), insignificantly underperforms (−), insignificantly outperforms (+), or
significantly outperforms (+∗) the benchmark according to the Clark-West (CW) test. Each
row corresponds to a different benchmark. In general, our approach never significantly
underperforms relative to all three benchmarks. Across all 150 cases (50 cases against each
of the three benchmarks), our framework outperforms (both insignificantly and significantly)
145 times, and especially outperforms at a significant level for 97 out of the 150 cases.

Aside from the point forecasts, we also evaluate the performances of density forecasts
using the continuously ranked probability score (CRPS) popularized by Gneiting and Raftery
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Table 3.2 Statistical significance of pairwise forecast comparisons

CW AG

−* − + +* −* − + +*

BNP MS panel with regime homogeneity
0 0 10 40 0 6 14 30

Two-regime MS panel
0 0 17 33 0 5 8 37

BNP MS univariate
0 5 21 24 0 7 18 25

Notes: This table reports the statistical significance from pairwise MSE (left panel) and CRPS (right panel) comparisons
of forecasts from our proposed model (BNP MS panel with regime heterogeneity) versus forecasts from a range of
benchmarks listed in each row of the table. Significance is evaluated using the Clark-West (CW) and Amisano-Giacomoni
(AG) tests. For each test the table displays the number of the 50 US states for which our method produces significantly
worse (−∗), insignificantly worse (−), insignificantly better (+), and significantly better (+∗) forecasts at the 5% level.

(2007). Let CRPSit,Bmk denote the corresponding score for the benchmark model, our
approach yields better (worse) predictive accuracy for the i-th US states at each out-of-
sample time point t relative to the benchmark model if ∆Lit = (CRPSit,Bmk −CRPSit,HeF )
is positive (negative). To test whether any improved CRPS performance ∆Lit generated
by our methodology relative to the benchmark is significant, we use the test statistic7 of
Amisano and Giacomini (2007). The Amisano-Giacomoni (AG) statistic in the right panel of
Table 3.2 shows that the statistical significance of outperformance in terms of the density
forecasts is almost as strong relative to the results of point forecasts, with our methodology
outperforming (both insignificantly and significantly) 132 times, significantly outperforming
for 92 out of the 150 cases, and never significantly underperforming.

3.5 Conclusions

Markov-switching panel models face a major challenge in practical implementation, which
is determining how many regimes are necessary to adequately characterize the observed data.
Existing solutions typically rely on the assumption that the regime dimension is homogeneous
in the cross-section. Such an assumption may be restrictive as individuals are likely to be
characterized only by one or a subset of regimes identified from the panel. This paper proposed
a general framework to estimate the number of regimes in Markov-switching panel models,
allowing possible heterogeneity in cross-sectional regime dimension. Within the proposed
framework, the unknown regime dimension for the whole panel and the units was inferred

7We compute the unweighted version of the Amisano-Giacomoni test. The test statistic is Wi = (T −
m)((T −m)−1∑T

t=m+1ht∆Lit)′Ω−1((T −m)−1∑T
t=m+1ht∆Lit) in which m= 352 denotes the in-sample

period, ht = 1 for t=m+1, ...,T , Ω is an appropriate heteroscedasticity and autocorrelation consistent estimate
of the covariance matrix. The null hypothesis is that the two approaches have equal predictive accuracy under
which the distribution of Wi tends to χ2

1 as (T −m) → ∞.
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respectively from the column dimension and the configuration of an infinite-dimensional
binary matrix. Methodologically, we developed new Bayesian nonparametric inference to
jointly estimate the latent binary matrix and the other parameters in Markov-switching
panel models. A nonparametric prior based on an Indian buffet process was specified for
the infinite-dimensional binary matrix. A set of mutually independent zero-inflated Beta
variables was employed for constructing a prior on the regime transition matrices restricted
by unit-specific present regimes. A hierarchical conjugate prior was placed over the regime-
switching parameters, which allows units within the same regime to share similar dynamics
and helps derive the data marginal likelihood that improves posterior computation efficiency.
Estimation was accomplished by an efficient Markov chain Monte Carlo procedure, which
exploits a combination of multi-move Gibbs, Metropolis-Hasting and reversible jump samplers.
Simulation studies were conducted to validate the effectiveness of the proposed framework
in recovering the total number of regimes, the regime patterns, and the regime-switching
dynamics under many empirically relevant panel settings. An empirical application to 50
US state-level macroeconomic indices over the period 1979-2023 was offered for in-sample
evaluation and forecasting purposes. The results showed that assuming likely cross-sectional
heterogeneous regime dimension in Markov-switching panel models is helpful in revealing the
noncommon and non-synchronized dynamics of panel units, and in generating significantly
more accurate forecasts than a range of popular benchmarks.
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Appendix 3.A

This appendix provides the computational details of the Bayesian nonparametric inference
procedure. Our BNP MS panel framework is estimated using a Markov chain Monte Carlo
(MCMC) procedure. There are six estimation steps. In Step 1, the infinite-dimensional binary
matrix F is estimated using the Metropolis-Hasting and reversible jump methods. In Step 2,
the hidden regime sequences S1:T are estimated using a forward-filtering backward-sampling
(FFBS) algorithm. In Steps 3-4, the regime transition matrices P and the regime-specific
parameters Θ are estimated from their full conditional distributions. In Steps 5-6, the IBP
parameters ΘIBP and the ZIB parameters ΘZIB are estimated using a Metropolis-Hasting
method. We now explain each step in detail.

3.A.1 Sampling F

We sample the infinite-dimensional binary matrix F row-by-row. That is, we sample
the binary vector fff i for i = 1, ...,N . For fff i, we sample the entry fik separately for those
regime k unique to unit i and those regime k owned by any other units in the panel. We
define the set of unique regimes for unit i to be the regimes that only i possesses; we use the
notation Ui. In other words, Ui is the column indices for those columns in F with all entries
of zero but a entry of one on the i-th row. We define the set of shared regimes for unit i to
be the regimes that are owned by any other units in the panel; we use the notation Si. In
other words, Si is the column indices obtained by excluding Ui from MN , which is defined in
Section 3.2.3.1 of the paper and corresponds to the indices for those columns in F with at
least one nonzero entry. Taking Figure 3.2 in the paper as an example, we can see M5 = 8,
M5 = {1,2,3,4,5,6,7,8}, and for i= 2: U2 = {5}, S2 = {1,2,3,4,6,7,8}.

Shared regimes. We sample the binary indicator fik for each shared regimes k ∈ Si from
its full conditional distribution, which is defined as

p(fik|F−ik,Θ,ΘIBP,P,Y1:T ) ∝ p(fik|F−ik,ΘIBP)p(yi,1:T |fff i,Θ,Pi), (3.A.1)

where F−ik denotes all the entries of F excluding fik. According to the IBP prior which
indicates fik ∼ Bern(Ni−1,k

c+i−1 ), the first term on the right hand side of (3.A.1) is calculated as

p(fik|F−ik,ΘIBP) = fik
Nk,−i

c+N −1 +(1 −fik)(1 − Nk,−i
c+N −1), (3.A.2)

where Nk,−i denotes the number of units other than i possessing regime k, which is equal to
Nk −1 if fik = 1 and Nk if fik = 0.
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The second term on the right hand side of (3.A.1) is derived from (3.A.11)

p(yi,1:T |fff i,Θ,Pi) =
T∏
t=1

p(yit|yi,1:t−1,fff i,Θ,Pi), (3.A.3)

As (3.A.1) is not conditionally conjugate, we adopt a Metropolis–Hastings method to
evaluate a new proposal which flips the current indicator value fik to its binary complement
f̃ik = 1−fik. We accept the proposal f̃ik with probability

min
{

1, p(f̃ik|F−ik,Θ,ΘIBP,P,Y1:T )
p(fik|F−ik,Θ,ΘIBP,P,Y1:T )

}
. (3.A.4)

Unique regimes. We sample the binary indicator fik for each unique regimes k ∈ Ui using
a birth and death reversible jump MCMC sampler (Green, 1995), where the birth proposal
means that we introduce a new unique regime, and the death proposal means that we delete
an existing unique regime. We first make a random choice between birth and death. Let
card(Ui) denote the number of unique features for unit i. If card(Ui) is zero (i.e., no unique
regimes), we always choose a birth and thus the function that determines the probability of
choosing a birth conditional on the set Ui is pbirth(Ui) = 1. Otherwise, we either choose a
birth with probability pbirth(Ui) = 0.5, or a death of a member of Ui with equal probability
(1−pbirth(Ui))/card(Ui).

If a birth is chosen, a new unique regime k̃ =MN + 1 is introduced for unit i. This leads
to new proposals for the binary vector and the regime sequence: for fff i, the newly proposed
one is f̃ff i = {fi1,fi2, ...,fiMN

,fiMN +1 = 1}. We denote this proposal density by q(f̃ff i,fff i); for
si,1:T , the newly proposed one is s̃i,1:T which needs to evolve across the regimes indicated by
the newly proposed f̃ff i. We denote this proposal density by q(s̃i,1:T ,si,1:T ). To construct the
proposed new regime sequence s̃i,1:T , we first define the new regime transition matrix using
the Beta variables with values setting to their prior means. Besides, for existing regimes, we
set the regime-specific means and the variances to their posterior means. For the new regime
k̃, we define its associated mean µi,k̃ and variance σ2

i,k̃
based on a data-driven approach

similar as in Fox et al. (2014). This requires us to choose a random subwindow W of the
current unit i. Next, given the chosen window, we set µi,k̃ and σ2

i,k̃
to their posterior means

given the data in the window {yit : t ∈W}. Finally, given the new regime transition matrix
and regime-specific parameters, we sample the proposal s̃i,1:T based on Section 3.A.2. We
adopt a Metropolis–Hastings method to decide whether the proposed configuration f̃ff i and
s̃i,1:T is accepted or rejected. We accept the proposal with probability

min
{

1, p(Y1:T , F̃ , S̃1:T )q(si,1:T , s̃i,1:T )q(fff i, f̃ff i)
p(Y1:T ,F,S1:T )q(s̃i,1:T ,si,1:T )q(f̃ff i,fff i)

}
. (3.A.5)
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where the proposal density q(s̃i,1:T ,si,1:T ) and the corresponding reverse proposal density
q(si,1:T , s̃i,1:T ) is obtained by summing the quantity in (3.A.12) for s̃it and sit respectively
over T ; the proposal density is q(f̃ff i,fff i) = pbirth(Ui) and the reverse proposal density (i.e.,
death at the new regime k̃) is q(fff i, f̃ff i) = (1 −pbirth(Ũi))/card(Ũi) for Ũ = Ui ∪{k̃}; the joint
posterior distribution of data observations, binary matrix and regime sequences is given by

p(Y1:T ,F,S1:T ) = p(Y1:T |S1:T )p(F )p(S1:T |F ),

=
∫

Θ
p(Y1:T |Θ)p(Θ)dΘ p(F )

∫
P
p(S1:T |P )p(P |F )dP

(3.A.6)

Since the prior distributions of Θ enjoy conjugacy, the first integral term on the right hand
side of (3.A.6) reduces to a closed-form function

∫
Θ
p(Y1:T |Θ)p(Θ)dΘ =

N∏
i=1

∏
k∈Ki

∫ ∫
p(yi,k|µi,k,σ−2

i,k )p(µi,k)p(σ−2
i,k )dµi,kdσ−2

i,k

=
N∏
i=1

∏
k∈Ki

Γ(ν̄k/2)
Γ(νk/2)

(Vk/2)νk/2

(V̄k/2)ν̄k/2 ( hk
h̄i,k

)1/2(2π)−Ti,k/2,

(3.A.7)

where parameters are defined in Section 3.A.4. The second term on the right hand side of
(3.A.6) is the probability mass function of IBP defined in Section 3.2.3.1 of the paper. The
last integral term on the right hand side of (3.A.6) due to the conjugacy of the Dirichlet-
multinomial distribution reduces to a closed-form function

∫
P
p(S1:T |P )p(P |F )dP =

N∏
i=1

∫
p(si,1:T |Pi)p(Pi|fi)dPi

=
N∏
i=1

Γ(∑kαk)
Γ(∑k(

∑
lni,lk +αk))

∏
k∈Ki

Γ(∑lni,lk +αk)
Γ(αk)

,

(3.A.8)

where parameters are defined in Section 3.A.3.
If a death is chosen, a randomly chosen regime k ∈ Ui is deleted for unit i. This leads to

new proposals for the binary vector and the regime sequence: for fff i, the newly proposed one is
f̃ff i = {fi1,fi2, ...,fik = 0, ...,fiMN

}. We denote this proposal density by q(f̃ff i,fff i); for si,1:T , the
newly proposed one is s̃i,1:T which needs to evolve across the regimes indicated by the newly
proposed f̃ff i. We denote this proposal density by q(s̃i,1:T ,si,1:T ). The proposed new regime
sequence s̃i,1:T is constructed as in the birth proposal but here only for the reduced set of
exsiting regimes indicated by f̃ff i. We adopt a Metropolis–Hastings method to decide whether
the proposed configuration f̃ff i and s̃i,1:T is accepted or rejected. We accept the proposal with
probability given in (3.A.5) but here the proposal density is q(f̃ff i,fff i) = (1−pbirth(Ui))/card(Ui)
and the reverse proposal density (i.e., birth at the deleted regime k) is q(fff i, f̃ff i) = pbirth(Ũi)
for Ũ = Ui−{k}.
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3.A.2 Sampling S1:T

For each unit-specific regime sequence si,1:T contained in S1:T , we either set si,1:T = {k :
fik = 1} when Ki = 1 or sample its whole path from the full conditional distribution based
on a forward-filtering backward-sampling (FFBS) algorithm (see Frühwirth-Schnatter, 2006,
chap. 11.2) when 1<Ki ≤K. The FFBS algorithm consists of two stages. In the first stage,
we carry out a forward recursion to obtain the filtered probability. In the second stage, we
compute the full conditional density of si,1:T using the filtered probabilities, and randomly
draw si,1:T from its full conditional distribution through a backward recursion. The stages of
the FFBS algorithm are described in the following. First, the filtered probability at time t,
t= 1, ...,T , is determined by implementing the forward recursion

p(sit = l|yi,1:t−1,fff i,Θ,Pi) =
∑
k∈Ki

pi,klp(sit−1 = k|yi,1:t−1,fff i,Θ,Pi), (3.A.9)

for l ∈ Ki, where pi,kl is the regime transition probability of unit i from regime k at time
t−1 to regime l at time t. We initialize for t= 1, P (si0 = k|yi,0,fff i,Θ,Pi) to be equal to the
ergodic probabilities. The filtered probability for all l ∈ Ki is computed as

p(sit = l|yi,1:t,fff i,Θ,Pi) = p(yit|sit = l,yi,1:t−1,Θ)p(sit = l|yi,1:t−1,fff i,Θ,Pi)
p(yit|yi,1:t−1,fff i,Θ,Pi)

,

=
N (µi,l,σ2

i,l)p(sit = l|yi,1:t−1,fff i,Θ,Pi)
p(yit|yi,1:t−1,fff i,Θ,Pi)

(3.A.10)

where the denominator is the marginal predictive likelihood defined as

p(yit|yi,1:t−1,fff i,Θ,Pi) =
∑
l∈Ki

p(yit|sit = l,yi,1:t−1,Θ)p(sit = l|yi,1:t−1,fff i,Θ,Pi)

=
∑
l∈Ki

N (µi,l,σ2
i,l)p(sit = l|yi,1:t−1,fff i,Θ,Pi)

(3.A.11)

The smoothing probabilities are obtained recursively and backward in time, once all the
filtered probabilities p(sit = l|yi,1:t,fff i,Θ,Pi) for t= 1, ...,T are calculated. If t= T , smoothing
probability and filtered probability are equal. For t= T − 1,T − 2, ...,1 and for all k ∈ Ki the
backward recursion proceeds as follows

p(sit = k|yi,1:T ,fff i,Θ,Pi) =
∑
l∈Ki

p(sit = k,sit+1 = l|yi,1:T ,fff i,Θ,Pi)

=
∑
l∈Ki

p(sit = k|sit+1 = l,yi,1:t,fff i,Θ,Pi)p(sit+1 = l|yi,1:T ,fff i,Θ,Pi)

(3.A.12)
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where
p(sit = k|sit+1 = l,yi,1:t,fff i,Θ,Pi) = pi,klp(sit = k|yi,1:t,fff i,Θ,Pi)∑

j∈Ki
pi,jlp(sit = j|yi,1:t,fff i,Θ,Pi)

.

3.A.3 Sampling P

For each unit-specific regime transition matrix Pi contained in P , we either set Pi
equal to one when Ki = 1 or sample Pi row-by-row based on a set of Beta variables zzzi,k =
(zi,k1, ....,zi,kK−1) for k ∈ Ki when 1<Ki ≤K. Because regimes not present in fff i have zero
probability of occurring, we only need to sample the entries of zzzi,k that correspond to regimes
l satisfying fil = 1. The full conditional distribution of those entries according to the prior in
Section 3.2.3.2 of the paper is defined as

p(zi,kl|fil = 1,si,1:T ) ∝ Beta(αl+ni,kl,

max(Ki)∑
m=l+1

αm+
max(Ki)∑
m=l+1

ni,km), (3.A.13)

where αk = γ+κδk defined in Section 3.2.3.2 of the paper; ni,kl =∑T
t=1 I(sit−1 = k)I(sit = l)

counts the transitions from regime k to l. Finally, we transform zzzi,k to pppi,k using (3.9) in the
paper.

3.A.4 Sampling Θ

We sample σ−2
i,k for i = 1., , , .N and k ∈ Ki from its full conditional distribution, which

according to the prior in Section 3.2.3.3 of the paper is defined as

p(σ−2
i,k |Θ−σ−2

i,k
,si,1:T ,yi,1:T ) ∝ G( ν̄k2 ,2V̄

−1
k ), (3.A.14)

with ν̄k = νk +Ti,k and V̄k = Vk + (yi,k − ιTi,k
ȳi,k)′(yi,k − ιTi,k

ȳi,k) + Ti,khk

hk+Ti,k
(µk − ȳi,k)2. We

define Ti,k = {t : sit = k} the index set for observations in regime k, Ti,k = card(Ti,k) its
cardinality, yi,k = {yit : t ∈ Ti,k} the vector containing the Ti,k observations in regime k,
ȳi,k = (Ti,k)−1ι′Ti,k

yi,k, and ιn denotes an n×1 all-ones vector. The notation Θ−r indicates
that element r is excluded from the vector Θ.

We sample µi,k for i = 1., , , .N and k ∈ Ki from its full conditional distribution, which
according to the prior in Section 3.2.3.3 of the paper is defined as

p(µi,k|Θ−µi,k
,si,1:T ,yi,1:T ) ∝ N (µ̄i,k,(σ−2

i,k )−1h̄−1
i,k ), (3.A.15)

with µ̄i,k = (hkµk +Ti,kȳi,k)/(hk +Ti,k) and h̄i,k = hk +Ti,k.



132 Chapter 3

We sample hk for k = 1, ...,K from its full conditional distribution, which according to
the prior in Section 3.2.3.3 of the paper is defined as

p(hk|Θ−hk
,F ) ∝ G(d2 ,2c

−1)
∏
i∈Nk

N (µi,k|µk,(σ−2
i,k )−1h−1

k )

∝ G(d+Nk +1
2 ,2(c+

∑
i∈Nk

σ−2
i,k (µi,k −µk)2)−1).

(3.A.16)

We sample νk for k = 1, ...,K from its full conditional distribution, which according to
the prior in Section 3.2.3.3 of the paper is defined as

p(νk|Θ−νk
,F ) ∝ Exp(λ)

∏
i∈Nk

G(σ−2
i,k |νk2 ,2V

−1
k )

∝ exp(−λνk)
∏
i∈Nk

(Γ(νk2 )−1(2V −1
k )− νk

2 (σ−2
i,k )

νk
2 ).

(3.A.17)

The above distribution is not conditionally conjugate. Therefore, a Metropolis–Hastings
method is applied to sample νk. We use a Gamma random walk proposal distribution q(·)
with mean equal to the current iteration value and variance equal to a fixed value σ2

νk
= 1.

This is parameterized as q(ν̃k|νk) ∼ G( ν2
k

σ2
νk

,
σ2

νk
νk

), where ν̃k is the proposal value and νk is the
current iteration value. We accept the proposal with probability

min
{

1, p(ν̃k|Θ−νk
,F )q(νk|ν̃k)

p(νk|Θ−νk
,F )q(ν̃k|νk)

}
. (3.A.18)

We sample µk for k = 1, ...,K from its full conditional distribution, which according to
the prior in Section 3.2.3.3 of the paper is defined as

p(µk|Θ−µk
,F ) ∝ N (µ,(h−2)−1)

∏
i∈Nk

N (µi,k|µk,(σ−2
i,k )−1h−1

k )

∝ N (µ̄k,(h̄−2
k )−1),

(3.A.19)

with h̄2
k = (h−2 +hk

∑
i∈Nk

σ−2
i,k )−1 and µ̄k = h̄2

k(h−2µ+hk
∑
i∈Nk

σ−2
i,k µi,k).

We sample Vk for k = 1, ...,K from its full conditional distribution, which according to
the prior in Section 3.2.3.3 of the paper is defined as

p(Vk|Θ−Vk
,F ) ∝ G(ν2 ,2V

−1)
∏
i∈Nk

G(σ−2
i,k |νk2 ,2V

−1
k )

∝ G(ν+νkNk

2 ,2(V +
∑
i∈Nk

σ−2
i,k )−1).

(3.A.20)
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3.A.5 Sampling ΘIBP

We sample the IBP parameter β from its full conditional distribution, which according to
the probability mass function and the prior in Section 3.2.3.1 of the paper is defined as

p(β|c,F ) ∝ G(aβ , bβ)p(F )

∝ βaβ−1exp(−βb−1
β )βMN exp(−β

N∑
i=1

c

c+ i−1)

∝ G(aβ +MN ,(b−1
β +

N∑
i=1

c

c+ i−1)−1),

(3.A.21)

We sample the IBP parameter c from its full conditional distribution, which according to
the probability mass function and the prior in Section 3.2.3.1 of the paper is defined as

p(c|β,F ) ∝ G(ac, bc)p(F )

∝ cac−1exp(−cb−1
c )cMN exp(−β

N∑
i=1

c

c+ i−1)
MN∏
k=1

Γ(Nk)Γ(N −Nk + c)
Γ(N + c) .

(3.A.22)

The above distribution is not conditionally conjugate. Therefore, a Metropolis–Hastings
method is applied to sample c. We use a Gamma random walk proposal distribution q(·)
with mean equal to the current iteration value and variance equal to a fixed value σ2

c = 1.
This is parameterized as q(c̃|c) ∼ G( c2

σ2
c
, σ

2
c
c ), where c̃ is the proposal value and c is the current

iteration value. We accept the proposal with probability

min
{

1, p(c̃|β,F )q(c|c̃)
p(c|β,F )q(c̃|c)

}
. (3.A.23)

3.A.6 Sampling ΘZIB

We sample the ZIB parameter γ from its full conditional distribution, which according to
the prior in Section 3.2.3.2 of the paper and the probability density function of the Dirichlet
distribution is defined as

p(γ|κ,P ) ∝ G(aγ , bγ)p(P |F )

∝ γaγ−1exp{−γb−1
γ }

N∏
i=1

∏
k∈Ki

( Γ(γKi+κ)
Γ(γ)(Ki−1)Γ(γ+κ)

∏
l∈Ki

pγ+κδk−1
i,kl ).

(3.A.24)

Because of non-conjugacy we rely on a Metropolis–Hastings method to sample γ. We use a
Gamma random walk proposal distribution q(·) with mean equal to the current iteration value
and variance equal to a fixed value σ2

γ = 100. This is parameterized as q(γ̃|γ) ∼ G( γ2

σ2
γ
,
σ2

γ

γ ),
where γ̃ is the proposal value and γ is the current iteration value. We accept the proposal
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with probability

min
{

1, p(γ̃|κ,P )q(γ|γ̃)
p(γ|κ,P )q(γ̃|γ)

}
. (3.A.25)

We sample the ZIB parameter κ from its full conditional distribution, which according to
the prior in Section 3.2.3.2 of the paper and the probability density function of the Dirichlet
distribution is defined as

p(κ|γ,P ) ∝ G(aκ, bκ)p(P |F )

∝ κaκ−1exp{−κb−1
κ }

N∏
i=1

Γ(γKi+κ)Ki

Γ(γ+κ)Ki

∏
l∈Ki

pγ+κ−1
i,ll .

(3.A.26)

Because of non-conjugacy we rely on a Metropolis–Hastings method to sample κ. We use a
Gamma random walk proposal distribution q(·) with mean equal to the current iteration value
and variance equal to a fixed value σ2

κ = 100. This is parameterized as q(κ̃|κ) ∼ G( κ2

σ2
κ
, σ

2
κ
κ ),

where κ̃ is the proposal value and κ is the current iteration value. We accept the proposal
with probability

min
{

1, p(κ̃|γ,P )q(κ|κ̃)
p(κ|γ,P )q(κ̃|κ)

}
. (3.A.27)
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Appendix 3.B

This appendix presents additional simulation results on convergence and efficiency.

Figure 3.B.1 DGP 1 (HoF + WS). The median (red line) and 10th and 90th quantile (grey line)
values of the regime dimension K computed through MCMC iterations from successful experiments
that detect the true regime dimension of the panel.

Figure 3.B.2 DGP 2 (HoF + WSSS). The median (red line) and 10th and 90th quantile (grey line)
values of the regime dimension K computed through MCMC iterations from successful experiments
that detect the true regime dimension of the panel.
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Figure 3.B.3 DGP 3 (WHeF + WS). The median (red line) and 10th and 90th quantile (grey line)
values of the regime dimension K computed through MCMC iterations from successful experiments
that detect the true regime dimension of the panel.

Figure 3.B.4 DGP 4 (WHeF + WSSS). The median (red line) and 10th and 90th quantile (grey line)
values of the regime dimension K computed through MCMC iterations from successful experiments
that detect the true regime dimension of the panel.



Appendix 3.B 137

Figure 3.B.5 DGP 5 (SHeF + WS). The median (red line) and 10th and 90th quantile (grey line)
values of the regime dimension K computed through MCMC iterations from successful experiments
that detect the true regime dimension of the panel.

Figure 3.B.6 DGP 6 (SHeF + WSSS). The median (red line) and 10th and 90th quantile (grey line)
values of the regime dimension K computed through MCMC iterations from successful experiments
that detect the true regime dimension of the panel.
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Figure 3.B.7 DGP 1 (HoF + WS). The median (red line) and 10th and 90th quantile (grey line)
values of the estimation error eF computed through MCMC iterations from successful experiments
that detect the true regime dimension of the panel.

Figure 3.B.8 DGP 2 (HoF + WSSS). The median (red line) and 10th and 90th quantile (grey line)
values of the estimation error eF computed through MCMC iterations from successful experiments
that detect the true regime dimension of the panel.
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Figure 3.B.9 DGP 3 (WHeF + WS). The median (red line) and 10th and 90th quantile (grey line)
values of the estimation error eF computed through MCMC iterations from successful experiments
that detect the true regime dimension of the panel.

Figure 3.B.10 DGP 4 (WHeF + WSSS). The median (red line) and 10th and 90th quantile (grey line)
values of the estimation error eF computed through MCMC iterations from successful experiments
that detect the true regime dimension of the panel.
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Figure 3.B.11 DGP 5 (SHeF + WS). The median (red line) and 10th and 90th quantile (grey line)
values of the estimation error eF computed through MCMC iterations from successful experiments
that detect the true regime dimension of the panel.

Figure 3.B.12 DGP 6 (SHeF + WSSS). The median (red line) and 10th and 90th quantile (grey line)
values of the estimation error eF computed through MCMC iterations from successful experiments
that detect the true regime dimension of the panel.



Appendix 3.C 141

Appendix 3.C

This appendix presents benchmark model specifications and contains a description of the
data used in the empirical illustration.

3.C.1 Benchmark model specifications

The first benchmark framework is a BNP MS panel framework assuming cross-sectional
homogeneous regime dimension. For i= 1, ...,N and t= 1, ...,T , it is specified as

yit = µi,st +σi,stεit, εit ∼ i.i.d. N (0,1)
st|st−1 = k,P ∼ pppk

pppk|π ∼ DP(γ+κ,
γπ+κδk
γ+κ

)

π ∼ SBP(η),

(3.C.1)

where st is a hidden Markov chain process with values in an infinite set {1,2, ...}; P is an
infinite-dimensional matrix of regime transition probabilities; pppk = (pk1, ...,pkl, ...) is the k-th
row of P which collects the transition probabilities out of regime k, i.e., pkl = Prob(st =
l|st−1 = k), for l,k ∈ {1,2, ...}; DP(·, ·) denotes the Dirichlet process8; SBP(·) stands for the
stick-breaking process, which allows the sequence π = {πj}∞

j=1 to satisfy ∑∞
j=1πj = 1 with

probability one and therefore defines a distribution over the positive integer. To infer the
values of the DP and SBP parameters γ, κ and η, we place the following priors, γ+κ∼ G(1,10),
ρ= κ

γ+κ ∼ Beta(10,1) and η ∼ G(1,1). The rest of the parameters in (3.C.1) are given the
same priors as our proposed framework. Posterior sampling is based on the beam sampler;
for implementation details, see Dufays (2016).

The second benchmark is a standard MS panel model with the pre-specified number of
regimes K = 2. For i= 1, ...,N and t= 1, ...,T , it is specified as

yit =
{
µi,1 +σi,1εit, εit ∼ i.i.d. N (0,1) if sit = 1
µi,2 +σi,2εit, εit ∼ i.i.d. N (0,1) if sit = 2

sit|sit−1 = k,Pi ∼ pppi,k, for k ∈ {1,2},

(3.C.2)

where sit is a hidden Markov chain process with values in a finite set {1,2}; P is a 2 × 2
matrix of regime transition probabilities; pppk = (pk1,pk2) is the k-th row of P which collects the
transition probabilities out of regime k, i.e., pkl = Prob(st = l|st−1 = k), for l,k ∈ {1,2}. For
the regime sequences and regime-switching parameters, posterior sampling can be performed
in a similar fashion as in our proposed framework with Ki = {1,2},∀i ∈ {1, ...,N}. For the

8To facilitate comparison, we use the sticky version of the Dirichlet process (see, e.g., Dufays, 2016; Bauwens
et al., 2017; Jin et al., 2022), which relies on parameters γ, κ, and the measure of a point mass of one at k,
namely δk, so that it reinforces the regime self-transition in the similar way as our proposed framework.
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regime transition matrix, posterior sampling relies on the full conditional distribution of a
two-dimensional Dirichlet distribution.

The third is a BNP MS univariate framework applied separately to each unit in the
cross-section. For i= 1, ...,N and t= 1, ...,T , it is specified as

yit = µi,sit +σi,sitεit, εit ∼ i.i.d. N (0,1)
sit|sit−1 = k,Pi ∼ pppi,k

pppi,k|πi ∼ DP(γ+κ,
γπi+κδk
γ+κ

)

πi ∼ SBP(η).

(3.C.3)

This framework is implemented independently for each unit with the same prior hyperparam-
eter values and posterior sampler as in the first benchmark.
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3.C.2 Data details

Table 3.C.1 Data description

State Abbreviation Mean St.dev. AR(1) Min. Max.

Alabama AL 0.171 1.049 0.200 -20.902 5.561
Alaska AK 0.088 0.545 0.252 -10.504 4.425
Arizona AZ 0.308 0.713 0.263 -13.324 4.003
Arkansas AR 0.192 0.216 0.280 -3.780 0.739
California CA 0.255 1.015 0.204 -21.098 4.519
Colorado CO 0.269 0.564 0.142 -10.847 4.977
Connecticut CT 0.166 0.662 0.567 -9.920 4.049
Delaware DE 0.195 1.191 0.227 -21.545 13.177
Florida FL 0.272 0.907 0.171 -18.615 4.838
Georgia GA 0.272 0.343 0.153 -6.478 2.822
Hawaii HI 0.141 2.223 0.059 -48.708 8.142
Idaho ID 0.277 0.485 0.314 -8.648 2.116
Illinois IL 0.143 1.094 0.225 -22.622 5.251
Indiana IN 0.169 0.860 0.220 -17.134 3.333
Iowa IA 0.156 0.701 0.176 -14.238 2.399
Kansas KS 0.160 1.034 0.147 -21.004 6.721
Kentucky KY 0.150 1.054 0.133 -19.386 12.041
Louisiana LA 0.071 0.783 0.300 -12.944 4.589
Maine ME 0.173 0.858 0.204 -16.273 5.784
Maryland MD 0.209 0.844 0.169 -17.198 2.310
Massachusetts MA 0.226 2.105 0.087 -45.624 7.830
Michigan MI 0.108 2.255 0.109 -46.366 16.941
Minnesota MN 0.210 0.805 0.204 -16.137 3.249
Mississippi MS 0.134 0.493 0.143 -9.057 4.772
Missouri MO 0.142 0.864 0.180 -17.361 5.040
Montana MT 0.143 1.615 0.151 -32.991 8.868
Nebraska NE 0.200 0.305 0.487 -5.010 1.585
Nevada NV 0.309 1.842 0.231 -38.150 11.674
New Hampshire NH 0.264 0.571 0.158 -11.721 2.128
New Jersey NJ 0.169 1.017 0.115 -20.245 9.938
New Mexico NM 0.199 0.378 0.439 -6.670 1.004
New York NY 0.160 1.310 0.104 -28.236 4.690
North Carolina NC 0.245 0.390 0.244 -7.361 1.529
North Dakota ND 0.210 0.913 0.120 -19.394 3.465
Ohio OH 0.140 0.924 0.189 -18.698 4.935
Oklahoma OK 0.160 0.761 0.169 -15.147 4.772
Oregon OR 0.252 0.611 0.197 -12.205 2.055
Pennsylvania PA 0.145 0.967 0.150 -20.505 2.757
Rhode Island RI 0.154 1.237 0.114 -25.904 6.039
South Carolina SC 0.233 0.855 0.240 -16.588 4.600
South Dakota SD 0.230 0.692 0.190 -13.703 2.260
Tennessee TN 0.230 0.727 0.195 -14.657 2.446
Texas TX 0.266 0.334 0.291 -6.315 1.063
Utah UT 0.309 0.302 0.411 -4.936 1.235
Vermont VT 0.207 1.294 0.151 -27.061 6.818
Virginia VA 0.223 0.639 0.159 -13.199 2.956
Washington WA 0.263 0.857 0.273 -17.468 3.242
West Virginia WV 0.096 1.927 0.282 -36.618 6.146
Wisconsin WI 0.170 0.668 0.202 -13.383 2.446
Wyoming WY 0.126 0.412 0.716 -4.441 1.519

Notes: The table reports data details regarding state name, abbreviation, and summary statistics of the monthly
coincident indices for 50 US states. The sample period is from October 1979 to October 2023.





Conclusive remarks and extensions

This dissertation centered on modeling and forecasting time series subject to regime shifts,
with the emphasis on applications of Markov-switching (MS) models in economics and finance.
Chapter 1 modeled the regime shifts in funds’ timing behavior as well as the potential drivers
behind such shifts using an empirical multi-factor model with endogenous MS factor loadings.
Chapter 2 proposed a Bayesian, graph-based MS model for detecting the regime shifts in
financial system connectivity, with methodological advances highlighted by an application in
the global banking system. Chapter 3 proposed a general framework to estimate the regime
dimension for Markov-switching panel models in the presence of possible heterogeneity in
cross-sectional regime dimension, with practical usefulness demonstrated by a US business
cycle analysis. In the following, we highlight the contributions and implications that we can
draw from the results in this dissertation, and provide some discussions regarding future
extensions.

Methodological implications

This dissertation has several methodological implications and contributions. Chapter 1
expanded upon the extensive research that assumed time-invariant funds’ timing behavior
and investigated this issue through a multi-factor model with constant factor loadings (see,
e.g., Treynor and Mazuy, 1966; Cao et al., 2013; Bodnaruk et al., 2019; Bali et al., 2021,
among many others). Specifically, our MS approach showed that even when evidence for
funds’ timing behavior was found, this behavior was not necessarily constant and tended
to experience regime shifts across varying market conditions. This held important lessons
for researchers and practitioners who ignored the situation where funds timed the market
strategically and intermittently, rather than continuously over the time span of study.
Moreover, although greater attention has been directed towards time-varying funds’ timing
abilities, some important economic insights were still missing in the literature, which included
(i) the rich dynamics (e.g., changes in the existence, directions, and strengths) of timing
behavior, and (ii) the drivers (i.e., potential economic mechanisms) underlying such dynamics.
Compared to the existing methodological advances in this aspect (see, e.g., Cao et al., 2013;
Siegmann and Stefanova, 2017; Li et al., 2020a), our MS approach allowed for multiple
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regimes and endogeneity in the regime shifts, which facilitated further analysis on the rich
dynamics and the potential drivers of funds’ timing behavior.

The claimed methodological contribution of Chapter 2 was twofold. The first contribution
of the chapter lay in the literature on financial connectedness analysis. Specifically, a novel
MS-GSVAR model building on the framework in Ahelegbey et al. (2016a) was proposed to
simultaneously capture several notable empirical features of financial connectedness, such as
the mixture of contemporaneous and temporal dependences, its high-dimensionality, and the
occurrence of abrupt structural changes. Although many earlier studies made methodological
advances in capturing one (or two) of the above features, our model facilitated a “full sweep”
of the list. The second contribution of the paper lay in the literature on using Bayesian
Graphical model for multivariate systems. Specifically, an efficient graph inference method
building on a Hybrid-MCMC algorithm of Kuipers et al. (2022) was developed to address
the computational complexities arising from inference on graphical multivariate models
in the context of high model dimension, numerous lags, and multiple states. Although
the literature normally considered the Structure-MCMC algorithm for graph inference, the
chapter confirmed in simulations that our method provided more reliable graph inference in
much less time, particularly noticeable in the large-dimensional setting.

Chapter 3 addressed the long-standing issue emerging in modeling panel datasets with MS
models, which was the determination of the number of regimes that adequately characterized
the observed panel data. Existing solutions to this issue typically relied on the assumption
that the number of regimes was homogeneous in the cross-section (i.e., every individual
transited across all regimes available in the whole panel); examples of methods in this respect
included the Dirichlet-process-based MS multivariate frameworks (Hou, 2017; Casarin et al.,
2024), and the standard MS panel frameworks with the number of regimes being set through
prior belief (Hamilton and Owyang, 2012; Francis et al., 2017; Casarin et al., 2018; Owyang
et al., 2022; Agudze et al., 2022) or a model selection procedure (Billio et al., 2016). However,
such an assumption may be restrictive as individuals are likely to be characterized only by
one or a subset of regimes identified from the panel. The modeling framework proposed in
this chapter can estimate the unknown regime dimension for both the whole panel and units
in the presence of likely cross-sectional heterogeneous regime dimension. Our approach was
also fully flexible in its ability to encompass the case of cross-sectional homogeneous regime
dimension, as evidenced by a battery of simulations.

Implications in economics and finance

This dissertation has some implications in economics and finance. In Chapter 1, we found
evidence of currency liquidity timing at the aggregate level for a sample of globally-diversified
funds, which was not explained away by other reasons except currency liquidity timing (e.g.,
currency market return and volatility timing, liquidity reaction, illiquid holdings, funding
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constraints, and fund flow). Interestingly, this timing behavior appeared to exhibit regime
shifts across varying market conditions, in that funds timed currency liquidity negatively
(adjusted their currency exposure in the opposite direction to the currency liquidity movement)
during tranquil market periods but switched to aggressively positive timing (adjusted their
currency exposure in the same direction to the liquidity movement with increasing aggressivity)
during turbulent market periods. We provided a potential explanation of the observed dynamic
pattern of funds’ currency-liquidity-timing behavior based on their currency hedging practices.
Besides, we documented that the dynamics of currency liquidity timing were possibly driven
by currency liquidity deterioration and negative shocks to fund returns. The primary focus
of previous studies relevant to timing was on certain timing skills in the market that was
presumably viewed as funds’ focus market, e.g., timing skills of equity funds in the equity
market or that of bond funds in the bond market. Consequently, for funds exposed to various
markets, their timing skills in the risk-exposed market, apart from what was conceptually
thought as their traded market, tended to be neglected. An example was globally-diversified
mutual funds, of whom the timing skills on the traded markets (e.g., global equity markets)
have been explored in the literature (see, e.g., Glassman and Riddick, 2006; Rodríguez, 2008)
but a clear understanding of the same skills on the trade-exposed markets (e.g., currency
markets) was still missing. Hence, the findings in this chapter encouraged greater attention
to be directed toward funds’ timing skills on those markets central to fund risks.

In Chapter 2, we proposed an econometric model that has practical applications in finance.
The chapter included a real-data illustration in which we applied the model to measure
the volatility connectedness in a global banking system consisting of 96 banks between
2003-2022. First, our model provided a data-driven detection of different connectedness
states that best describe the historical evolution of the global banking volatility network.
It was found that the evolution of the global banking system experienced long periods of
low volatility connectedness, alternated by sporadic events of high and extreme volatility
connectedness. In addition, the systemic risk profiles of individual banks, featured by their
risk transmission and reception capacity, were readily inferred from the model output. It
was found that the North American banks, particularly the US banks, were major risk
transmitters while the European and Asian banks were major risk receivers. The model also
offered deeper insights about the frequency-specific source of volatility connectedness. It was
found that for both temporal and contemporaneous connectedness the regime with higher
level of connectedness was characterized by larger cross-geography banking clusters, stronger
system-wide connections, and a few central banks dominating the volatility propagation.
Interestingly, contemporaneous connectedness patterns were noticeably denser than temporal
patterns, indicating that the dynamics of the global banking overall volatility connectedness
was mainly driven by changes in its contemporaneous component. Overall, the proposed
statistical tool in this chapter can assist policymakers to monitor how contagion-prone the
system will be, identify risk transmitters as well as recipients in the financial system, and thus
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to shape targeted policy to protect vulnerable risk recipient as individual or group whenever
necessary.

In Chapter 3, we demonstrated the empirical gains of considering likely heterogeneous
regime dimension in the cross-section for MS panel models. The chapter included a business
cycle analysis on a panel of 50 US state-level macroeconomic indices over the period 1979-
2023. The results implied that the assumption about heterogeneous regime dimension in
the cross-section was plausible empirically: about 25% of US states possessed part of the
identified regimes whereas the remaining states possessed all the identified regimes. From the
turning points of the identified regimes, it appeared that our framework produced accurate
timing of recessions that agrees with the NBER-designated cycle dates and was fully flexible
in capturing the noncommon and non-synchronized dynamics underlying individual US states.
In contrast, the framework assuming cross-sectional homogeneous regime dimension lacked
the flexibility to capture these features. Additionally, an out-of-sample forecasting exercise
showed that the MS panel framework assuming cross-sectional homogeneous regime dimension
as well as the MS univariate framework were unable to rival the forecast accuracy generated
from our MS panel framework allowing for cross-sectional heterogeneous regime dimension.
In summary, these results should be valuable for state policymakers to take targeted actions
earlier in an effort to counteract contractionary tendencies, especially in turbulent economic
times. Understanding cross-state heterogeneity in economic conditions within one country is
also useful for understanding aggregate dynamics and for informing federal policymaking.

Future extensions

Based on the results in this dissertation, several developments can be pursued in the near
future. In Chapter 1, one of the research lines discussed is whether funds with distinct fund
characteristics (e.g., age, size, expense ratio, turnover ratio) differ in their dynamic currency-
liquidity-timing behavior. A possible extension is to implement the proposed modeling
framework for funds grouped by characteristics. In Chapter 2, we pointed out that the
proposed model is fast and easy to implement for multivariate time series with dimension up
to around 100 series. Thus, the model may find application in a wide spectrum of research
where connectedness analysis on large financial datasets is of interest (e.g., connectedness
of the global commodity market or the foreign exchange market). In Chapter 3, the most
parsimonious form of the MS panel models is considered, but there is no conceptual problem
with adding autoregressive terms, exogenous predictors, or cross-section error correlations
to this basic form. For instance, a further research can involve augmenting the proposed
MS panel framework with some exogenous factors used in the asset pricing literature, and
applying the model to a panel of stock returns. This may allow to identify the noncommon
and non-synchronized regime shifts in the cross-sectional risk premia.
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Since the nature of MS models is to deal with persistent and recurrent instability in
not only the evolution of data series but also the relationships within empirical variables,
their applications are certainly not limited to those presented in this dissertation. In this
respect, a possible research line is instability in forecast combination. Forecast combination
(or pooling) which combines individual forecasts rather than relying on a single forecast has
attracted considerable attention in the forecasting literature because it offers diversification
and hedging gains. Given that the relative performance of different forecasts is likely to
change over time, it is natural to consider forecast pooling with time-varying combination
weights. To accommodate persistent and recurrent changes in combination weights as a result
of policy changes, economy fluctuations or institutional evolution, it is desirable to view
the weights subject to regime shifts. Further research can consider methodological and/or
empirical extensions of MS models with the applications in this field.
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