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A B S T R A C T

This study investigates the relationship between photoplethysmography (PPG) signals and intracranial pressure
(ICP) through two primary hypotheses. Firstly, it examines whether alterations in PPG-derived features
correspond to changes in ICP levels. Secondly, it explores whether these changes are more pronounced in
features derived from ‘‘cerebral’’ long-distance near-infrared (NIR) PPG data compared to ‘‘extracerebral’’ short-
distance NIR-PPG data. A clinical dataset comprising synchronised measurements from a non-invasive NIR-PPG
sensor and an intra-parenchymal, invasive ICP pressure probe across 27 patients was compiled. From this
dataset, two distinct datasets were derived, comprising short and long-distance NIR-PPG data. Within each
dataset, 141 features were extracted for every one-minute window of non-invasive NIR-PPG data, including
original, first derivative, and second derivative features. Correlation analysis using Spearman’s correlation and
a non-parametric Kruskal–Wallis test across the range of ICP values were conducted to evaluate the relationship
between features and ICP levels. The results support both hypotheses, showing significant correlations between
the features and ICP levels. Specifically, 77.30% and 79.43% of features significantly correlated (𝑝 < 0.05)
with the label in distal and proximal datasets, respectively. Kruskal–Wallis analysis revealed that 81.56%
and 75.89% of features significantly changed (𝑝 < 0.05) across ICP groups 0–10, 10–20, and 20–39 mmHg.
The distal dataset yielded a meaningfully higher absolute average correlation coefficient of all features and
significantly correlated features in-comparison to the proximal dataset of 25.76% and 24.24% respectively.
These findings indicate NIR-PPG features are reflective of variations in ICP.
1. Introduction

1.1. Cerebral hemodynamics and photoplethysmography changes

Cerebral perfusion pressure (CPP) and cerebral blood flow (CBF) are
central in understanding the dynamics of blood flow within the brain’s
vascular system. CPP is the gradient between mean arterial pressure
(MAP) and intracranial pressure (ICP), expressed in millimeters of
mercury (mmHg). CPP is fundamental for facilitating blood flow to the
brain. Normal CPP values range from 60 to 100 mmHg, maintaining
adequate cerebral blood flow and ensuring brain health [1].

CBF represents the volume of blood flowing through a given amount
of brain tissue over time, measured in milliliters per 100 grams of
brain tissue per minute (ml/100g/min). Cerebral autoregulation plays
a key role in maintaining CBF by adjusting cerebral vascular resistance
to ensure consistent blood flow despite variations in CPP, within the
autoregulatory limits of approximately 50 to 150 mmHg. When CPP
falls outside of these bounds, CBF becomes directly proportionate to
CPP, elevating the risk of ischemia or hyperemia due to diminished or
excessive blood flow to the brain [1].
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ICP is the pressure within the cranial vault, governed by the Monro-
Kellie hypothesis, which posits that the cranial compartment’s volume
is fixed, comprising brain tissue, cerebral blood, and cerebrospinal fluid
(CSF) [2]. Variations in ICP arise from changes in these components due
to pathological conditions such as mass lesions, venous sinus obstruc-
tions, and cerebral edema. Fig. 1 illustrates the progressive relationship
between the increase in volume of the intracranial pathologies within
the cranial vault (depicted in red) which can be caused by TBI and the
corresponding rise in ICP.

These changes can trigger compensatory mechanisms aimed at pre-
serving normal ICP levels, which are typically between 10 to 15 mmHg
in adults and 3 to 7 mmHg in children [3].

Elevation in ICP can reduce CPP by increasing the resistance against
arterial blood entering the brain. This elevation in ICP and consequen-
tial reduction in CPP triggers cerebral autoregulation, which adjusts
the diameter of cerebral vessels, vasodilation to increase blood flow
when CPP is low and vasoconstriction to decrease flow when CPP is
high. However, elevated ICP and the subsequent increase in pressure
https://doi.org/10.1016/j.bspc.2024.106759
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Fig. 1. Illustration of the relationship between increasing intracranial pathologies
and consequential increases in intracranial pressure. The four skull images represent
different stages of volume increase within the cranial compartments due to the
increasing volume of intracranial pathologies mirrored by a subsequent increase in
intracranial pressure.

exerted on the cerebral vessels can lead to a decrease in cerebral
compliance characterised by the vessels’ diminished ability to deform
which can cause cerebral dysregulation where blood vessels cannot
dilate sufficiently to counter reduced CPP, leading to a sustained drop
in CBF.

Photoplethysmography (PPG) is a non-invasive optical technique
that detects blood volume changes with each cardiac cycle based upon
the absoptivity of light. The pulsatility of the PPG signal, reflecting
these blood volume changes, varies between systolic and diastolic
phases of the cardiac cycle. The systolic increase in blood volume
results in increased absorbance of light in tissue compared to the
diastolic state. This relative change in light absorbance gives rise to the
PPG pulsatile waveform synchronous with each heartbeat [4,5]. Given
the influence of ICP on CPP, and cerebral autoregulatory mechanisms,
we posit that increases in ICP, and the suspected changes in flow
dynamics as a consequence of variations in the mechanistic proper-
ties of vessels coupled with the expected decrease in cerebral blood
volume stemming from cerebral dysregulation, diminished CPP, and
CBF alongside resultant variations in light absorbance, will manifest
in identifiable changes to PPG waveform morphology.

1.2. Current state of cardiac waveform based ICP monitoring

A growing body of research is exploring methods that leverage
cardiac waveforms, such as diffuse correlation spectroscopy (DCS) and
near-infrared spectroscopy (NIRS), for the non-invasive estimation of
ICP.

An initial study in 1997 revealed that NIRS readings were signif-
icantly reduced when ICP exceeded 25 mmHg compared to when it
was below this threshold, indicating the utility of NIRS in assessing el-
evated ICP [6]. Further investigations by Ruesch et al. focused on non-
invasively measuring ICP in non-human primates using NIRS [7], where
NIRS measurements were taken under various induced ICP levels. This
research demonstrated a strong correlation between hemoglobin levels
and induced ICP, thereby suggesting NIRS’s capability for non-invasive
ICP monitoring. In subsequent research, Ruesch et al. utilised both
morphological and time series features from DCS pulsations along with
MAP to predict ICP non-invasively [8], achieving a Coefficient of deter-
mination (R2) of 0.92 and a mean squared error (MSE) of 3.3 mmHg.
This group expanded their work by investigating features from NIRS-
derived cardiac waveforms with MAP for ICP estimation [9], which
improved the R2 to 0.937 and reduced the MSE to 2.703 mmHg. Further
studies have also shown the potential of using PPG waveform features
to correlate with ICP levels, with findings indicating a R2 of 0.66 [10].
2 
Fig. 2. A diagram showcasing the design of the non-invasive intracranial pressure
‘‘nICP’’ sensor, highlighting the placement of the photodiodes and the light source.

A healthy volunteers study investigated the use of pulsatile NIRS signals
to detect changes in ICP in healthy volunteers. The results revealed
significant differences in the features extracted from these signals,
demonstrating a correlation with ICP changes induced by positional
changes and Valsalva manoeuvres [11]. This research suggests the
promising utility of PPG waveform features as a potential avenue for
non-invasive ICP measurement.

This study contributes to the growing body of research associated
with the relationship between cardiac waveform morphology and ICP
monitoring. We provide statistical findings using clinically collected,
labelled data to provide evidence of a dynamic relationship between
changes in cardiac waveform morphology and variations in ICP.

2. Materials and methods

2.1. Non-invasive sensor

This research is based upon data produced by an in-house, NIRS,
reflectance, non-invasive optical ICP sensor, hereinafter referred to as
the ‘‘nICP’’ sensor [12]. The nICP sensor consists of four LEDs at four
different wavelengths (770, 810, 855 and 880 nm) and two photodiodes
‘‘proximal’’ and ‘‘distal’’ positioned at 10 mm and 35 mm from the
light source representing short-distance and long-distance NIRS data
respectively. The sensor is arranged as shown in Fig. 2.

Findings from a montecarlo simulation of the light-tissue interaction
propose that the data from the proximal photodiode corresponds to
extracerebral data, while the data from the distal photodiode represents
a combination of extracerebral and cerebral data [13].

Fig. 3 shows the indicative placement of the non-invasive nICP
sensor (indicated by a green arrow) and the invasive sensor (indicated
by a red arrow) on a patient. The nICP sensor is positioned on the
patient’s forehead, below the hairline.

2.2. Data

The primary dataset consists of data from 40 patients with se-
vere traumatic brain injury (TBI) recruited from the intensive therapy
unit (ITU) of the Royal London Hospital. The non-randomised data
collection was performed between January 2020 and July 2021 (Clin-
icalTrials No. NCT05632302). Each patient had an implanted invasive
ICP probe (Raumedic® Neurovent-P intra-parenchymal pressure probe)
and approximately 5 h after admission the nICP sensor was affixed
to the patient’s forehead below the hairline. The non-invasive and
invasive data were collected synchronously. The patients’ average age
was 43.92 years, with a male-to-female ratio of 7:1 (35 male, 5 fe-
male). Severe TBI diagnoses were determined using the guidelines
from the Fourth Edition of the Management of Severe Traumatic Brain
Injury [14]. Potential participants were excluded if they were consid-
ered unlikely to survive for 48 h or if a personal consultee advised
against their participation. Patients who had undergone decompressive
craniectomy were also excluded due to poor signal quality caused by
the damping effect of the surgery.

Data collection lasted for an average of 42.16 h. None of the patients
received external ventricular drainage. If a patient was taken out of
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Fig. 3. An image depicting the indicative placement of the non-invasive nICP sensor
(indicated by a green arrow) and the invasive sensor (indicated by a red arrow) on a
patient.

the ITU for a scan, surgery or other intervention, the nICP sensor
was detached and left in situ. Upon the patient’s return to the ITU,
both the nICP sensor and the invasive monitor were reconnected, and
data collection resumed. In no cases was the invasive pressure probe
removed or re-implanted.

This research focuses on the optical signals from the 810 nm wave-
length at both proximal and distal photodiodes. The selection of the
810 nm wavelength is based on the property that oxyhemoglobin and
deoxyhemoglobin exhibit the same absorption characteristics at this
wavelength, enabling the extraction of an optical signal independent of
blood oxygenation and eliminating it as a confounding factor [15]. The
nICP monitor was calibrated for each patient through the adjustment
of the LED intensity and amplification gain. Calibration was performed
before recording started. The data was sampled at a frequency of
100 Hz. We refer to the nICP data as ‘‘NIR-PPG’’.

2.3. Data preprocessing

2.3.1. Denoising
Initially, the dataset consisted of data from 40 patients. Of these

40, the data of 6 patients were identified as either being corrupted
or missing information resulting in a dataset of 34 patients. Of these,
following visual inspection, the data of 7 patients were removed due
to either (i) sustained poor quality, pulsatile, NIR-PPG data or (ii)
suspected erroneous ICP data. Resulting in a final dataset from 27
patients.

Prior to the denoising of the dataset, an additional step was taken
in order to handle erroneous ICP values. The assumption was made
that values of ICP ≥ 60 mmHg or < 0 mmHg, could be erroneous or
biologically implausible. Consequently, these instances were removed
from both the ICP and NIR-PPG data. Values above 60 mmHg may
indicate potential measurement errors, while negative values are phys-
iologically implausible. Fig. 4 depicts an example of recorded ICP
with erroneous data points both above 60 mmHg and below 0 mmHg.
In cases which Fig. 5 illustrates were there are sustained ICP values
3 
outside of the biologically feasible bounds it seemed reasonable to
assume there was a invasive measurement error and subsequently the
data of these patient’s was excluded.

Within the dataset, two main sources of noise are hypothesised
to be present (i) motion artifacts, which are identified by irregular
signal morphology or high amplitude variance, and (ii) photodetector
saturation, characterised by areas with little or no amplitude variance
referred to as ‘‘flat lines’’. Fig. 6 shows an example of the noise
within the data. The non-invasive data were denoised utilising the
Envelope PPG Denoising Algorithm [16]. Any instances of data identified
as anomalous were removed from both the NIR-PPG data and the refer-
ence ICP data to ensure temporal synchronicity between the datasets.
After denoising, a visual inspection of the NIR-PPG data for each patient
was performed. Data from patients with consistently poor signal quality
were excluded.

2.3.2. Data selection protocol
To effectively evaluate our hypotheses, we refined the denoised

dataset to only include high-quality pulsatile data for statistical analy-
sis, a procedure we termed the ‘‘6 h protocol’’. As outlined in section
2.4, we performed feature extraction on 1-minute windows of data,
we therefore oriented our data selection around this window size.
We developed a ‘‘window selector’’ tool in Python using Tkinter, en-
abling the inspection of patient data in 1-minute windows to categorise
each as either ‘‘good’’ or ‘‘bad’’ quality, with instances classified as
‘‘good’’ being recorded. Fig. 7 illustrates the window selector interface.
This selection process entailed commencing at the beginning of the
recording and labelling 6 h of data per patient as ‘‘good’’, or using all
available ‘‘good’’ data if less than 6 h were classified as ‘‘good’’. ICP
changes tend to occur gradually over time due to the slow adaptation
of the brain’s compartments to alterations in volume and pressure [17].
The period of 6 h was deemed a reasonable duration which would
encompass the natural fluctuations and trends in ICP. This assessment
was conducted by the same person across all patients using the distal
NIR-PPG data, with the identified ‘‘good’’ instances subsequently being
extracted from the both proximal and reference datasets to ensure
temporal synchronicity. Although arifacts were present in both the
proximal and distal data, the distal data consistently exhibited more
severe artifacts during these periods. Therefore, the distal data was
selected as the primary reference for guiding data labelling.

2.3.3. Data normalisation
Each one minute window of data was processed in order to remove

baseline wandering and to scale the data to enhance inter patient
comparison and aid in the creation of a shared distribution.

In order to attempt to diminish the possible effect of calibration on
the data collected from multiple patients the alternating current (AC)
and direct current (DC) components of each patient’s signal data were
isolated using a bandpass and lowpass filter respectively. The bandpass
frequency band ranged from 0.4 to 10 Hz, the low pass cutoff frequency
was set to 0.4 Hz. By dividing the AC component of the signal by
the DC component this aimed to minimise the effects of the patient
level calibration and provide a representation of the signal that is less
influenced by calibration variations and baseline wandering allowing
for more reliable feature extraction.

Following the AC/DC processing, each window’s data were nor-
malised to a range of (0,1) to account for inter-patient amplitudinal
variance and to aid in the creation of a shared distribution across
patients in the feature space.

2.4. Feature engineering

The NIR-PPG dataset was segmented into 1-minute windows, with
the median ICP value over each window being used as a label. This
1-minute window size was chosen considering the possible clinical
relevance and practicality of the prediction frequency. Longer window
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Fig. 4. A figure depicting the invasive intracranial pressure data recorded from a patient which includes assumed erroneous values above 60 mmHg and below 0 mmHg.
Fig. 5. A figure depicting the invasive intracranial pressure data recorded from a patient which includes assumed erroneous elevated values with a mean ≥ 60 mmHg.
Fig. 6. Distal signal data with highlighted noise attributed to motion artifact and photodetector saturation. Visual aids emphasise the presence of noise within the window.
durations might be less favourable in a clinical setting, and our goal
was to use a window size that maximises the amount of relevant data
available for prediction while still being clinically manageable. The
extracted features are derived from the AC, pulsatile component of
the signal. In order to capture as much of the morphology of the
signal, which is linked to hemodynamic changes, for each window of
data 141 morphological and time-series features were extracted across
the original signal and its first and second derivatives as shown in
Table 3 in the appendix. Figs. 8 and 9 depict the primary time series
4 
and morphological features extracted from the cardiac pulses. The
feature representation for each window was determined by computing
the median of each feature across all pulses within that window. The
derivatives of the signal were calculated using a Savitzky-Golay filter
using a polynomial of 7 and a window size of 101.

The pulse detection algorithm used is predicated upon the crossing
points of the signal and the moving average of the signal. The general
concept of the algorithm is, if the mean of the data between crossing
points is greater than the mean of the moving average between crossing
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Fig. 7. A figure showcasing the window selector interface, illustrating a one-minute window of distal data. It displays the buttons provided for the user to categorise the data
segment as ‘‘good’’ or ‘‘bad’’ quality. Additionally, the interface presents an overview at the patient level, indicating the volume of data analysed and the proportion of data
classified as ‘‘good’’.
Fig. 8. A figure illustrating the key time-series and morphological features extracted from individual cardiac pulses. Within the figure, SW, DW, and PW represent systolic width,
diastolic width, and pulse width, respectively. The numerical value associated with SW, DW, or PW indicates the position along the pulse prominence where the corresponding
measurement is taken.
Fig. 9. A figure depicting the Area Under the Curve (AUC), along with the Diastolic AUC and Systolic AUC. Additionally, the start and end datum areas are identified.
points the location of the maximum value between crossing points is
classified as a peak. Vice versa if the mean of the data between points
is less than the mean of the moving average between crossing points the
index of data which has the lowest value between points is classified as
5 
a trough. Once the peaks and troughs in the data have been identified,
each peak is linked to its corresponding pulse onset and end in order to
isolate each individual pulse. Fig. 10 illustrates and described the three
major steps of the peak detection algorithm.
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Fig. 10. This figure illustrates the major steps of the peak detection algorithm. The process begins with the calculation of the moving average and identification of the crossing
points between the moving average and the raw data. Next, the algorithm determines the maximum and minimum values between each pair of crossing points, highlighted by
green and red arrows, respectively. Finally, each detected peak is linked to its corresponding pulse onset and end, isolating individual pulses.
2.5. Statistical analysis

The study conducted two types of statistical analyses: correlation
analysis and group analysis, to explore the two hypotheses of this study:
(i) the relationship between alterations in NIR-PPG derived features
and changes in ICP levels, and (ii) the comparative prominence of
these changes in features obtained from long-distance versus short-
distance NIR-PPG data. This analysis included data from both proximal
and distal photodiodes, referred to as ‘‘proximal features’’ and ‘‘distal
features’’, respectively.

To examine the relationship between individual features and the
label, the Spearman correlation method was utilised. This choice was
made over Pearson correlation as Spearman correlation is capable of
identifying linear, non-linear, and non-monotonic relationships without
assuming data linearity.

A group analysis was conducted to investigate the null hypothesis
that there are no significant differences in feature values across ICP
groups. For the group analysis, the study assessed the sampled feature
data for normality using the Shapiro–Wilk Test and for homogeneity of
variance using Levene’s Test. If the data met the necessary assumptions,
a parametric, One-way ANOVA was employed. If not, a Kruskal–Wallis
non-parametric statistical test was applied. If a significant difference
was detected for any feature in the across group analysis, a post
hoc pairwise analysis was conducted to investigate the second null
hypothesis that there are no significant differences in feature values
between any two ICP groups. The post-hoc, pairwise analysis was con-
ducted between groups using a Mann–Whitney U test with a Bonferroni
correction to control for multiple comparisons.
6 
2.5.1. Group construction and data sampling strategy
The group analysis necessitated the formation of groups and the

sampling of data for each. Grouping started at an ICP of 0 mmHg,
increasing in increments of 10 mmHg. If the highest recorded ICP value
was above 20 mmHg and the gap between this maximum value and
20 mmHg exceeded 10 mmHg, an additional group was established,
with its upper boundary set at this maximum ICP level.

The criteria for group formation specified that groups must span
at least 10 mmHg to facilitate a meaningful comparison of feature
variations across different ICP levels. This threshold was based on the
premise that meaningful physiological changes are likely to be observed
across ICP intervals exceeding 10 mmHg. Moreover, the larger group
size allowed for the inclusion of data from more patients, especially in
the underrepresented tails of the ICP distribution.

Elevated levels of ICP is referred to as intracranial hypertension
which is typically defined as sustained ICP values greater than 20–
25 mmHg [18]. Guidelines recommend treating elevated ICP above
22 mmHg [14]. An interest of this study was to examine feature
changes across low, normal to moderate and elevated ICP values. In
adults, normal ICP levels are typically between 10 to 15 mmHg [3].
The employed group construction methodology establishes reasonable
bounds for low, normal to moderate, and high ICP ranges.

ICP dynamics vary between patients, particularly at the clinically
scarce elevated ICP values. To strike a balance between the stratified
sampling of patients’ data and the power of the statistical test being
conducted, a ‘‘bounded stratified sampling’’ approach was performed.
The size of each group was determined based on the availability and
eligibility of patient data within each group. Within each group, the
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Fig. 11. This bar chart depicts the number of patients sampled for each intracranial pressure (ICP) group, categorised by the ranges of ICP values: 0–10 mmHg, 10–20 mmHg,
and 20–39 mmHg. The chart highlights the distribution of patients within each group, with 17 patients in the 0–10 mmHg group, 25 patients in the 10–20 mmHg group, and 11
patients in the 20–39 mmHg group.
Fig. 12. A figure containing 3 bar charts depicting the number of samples collected from each patient within the defined ICP groups. The charts illustrate the distribution of
samples across individual patients for the groups: 0–10 mmHg, 10–20 mmHg, and 20–39 mmHg.
number of data points available per patient was counted. To ensure
meaningful statistical power and maintain a reasonable balance of
representation between patients, only patients with a minimum of 20
data points (equivalent to 20 min of data) were considered eligible for
sampling. The maximum number of samples that could be drawn from a
single patient was limited to 60 data points, preventing any one patient
from being disproportionately over-represented. The size of each group
was then calculated by summing the contributions of eligible patients.
To maintain consistency, the number of samples in each group was
adjusted to match the size of the smallest group, ensuring uniformity
in the analysis.

Once a group size had been defined, the sampling procedure in-
volved iteratively and randomly drawing samples from the eligible
patient data until the required number of samples for each group was
reached. Figs. 11 and 12 depict the number of patients sampled for each
group and the number of samples collected from each patient for each
group, respectively.
7 
3. Results

The findings affirm the two hypotheses under investigation, which
we now examine sequentially. Initially, the outcomes from both the
correlation and group analyses reinforce the hypothesis that variations
in features derived from NIR-PPG correspond to changes in ICP levels.
The correlation analysis revealed that the majority of the 141 features
exhibited significant correlations (𝑝 < 0.05) with the label in both
datasets. Notably, 109 (77.30%) and 112 (79.43%) of the features
demonstrated significant correlations with the label for proximal and
distal features, respectively. Table 1 presents the ten features with the
smallest p-values for both proximal and distal feature sets. Due to the
extensive number of features analysed, this discussion is concentrated
on the top 10 most significant features, alongside aggregate metrics
summarising the overall results.

For the significant features, the mean absolute correlation coef-
ficients were 0.0729 and 0.0930 for proximal and distal features,
respectively. Within the subset of the 10 most correlated features, these
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Table 1
Table containing the top 10 correlated features sorted by ascending 𝑝-value for both short-distance,
proximal and long-distance, distal NIR-PPG derived features. The Coefficient column represents the Spearman
correlation coefficient, which ranges from −1 to 1. A value of 1 indicates a perfect positive correlation, −1
indicates a perfect negative correlation, and 0 indicates no correlation. Larger absolute values signify stronger
relationships between features and the label.
Proximal Distal

Feature Coefficient Feature Coefficient

start datum difference −0.1943 ds ratio 75 (deriv 1) −0.2149
max start datum difference −0.1699 kurt −0.2132
skew 0.1527 systolic width 50 −0.2064
systolic width 25 (deriv 2) 0.1499 diastolic width 75 (deriv 1) −0.2051
ds ratio 75 (deriv 1) −0.1472 ds ratio 50 (deriv 1) −0.2051
pulse width 25 (deriv 2) 0.1466 skew 0.2038
kurt −0.1337 ds ratio 75 0.2033
pulse width 50 (deriv 2) 0.1319 skew (deriv 1) 0.2003
ds ratio 75 (deriv 2) −0.1276 pulse width 75 (deriv 1) −0.2001
systolic width 25 −0.1275 ds ratio 50 0.1941
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ig. 13. A histogram illustrating the distribution of intracranial pressure values within
he dataset.

verages increase to 0.1481 for proximal and 0.2046 for distal features.
xcluding seven features (start datum difference, max start datum
ifference, skew, skew of the first derivative, and kurtosis) from the
op 20 features across both proximal and distal datasets the remaining
5% of the features are related to pulse width.

The group analysis reinforces the findings of the correlation analysis
nd provides additional support for the initial hypothesis. The sampled
ata for all features did not meet the assumptions of normality and/or
omogeneity of variance, as assessed by the Shapiro–Wilk and Levene’s
ests, respectively. Consequently a non-parametric Kruskal–Wallis test
as employed to identify changes in the distributions of feature values
cross the ICP range. Fig. 13 illustrates the distribution of ICP values
ithin the dataset.

The dataset’s maximum ICP value was 39 mmHg. Following the
ogic for constructing groups, three groups were formed: (0–10), (10–
0), and (20–39) mmHg. The smallest group, encompassing data from
0 to 39 mmHg, comprised 429 instances, equating to approximately
.15 h of data. To ensure uniformity, the other groups were sampled
o match this size. The results of the group analysis indicate that 115
81.56%) and 107 (75.89%) features exhibited significant changes (𝑝 <
.05) across ICP groups for proximal and distal features, respectively.
able 2 presents the top 10 features sorted by lowest 𝑝-value for both
roximal and distal datasets.
 a

8 
Fig. 14 illustrates the top 10 distal features arranged by descending
-value returned by the Kruskal–Wallis analysis. The presented box
lots provide a comparative analysis of feature values across ICP ranges
or proximal (orange box plots) and distal (blue box plots) data. The
resented box plots provide a comparative analysis of feature values
cross ICP ranges for proximal (orange box plots) and distal (blue
ox plots) data. Each box plot represents the distribution of a specific
eature within a given ICP range. The boxes illustrate the interquartile
ange (IQR), containing the middle 50% of the data points. Inside each
ox, the red line indicates the median of the data, providing a measure
f central tendency. The whiskers denote the range within 1.5 times the
QR from the quartiles. The box plots include annotations indicating the
esults of the overall group Kruskal–Wallis tests, which compare the
istributions across different ICP groups. Additionally, the associated
esults of the post hoc pairwise analysis are annotated, indicating which
airs showed significant changes.

A visual examination of the boxplots indicate that the features
erived from NIR-PPG data show statistically significant variations with
hanges in ICP. Across ICP groups, most of the examined features
emonstrate significant changes in median values and IQR. Notably,
he majority (approximately 60%) of the top 10 most significant fea-
ures exhibit an inverse relationship with ICP, indicating that as ICP
ncreases, the values of these features tend to decrease.

Focusing specifically on features within the top 10 that directly
escribe aspects of pulse width without referring to ratios of systolic
o diastolic pulse widths, we observe consistent trends. Features such
s the pulse width at 75% of pulse prominence (1st derivative), dias-
olic width at 50% of pulse prominence (1st derivative), and diastolic
idth at 75% of pulse prominence (1st derivative) all display a robust

nverse relationship with ICP. These findings suggest that as ICP values
ise, the width of the cardiac pulse decreases. Notably, the diastolic
idth emerges as one of the features undergoing the most significant

hanges, implying that the reduction in width may primarily stem from
decrease in the diastolic segment of the pulse.

Furthermore, along with the narrowing of pulse width, a significant
elationship between skewness, kurtosis, and the ratio of diastolic to
ystolic width at different percentages of pulse prominence with ICP
s observed. The observed decrease in kurtosis, increase in skew, and
ecrease in the ratio between the systolic and diastolic pulse width of
he pulse may collectively indicate that the pulse is becoming more
ounded. A decrease in kurtosis suggests that the pulse distribution is
ecoming less peaked and more flattened, implying a broader, more
ounded shape. An increase in skew indicates a shifting or diminishing
f the systolic peak, suggesting that the peak is either becoming less
ronounced or moving away from the left hand side of the pulse,
ontributing to a more symetrical and rounded pulse shape. Addition-
lly, a decrease in the ratio between the systolic and diastolic pulse
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Table 2
Table containing the top 10 features which changed most significantly with variations in ICP values. The NIR-PPG derived features were sorted
by ascending 𝑝-value for both short-distance, proximal and long-distance, distal data. The associated 𝑝-value and 𝜂2 for each feature is also
presented.

Proximal Distal

Feature P-Value 𝜂2 Feature P-Value 𝜂2

skew (deriv 1) 7.14E−37 0.128 skew (deriv 1) 1.04E−32 0.113
skew 7.51E−30 0.103 ds ratio 75 (deriv 1) 3.51E−30 0.104
ds ratio 75 (deriv 2) 7.20E−29 0.099 ds ratio 50 (deriv 1) 1.08E−28 0.099
ds ratio 50 9.15E−28 0.095 skew 6.61E−28 0.096
ds ratio 75 1.01E−25 0.088 diastolic width 75 (deriv 1) 1.15E−27 0.095
kurt 1.47E−25 0.088 kurt 1.09E−25 0.088
AUC Ratio 1.22E−24 0.084 diastolic width 50 (deriv 1) 1.30E−25 0.088
datum area ratio 8.40E−24 0.081 ds ratio 100 1.53E−25 0.087
end datum difference (deriv 1) 1.34E−23 0.080 pulse width 75 (deriv 1) 2.00E−25 0.087
ds ratio 100 5.76E−23 0.078 ds ratio 75 1.39E−24 0.084
indicates that the difference between these two phases is reducing,
further supporting the idea that the pulse profile is losing its sharp
systolic peak and becoming more uniformly rounded.

The majority (60%) of the top 10 features of the distal dataset which
we posit includes cerebral information were first derivative features.
The first derivative representing the velocity/rate of change over time.
Within this context the first derivative may provide information about
the velocity of blood volume changes happening within the cerebral
vasculature.

A post hoc pairwise analysis was conducted using a Mann–Whitney
U test with a Bonferroni correction if a significant change was detected
across groups from the Kruskal–Wallis test. This approach led to the
post hoc analysis of 115 and 107 features for the proximal and distal
data, respectively.

In the proximal dataset, 80.87% and 86.09% of the features changed
significantly between the 0–10 and 20–39 mmHg groups and the 10–20
and 20–39 mmHg groups, respectively. Similarly, in the distal dataset,
85.047% of features changed significantly between these same pairs.
A minority of pairwise statistical changes were identified between the
0–10 mmHg and 10–20 mmHg groups. In the proximal and distal
datasets, these changes accounted for 40% and 21.5%, respectively.
These findings align with our expectation that the majority of features
would show significant differences when comparing groups with low
ICP (0–10 mmHg) and normal/moderate ICP (10–20 mmHg) to those
with high ICP (20–39 mmHg).

The findings partially validate the second hypothesis, indicating that
alterations in features are more prominent in long-distance NIR-PPG
data compared to short-distance NIR-PPG data. Although there is a non-
significant difference in the number of significantly correlated features
(2.75%) and significant differences across groups (7.21%) between the
proximal and distal datasets, the correlation analysis shows that the
absolute average correlation coefficient of all features and significantly
correlated features in the distal dataset is 25.76% and 24.24% higher,
respectively, than in the proximal dataset. This suggests that distal,
long-distance NIR-PPG pulse features may be more closely related to
changes in ICP compared to proximal, short-distance features.

4. Discussion

4.1. Limitations

An important area for future research involves the collection of a
new and more comprehensive dataset. The current dataset was limited
by being a single-centre collection and included data from 27 patients
after data exclusion. This relatively small sample size and the single-
arm nature of the study poses possible limitations. A small sample size
and single-centre study may limit the generalisability and reliability of
the findings. Factors such as patient demographics and treatment pro-
tocols can vary significantly across different regions and centres. Data

collected from a smaller sample from a single centre might not capture
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the variability seen in a more diverse, multi-centre study. Moreover,
the dataset lacked stratified demographic and medical information,
such as medication usage and skull thickness which could potentially
serve as important features for non-invasive ICP estimation. Due to
effective clinician intervention another limitation of the dataset was
the scarcity of elevated and valuable ICP data above the clinically
significant threshold of circa 20 mmHg.

An additional limitation of this study is the absence of MAP data
and, consequently, autoregulation assessment. Without these data, the
study did not explore the potential relationships and interactions be-
tween MAP, autoregulation, ICP, and changes in derived NIR-PPG
features. Including MAP data and autoregulation assessment in future
research would provide a more comprehensive view of the factors
influencing ICP and their impact on NIR-PPG features, leading to an
improved understanding of the underlying physiological mechanisms
caused by variations in ICP and their effect on the NIR-PPG signal.

To address these challenges, a larger and multi-centre data collec-
tion would be useful to increase the sample size and diversity. A focus
should be placed on collecting more data above the 20 mmHg threshold
to possibly improve the robustness of the ICP estimation models and
statistical analysis. A revised data collection protocol, which may in-
volve shorter but more supervised collection periods, could help ensure
higher data quality.

The developed pulse detection algorithm, tailored specifically for
this dataset, was qualitatively assessed through visual inspection of
the detection on NIR-PPG data during its development rather than
through quantitative evaluation. We acknowledge that the absence of a
quantitative assessment may lead to potential errors in pulse detection
and subsequent feature extraction. However, we are reasonably assured
of the accuracy of the extracted features for the included data. This as-
surance stems from the fact that the pulse detection algorithm’s results
were visually inspected and verified during the data selection process,
as illustrated in Fig. 7. Thus, despite the potential limitations, we
believe the qualitative assessment provided a satisfactory verification
of the algorithm’s performance for our purposes.

4.2. Findings and future directions

To the best of the authors’ knowledge, this paper represents the
first attempt to investigate variations in time-series and morphological
features derived from NIR-PPG in response to changes in ICP, using
clinically collected data from 27 patients. The initial hypotheses of this
study were twofold: first, to ascertain whether alterations in NIR-PPG
derived features correlate with fluctuations in ICP levels, and second,
to determine whether these changes are more pronounced in features
derived from long-distance NIR-PPG data compared to short-distance
NIR-PPG data. The results of this investigation provide support for both
hypotheses. The findings indicate that a majority of features derived
from both short and long-distance NIR-PPG data exhibit significant
changes in response to variations in ICP. Although there is a non-

significant difference in the number of significantly correlated features
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Fig. 14. A figure presenting 10 boxplots illustrating the variation in feature values across different ICP groups. These boxplots correspond to the 10 features with the most
significant differences in a Kruskal–Wallis analysis on distal feature data. They display distributions for both proximal and distal feature data. The central line represents the
median, the box encompasses the interquartile range (IQR), and the whiskers denote the range within 1.5 times the IQR from the quartiles.
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and significant differences across groups between the proximal and
distal datasets the distal dataset yielded a meaningfully higher absolute
average correlation coefficient of all features and significantly corre-
lated features in-comparison to the proximal dataset which supports the
proposition by Roldan et al. that data from the proximal photodiode
corresponds predominantly to extracerebral data, whereas data from
the distal photodiode represents a combination of extracerebral and
cerebral data [13].

In Section 1.1, we introduced our hypothesis regarding the re-
lationship between cerebral hemodynamics and changes in NIR-PPG
morphology. We describe how elevations in ICP correspond to compres-
sion of cerebral vessels altering their mechanical properties, causing a
reduction in cerebral compliance, increase in vascular resistance and
subsequent reductions in CPP. This process initiates cerebral autoreg-
ulatory mechanisms aimed at maintaining CPP and normalising CBF
to the brain. However, when elevated ICP diminishes CPP below a
critical threshold, cerebral autoregulation may fail, resulting in blood
vessels being unable to vasodilate sufficiently to counter the reduced
CPP, leading to a sustained drop in CBF. We contend that the NIR-PPG
signal may offer insights into these variations in cerebral compliance
and CBF. Our findings indicate that the majority of the most significant
changes in distal features affected the pulse width. We hypothesise
that the recorded changes in pulse width may reflect alterations in
blood flow and vessel elasticity. As ICP increases, cerebral compliance
decreases reducing CPP below the critical threshold and consequently
diminishing CBF, less blood volume per cardiac cycle reaches the brain.
We acknowledge that the normalisation of the NIR-PPG data prior to
analysis does not enable us to determine if the changes in pulse width
are as a consequence of shorter cycle duration or changes in amplitude.
Despite this, we hypothesise a narrower pulse width may signify a
shorter duration of blood volume change, potentially associated with
decreased compliance or lower CBF. Decreased cerebral compliance
may result in an increase in the velocity of blood volume changes due to
the vessels’ reduced ability to accommodate changes in blood volume,
reducing the first derivative’s pulse width.

The results also suggest that as ICP increases, pulses become more
rounded, indicated by a decrease in kurtosis and the ratio of diastolic
to systolic width at different percentages of pulse prominence coupled
with an increase in skewness. This rounding of the pulse may also be
associated with a dampening effect caused by reduced compliance. We
posit that the diminished ability of vessels to deform during systole and
diastole with decreased compliance attenuates the pulse wave creating
the rounding effect.

The study conducted by Cardoso et al. [19] analysed the CBF
pulse wave and its relationship with ICP in 15 patients suffering from
hydrocephalus, benign intracranial hypertension or head injury. Our
findings and hypothesis are in line with the outcomes of this study
which found that increases in ICP is accompanied by an increase in the
amplitude of the cerebrospinal fluid pulse wave which in values above
20 mmHg first become rounded and, at higher ICP values acquires a
pyramidal shape.

Additionally, the majority of the most significant distal feature
changes were observed in the first derivative, particularly within the
distal dataset, which we believe encompasses cerebral information.
The first derivative, representing flow velocity. An increase in ICP can
compress cerebral vessels, thereby diminishing CBF. This constriction
not only reduces the volume of blood that can flow through these
vessels but may also affect the velocity of blood flow, likely captured by
changes in the first derivative of the NIR-PPG signal. Consequently, a
reduction in the width of the first derivative may signify a faster transit
time of blood perhaps indicating compensatory mechanisms reacting to
maintain cerebral perfusion under elevated ICP. Understanding these
changes in features related to blood flow velocity appear crucial in
describing ICP dynamics via NIR-PPG data.

The current study provides a credible foundation, but additional

steps are required to develop this methodology into a clinically viable,
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non-invasive tool for estimating ICP. The next phase should involve col-
lecting further data from a larger and more diverse patient population
to enhance the robustness and generalisability of the findings.

This research has demonstrated that NIR-PPG features are asso-
ciated with ICP changes, providing a basis for developing machine
learning models. Effective models would enable non-invasive ICP mon-
itoring and assessment. While NIR-PPG features derived from this
dataset have demonstrated the feasibility of non-invasive ICP esti-
mation using classical machine learning models, these models have
struggled to generalise to new, unseen data [20]. Therefore, further
research utilising more complex modelling approaches may improve
ICP estimation performance. This research will contribute to the goal
of the development of the first non-invasive, point-of-care device for
ICP monitoring.

5. Conclusion

The results of this study support both hypotheses, demonstrating
significant correlations between the extracted features and ICP levels.
Significantly 77.30% and 79.43% of the features exhibited significant
correlation with the label for the distal and proximal datasets, re-
spectively. Moreover, the Kruskal–Wallis group analysis underscores
the consistency of these findings, indicating that 81.56% and 75.89%
of the features showcased significant changes across the ICP range.
Notably, the mean absolute correlation of significant long-distance
derived features surpassed short-distance features by 24.24%. These
findings underscore the potential of NIR-PPG based devices as non-
invasive tools for estimating dynamic changes in ICP. These findings
are clinically relevant and support the work within this domain which
strives to utilise NIR-PPG data and derived features to estimate ICP
non-invasively providing a reference for demonstrating the sensitivity
of NIR-PPG waveform features to alterations in ICP. The positive find-
ings indicate promise in the area of NIR-PPG driven non-invasive ICP
monitoring.
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Table 3
Table containing the list of features extracted from the original, first derivative and
second derivative of the signal.

Features

AUC
Systolic AUC
Diastolic AUC
Ratio between the systolic and diastolic AUC
Rise time (samples between the pulse onset and peak)
Decay time (samples between the pulse peak and end)
Ratio between the rise time and decay time
Number of beats
Inter-beat interval
Standard deviation of the inter-beat interval
Prominence
Upslope (slope between pulse onset to peak)
Downslope (slope between peak to pulse end)
Onset-end slope (slope between pulse onset and end)
Ratio between the upslope and downslope
Ratio between the pulse length and height
Start datum area
(area between a straight line between the pulse onset
and peak and pulse data between those points)
End datum area
(area between a straight line between the pulse peak
and end and pulse data between those points)
Ratio between the start datum area and end datum area
Max start datum difference
(maximum element-wise difference between a straight line between
the pulse onset and peak and pulse data between those points)
Max end datum difference
(maximum element-wise difference between a straight line between
the pulse peak and end and pulse data between those points)
The median of the element-wise difference between a straight line between
the pulse onset and peak and pulse data between those points
The median of the element-wise difference between a straight line between
the pulse peak and end and pulse data between those points
Pulse width at 10% of the pulse prominence (in samples)
Pulse width at 25% of the pulse prominence (in samples)
Pulse width at 50% of the pulse prominence (in samples)
Pulse width at 75% of the pulse prominence (in samples)
Pulse width at 100% of the pulse prominence (in samples)
Systolic width at 10% of the pulse prominence (in samples)
Systolic width at 25% of the pulse prominence (in samples)
Systolic width at 50% of the pulse prominence (in samples)
Systolic width at 75% of the pulse prominence (in samples)
Systolic width at 100% of the pulse prominence (in samples)
Diastolic width at 10% of the pulse prominence (in samples)
Diastolic width at 25% of the pulse prominence (in samples)
Diastolic width at 50% of the pulse prominence (in samples)
Diastolic width at 75% of the pulse prominence (in samples)
Diastolic width at 100% of the pulse prominence (in samples)
Ratio between the diastolic and systolic pulse width at 10% of the pulse prominence
Ratio between the diastolic and systolic pulse width at 25% of the pulse prominence
Ratio between the diastolic and systolic pulse width at 50% of the pulse prominence
Ratio between the diastolic and systolic pulse width at 75% of the pulse prominence
Ratio between the diastolic and systolic pulse width at 100% of the pulse prominence
Variance of the pulse data
Skew of the pulse data
Kurtosis of the pulse data
Zero-crossing rate of the pulse data
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