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ABSTRACT
In the emerging 6G era, vehicles are extensively connected to wire-
less networks through edge-accessible roadside units (RSUs). The
increasing number of connected vehicles and vehicle services in-
troduces a significant security challenge known as the "zero-trust
network (ZTN)." This necessitates a shift from traditional methods
of resource slicing and scheduling. This study focuses on ensuring
reliable 6G vehicular services, particularly addressing the scenario
of task offloading between vehicles, which involves managing com-
munication resources. We propose a method that uses a logical
model to assign an edge node score (ENS) to evaluate the security
of edge nodes, thereby protecting vehicles from potential threats
posed by untrusted edge access points. Vehicles select edge nodes
with high ENS scores for task offloading. Also, we used a feder-
ated asynchronous reinforcement learning approach to enhance the
management of offloaded tasks. Simulation results show that the
proposed approach effectively organizes the resources and ensures
the security of vehicle data.

CCS CONCEPTS
• Zero Trust Architecture; • Next Generation Communica-
tions; • Asynchronous Federated Learning; • Task Offloading;
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1 INTRODUCTION
Federated learning (FL) and reinforcement learning (RL) are two
effective learning technologies that have been widely used in recent
investigations to address wireless network problems with optimiza-
tion. FL is a machine learning framework that may efficiently allow
numerous users to use data while adhering to legal constraints, data
security standards, and privacy concerns for users [1, 5]. RL is used
in conjunction with the Markov process, a continuous mathemat-
ical simulation technique, to solve non-convex problems [12]. In
order to minimize the energy consumption, the authors in [10, 11]
integrated FL with deep Q-network (DQN) in RL and optimization
will be done with the task offloading method based on the envi-
ronmental state seen by the base station. Nevertheless, this effort
fails to integrate cloud servers to deliver car services; rather, it
solely takes into account scenarios that fall inside a base station’s
coverage area. The issue of resource allocation of the edge stor-
age of smart devices was studied by the author in [9] utilizing FL
and double-DQN-based RL. According to reports, this method’s
simulation outcome is superior to the traditional method that was
compared. However, the DDQN algorithm’s complexity increases
when addressing the continuous action state, and its study goal
does not contain moving vehicles. The three main edge computing
problems—resource allocation, computation offloading, and service
caching placement—were simultaneously optimized by the authors
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of [8, 14]. The author used FL in conjunction with a two-layer DQN
method to optimize these problems; however, FL is only utilized for
improving the edge storage; the trustworthiness of the edge nodes
is not taken into account in the overall plan.

In general, an effective resource allocation strategy must safe-
guard client privacy in addition to optimizing resource deployment
and enhancing service dependability [7]. Choosing reliable edge
nodes and minimizing the amount of original data transmitted are
two crucial factors to take into account. The authors of [4, 13] devel-
oped an edge node selection technique based on reputation values.
Reputation value was computed by analyzing the historical service
records of edge nodes. Motivated by this effort, we could urge the
cars to assign jobs to the edge services based on the RSU’s reputa-
tion value in order to guard against hostile vehicle attacks on the
RSU. Once the right edge nodes have been chosen, vehicular jobs
must be reliably fulfilled. The author of [6] proposed a dependable
estimation approach for the UAV’s condition using coding technol-
ogy; the dependability is measured by the communication link’s
error rate. The author of [3] presented a testing strategy for IoTD
that primarily identified access device security from a software
and hardware standpoint. The deployment of vehicular fog node
slices was optimized in [2] by the author using the simplest RL tech-
nique, Q-learning, and measuring reliability using the probability
of vehicle communication interruption.

1.1 Contribution
• In this study, we primarily focus on edge, convergence, and
cloud servers in a typical vehicular edge computing situa-
tion. The edge server can be installed on the RSU to service
vehicles, but the convergence server has a higher process-
ing capacity. To finish offloading a portion of the vehicular
tasks and develop the DL models to guard against the con-
vergence servers’ lack of processing power, the cloud server
will interact with several convergence servers.
• We set up an identity assessment technique based on a per-
sonal logic model to continuously watch the reputation rat-
ing and assess the security degree of the network connection
points in order to address the possible security concerns from
the trustless system. Using the access point ratings and the
needs of their tasks, vehicles may locate reliable network
access nodes. In order to satisfy the availability needs of
on-board tasks, the federated asynchronous RL algorithm is
utilized to improve slice resource allocation.

1.2 Organisation
The article is structured as follows: The system model and the for-
mulation of the problem are described in depth in Sections II and III.
In Section IV, the optimized problem’s solution is demonstrated. In
Section V, the suggested scheme’s effectiveness is assessed. Section
VI contains the final presentation of the conclusion.

2 SYSTEM MODEL
2.1 Vehicular Network
Consider a three-layered infrastructure made up of edge servers,
convergence servers, and cloud servers for a hierarchical vehicular

Figure 1: System Model: VN Architecture

network. RSUs are positioned close to highways and equipped
with edge servers, as illustrated in Fig. 1. Wired backhauls connect
the convergence servers and edge servers. In terms of computing
capacity, a convergence server is significantly more potent than an
edge server. The convergence servers’ service zones encompass the
linked edge servers in the interim. The cloud server is connected to
convergence servers, offering redundant computational resources.
The convergence and cloud server, an edge server, may manage the
vehicle activities in order to reduce service latency.

2.2 Communication and Computation Model
The communication between the vehicle and RSU is referred to as
V2I. V2V stands for vehicle-to-vehicle communication. The vehic-
ular task could be offloaded via V2V to the future service area
of a new convergence server when a vehicle is ready to leave
the convergence server’s service area, cutting down on the han-
dover delay. Let us consider the following: 𝑘 ∈ K = {0, 1, 2, . . . , 𝐾},
𝑗 ∈ J = {0, 1, 2, . . . , 𝐽 }. A vehicle 𝑘 uses V2I communication, and a
vehicle 𝑗 uses V2V communication. For effective spectrum use, the
orthogonally allotted uplink spectrum is intended to be shared by
the V2V and V2I. We now derive the transmission rate for V2I and
V2V.

The transmission rate of any resource block (RB) 𝑥 that vehicle
𝑘 occupies in V2I communication is expressed as

𝑞𝑥
𝑘
= 𝑙 · log (1 + 𝛾𝑘 ) −

√︃
𝜇−1 [

1 − (𝛾𝑘 + 1)−2]𝑉 −1 (𝜀)
ln 2

, (1)

where 𝑙 is the bandwidth and 𝑥 ∈ X = (1, 2, . . . , 𝑋 ). In this case, 𝜇
represents the URLLC packet size. The inverse Q-function is𝑉 −1 (𝜀),
and the URLLC reliability threshold is 𝜀. Next, 𝛾𝑘 can be acquired
by

𝛾𝑘 =
𝑃𝑊𝑘𝑔𝑘

𝜎2 +∑𝑗∈J 𝜌 𝑗,𝑘𝑃𝑊𝑘𝑙 𝑗
(2)

where 𝑔𝑘 represents the channel gain of V2I and 𝑃𝑊𝑘 , 𝑃𝑊𝑗 stands
for the transmission power of the vehicle 𝑘, 𝑗 . In this case, 𝑙 𝑗 repre-
sents the vehicle 𝑗 ’s interference power gain, and 𝜌 ∈ {0, 1}, 𝜌 𝑗,𝑘 = 1
indicates that during V2V communication, the 𝑗 th vehicle uses the
spectrum resource of the 𝑘th vehicle, which results in the channel
interference. Consequently, for vehicle 𝑘 , the data transmission rate
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is provided by

𝑄𝑘 =

𝑋∑︁
𝑥=1

𝑞𝑥
𝑘

(3)

The V2V transmission rate of vehicle 𝑗-occupied resource block
(RB) 𝑥 is obtained using

𝑞𝑥𝑗 = 𝑙 · log
(
1 + 𝛾 𝑗

)
−
√︂
𝜇−1

[
1 −

(
𝛾 𝑗 + 1

)−2
]𝑉 −1 (𝜀)

ln 2
, (4)

where 𝛾 𝑗 represents

𝛾 𝑗 =
𝑃𝑊𝑗 𝑙 𝑗

𝜎2 + 𝑍q21 + 𝑍Q2 Q
(5)

Here, 𝑙 𝑗 denotes the channel gain of Q2 Q, and 𝑍Q21 denotes the
interference when vehicle 𝑘 shares RB with 𝑗 , which is given by

𝑍Q2X =
∑︁
𝑘∈𝐾

𝜌𝑘,𝑗𝑃𝑊𝑘𝑔𝑘 , (6)

where 𝜌 ∈ {0, 1}, 𝜌𝑘,𝑗 = 1 and 𝑔𝑘 is the interference power gain of
vehicle 𝑘 indicates that, during V2I communication, the 𝑘th vehicle
utilizes the 𝑗 th vehicle’s spectrum resource.

The interference that occurs when vehicle 𝑗 shares RB with
vehicle 𝑗 ′ is denoted by 𝑍Q2 Q. Next, we have

𝑍Q2 Q =
∑︁

𝑗 ′∈ 𝐽 , 𝑗 ′≠𝑗
𝜌 𝑗 ′, 𝑗𝑃𝑊𝑗 ′𝑙 𝑗 ′ (7)

𝑄 𝑗 =

𝑋∑︁
𝑥=1

𝑞𝑥𝑗 . (8)

Task 𝑢’s wireless access network transmission time takes the fol-
lowing form:

𝐷wireless
𝑢 = 𝜙

𝑐𝑢

𝑄𝑢
𝑗

+ 𝑐𝑢
𝑄𝑢
𝑘

( 𝑗 ∈ J , 𝑘 ∈ K), (9)

The likelihood of RB transmission failure is given by taking into
account the situation of RB transmission failure as well.

𝑃𝑊 error
𝑢 = 1 − (1 − 𝜂)𝑋𝑢 , (10)

where 𝑋𝑢 is the number of RBs occupied by task 𝑢, and 𝜂 is the
likelihood of an RB transmission failure.

Depending on the offloading scenarios, task 𝑢 may need to
be routed over wired backhauls to the cloud server or conver-
gence servers after reaching the RSU via the 6H wireless network.
𝑄wired =

{
𝑄con
wired, 𝑄

cld
wired

}
is the transmission rate of wired back-

hauls. The transmission rates between the RSU the cloud server
and the convergence server are indicated by the variables 𝑄con

wired
and𝑄cld

wired, respectively. Task𝑢’s time delay when transmitted over
wired backhauls is seen as

𝐷wired
𝑢 =

𝑐𝑢

𝑄wired
, (11)

and the total transmission delay of task𝑢 is expressed as

𝐷tran
𝑢 = 𝐷wireless

𝑢 + 𝐷wired
𝑢 . (12)

Following transmission of the vehicular task 𝑢 to the target offload-
ing server, the server will furnish computational resources. The
delay in task execution is expressed as

𝐷
comp
𝑢 =

𝑐𝑢𝑏𝑢

𝑖𝑢𝑚𝑒𝑚
(13)

where 𝐼𝑢𝑚 represents the percentage of server m’s computing re-
sources that are occupied by task 𝑢, and 𝑒𝑚 indicates the total
number of computation resource slices of server𝑚. As a result, the
whole time taken to do the vehicular task 𝑢 takes the form:

𝐷𝑢 = 𝐷tran
𝑢 + 𝐷comp

𝑢 (14)

In addition to the time delay, the energy usage for the vehicular
task 𝑢 has to be taken into account. It takes the shape of

𝐹𝑢 = 𝑃𝑊𝑗𝜙
𝑐𝑢

𝑄𝑢
𝑗

+ 𝑃𝑊𝑘
𝑐𝑢

𝑄𝑢
𝑘

+ 𝑃𝑊wired𝐷
wired
𝑢 + 𝑃𝑊𝑚

comp𝐼
𝑢
𝑚, (15)

where the computing power of server𝑚 is represented by 𝑃𝑊𝑚
comp,

and the transmission power over the wired backhauls is denoted
by 𝑃𝑊wired.

This study calculates the total cost by weighting and adding the
time delay and energy consumption of job 𝑢 at time 𝑑 .

𝐻𝑢 (𝑑) = 𝜃𝐷𝑢 (𝑑) + (1 − 𝜃 )𝐹𝑢 (𝑑), (16)
𝜃 ∈ [0, 1] in this case. The percentage of energy consumption
and time delay in the cost function is adjusted using the weight 𝜃 .
Requirement:

• S state space and A action space
• 𝜙 discount factor and 𝑔𝑡 penalty parameter

[1] Initialization: Process step counter 𝑡 ← 1 Initialization: 𝜔,𝜔𝑣, 𝑡𝑐 and
𝑇 = 0 Initialization: 𝜔 ′, 𝜔 ′𝑣 Repeat 𝑑𝜔 ← 0 and 𝑑𝜔𝑣 ← 0 Process Syn-
chronization 𝜔 ′ = 𝜔 and 𝜔 ′ = 𝜔𝑡start = 𝑡 Find out the state 𝑠𝑡 Repeat
Perform 𝑘𝑑 as per policy 𝜋 (𝑘𝑑 | 𝑛𝑑𝜔 ′ ) and find reward 𝑢𝑑 and new state
𝑘𝑛+1 𝑑 ← 𝑑 + 1 𝑈 ← 𝑈 + 1 Until terminal 𝑢𝑑 or 𝑑 − 𝑑start == 𝑑max 𝑥 ∈
{𝑑 − 1, . . . , 𝑑start}; 𝑍 ← 𝑧𝑥 + 𝜉𝑍 if 𝑡%𝑡𝑐 = 0 then 𝜔 = 1

con
∑𝑖=𝑐𝑜𝑛

𝑖=1 𝜑𝑖 · 𝜔𝑖

Perform asynchronous update of 𝜔 using 𝑑𝜔 and of 𝜔𝑙 using 𝑥𝜔𝑢 until
𝐷 > 𝐷max

2.3 Zero trust architecture
The age of 6G is one of pervasive intelligence. In contrast to 5G,
6G will include a sizable number of devices linked to the network,
and it is more possible that some of those devices may be malicious
and could cause network damage. Information security will pro-
vide major issues in the 6G era. This study suggests a zero trust
architecture for 6G vehicle networks in the standard scenario to
withstand the security risks of 6G. A significant number of autos
will interact with RSU and assign it responsibilities. The proposed
zero trust architecture incorporates an RSU selection method based
on the subjective logic model, taking into account the possibility of
hostile manipulation of the vehicle to attack the RSU. The security
issues that the network faced in the context of zero trust may be
summed up as follows:
• The reputation of a network cannot be determined solely by
its location.
• Every piece of hardware, every user, and every network
communication need to be verified and approved.
• Numerous sources of data must be used to calculate the
security procedure, which must be dynamic.

Similar dangers will also be encountered by the 6G vehicular net-
work about security issues in zero-trust networks. The use of C-V2X
(Cellular-Vehicle to Everything) will result in an increasing number
of RSUs being positioned alongside the road. Traffic accidents are
most likely to occur once an RSU is attacked and malfunctions. By



(ZTA-NextGen’24), , Sydney, Australia Prakhar and Neeraj, et al.

extending the use case to a 6G vehicular network and considering
the job offloading scenario with V2I communication, all participat-
ing objects in vehicular networks should collaborate to establish an
end-to-end trust relationship. These participating objects include
vehicles, RSUs, and even the cloud centre.

3 PROBLEM FORMULATION
In order to solve the issue of vehicular task offloading, vehicles will
first locate a reliable network access point and then set up slice
resources according to the task’s bandwidth and latency require-
ments. In addition to ensuring extremely high task reliability, the
allotted slice resources should minimize energy consumption. The
following is how the problem is stated:

𝑃 .𝐹 . : min
𝜆𝑢𝑚,𝜙𝑢 ,𝐼

𝑈
𝑢 ,𝑋𝑢

lim
𝑑→∞

𝑈∑︁
𝑢

𝑚=3∑︁
𝑚=1

𝜆𝑢𝑚 (𝑑) · 𝐻𝑢 (𝑑) (17)

𝑠 .𝑡 . C1 :
𝑚=3∑︁
𝑚=1

𝜆𝑢𝑚 (𝑑) = 1,∀𝑢 ∈ U,

C2 : 0 ≤
𝑈∑︁
𝑢=1

𝜆𝑢𝑚𝐼
𝑢
𝑚 ≤ 1,∀𝑚 ∈ M,

C3 : 𝐷𝑢 ≤ 𝜏𝑢 ,∀𝑢 ∈ U,

C4 :
𝑈∑︁
𝑢=1

𝑋𝑢 ≤ 𝑋,

where the major variables are 𝑋𝑢 , 𝐼𝑢𝑚 , 𝜙𝑢 , and 𝜆𝑢𝑚 . The problem has
the following properties: 𝐶1 indicates that any task 𝑢 can only be
offloaded to one of the three servers; 𝐶2 indicates that server𝑚
cannot provide task 𝑢 with computing resources greater than its
computation capacity; C3 indicates that no vehicular task’s comple-
tion time can be longer than the required delay; and C4 indicates
that no task’s slice of communication resources can be larger than
the total number of slices. Problem (17) contains discrete or con-
tinuous variables. It is not a convex problem, and calculating the
objective function directly will not yield the optimal solution. The
challenge is solved in this work using a federated asynchronous
reinforcement learning technique.

4 PROPOSED SOLUTION
First and foremost, the problem formulated is transformed into a
multiagent model-free decision-making problem using the Markov
decision process (MDP) model. By utilizing the MDP, an RL multia-
gent environment is generated, enabling an intelligent agent to be
trained in making optimal sequential decisions through trial-and-
error interactions with the environment.

4.1 MDP
TheMDPmodel is denoted by the set (S,A,P,R,V), whereS,A,P,R,
andV correspond to the state space, action space, state transition
probability, immediate reward function, and state value function,
respectively. A comprehensive explanation of the model is provided
below:

4.1.1 State Space. For each agent 𝑛, the state that has been ob-
served at the 𝑡𝑡ℎ time slot is presented in the following manner:

𝑠𝑡𝑛 =

{
ℎ𝑡𝑛,1, ℎ

𝑡
𝑛,2, 𝐼

𝑡
𝑚,𝑛, 𝐼

𝑡
𝑛′,𝑛, 𝑄

𝑡
𝑛, 𝐸

𝑡
𝑛

}
(18)

where ℎ𝑡
𝑛,1&ℎ𝑡

𝑛,2 are the channel gain from the DDT to 1𝑠𝑡 DDR
link and 2nd DDR link, respectively. 𝐼𝑡𝑚,𝑛 and 𝐼𝑡

𝑛′,𝑛 shows the inter-
ference link from the CUE-to-DDR link and interference links from
the DDT-to-DDR link at time slot (𝑡), respectively. 𝑄𝑡𝑛 is the data
queue link for the 𝑛𝑡ℎ DGU. 𝐸𝑡𝑛 represents the energy queue link
of the 𝑛th DGU.

4.1.2 Action Space. This state determines which time-period to
use and how much power should be transmitted during that time
slot. As a result, the action of each DGU during the 𝑡𝑡ℎ time slot is
specified as

𝑎𝑡𝑛 = {𝜏0, 𝛼𝑛} (19)
where 𝜏0 ∈ {0, 1}, and 𝛼 ∈

{
0, 1
𝐿
𝛼max,

2
𝐿
𝛼max, . . . , 𝛼max

}
. Here, 𝐿

denotes the number of discrete stages of maximum transmit power.

4.1.3 Transition Probability. The probability of transition from a
present state 𝑠𝑡𝑛 ∈ S𝑛 to a next state 𝑠𝑡+1𝑛 ∈ S𝑛 after executing an
action 𝑎𝑡𝑛 ∈ A is given as 𝑃

(
𝑠𝑡+1𝑛 | 𝑠𝑡𝑛, 𝑎𝑡𝑛

)
.

4.1.4 Reward. The 𝑛th DGU receives the following immediate
reward for the 𝑡 th time slot.

𝑟𝑡𝑛
(
𝑠𝑡𝑛, 𝑎

𝑡
𝑛

)
=

𝑁∑︁
𝑛=1

Ω1
[
𝐸𝐸

𝑡
𝑛 + �̄�𝑡𝑛

]
+
𝑁∑︁
𝑛=1

Ω2G
(
𝑅𝑡𝑛,1 − 𝑅

𝑡,min
𝑛,1

)
+
𝑁∑︁
𝑛=1

Ω3G
(
𝑅𝑡𝑛,2 − 𝑅

𝑡,min
𝑛,2

)
+
𝑁∑︁
𝑛=1

Ω4G
(
𝐷𝑡𝑛 − 𝜆

)
(20)

Here, G(𝑥) is a piecewise function and its value is given as follows:

G(𝑥) =
{
𝑍, 𝑥 ≥ 0
x, 𝑥 < 0

where 𝑍 is set as a positive constant to indicate revenue.

4.2 D2PG and Federated learning
D2PG is based on a widely used RL technique called deep determin-
istic, which blends policy-based and value-based techniques. D2PG
interacts with the environment concurrently through the utilization
of multiple processes. The learning outcomes are combined by each
process and sent to the global model for the gradient update. As
can be seen from the above, D2PG offers the best course of action
for every state-activity pair to produce the ideal power and time.
However, the implementation of the D2PG framework might not
be appropriate for the following reasons: (i) Training each agent
takes a significant amount of time. (ii) It takes a significant amount
of energy to train each agent separately. We propose the FL-based
strategy, which allows a loose federation of participating users un-
der the supervision of a central server, to overcome these issues.
In FL, the user’s raw data is divided into the model training data,
and a sporadic average of the local models is sent to the central-
ized server. This technique improves the distributed Deep Neural
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Figure 2: Comparative Results (a) Energy Consumption (b) Network Latency (c) Traffic Admission Rate & (d) Average Reward

Network (DNN) and D2PG training performance. It is also deter-
mined that in FL, the uploading overheads are almost negligible in
comparison to centralized learning for two main reasons: (i) the
training models’ size is smaller than the raw models’ size, and (ii)
the averaging time frame is much longer than the training time
frame.

5 SIMULATION RESULTS
We have established two service locations in the simulation. There
is one convergence server per service region. Within a service area,
there is a 250 m-long two-way road. Every car starts at a random
location and travels at a 30 km/h average. There are 120 commu-
nication RB in a service region, and each communication has a
20kHz bandwidth. The edge, convergence, and cloud servers have
processing power consumptions of 1, 10 & 100, respectively. Table
1 represents the simulation parameters used in this article. We view

Table 1: Simulation Parameters

Parameters Values
Maximum Length of Road 250 m
Vehicle’s Avg Speed 30 km/h
Power Consumed at Cloud, BS and Edge
Node

100, 10, 1

Frequency at Cloud, BS and Edge Node 10, 1 & 0.1 GHz
Transmission Rate at Cloud & BS 4 Mbps, 10 Mbps
Transmission Power at Cloud & BS 1 W each

slices and Wireless Service Providers (WSP) as a single, separate
network where there is a trade-off with WSP. For the entire en-
vironment, average cumulative and comparative performance is
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displayed in Figures 2 (a), (b), and (c). The cumulative performance
with D2PG settings is shown by one curve, whereas the cumulative
performance for FedL settings is indicated by the other. As shown,
FedLmay achieve better than D2PG outcomes depending on various
traffic conditions and network states, meeting the requirements of
a dependable vehicular network in terms of admission rate, latency,
and energy use. Since more slices directly affect cost functions and
meet network constraints and thresholds, the number of slices in-
creases, which in turn results in an increase in admission rate, as
shown in Fig. 2 (a). It also represents that compared to D2PG, FedL
offers a higher traffic admission rate.

Figure 2 (b) illustrates that D2PG has a higher delay than our
suggested approach. It illustrates how the agent uses predefined
weights to distinguish between different network costs. Figure 2 (c)
illustrates how D2PG uses more power across the network when
compared with our approach. Both curves slightly fall as soon as
an agent uses trade-offs to pursue a multi-objective strategy. For
instance, increasing vehicle traffic increases admission rates but
also increases power consumption; as a result, we cannot antici-
pate a significant improvement in all measures as traffic increases
since metrics are trade-offs. The FedL method, which is the one we
suggested in the article, is contrasted with D2PG in Figure 2 (d).
D2PG is a reinforcement learning system that uses off-policy data
to constantly train a Q-function and a policy that associates states
with actions. D2PG, which is based on gradient-based optimization,
is utilized in situations with continuous action spaces. There are ten
workers in each of FedL and D2PG. The system’s reward increases
as predicted during the training process. The reward typically re-
mains at the ideal value once the goal solution is discovered. As
can be observed, our suggested solution outperforms the other in
terms of stability and convergence speed.

6 CONCLUSION
In this study, we suggested a zero-trust environment trustworthy
method for slicing and scheduling URLLC resources for 6G vehicle
networks. This strategy combined a scoring system with edge, con-
vergence, and cloud servers, the three layers of the infrastructure.
We have presented a logical model to calculate the trust score of
edge nodes to shield cars frommalicious node assaults. The problem
was then optimized using an asynchronous fedL approach. The out-
comes of the simulation demonstrated that our suggested approach
may effectively distribute the resources needed for offloading ac-
tive duties while safeguarding the vehicle’s information security.
Blockchain technology may be utilized in ZTA for vehicular 6G
services in future research to better address information security
concerns.
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