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Background and Objectives: The Wechsler Abbreviated Scales of Intelligence second edition (WASI-II) is a
standardised assessment tool that is widely used to assess cognitive ability in clinical, research, and educational
settings. In one of the components of this assessment, referred to as the Vocabulary task, the assessed
individuals are presented with words (called stimulus items), and asked to explain what each word mean. Their
responses are hand-scored based on a list of pre-rated sample responses [0-Point (poor), 1-Point (moderate),
or 2-Point (excellent)] that is provided in the accompanying manual of WASI-II. This scoring method is time-
consuming, and scoring of responses that do not fully match the pre-rated ones may vary between individual
scorers. In this study, we aim to use natural language processing techniques to automate the scoring procedure
and make it more time-efficient and reliable (objective).
Methods: Utilising five different word embeddings (Word2vec, Global Vectors, Bidirectional Encoder Represen-
tations from Transformers, Generative Pre-trained Transformer 2, and Embeddings from Language Model), we
transformed stimulus items and pre-rated responses from the WASI-II Vocabulary task into machine-readable
vectors. We measured distance with cosine similarity, evaluating each model against a rational-expectations
hypothesis that vector representations for stimuli should align closely with 2-Point responses and diverge from
0-Point responses. Assessment involved frequency of consistent representation and the Pearson correlation
coefficient, examining overall consistency with the manual’s ranking across all items and sample responses.
Results: The Word2vec model showed the highest consistency with the WASI-II manual (frequency = 20 out
of 27; Pearson Correlation coefficient = 0.61) while Bidirectional Encoder Representations from Transformers
was the worst performing model (frequency = 5; Pearson Correlation coefficient = 0.05). The consistency of
these two models with the WASI-II manual differed significantly, Z = 2.282, p = 0.022.
Conclusions: Our results showed that the scoring of the WASI-II Vocabulary task can be automated with
moderate accuracy relying upon off-the-shelf embedding models. These results are promising, and could be
improved further by considering alternative vector dimensions, similarity metrics, and data preprocessing
techniques to those used in this study.
. Introduction

There is often a need to assess individuals’ cognitive ability – verbal
nd non-verbal – in educational, research and clinical settings. The
echsler Abbreviated Scale of Intelligence, Second Edition (WASI-

I) (Wechsler, 2011) is a standardised assessment of cognitive ability
hat is widely used for this purpose and it is appropriate for individuals
ged 6–90 years old. WASI-II which is a shorter version of the more
omprehensive Wechsler Intelligence Scale for Children - Fifth Edition
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E-mail address: nnamokon@edgehill.ac.uk (N. Nnamoko).
URL: https://research.edgehill.ac.uk/en/persons/nonso-nnamoko (N. Nnamoko).

(WISC-V) (Wechsler, 2014) assessments, consists of four sub-tests (Vo-
cabulary, Similarities, Block Design, and Matrix Reasoning). The four
sub-tests are typically administered by a trained expert and used to cal-
culate two scores commonly known as Full-Scale intelligence quotient
estimates (FSIQ-4 and FSIQ-2). The FSIQ-4 is deduced from individual
scores of all four sub-tests, while the FSIQ-2 uses scores from only
Vocabulary and Matrix Reasoning and is recommended when shorter
administration time is warranted. In addition, the WASI-II produces
two composite scores, namely: a Verbal Comprehension Index (VCI)
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consisting of scores from Vocabulary and Similarities; and a Perceptual
Reasoning Index (PRI) containing scores from Block Design and Matrix
Reasoning. The full WASI-II test kit includes 25 record forms, a stimulus
book, nine block design cubes and an examiner’s manual (McCrimmon
and Smith, 2013) which are used to administer all four sub-tests.

Several studies have shown the validity of WASI II and examined
its psychometric properties (Axelrod, 2002; Gontkovsky, 2017; Hasson
et al., 2019; McGeehan et al., 2017; Sharratt et al., 2020; Irby and
Floyd, 2013; McCrimmon and Smith, 2013). This study focuses only on
the Vocabulary sub-test of WASI-II. In this sub-test, the individual who
is assessed is presented with a list of words. These words (henceforth
stimuli) are presented one by one, and for each stimulus, the assessed
individual is asked to explain what the word means. The responses
are recorded in a specialised record form by a trained expert, who
administers the Vocabulary sub-test and scores these as 0-Point (poor),
1-Point (moderate), or 2-Point (excellent). The scoring process is based
on the examiner’s manual which accompanies WASI-II and provides
a list of alternative potential responses for each stimulus, pre-rated
as 0-Point, 1-Point or 2-Point responses. The quality of the responses
provided by an individual also informs the flow and the length of the
Vocabulary sub-test. In particular, the assessed individual might be
asked to offer further detail after some 0-point responses, while the
administration should stop after two consecutive erroneous responses.

Currently, the WASI-II administration and scoring procedures are
undertaken manually. This implies that the trained expert who adminis-
ters the Vocabulary task to the individual being assessed should (at the
same time) record their responses, interpret meaning and score them
in order to align with the administration guidelines of the Vocabulary
sub-test. Furthermore, the administrator will typically spend time at the
end of the assessment for a more fine-grained ranking of an individual’s
responses. Overall, the manual procedures for administering and coding
(i.e., interpreting and scoring) the responses in the Vocabulary sub-test
are complex, tedious, time-consuming, and expensive. Furthermore, as
the responses in this sub-test are open-ended, coding can be prone to
errors and subjective biases, especially when multiple administrators
are involved.

In this study, we propose to use natural language processing (NLP)
techniques to automate the scoring procedure of the Vocabulary sub-
test and make this more time-efficient as well as reliable and objective.
The NLP methods implemented in this study are largely based on
word embeddings or word vectors (Mikolov et al., 2013), a widely-
used resource from the fields of computational linguistics and machine
learning. Broadly speaking, word embeddings enable the representation
of meanings of words as vectors in a multi-dimensional Euclidean
space in a way that captures semantic regularities and relationships
between words (Levy and Goldberg, 2014b). For example, 𝑐𝑢𝑝 would
fall close to 𝑚𝑢𝑔 and to 𝑡𝑒𝑎. Furthermore, subtle semantic relationships
between words can be described in linear algebra terms. A widely used
example is that 𝑤𝑜𝑚𝑎𝑛 − 𝑚𝑎𝑛 = 𝑞𝑢𝑒𝑒𝑛 − 𝑘𝑖𝑛𝑔 = 𝑎𝑢𝑛𝑡 − 𝑢𝑛𝑐𝑙𝑒; and thus
𝑢𝑒𝑒𝑛 = 𝑘𝑖𝑛𝑔 − 𝑚𝑎𝑛 + 𝑤𝑜𝑚𝑎𝑛. These strengths of word embeddings
ave supported several recent advances in computational linguistics
pplications, for example, machine translation (Garcia et al., 2015),
nformation retrieval (Roy, 2017), and question answering (Medveď
nd Horák, 2018).

Earlier studies have demonstrated the psycholinguistic plausibil-
ty of word-embedding models. For example, Mandera et al. (2017)
howed that word embeddings account for human performance in

range of psycholinguistic tasks including vocabulary knowledge,
emantic/relatedness ratings, semantic priming, and association norms.
aetzold and Specia (2016) developed a bootstrapping algorithm that
mployed word embeddings to infer four psycholinguistic properties
f words including familiarity, age of acquisition, concreteness, and
magery. Relatedly, other recent studies used word embeddings to
xamine language use in autistic and typical children. For exam-
le, Prud’hommeaux et al. (2017) analysed children’s responses in a

emantic-fluency task (i.e., producing as many words as possible from a

2

given category); while Goodkind et al. (2018) compared children’s per-
formance in the Autism Diagnostic Observation Schedule-2 (ADOS-2)
communication assessment (Lord et al., 2012).

More recently Pérez et al. (2022) applied NLP techniques on both
the 2019 and 2020 versions of the eRisk corpora (Losada et al., 2019,
2020) to predict depression severity. Vu et al. (2020) focuses on pre-
dicting responses to psychological questionnaire from social media par-
ticipants. Sonabend et al. (2020) tried to derive dimensional measures
of psychiatric symptoms, while Wawer and Chojnicka (2022) tried to
detect ASD from picture book narratives within ADOS-2. Of the existing
studies examined, only Wawer and Chojnicka (2022) and Goodkind
et al. (2018) tried to encode language ability test on a standardised
questionnaire (i.e., ADOS-2) which is similar to WASI II. However,
ADOS-2 and other similar instruments for accessing language ability
are proprietary (including WASI-II), thus limiting direct comparison.
As a compromise, we applied the NLP methodologies found in these
studies to the WASI II assessment tool to evaluated their usefulness in
automating the scoring of the Vocabulary sub-test.

Specifically, this study assessed the extent to which individual word-
embedding models support consistency with the gold-standard scoring
scheme for the Vocabulary sub-test of WASI II. We considered five
word embedding models, namely Word2vec (Mikolov et al., 2013),
GloVe: Global Vectors (Pennington et al., 2014), BERT: Bidirectional
Encoder Representations from Transformers (Devlin et al., 2019), GPT-
2: Generative Pre-trained Transformer 2 (Radford et al., 2019) and
ELMo: Embeddings from Language Model (Peters et al., 2018). For
all these models, we represented the alternative potential responses
as vectors (points) in the word-embedding multidimensional spaces.
For responses that are ‘phrases’ (rather than single words), we applied
NLP techniques that enable representing phrases and/or sentences
into a single vector (commonly known as document embedding). Sub-
sequently, we evaluated whether the patterns for the closeness of
potential response(s) to the corresponding stimulus are consistent with
the gold standard scheme of the WASI-II scoring manual. Our rational-
expectation hypothesis is that the stimulus vector would be closest in
the multi-dimensional meaning space to 2-Point responses and farthest
from 0-Point responses.

We used cosine similarity metric (Li et al., 2004; Li and Han,
2013) to evaluate the closeness in meaning between each stimulus
and the corresponding alternative potential responses in the scoring
manual. Several text preprocessing techniques were employed to re-
duce noise during experiments such as stop-word removal for filter-
ing function words (Luhn, 1960), spelling/bias correction, tokenisa-
tion and word inflection. We also employed document centroid vector
technique (Rossiello et al., 2017) for computing document embed-
ding (Palachy, 2019) and explored the performance of Term Frequency
Inverse Document Frequency (TF-IDF) for evaluating word relevance in
a collection (Rajaraman and Ullman, 2011). The overarching goal of
our experiments is to address the following research questions:

RQ1: How does text preprocessing influence performance of the pro-
posed WASI-II automation approach?

RQ2: How does TF-IDF as a weighting factor influence the perfor-
mance of the proposed WASI-II automation approach?

RQ3: Which vector representation model (i.e., Word2vec, GloVe, BERT
GPT2 or ELMo) produces optimal result on the experimental
data (with and/or without) text preprocessing and TF-IDF?

By exploring these questions, the study makes the following con-
tributions to the domain of psycholinguistic plausibility with NLP
techniques:

• An attempt to automate the WASI-II questionnaire. To the best of

our knowledge, no other study has done this.
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• Performance evaluation of standard embeddings to establish the
most effective in representing the intended meanings of the WASI-
II stimulus items.

• Performance evaluation of TF-IDF as a weighting factor on the
word or document embeddings generated from WASI-II response
set and subsequent relationship mapping with the stimulus items.

The rest of the paper is organised as follows. Section 2, provides
he details about related work and the necessary background for the
echniques and tools commonly used in automating the analysis of qual-
tative data. A detailed description of the methods and materials used
or experiments are presented in Section 3, including the experimental
ata and methodology approaches, details about the experiment setup
nd evaluation measures used. The findings are discussed in Section 4,
ith further discussions about issues likely to threaten the validity of

esults presented in Section 5. Section 6 summarises the study and
oints out future work.

. Background and related work

Generally, researchers have explored use-cases, challenges, and ap-
roaches of NLP on linguistic tasks in many domains including in-
ustrial logistics organisation (Garg et al., 2021), analysis of social
edia posts (Onikoyi et al., 2023), software engineering (Nnamoko

t al., 2019), and more relevant to our study, in education (Botelho
t al., 2023; Hwang and Kim, 2022; Shipurkar et al., 2022; Lam and
namoko, 2024). For example, Shipurkar et al. (2022) used a conjunc-

ion of a page-to-word segmentation algorithm, a convolutional neural
etwork (CNN) and bi-directional long short-term memory (BLSTM)
etwork for recognition of handwritten text assignment documents. The
ethod which provides similarity scores between documents produced

alidation accuracy of 82.10% and was subsequently implemented as
lagiarism detection module.

Hwang and Kim (2022) investigated the impact of constructional di-
ersity on second language writing proficiency using the Constructional
iversity Analyzer (CDA) on 3,284 essays. Results from regression
nalysis showed that higher diversity in constructions correlated with
etter writing proficiency. Additionally, less frequent and more com-
lex constructions contributed significantly to proficiency levels. These
tudies were made possible due to advances in word embeddings to
ranslate natural language into machine readable vectors.

From a theoretical perspective, word embeddings correspond to a
eminal approach to meaning, commonly referred to as distributional
emantics (Firth, 1957; Harris, 1954; Mcdonald and Ramscar, 2001;
ahlgren, 2008). The main tenet of distributional semantics is that
ords appearing in similar contexts have similar meanings, and thus se-
antic relationships can be accounted for by patterns of co-occurrence

n text corpora. Earlier computational models of distributional se-
antics, e.g., Latent Semantic Analysis (LSA) (Landauer and Dumais,
997) and Hyperspace Analogue to Language (HAL) (Lund and Burgess,
996), relied on explicit counts of word co-occurrences in sizeable text
orpora (Baroni et al., 2014; Mandera et al., 2017). In contrast, many
ord embedding models are based on prediction (Baroni et al., 2014;
andera et al., 2017). These are typically derived from artificial neural

etworks, i.e., computational learning systems that are loosely based on
rinciples of computation in the brain, that are exposed to text corpora
o learn how to predict a word given its context or viceversa (Levy and
oldberg, 2014a). Arguably, in addition to being grounded on the influ-
ntial distributional semantics approach, such word embedding models
ncorporate artificial processes which present analogies to principles
f human language learning (Levy and Goldberg, 2014a), as well as
he highly-influential framework of predictive learning (Clark, 2013);
ncluding its extension to language processing (Kuperberg and Jaeger,
015) and language acquisition (Zettersten, 2019).

The psycholinguistic plausibility of word-embedding models has
een demonstrated in many studies (Mandera et al., 2017; Paetzold and
3

Specia, 2016; Pérez et al., 2022; Vu et al., 2020; Wang et al., 2019;
Wawer and Chojnicka, 2022; Shahamiri and Thabtah, 2020; Sonabend
et al., 2020). These studies converge on a central goal to enhance and
validate advanced computational techniques in psychological assess-
ments. Each study addresses this aim by investigating specific research
questions or hypotheses related to individual behaviour patterns on a
set task and their implications. For instance, Pérez et al. (2022) applied
NLP techniques on both the 2019 and 2020 versions of the eRisk cor-
pora (Losada et al., 2019, 2020) to predict depression severity. Vu et al.
(2020) focuses on predicting responses to psychological questionnaire
from social media participants using BERT embeddings. Sonabend et al.
(2020) tried to derive dimensional measures of psychiatric symptoms
using NLP and word embeddings. Meanwhile, other studies concen-
trate on developing and validating deep learning algorithms for ASD
screening using heterogeneous data sources (Wang et al., 2019) or
evaluating the effectiveness of deep neural networks for ASD detection
from textual narratives (Wawer and Chojnicka, 2022); and Shahamiri
and Thabtah (2020) tried to create intelligent ASD screening systems
using Convolutional Neural Networks (CNNs) for improved diagnostic
accuracy and accessibility. Collectively, these studies emphasise the
integration of machine/deep learning and NLP techniques to enhance
the accuracy, efficiency, and applicability of psychological and medical
assessments.

These sophisticated techniques are applied to diverse datasets, in-
cluding social media posts and responses to psychological question-
naires (Vu et al., 2020), historical ASD cases (Shahamiri and Thabtah,
2020), and self-report symptom measures from a cellular biobanking
study (Sonabend et al., 2020). The methodologies employed exhibits
significant commonalities as most studies leverage deep learning tech-
niques, ranging from deep embedding representations for categorical
variables (Wang et al., 2019) to CNNs integrated into mobile apps (Sha-
hamiri and Thabtah, 2020). Text encoders like BERT embeddings (Vu
et al., 2020), Word2Vec (Pérez et al., 2022), ELMo and USE, combined
with classification algorithms (Wawer and Chojnicka, 2022) are also
used to transform and analyse textual data.

The results obtained across these studies demonstrate the efficacy of
advanced computational methods particularly NLP in behavioural and
psychological assessments. For example, Wang et al. (2019) achieved
sensitivity and specificity rates of 99% with deep embedding represen-
tation learning for ASD. Generally, CNN-based systems showed higher
accuracy, sensitivity, and specificity compared to traditional methods,
emphasising their diagnostic potential (Shahamiri and Thabtah, 2020).
Similarly, solutions using embeddings significantly outperformed tra-
ditional methods as evidence by Vu et al. (2020) who used BERT
to predict questionnaire responses. In fact, Sonabend et al. (2020)
used embedding-based measures effectively to distinguish psychiatric
disorders with high accuracy and AUC.

Despite the high performances, these studies are focused on diagnos-
ing psychological conditions with single modality like measuring psy-
cholinguistic patterns in text. This is impractical because behavioural
patterns from this single modality represents only one of the many
indicators that can be used to make informed conclusions about a
diagnosis for conditions like ASD. Only a few studies employed word
embeddings specifically for characterising language use in typically
developing and autistic children. For example, Prud’hommeaux et al.
(2017) analysed responses of typical and autistic children in a semantic-
fluency task (i.e., producing as many words as possible from a given
category). The computational analysis suggested that although the two
groups of children performed similarly in terms of the sheer number of
responses, they differed in the cognitive mechanisms they used to carry
out the task (the typical children employed longer ’semantic chains’
in their responses). Goodkind et al. (2018) compared the responses
of autistic and typical children in the Autism Diagnostic Observation
Schedule-2 (ADOS-2) (Lord et al., 2012), a widely used assessment of
autistic symptomatology. They found that when mapped onto a multi-
dimensional word-embedding space, the responses of autistic children
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were more dispersed than the responses of autistic children, which were
more uniform.

The findings from Prud’hommeaux et al. (2017), Goodkind et al.
(2018) and Wawer and Chojnicka (2022) have practical implications
for the automatic language ability screening task presented in our
study. These studies applied various embeddings to evaluate language
ability, especially Wawer and Chojnicka (2022) and Goodkind et al.
(2018) who used a standardised questionnaire (i.e., ADOS-2) which
is similar to the WASI II. Thus, the research presented in this paper
explored all the embeddings observed in similar studies albeit only on
WASI II due to restricted access to other standardised questionnaires.

2.1. Open-ended responses

Both the Vocabulary sub-test of WASI-II, and the ADOS-2 assessment
referred to in the previous subsection, include open-ended questions.
In open-ended questions, respondents formulate a response in their
own words and express this verbally (or in writing) without being
steered in a particular direction by predefined response categories.
Open-ended questions are thought to be closely aligned with human
nature as people communicate freely in everyday life by speaking (or
writing) (Roberts et al., 2014). Furthermore, open-ended questions are
thought to be more suitable than closed-ended (e.g., yes/no or multiple
choice) questions for measuring knowledge as they yield more rich
information, whilst also minimising the chance that respondents (will
try to) guess the right answer (Krosnick and Presser, 2009).

However, it can be challenging to collect and analyse data from
open-ended questions. The ‘difficulty in the coding analysis of the re-
sponses’ is commonly cited as a reason for which open-ended questions
are rarely used by researchers (Schuman and Presser, 1981; Roberts
et al., 2014). Similar limitations apply to the Vocabulary sub-test (and
more generally, the WASI-II), which currently supports only manual
administration and manual coding based on the accompanying assess-
ment manual. These limitations translate into costs in time and effort
as well as risks for errors and subjective biases (which may require
double-coding to mitigate risks to reliability).

2.2. Methods for the analysis of open-ended responses

A variety of methods exist for analysing and coding open-ended
responses. Among these methods, quantitative content coding (Züll,
2016) is a commonly used approach, which is also pertinent to the
approach implemented in the WASI-II. In quantitative content coding,
one or more individuals code the open responses on the basis of a pre-
defined categorisation scheme. The process typically begins with the
development of themes that describes the relevant coding categories.
The themes could be either flat-framed, i.e., all codes are of the same
specificity and importance; or hierarchical-framed implying a taxon-
omy of how the codes relate to one another (Nowell et al., 2017).
The taxonomy approach enables the consideration of different levels of
granularity during the coding and the analysis of the results. In other
words, an ontology shows the properties of the subject area and how
they are related, by defining a set of concepts and categories that repre-
sent the subject. Each category in the categorisation scheme is assigned
a label and a category number, followed by a category definition and
examples. Fig. 1 shows a simple example of such categorisation scheme
for coding an open-ended question about respondents’ associations with
‘the meaning of lamp’.

An alternative to the categorisation scheme is the computer-assisted
content coding which involves scoring the responses on the basis of
a dictionary that has the same function as the categorisation scheme
in the manual quantitative content coding discussed above. In this
case, the coding rules are based on a lists of words defined such
that they unequivocally indicates a particular category, instead of a
verbal/theoretical definition of the categories. Whenever these words

or phrases appear in a response, the corresponding code is assigned.

4

Fig. 1. A simple qualitative content coding example.

This approach allows for automation through suitable text analytics
software that supports dictionary development and automatic coding
such as ATLAS.ti (Paulus and Lester, 2016), Thematic,1 WORDSTAT,2
QDA Miner Lite,3 RapidMiner4 and MAXDictio, an add-on module of
MAXQDA.5 The advantage of computer-assisted content analysis is that
arge volumes of data can be coded quickly and reliably. However, the
ffort involved in the definition and validation of suitable lists of words
hould not be underestimated.

Another approach to coding and analysis of open-ended questions
s the semi-automatic coding (Züll, 2016). This could be either through
supervised machine learning’ approach in which textual responses are
utomatically coded on the basis of a manually coded text sample
i.e., a training set of answers) (Giorgetti and Sebastiani, 2003); or
opic modelling approaches proposed by Roberts et al. (2014). These
pproaches not only offer a unique blend of the strengths of both
uantitative content and computer-assisted content coding, but also the
oding rules are automatically formulated without explicit definition
nd validation. However, they present the limitation that they require
arge volumes of data for optimum performance.

There are a number of different procedures for direct analysis of
pen-ended questions without assigning one or more codes to each
ndividual response. One example is conceptual mapping, a procedure
roposed by Jackson and Trochim (2002). Another example proposed
y Kronberger and Wagner (2000) is co-occurrence analysis, which
ocuses on words that occur together within a response. This co-
ccurrence forms the basis of the analysis as the generated similarity
r distance matrix is further analysed, for example by subjecting it
o cluster, correspondence, or multidimensional scaling analysis. Tools
uch as TLab6 and Alceste7 are suitable for this type of analysis. It is
ased on a similar co-occurrence analysis using similarity or distance
atrix that we proposed to automate WASI-II Vocabulary sub-test.

. Materials and methods

This section presents the experimental method and materials, in-
luding details of the experimental dataset and ethical considerations,
ata pre-processing techniques considered, word embeddings applied,
nd the detailed experimental setup to enable reproducibility of exper-
ments and results.

.1. Experimental data and ethics

We used the question and response data from the Vocabulary sub-
est of WASI-II questionnaire (Wechsler, 2011). The Vocabulary sub-test
onsists of 31 items including:

1 https://getthematic.com/
2 http://provalisresearch.com/products/content-analysis-software/
3 https://provalisresearch.com/products/qualitative-data-analysis-

oftware/freeware/
4 https://rapidminer.com/
5 https://maxqda.de
6 https://www.tlab.it/
7
 https://www.image-zafar.com/Logicieluk.html

https://getthematic.com/
http://provalisresearch.com/products/content-analysis-software/
https://provalisresearch.com/products/qualitative-data-analysis-software/freeware/
https://provalisresearch.com/products/qualitative-data-analysis-software/freeware/
https://rapidminer.com/
https://maxqda.de
https://www.tlab.it/
https://www.image-zafar.com/Logicieluk.html


N. Nnamoko, T. Karaminis, J. Procter et al. Natural Language Processing Journal 8 (2024) 100094
Table 1
Sentence and word count statistics of original dataset.

Stimulus Sentences Words Min| Max| Avg Sentence per point Min| Max| Avg Words per point

shirt 23 63 5 | 10 | 7.67 1 | 8 | 2.74
car 35 83 1 | 27 | 8.75 0 | 5 | 2.37
lamp 43 164 6 | 19 | 14.33 1 | 7 | 3.81
bird 28 78 5 | 12 | 9.33 1 | 6 | 2.79
tongue 29 106 6 | 14 | 9.67 1 | 10 | 3.66
pet 42 140 5 | 25 | 14.00 1 | 10 | 3.33
lunch 30 111 9 | 11 | 10.00 1 | 9 | 3.70
bell 49 191 6 | 25 | 16.33 1 | 8 | 3.90
calendar 65 263 2 | 36 | 21.67 1 | 8 | 4.05
alligator 48 217 10 | 19 | 16.00 1 | 9 | 4.52
dance 47 136 8 | 27 | 15.67 1 | 8 | 2.89
summer 31 116 6 | 14 | 10.33 1 | 9 | 3.74
reveal 23 61 2 | 12 | 7.67 1 | 8 | 2.65
decade 19 45 4 | 10 | 6.33 1 | 4 | 2.37
entertain 37 119 4 | 19 | 12.33 1 | 7 | 3.22
tradition 60 257 10 | 30 | 20.00 1 | 10 | 4.28
enthusiastic 58 153 7 | 32 | 19.33 1 | 11 | 2.64
improvise 31 115 5 | 15 | 10.33 1 | 10 | 3.21
haste 29 79 2 | 20 | 9.67 1 | 5 | 2.72
trend 33 101 9 | 14 | 11.00 1 | 6 | 3.06
impulse 39 102 6 | 26 | 13.00 1 | 7 | 2.62
ruminate 25 70 2 | 13 | 8.33 1 | 8 | 2.80
mollify 23 50 3 | 12 | 7.67 1 | 5 | 2.17
extirpate 24 45 5 | 10 | 8.00 1 | 5 | 1.83
panacea 23 63 3 | 12 | 7.67 1 | 5 | 2.74
perfunctory 25 46 6 | 10 | 8.33 1 | 5 | 1.84
insipid 17 27 3 | 7 | 5.67 1 | 5 | 1.59
pavid Not considered

Note The car stimuli does not have 1-point response, hence the ‘0’ in Min| Max| Avg Words per point. The pavid stimuli
was not considered because the word was not found in pre-trained word embedding.
Table 2
Item 8 from WASI-II Vocabulary sub-test.

Word Points Responses

TO
N

GU
E

2-Point Organ; Body part; Part of body; Muscle for (tasting, eating, talking); The strip under the laces of your
shoe; It is in your mouth and (you taste with it, has taste buds)

1-Point (Helps you, Use it) to (talk, eat, taste, swallow) (Q); In your mouth (Q); Has taste buds (Q);
Muscle (Q); On (my, your) face (Q); Put food on it (Q)

0-Point You (move, brush) it (Q); [Points to tongue] (Q); (Part of, On) your shoe (Q); Red; Bumpy

Note In the table, (Q) means that additional query (provided) can be used for marginal, generic or functional responses
including hand gesture. Text in parenthesis (𝑡1 , 𝑡2 ,… 𝑡𝑛) were extrapolated.
• 3 picture stimuli for which the examinee is required to name the
object presented visually, and

• 28 verbal stimuli for which the examinee is asked to define words
that are presented visually and orally.

The picture stimuli are closed-ended and thus, easy to analyse there-
fore we focused on the verbal stimuli. A set of possible responses (gold-
standard) are provided for each stimulus in form of words, phrases
and/or sentences that are scored as follows: 0-Point (poor match), 1-
Point (good match) or 2-Point (excellent match). These are used to
score examinees’ responses to each stimulus depending on similarity
to the gold-standard.

In this study, we considered 27 out of the 28 verbal stimulus listed
in Table 1. This is because the stimuli (‘pavid’) does not have a vector
representation in the embedding models used in this study (see Sec-
tion 3.3.1 for details of embedding models). It is also important to note
that one of the 27 stimulus (‘car’) does not have response associated
to 1-Point, so only 0-Point and 2-Point scores were considered for this
stimulus. The full characteristics of the dataset including stimulus and
associated word and sentence counts per point scale is presented in
Table 1.

The dataset includes 936 alternative potential responses (i.e., sen-
tences) with a total of 3,000 constituent words excluding the 27 stim-
ulus words. The average number of words within a set of response to
stimulus is 34.63.
5

Table 2 shows a sample stimuli item (tongue) from the dataset with
‘some of’ the possible responses and associated point score. As can be
observed in the Table, some of the responses are single words (𝑛 = 254
in the dataset) while the rest are either phrases or sentences (𝑛 = 681 in
the dataset). The point score to response ratio is as follows — 0-Point
: 158 responses; 1-Point : 396 responses; and 2-Point : 385 responses.

3.2. Data pre-processing tools

The methods implemented in this paper are largely focused on text
vectorisation which involves the use of NLP tools to transform textual
data (words, phrases and/or sentences) into machine readable format
(vectors). However, a range of preprocessing steps were applied to the
experimental dataset (described in Section 3.1) before vectorisation.
Specifically, we used the Natural Language Toolkit (NLTK) (Loper and
Bird, 2002) to perform spelling/bias correction, stop-word removal,
tokenization, and word inflection. These are common preprocessing
steps typically applied to clean-up textual data before vectorisation and
an example is presented in Table 3 to illustrate their effects on a data
sample. A brief explanation is also provided for each of them with
reference to the sample data.

3.2.1. Spelling/bias correction
The WASI-II response set contains some words that are unlikely

to feature in the word embedding models applied in our experiments
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Table 3
Sample of a preprocessed response from a stimulus item.

Original response The strip under the laces of your shoe
After Tokenisation ‘The’,‘strip’,‘under’,‘the’,‘laces’, ‘of’,‘your’,‘shoe’
After Stop-word ‘strip’,‘under’,‘laces’,‘shoe’
After Word Inflection ‘strip’,‘under’,‘lace’,‘shoe’

(see Section 3.3). These include hyphenated words like ‘t-shirt’; words
contracted with apostrophes like ‘cannot’ and numerical values such
as ‘10’. Such representations were corrected in this preprocessing step.
We also removed some irrelevant characters including responses that
contain the stimulus word to avoid experimental bias and skewness.
For example, the 0-Point response ‘[Points to tongue] (Q)’ in the
sample data shown in Table 2 contains the word ‘tongue’ which is
the stimulus word. The example also contains the character ‘(Q)’, used
to indicate that the administrator should inquire further detail. These
were removed from the dataset. We note that spelling/bias correction
was performed to obtain the original dataset presented in Table 1 which
includes a total of 936 sentences (made up of 3,000 words) associated
to the 27 stimulus items.

3.2.2. Tokenisation
Tokenisation is designed to filter out meaningless symbols and split

the remaining text (sentence or string) into tokens, i.e., set of characters
that have a meaning by themselves (Jackson and Moulinier, 2002). A
simple tokeniser splits a string by white space, but a more efficient
tokeniser can use other techniques to separate elements eg punctuation
and abbreviations (Loper and Bird, 2002). As punctuation marks do
not contribute to the similarity evaluation conducted in this study, we
removed them from the experimental data. This was achieved using
the word_tokenize() function provided by the NLTK library, which
ffectively breaks down the text into a sequence of words based on
hitespace and punctuation. We note that tokenisation did not alter

he sentence and word count in the dataset which remained at 936
nd 3,000 respectively. The sample presented in Table 3 illustrates why
here was no change in the counts because each word in the original
ataset is essentially a token.

.2.3. Stop-word removal
Natural language often contain constructive terms (e.g., preposi-

ions) and other language structures used to make sentences. These
erms are commonly known as stop-words and their presence in the
esponse set may increase the dimensionality of data if they make up
large portion of the textual dataset (Makrehchi and Kamel, 2008).

pecifically for the experiments presented in this paper, the presence
f stop-words may lead to poor efficiency of the similarity task be-
ween stimulus and response due to information loss in the centroid
ector generation approach applied (i.e., averaging word vectors in a
entence).

As such, we used the stopwords.words(’english’) function
of NLTK to filter out common English stopwords from the response set
e.g., ‘of’ in Table 3. While the operation did not affect the sentence
count of the dataset which remained at 936, the word count reduced
to 2,131. The illustrative example in Table 3 provides insight into
the rationale behind this decrease, attributed to the elimination of
stopwords such as ‘the’ (occurring twice) and ‘of’ and ‘your’ (each
occurring once), resulting in a reduction of the sample size from 8 to 4
words.

3.2.4. Word inflection
In the context of NLP, word inflection refers to the various forms

a word can take based on factors like tense, number, gender, and
case. This is handled by stemming and lemmatisation techniques which
simply reduces words to their root or base forms. For the word ‘laces’,
used in its verb form within Table 3; stemming might produce the stem
6

‘lace’ (noun), as it removes affixes ‘s’ to return a base form. Meanwhile,
lemmatisation considers the word’s context and grammar, potentially
yielding the lemma ‘lace’ as well (present tense).

For stemming, we used NLTK implementation of the Porter stem-
ming algorithm (Porter, 1980) which can be accessed through the
PorterStemmer class. For lemmatisation, NLTK offers the WordNet
lemmatiser, which utilises WordNet, a lexical database of English.
The lemmatisation process was performed using the WordNetLem-
matizer class. It is important to note that stemming can sometimes
produce non-standard or even non-existent words, while lemmatisation
ensures valid words are returned. This ensures that we always retrieved
word replacements whilst avoiding the repetition of words that share
the same basic term and meaning but have different vector represen-
tation. Also, some word inflections (e.g., plural form) may not even
exist in word embedding models. We note that word inflection did not
alter the sentence and word count observed after stop word removal.
Thus the dataset remained at 936 sentences and 2,131 words after word
inflection. The overall statistics of original and pre-processed versions
of the dataset is shown in Table 4.

3.3. Methods

This section presents our method to compute the similarity between
the stimulus and the response set for the verbal items of the Vocabulary
sub-test dataset (described in Section 3.1). The method employs multi-
ple NLP tools and techniques and performs the following experimental
steps on the dataset:

Step 1: Data Retrieval Retrieve the original and preprocessed WASI-
II data items in textual form (see Table 3), each including the
stimulus and the associated set of responses with score.

tep 2: Vectorisation Apply 5 embedding models (i.e., Word2vec,
GloVe, BERT, GPT2 and ELMo) to obtain vector representation
for each preprocessed stimulus and response set. Further details
of the 5 embedding models and vectorisation is presented in
Section 3.3.1.

tep 3: Vector Weighting Repeat Step 2 and apply TF-IDF to weight
each word in the response set based on relevance. Further details
of the TF-IDF weighting approach is presented in Section 3.3.2.

tep 4: Similarity Computation Compute cosine similarity to evalu-
ate the distance between stimulus and response set. This process
is done independently for the resulting embeddings generated
in Step 2 and Step 3. Further details of the cosine similarity
evaluation approach is presented in Section 3.3.3.

A high level representation of the method is shown in Fig. 2. The
theoretical underpinning for this method is the rational-expectations
hypothesis that the stimulus vector would be closest to that of 2-Point,
then 1-Point and 0-Point responses because word embedding models
map vectors in space such that words that are similar in meaning
appear close to each other.

3.3.1. Vectorisation
Various embedding models exist for transforming textual data into

vectors including Word2Vec (Mikolov et al., 2013), GloVe (Pennington
et al., 2014), BERT (Devlin et al., 2019), GPT2 (Radford et al., 2019)
and ELMo (Peters et al., 2018). These models have received much
empirical evaluation and have been shown to be efficient for learning
high quality distributed vector representations. They capture syntactic
and semantic relationships between a large number of words and
returns k-dimensional vector for each word.

To process the textual content of the WASI-II stimulus and response
set, we transform words into fixed-length numerical vectors using

the 5 embedding models. It is important to note that Word2Vec and
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Table 4
Overall sentence and word count statistics of original vs. pre-processed dataset.

Dataset Sentences Words Min| Max| Avg Sentence per point Min| Max| Avg Words per point

original 936 3000 1 | 36 | 11.45 0 | 11 | 3.03
pre-processed 936 2131 1 | 36 | 11.45 0 | 7 | 2.20
Fig. 2. High level activity diagram of the proposed method.
s
r

d

GloVe only accounts for single word while BERT, GPT2 and ELMo are
capable of generating vector representation for words, phrases and/or
sentences. For the purposes of this experiment, we used only the word
vectorisation capability of the five models. In particular, for responses
that consist of multiple words, we computed sentence vectors from the
constituent words using the ‘document centroid vector’ (Rossiello et al.,
2017) approach computes the average of all the word vectors in the
document. Thus, for each WASI-II response r𝑖, we pass the sequence of
words 𝑤1, 𝑤2,… , 𝑤𝑛 through the embedding models to transform each
word into a fixed-length numerical vector represented mathematically
as Eq. (1):

r𝑖 = ⟨𝑤1, 𝑤2,… , 𝑤𝑛⟩

= ⟨𝑣1, 𝑣2,… , 𝑣𝑛⟩ (1)

where 𝑣1, 𝑣2,… , 𝑣𝑛 represents the transformation of response word
sequence w𝑖 into fixed-length numerical vectors.

To obtain sentence vector from a multi-word response within a set,
we apply the document centroid vector method (Rossiello et al., 2017)
by computing the sample mean of r𝑖 which can be formalised as Eq. (2):

r̄𝑖 =
𝑣1 + 𝑣2 +⋯ 𝑣𝑛

𝑛
(2)

here r̄𝑖 is the mean of word vectors 𝑣1, 𝑣2,… , 𝑣𝑛 within a sentence,
nd 𝑛 represents the total number of words in the response.
7

Thus, a document vector including all responses in a single point
cale (e.g., 0-Point) of a stimulus item is the mean of all individual
esponses within the set which can be represented as Eq. (3).

̄
𝑖 =

1
𝑛

𝑛
∑

𝑖=1
�̄�𝑖 (3)

where d̄𝑖 is the mean of sentence vectors �̄�𝑖 of a response subset in a
finite response set and 𝑛 is the total number of responses in the set.

This approach is known to be effective for identifying synonyms in
short documents, but may be sub-optimal in long documents. Thus, we
integrated a weighting factor in the computation of the centroid vector
as explained in Section 3.3.2.

3.3.2. Vector weighting
In the data sample shown in Table 2, the relevance of each word

within a response set (e.g., 2-Point Responses) in identifying the corre-
sponding stimulus (i.e., Tongue) may differ. Thus, we assigned weight-
ing to each word using TF-IDF (Rajaraman and Ullman, 2011), a
term statistic commonly used in NLP to measure word relevance in a
collection. TF-IDF is the multiplicative value of term frequency (TF)
and inverse document frequency (IDF). To illustrate, TF — tf(𝑡, 𝑑) is
the frequency counter for a term 𝑡 in document 𝑑 while DF — df(𝑡, 𝐷)
is the count of occurrences of term 𝑡 in 𝑁 number of document set 𝐷.
IDF — idf(𝑡, 𝐷) is the inverse of df(𝑡, 𝐷) commonly used to measure the
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informativeness of term 𝑡. Thus, TF-IDF is represented mathematically
as Eq. (4).

tf-idf(𝑡, 𝑑,𝐷) = tf(𝑡, 𝑑) ⋅ idf(𝑡, 𝐷) (4)

There are many different variations of TF-IDF but we used the
version proposed by Ganesan (2020). To illustrate our implementation
of TF-IDF with the data sample in Table 2, 𝐷 represents all the textual
responses within any of the point scales (0 - 2); 𝑑 is a single response

ithin a given point scale; and 𝑡 is a single word within 𝑑. The
eighting score wt𝑖 for each word 𝑡 is calculated as

wt𝑖 = 𝑡 ⋅ tf-idf(𝑡, 𝑑,𝐷) (5)

Thus, for each word w𝑖 in a sequence of words within a sin-
gle response r𝑖 shown in Eq. (1), we multiply each vectorised word
𝑣1, 𝑣2,… , 𝑣𝑛 with its TF-IDF weight. The weighted response r′𝑖 is rep-
resented as Eq. (6)

r′𝑖 = ⟨𝑣1 ⋅𝑤𝑡1, 𝑣1 ⋅𝑤𝑡2,… , 𝑣𝑛 ⋅𝑤𝑡𝑛⟩ (6)

where 𝑣1 ⋅ 𝑤𝑡1, 𝑣1 ⋅ 𝑤𝑡2,… , 𝑣𝑛 ⋅ 𝑤𝑡𝑛 represents the weighted vector
equence of a given response.

The document vector described in Eq. (3) can then be re-represented
y calculating the sample mean of the weighted response r′𝑖 as shown
n Eq. (7)

̄
𝑖 =

1
𝑛

𝑛
∑

𝑖=1
𝑟′𝑖 (7)

here d̄𝑖 is the mean of weighted sentence vectors 𝑟′𝑖 of a response
ubset in a finite response set and 𝑛 is the total number of responses in
he set.

.3.3. Similarity computation
Distance calculation is a common technique used in many text

ining applications to measure the similarity between features of two
ata objects, in a dataset. Short distance between objects indicates
igh degree of similarity, while large distance indicates low degree
f similarity. We applied this principle to assess how the WASI-II
timulus items are similar to their corresponding point scale responses.
ome of the similarity metrics employed for NLP tasks include Jac-
ard similarity, Manhattan distance, Euclidean distance, Minkowski
istance, Jensen–Shannon Divergence, Levenshtein distance and Cosine
imilarity (Ladd, 2020; Wu, 2021). However, Cosine Similarity (Li
t al., 2004; Li and Han, 2013), which measures the angle between two
ectors, is the most popular for text mining. It is effectively calculated
s dot-product of two normalised vectors as shown in Eq. (8)

osine(
⇁
𝑠 ,

⇁
𝑟 ) =

⇁
𝑠 ⋅

⇁
𝑟

‖

⇁
𝑠‖ ⋅ ‖

⇁
𝑟‖

=
∑𝑁

𝑖=1 𝑠𝑖 × 𝑟𝑖
√

∑𝑁
𝑖=1 𝑠

2
𝑖 ×

√

∑𝑁
𝑖=1 𝑟

2
𝑖

(8)

here
⇁
𝑠 and

⇁
𝑟 are stimulus and response vectors of dimension 𝑁 .

To illustrate this process, we use a subset of the data sample
resented in Table 2 as follows:

• Stimulus: ‘‘Tongue’’
• Response: ‘‘The strip under the laces of your shoe’’
• Point: ‘‘2-Point’’ is the score allocated to this response

The illustrative example shows a response r belonging to the 2-point
ubset of the response set R for a stimulus item s. Assuming that s ∉ R,
he distance between the stimulus vector s and the response set R can
e formalised as Eq. (9).

ist(s,R) = inf{𝑑(𝑠, 𝑟) ∶ r ∈ R} (9)

here 𝑡𝑜𝑛𝑔𝑢𝑒 is the stimulus s, ‘strip, under,⋯ , shoe’ are the words that
ake up the response r which belongs to the 2-Point response set R.
8

This distance between each stimulus item and the corresponding
vector representation for each response subset (i.e., 0-Point, 1-Point
and 2-Point) is calculated to measure similarity. It is important to note
that cosine similarity value ranges between −1 (no similarity exists
between compared vectors) and 1 (the compared vectors are absolutely
similar). Thus, for the illustrative example data, the ideal outcome for
our method is for the cosine similarity value between the stimulus item
and ‘2-Point responses’ to be closest to 1 (i.e., high degree of similarity),
and then decrease sequentially from ‘1-Point to 0-Point responses’.

3.4. Experiment setup

The experimental data was stored as a single text file containing a
series of stimulus and response set pairs in plain text. Each line is a
single document D𝑖 that contains the stimulus 𝑠 and response subsets
d𝑖 (𝑖 = 2, 1 or 0) representing 2-Point, 1-Point or 0-Point. The structure
of each document D𝑖 can be formulated as Eq. (10).

D𝑖 = ⟨𝑠𝑖; 𝑑2; 𝑑1; 𝑑0⟩ (10)

here 𝑠𝑖 is the stimulus, and 𝑑2, 𝑑1, 𝑑0 are the corresponding response
ubsets for 2-Point, 1-Point and 0-Point respectively.

Each response subset D𝑖 is a collection of textual responses t𝑖 of a
iven point scale p𝑖. The formalisation of a given response subset D𝑖 is
resented in Eq. (11).

𝑖 =< 𝑡1, 𝑡2,… 𝑡𝑛, 𝑝𝑖 > (11)

here 𝑡1, 𝑡2,… 𝑡𝑛 is a series of textual responses that belongs to the 𝑝𝑖
oint scale (e.g., 2-Point).

To vectorise the textual responses, we explored different vector
engths (i.e., dimensions) of the 5 embedding models described in
ection 3.3.1. For Word2vec and GloVe, we used Gensim (Ř.ehůřek
nd Sojka, 2010) python implementation and experimented with 50,
00, 200 and 300 vector dimensions. We observe that our method is
table when the dimension is set to a value between 200 and 300 but
he best performance was obtained when the dimension is set to 300.
his is consistent with recommendations from the founding study of
oth word2vec (Mikolov et al., 2013) and Glove (Pennington et al.,
014). Thus, the dimensionality of vectors used for both models is 300.
imilar experiments were conducted for BERT, GPT2 and ELMo using
he TensorFlow (Abadi et al., 2015) python implementation to arrive
t the optimal vector dimensions of 768, 300 and 512 respectively.

Many implementations exist in the literature for calculating TF-
DF. To perform the vector weighting task described in Section 3.3.2,
e implemented a custom class based on the standard definition of
F-IDF proposed by Ganesan (2020). The custom class was imple-
ented with TfidfTransformer and CountVectorizer classes

rom Scikit-Learn (Pedregosa et al., 2011).
For the similarity computation described in Section 3.3.3, we used

anning, Christopher D. Raghavan, Prabhakar Schütze (2008) cosine
imilarity implementation on Scikit-Learn (Pedregosa et al., 2011). This
as used to obtain the cosine similarity between a given stimulus item
nd the corresponding response document illustrated in Eq. (9).

.5. Evaluation & metrics

In this section, we present the evaluation metrics and processes
mployed to address the three research questions (i.e., RQ1, RQ2 and
RQ3) outlined in Section 1.

RQ1 compares the performance of the proposed method with and
ithout the preprocessing steps discussed in Section 3.4. We explored

his question mainly because of the verbatim transcription require-
ents in qualitative research (Davidson, 2009); but also to check if

he full text will better capture the meaning, perception and context
n which the WASI-II responses were created.
RQ2 examines the influence of TF-IDF weighting on the WASI-II

esponses. By making a direct comparison between the standard and
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TF-IDF weighted vectors, we can determine to what extent a term
weighting factor affects the performance of the proposed approach.

RQ3 investigates the performance differences observed in the 5
embedding models. We choose these models because they provide
dense vector representation and to the best of our knowledge, they
are the most popular embedding models used in contemporary liter-
ature (Lastra-Díaz et al., 2019).

3.5.1. Frequency of consistent representation
This metric counts the frequency of the study hypothesis in a

given experiment i.e., how often the cosine similarity value between
stimulus and response set decreases sequentially from 2-Point to 0-
Point. Samples exhibiting this trend were considered a positive match
and the rest were considered a negative match. For example, a positive
matching is achieved for any given stimulus item if the computed cosine
similarity coefficient is highest for its 2-Point response set and smallest
for its 0-Point response set. Otherwise, the outcome of the computation
is considered negative matching.

3.5.2. Pearson correlation coefficient
The Pearson correlation coefficient commonly known as 𝑟 is a

statistic that measures linear correlation between two variables 𝑥 and
𝑦 (Upton and Cook, 2008). It expresses the degree (on average) to
which the 𝑥 and 𝑦 variables change correspondingly. Its value ranges
between +1 and −1, where +1 indicates a perfect positive linear correla-
tion, 0 indicates no linear correlation, and −1 indicates a perfect inverse
(negative) linear correlation. Given a paired data (𝑥1, 𝑦1)⋯ (𝑥𝑛, 𝑦𝑛) con-
sisting of 𝑛 pairs, the Pearson correlation coefficient r𝑥𝑦 is defined as
Eq. (12).

Z𝑥𝑦 =
𝑛
∑

𝑥𝑖𝑦𝑖 −
∑

𝑥𝑖
∑

𝑦𝑖
√

𝑛
∑

𝑥2𝑖 − (
∑

𝑥𝑖)2 ⋅
√

𝑛
∑

𝑦2𝑖 − (𝑛
∑

𝑦𝑖)2
(12)

where 𝑛 is sample size and 𝑥𝑖, 𝑦𝑖 are the individual sample points
indexed with 𝑖.

Thus, if 𝑥𝑖 increases when 𝑦𝑖 increases, then there is a positive
correlation. In this case the correlation coefficient will be closer to 1.
However, if 𝑥𝑖 decreases when 𝑦𝑖 increases, then there is a negative
correlation and the correlation coefficient will be closer to −1. In this
study, the 𝑥𝑖 represents the actual WASI-II response categorisations (2-
Point, 1-Point and 0-Point) while 𝑦𝑖 represents the corresponding cosine
similarity coefficients computed for each response category. The ideal
scenario (i.e., high positive linear correlation) is obtained when the
calculated cosine similarity values for a given response set decreases
sequentially from 1 to −1 across the WASI-II response categorisation
from 2-Point to 0-Point.

3.5.3. Significance test
We conducted significance test by calculating the 𝑝-value of 𝑟. The

𝑝-value is the probability of obtaining test results at least as extreme as
the results actually observed, if the correlation coefficient 𝑟 was in fact
zero (null hypothesis) (Wasserstein and Lazar, 2016). If this probability
is lower than the conventional 5% (𝑝 < 0.05), then the correlation 𝑟 is
said to be statistically significant. In other words, 𝑝-value lower than
0.05 indicates that there is a positive relation between the WASI-II
response categorisation and the calculated cosine similarity values.

3.5.4. 𝑍-Test statistics
Correlations retrieved from different samples can also be tested

against each other. For example, to test the significance of the differ-
ence between the correlation coefficient values obtained with original
data and the preprocessed data. This is recommended when the cor-
relations are conducted on the same variables (i.e., cosine similarity)
but two different groups, and if both correlations are found to be
statistically significant. To achieve this, we first compute the Fisher
𝑍-Transformation (Fisher, 1915, 1921) which transforms Pearson’s
correlation coefficient 𝑟 into a value 𝑧 that can be used to calculate
𝑟

9

other metrics for 𝑟 such as confidence interval or even comparison of
correlations from independent samples. This transformation is neces-
sary because the transformed variable 𝑧𝑟 follows a normal distribution.
The Fisher 𝑧𝑟 of any correlation coefficient 𝑟 is defined as Eq. (13):

z𝑟 =
1
2

ln
( 1 + 𝑟
1 − 𝑟

)

(13)

here 𝑙𝑛 is the natural logarithm function.
In this study, the transformation variable 𝑧𝑟 was used to perform a

wo-tailed, two proportion z-test to compare correlations from indepen-
ent samples for significance e.g., to ascertain if there is a significant
ifference in the correlation 𝑟 of our experiments with original and
re-processed dataset. Given two transformation variables 𝑧1 and 𝑧2 ob-
ained from two independent samples 𝑧-test statistic can be formalised
s defined as Eq. (14):

𝑡𝑒𝑠𝑡 =
𝑧1 − 𝑧2

√

1
𝑛1−3

+ 1
𝑛2−3

(14)

where 𝑛1 and 𝑛2 represents the sample size used to obtain 𝑧1 and 𝑧2
transformations respectively.

The two tailed z-test has a single critical value (i.e., ±1.96) for the
conventional 5% (𝑝 < 0.05) significance, so its value ranges between −1
and 1 due to the two tailed approach. z𝑡𝑒𝑠𝑡 will be a positive value if
𝑧1 is bigger than 𝑧2; and a negative value otherwise. For simplicity,

e report only the absolute value that gives distance and discard
nformation about direction. Statistical significance can be assessed
y checking if the z𝑡𝑒𝑠𝑡 value is greater than the critical value. For
xample, a significance level set at 0.05 indicates that the critical value
s ±1.96, so a z𝑡𝑒𝑠𝑡 greater than ±1.96 falls into the rejection region;

thus statistically significance. This means that the null hypothesis can
be rejected that the two correlations 𝑧1 and 𝑧2 are not significantly
ifferent.

. Results

This section presents the results of experiments to address the
esearch questions RQ1, RQ2 and RQ3. For brevity, the actual co-
ine similarity values between stimulus and response set is reported
n Appendix A.

Table A.1 shows the results of experiments with original dataset
hile Table A.2 presents results of experiments with preprocessed
ataset. We also present in Tables A.3 and A.4, the experimental results
btained when TF-IDF is applied to the original and preprocessed
atasets. The results follows similar presentation format in all 4 Tables
i.e.,Tables A.1–A.4) where the stimulus item is shown in the first
olumn, followed by 15 columns that presents the cosine similarity
f the different response scales obtained for each embedding model.
ggregate metrics calculated from the cosine similarity results are pre-
ented in Tables 5 and 6 to evaluate experiments with the unweighted
nd weighted versions of the experimental dataset respectively. For
larity, the result highlights for each dataset version is interpreted in
eparate sub-sections.

.1. Unweighted dataset

As shown in Table 5, Word2vec performed better than the other
mbedding models with 18 out of 27 stimulus:response pair success-
ully matching the evaluation criteria (i.e., 2-Point > 1-Point > 0-Point).
imilar performance was observed between experiments with original
nd preprocessed dataset and the results show significant correlation
𝑟 = 0.61, 𝑝-value = 0.00) between the WASI-II response categories
nd the computed similarity. Consequently, no significant difference
as observed between the experiments with original and preprocessed
ataset as evidenced by the 𝑧𝑡𝑒𝑠𝑡 of 0.00 which is lower than the critical
alue (i.e., ±1.96). In fact, all the embedding models yielded insignifi-

cant correlation difference between the experiments with original and

preprocessed datasets.
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Table 5
Evaluation results of experiments with original and preprocessed dataset on the 5
embedding models.

Model & Data +ve count 𝑟 𝑝-value z𝑡𝑒𝑠𝑡

W2v Original 18 0.61 0.00 0.000Preprocessed 18 0.61 0.00

GloVe Original 13 0.25 0.22 0.187Preprocessed 16 0.30 0.12

BERT Original 6 0.04 0.84 0.035Preprocessed 5 0.05 0.79

GPT2 Original 5 −0.12 0.56 0.765Preprocessed 7 0.10 0.60

ELMo Original 17 0.44 0.02 0.267Preprocessed 18 0.50 0.01

Note In the table, ‘+ve count’ column indicates the count of samples that meets the
evaluation criteria (2-Point > 1-Point > 0-Point) and ‘bold’ typeface indicates that
result is significant.

That said, all the embedding models (excluding Word2vec) per-
formed better with the preprocessed dataset. However, only the ELMo
model which produced the second best results shows significant cor-
relation (𝑟 = 0.51, 𝑝-value = 0.01) between the WASI-II response
categories and the computed similarity. Specifically, one more stim-
ulus:response pair was identified successfully with preprocessed data.
Further discussion is provided in Section 5 to contextualise the results
and show the extent to which our experiments addressed the research
questions.

4.2. Weighted dataset

As shown in Table 6, Word2vec and ELMo performed better than
the other embedding models. The Word2vec model was more successful
when the original dataset was weighted with TF-IDF; producing 20
out of 27 matches of the correlation frequency evaluation criteria
(i.e., 2-Point > 1-Point > 0-Point). This is 2 matches more than the
18 produced with the preprocessed dataset. However, the difference
between the two models is insignificant as shown by the 𝑧𝑡𝑒𝑠𝑡 of 0.00
which is lower than the critical value (i.e., ±1.96). This is expected,
given that both models produced similar correlation coefficient, 𝑟 =
0.61.

The ELMo model, performed better with the preprocessed dataset
(19 out of 27 matches) in comparison to the original dataset (18 out
of 27 matches). The correlation difference between the two models is
insignificant as shown by the 𝑧𝑡𝑒𝑠𝑡 of 0.233. In fact, all the embed-
ding models yielded insignificant correlation difference between the
experiments with original and preprocessed datasets when TF-IDF was
applied. Generally, the results suggests that the TF-IDF weighting steps
had positive effect on some embedding models’ performance, such as
ELMo, GPT2, and GloVe. However, the improvements are insignificant.
Contextual explanation of this result is provided in Section 5 to show
how they address the research questions.

5. Discussion

It is important to put the results into context especially to show
how and to what degree we addressed the research questions: RQ1-
Usefulness of text preprocessing; RQ2- TF-IDF influences as a weighting
factor; and RQ3- Best performing embedding model.

Although embedding models made it possible to analyse WASI-II
response texts automatically, many issues relating to natural language
structure and formality still remained. For example, informal writing
such as ‘cannot’ is ubiquitous in English language but computers prefer
its formal representation ‘cannot’. Likewise, common words such as
‘is’ might not add much value to the meaning read by a machine,
hence RQ1. The results presented in Table 5 shows our attempt to
10
Table 6
Evaluation results of experiments with TF-IDF weighted original and preprocessed
dataset on the 5 embedding models.

Model & Data (TF-IDF) +ve 𝑟 𝑝-value z𝑡𝑒𝑠𝑡

W2v Original 20 0.61 0.00 0.000Preprocessed 18 0.61 0.00

GloVe Original 14 0.26 0.19 0.189Preprocessed 16 0.31 0.12

BERT Original 5 0.03 0.89 0.069Preprocessed 5 0.05 0.79

GPT2 Original 7 0.11 0.58 0.000Preprocessed 9 0.11 0.58

ELMo Original 18 0.48 0.01 0.233Preprocessed 19 0.53 0.00

Note In the table, ‘+ve’ column indicates the count of samples that meets the evaluation
criteria (2-Point > 1-Point > 0-Point) and ‘bold’ typeface indicates that result is
significant.

assess this empirically, by comparing the performance of our method
with the original and preprocessed versions of the dataset. We observed
that text preprocessing had a positive but insignificant effect on the
models’ performance.

It is important to take a task specific viewpoint when interpreting
this result because several factors may have contributed to the out-
comes. The original data source determines the level of noise it contains
before processing so data obtained from social media is likely to contain
more noise (e.g., slang, abbreviations, emoticons etc.) than the WASI-
II dataset. Thus, the preprocessed version of our experimental data
may not be too dissimilar from the original version. In fact, stop-word-
removal is the preprocessing step that is likely to make a difference.
Unfortunately, there is no universal stop words list because a word
can be empty of meaning depending on the corpus in use, or the task
being undertaken. Some people may consider a stop words to be any
word that has high frequency on a corpus while others may consider
every word that is devoid of true meaning given a context. This means
that any word can be a stop word depending on task being undertaken
which explains why there is a lot of debate about the relevance of stop-
word-removal (Munková et al., 2014; Silva and Ribeiro, 2003). That
said, the presence of stop words may increase the dimensionality of
data if they make up a large portion of the textual dataset (Makrehchi
and Kamel, 2008). Reducing the dataset size helps to avoid known
constraints such as increased model complexity, slow training/analysis
speed, and increased inferential latency (Wu et al., 2016). These can
potentially limit model performance, applicability and deployment so
having less tokens is often desirable.

In addition, TF-IDF which gives more value to rare words than
repetitive tokens is a technique that is commonly used to boost perfor-
mance. Consider the case where the WASI-II 2-Point response set for a
given stimulus contains a very rare word. Since the frequency of this
word is very low, TF-IDF will consider it a rare token and assign a high
weight. The results presented in Table 6 shows our attempt to assess
this empirically, by comparing the performance of our method when
TF-IDF is used to add weights to the tokens within the original and
preprocessed versions of the dataset. Again, we observed that TF-IDF
had a positive but insignificant effect on the models’ performance and
thus addresses RQ2.

It is important to note that the WASI-II automation achieved in this
study was made possible by the embedding models which facilitated
vector representation of textual data. However, varying performance
was observed with the 5 embedding models. Specifically, Word2vec
and ELMo seem to be better than the rest in providing representative
vectors for the cosine similarity task undertaken. The best Word2vec
model was obtained when TF-IDF was applied to the original dataset
with positive correlation frequency count of 20 and correlation coef-
ficient of 0.61 as shown in Table 5. The best ELMo model however,
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was achieved when TF-IDF was applied to the preprocessed dataset
with one less positive correlation frequency count (i.e., 19) and a
correlation coefficient of 0.53 which is 8% lower than that obtained
with the Word2vec model. As such, we conclude that Word2vec pro-
duced the most optimal performance for the task undertaken in this
study which addresses RQ3. We note that the 𝑧𝑡𝑒𝑠𝑡 between Word2vec
and ELMo models is 0.411 which means that the observed correlation
difference is insignificant. However, significant correlation difference
was observed between the best Word2vec model and the least per-
forming model (i.e., BERT with TF-IDF applied to the preprocessed
dataset). Specifically, the correlation frequency for the BERT model is
5, with 𝑟 value of 0.05 which is insignificant (𝑝 = 0.79). Therefore the
correlation difference between the best Word2vec and BERT models is
56% (i.e., 0.61 - 0.05). This equates to 𝑧𝑡𝑒𝑠𝑡 of 2.282 between the two
models which is higher than the recommended critical value of ±1.96)
for the conventional 5% (𝑝 < 0.05) significance, thus significant.

The varying performance of the embedding models could be due
to various reasons that may relate to training corpus and size, vector
dimension and/or operational mechanism. For example, Word2vec and
GloVe are context independent while BERT, GPT2 and ELMo generates
different vector representation for a given word in a way that captures
the context of the word (i.e., its position in a sentence). An in-depth
exploration of these factors is presented to better understand why
certain models excelled in some instances while struggling in others.

Firstly, Word2vec and GloVe are context-independent models. This
means that these models generate a static vector representation for
each word, irrespective of the context in which the word appears. For
example, the word ‘‘bank’’ would have the same vector representation
in the phrases ‘‘river bank’’ and "financial bank’’. This can be a limita-
tion when dealing with language assessments like the WASI-II, where
context plays a critical role in understanding and evaluating language
ability. Despite this limitation, Word2vec achieved 74.07% accuracy
in our study, suggesting that its simplicity and efficiency in captur-
ing general word associations still provide a reasonable performance
baseline. We suspect that the word disambiguation issue did not occur
because the responses to stimuli items in WASI II are already specific
to task. However, the lack of contextual sensitivity in Word2vec might
cause it to struggle in practical settings when capturing and comparing
actual user responses with the indicative responses provided by WASI
II, especially with words that have multiple meanings or are used in
complex sentence structures.

On the other hand, BERT, GPT-2, and ELMo are context-dependent
models. These models generate different vector representations for
the same word based on its context within a sentence. This con-
textual awareness is particularly beneficial for tasks that require a
deep understanding of language and its subtleties, such as the WASI-
II questionnaire. BERT, for example, uses a bidirectional transformer
architecture that allows it to consider both the left and right context
of a word simultaneously. This capability enables BERT to capture
more intricate relationships between words, leading to a more accurate
representation of their meanings in context. Consequently, BERT and
similar models may perform better in tasks requiring high semantic
understanding. We suspect that BERT did not perform as expected in
this study because the indicative responses from WASI II is already
well structured to address the stimuli so the models’ complexity and
computational requirements became a downside, potentially making it
less efficient than simpler models like Word2vec in this scenario.

Another aspect to consider is the training corpus and size. Models
like GloVe are pre-trained on large corpora such as the Common
Crawl, Twitter or Wikipedia, which contain a vast amount of gen-
eral language data. While this extensive training can help the model
capture broad linguistic patterns, it might not be as effective in spe-
cialised contexts like the WASI-II, where specific linguistic features
are crucial. That said, GloVe still performed better than BERT and
GPT-2, which are also trained on extensive datasets. The latter uses

advanced architectures that enable fine-tuning on specific tasks and
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this adaptability allows them to excel in more specialised language
assessments. Unfortunately, BERT and GPT-2 were not fine-tuned with
sufficient domain-specific data in our study, hence the performance.
Conversely, ELMo performed well on WASI II structured data due to
its unique architecture, which includes bidirectional LSTM layers that
capture both forward and backward context, and its ability to generate
contextualised word embeddings based on entire sentence structures.
This makes ELMo particularly adept at understanding the syntax and
semantics of well-structured texts, such as the standardised content of
the WASI-II questionnaire. In comparison, GloVe’s pre-trained vectors,
derived from sources like Common Crawl, Twitter, and Wikipedia,
lack the refined context specificity that ELMo offers. Additionally,
while BERT and GPT-2 also generate context-aware embeddings, their
transformer architectures may not align as closely with the structured
nature of the WASI-II content as ELMo’s LSTM-based approach, which
is inherently better at modelling sequential data.

5.1. Theoretical contributions

The theoretical contributions of this work are multifaceted, address-
ing significant gaps in the existing literature on automated cognitive
assessment tools. Firstly, our attempt to automate the WASI-II lan-
guage ability questionnaire represents a novel endeavour in the field
of psychometrics. To the best of our knowledge, no prior studies have
successfully automated this specific questionnaire, making our research
new and relevant in this area. This effort not only broadens the scope
of automated assessments but also sets a precedent for future research
in automating other established psychological and cognitive evaluation
instruments.

In evaluating the performance of various standard word embed-
ding models, including Word2vec, GloVe, BERT, GPT2 and ELMo; we
contribute valuable insights into their effectiveness in representing
the intended meanings of the WASI-II stimulus items. Our findings
highlight the potential of these models in capturing the different se-
mantic relationships inherent in WASI II language ability assessment
tool. In particular, the 74.07% accuracy demonstrated by Word2vec
model emphasises the practical applicability of these embeddings in
real-world cognitive assessments. This contributes to the theoretical
understanding of how advanced NLP techniques can be leveraged to
enhance traditional psychometric methods.

Furthermore, our exploration of TF-IDF as a weighting factor on
the word or document embeddings generated from the WASI-II re-
sponse set adds another layer of theoretical contribution. The use of
TF-IDF in conjunction with word embeddings to improve response
relevance matching and information gain is an interesting approach
that has not been extensively studied in this context. Our results
indicate that applying TF-IDF weighting can significantly enhance the
performance of the automated scoring system. This finding enriches the
theoretical discourse on the integration of classic information retrieval
techniques with modern machine learning models, indicating their
combined efficacy in the domain of automated cognitive assessments.

5.2. Practical implications

While integrating the automated scoring system for the WASI-II
language ability questionnaire into existing assessment environments
falls outside the scope of this study; it presents a unique opportunity
to enhance the efficiency and accuracy of cognitive evaluations. The
system can be seamlessly incorporated into digital assessment plat-
forms commonly used by clinicians, researchers, and educators. For
example, existing electronic health record (EHR) systems or educational
assessment tools can be augmented with our automated scoring feature,
allowing for unbiased analysis and feedback. This integration would
streamline the assessment process, reducing the manual scoring burden
on professionals and enabling them to focus more on interpretation and

intervention.
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The development of a user-friendly interface is crucial for the
uccessful adoption of this automated system. The interface should be
ntuitive, providing clear instructions and visual aids to guide users
hrough the process. For clinicians, the interface could include options
or uploading patient responses (in audio format) directly into the EHR
ystems, along with NLP modules for translation into text, reviewing
nd automatic scoring. Researchers could also benefit from features
hat allow for easy data export and detailed statistical analysis, facil-
tating the integration of scoring results into broader research studies.
ducators might require simplified tools for quick assessments and
nstant feedback, making the tool accessible even to those with minimal
echnical expertise.

To ensure seamless interaction, the interface should incorporate
eal-time feedback mechanisms, allowing users to see the automated
cores and corresponding analyses immediately after submission. This
ould be achieved through an interactive dashboard displaying key
etrics, such as the accuracy of the responses, correlation scores, and

reas requiring further attention. Additionally, customisation options
hould be available to cater to the specific needs of different user
roups, whether it be adjusting the scoring parameters or selecting
ifferent preprocessing techniques and word embedding models based
n the task at hand.

. Conclusion

We have investigated the feasibility of automating the WASI-II
anguage ability questionnaire by evaluating the performance of five
ord embedding models. We considered various text preprocessing

echniques and TF-IDF as a weighting function to improve the perfor-
ance of our method. Our approach is based on established NLP tools

nd techniques that have been applied extensively in other research
orks. However, there is novelty in the way we have combined them

o achieve our research goals and to the best of our knowledge, no
ther research has applied them to automate the WASI-II questionnaire.
s the task is a correlation-based one involving a modest dataset
ample of 27 stimulus items instances, we explored various prepro-
essing techniques to reduce noise before applying TF-IDF weighting
o increase information gain. Our method shows that the WASI-II
uestionnaire can be automated with 74.07% accuracy (i.e., 20 out
f 27 correlation frequency) between actual (textual) and calculated
vector) representation in terms of response relevance matching. This
12
result was obtained with Word2vec model on the original dataset and
there is potential to improve the performance in further experiments
by exploring different vector dimensions, similarity metrics and data
preprocessing techniques not considered in this study.
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Appendix A. Complete experiment result tables

This appendix contains the actual cosine similarity values between
stimulus and response set obtained from our experiments with the:

1. original dataset (Table A.1),
2. preprocesed dataset (Table A.2),
3. original dataset weighted with TF-IDF (Table A.3) and
4. preprocessed dataset weighted with TF-IDF (Table A.4).
Table A.1
Cosine similarity relationship between the stimulus and responses on original data.

Word2vec GloVe BERT GPT2 ELMo

stimulus 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt

shirt 0.36 0.19 0.22 0.40 0.30 0.34 0.73 0.77 0.72 −0.01 −0.02 0.03 0.46 0.31 0.37
car 0.35 NaN 0.20 0.43 NaN 0.42 0.78 NaN 0.90 0.01 NaN 0.01 0.47 NaN 0.30
lamp 0.31 0.21 0.18 0.30 0.21 0.18 0.87 0.86 0.94 −0.04 −0.01 0.01 0.37 0.31 0.25
bird 0.42 0.34 0.27 0.44 0.33 0.34 0.70 0.66 0.71 0.03 0.01 −0.03 0.48 0.42 0.34
tongue 0.23 0.20 0.16 0.25 0.27 0.23 0.73 0.75 0.69 0.01 −0.02 0.01 0.38 0.26 0.24
pet 0.40 0.36 0.36 0.36 0.35 0.38 0.77 0.70 0.75 −0.01 0.03 0.07 0.38 0.38 0.35
lunch 0.61 0.44 0.38 0.55 0.47 0.35 0.76 0.72 0.71 −0.02 0.04 0.02 0.58 0.45 0.49
bell 0.30 0.27 0.16 0.30 0.29 0.21 0.88 0.89 0.84 −0.02 0.00 −0.03 0.37 0.33 0.25
calendar 0.29 0.24 0.18 0.32 0.30 0.22 0.89 0.87 0.88 −0.05 −0.03 0.04 0.42 0.38 0.37
alligator 0.42 0.34 0.17 0.28 0.23 0.13 0.62 0.56 0.53 −0.06 0.00 −0.01 0.50 0.46 0.30
dance 0.34 0.32 0.21 0.39 0.36 0.27 0.78 0.72 0.73 −0.02 0.00 −0.01 0.40 0.44 0.36
summer 0.47 0.43 0.25 0.57 0.53 0.41 0.73 0.75 0.73 0.03 0.01 −0.02 0.51 0.48 0.30
reveal 0.45 0.32 0.19 0.41 0.42 0.39 0.67 0.71 0.71 0.02 −0.03 −0.02 0.57 0.46 0.43
decade 0.39 0.37 0.47 0.50 0.49 0.56 0.68 0.68 0.62 0.01 0.04 0.03 0.43 0.47 0.57
entertain 0.35 0.30 0.14 0.28 0.25 0.18 0.82 0.83 0.91 0.01 0.00 0.02 0.49 0.43 0.38
tradition 0.27 0.27 0.21 0.41 0.40 0.31 0.79 0.73 0.72 −0.01 0.00 −0.01 0.41 0.41 0.40

(continued on next page)
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Table A.1 (continued).
Word2vec GloVe BERT GPT2 ELMo

stimulus 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt

enthusiastic 0.43 0.35 0.27 0.40 0.37 0.25 0.77 0.76 0.74 0.02 0.02 −0.01 0.58 0.52 0.49
improvise 0.24 0.28 0.21 0.06 0.10 0.09 0.62 0.59 0.66 −0.02 −0.02 0.00 0.44 0.47 0.45
haste 0.33 0.26 0.21 0.19 0.14 0.17 0.76 0.73 0.83 0.04 −0.03 0.04 0.47 0.45 0.38
trend 0.34 0.28 0.21 0.38 0.36 0.37 0.71 0.71 0.70 0.06 0.03 0.02 0.49 0.46 0.36
impulse 0.27 0.28 0.20 0.27 0.27 0.23 0.82 0.78 0.78 −0.01 −0.02 0.07 0.41 0.44 0.42
ruminate 0.37 0.27 0.29 0.06 −0.07 −0.07 0.55 0.55 0.48 −0.02 −0.04 0.03 0.48 0.41 0.41
mollify 0.47 0.24 0.29 0.34 0.07 0.19 0.67 0.62 0.66 0.07 0.03 −0.01 0.56 0.45 0.52
extirpate 0.35 0.24 0.23 0.05 −0.03 0.06 0.58 0.55 0.56 0.02 0.06 0.02 0.42 0.38 0.38
panacea 0.42 0.29 0.15 0.19 0.17 −0.02 0.63 0.65 0.61 −0.02 −0.04 0.00 0.48 0.44 0.29
perfunctory 0.34 0.26 0.22 0.23 0.13 0.07 0.66 0.63 0.66 −0.06 −0.01 −0.02 0.55 0.49 0.49
insipid 0.47 0.30 0.24 0.41 0.11 0.13 0.58 0.51 0.51 0.04 −0.02 −0.02 0.64 0.48 0.49
pavid – – – – – – – – – – – – – – –

Note In the table, ‘NaN’ means that WASI-II does not contain a response while ‘–’ means that stimulus was not found in pre-trained word embedding.
able A.2
osine similarity relationship between the stimulus and responses on preprocessed data.

Word2vec GloVe BERT GPT2 ELMo

stimulus 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt

shirt 0.37 0.18 0.22 0.41 0.30 0.35 0.72 0.76 0.72 0.00 −0.01 −0.01 0.48 0.34 0.37
car 0.35 NaN 0.20 0.42 NaN 0.39 0.73 NaN 0.82 −0.01 NaN −0.04 0.49 NaN 0.31
lamp 0.32 0.21 0.19 0.36 0.23 0.19 0.83 0.85 0.92 −0.03 0.00 −0.04 0.37 0.32 0.27
bird 0.43 0.34 0.28 0.43 0.33 0.33 0.67 0.66 0.71 −0.04 0.00 −0.01 0.49 0.43 0.36
tongue 0.25 0.18 0.15 0.27 0.27 0.19 0.74 0.76 0.69 0.01 0.01 0.01 0.43 0.32 0.27
pet 0.42 0.35 0.36 0.37 0.35 0.38 0.77 0.70 0.75 0.00 0.00 −0.05 0.41 0.39 0.35
lunch 0.63 0.48 0.40 0.60 0.53 0.36 0.78 0.73 0.71 −0.02 0.05 0.00 0.61 0.49 0.48
bell 0.31 0.27 0.16 0.29 0.28 0.20 0.85 0.87 0.84 0.00 0.00 0.00 0.41 0.36 0.27
calendar 0.29 0.22 0.17 0.35 0.29 0.21 0.88 0.84 0.84 0.01 −0.02 −0.03 0.43 0.40 0.40
alligator 0.44 0.36 0.17 0.36 0.26 0.14 0.65 0.58 0.54 0.02 0.00 0.00 0.53 0.48 0.31
dance 0.34 0.33 0.21 0.41 0.36 0.27 0.78 0.71 0.72 0.01 −0.02 0.01 0.43 0.45 0.37
summer 0.47 0.43 0.25 0.57 0.52 0.42 0.73 0.74 0.74 −0.02 0.03 0.04 0.53 0.51 0.32
reveal 0.45 0.32 0.18 0.42 0.42 0.40 0.68 0.71 0.67 −0.01 −0.06 −0.06 0.57 0.45 0.42
decade 0.39 0.38 0.47 0.45 0.46 0.56 0.69 0.68 0.62 0.00 0.01 0.06 0.45 0.49 0.57
entertain 0.35 0.30 0.14 0.30 0.26 0.17 0.80 0.82 0.90 0.02 0.00 −0.01 0.48 0.43 0.37
tradition 0.28 0.29 0.24 0.41 0.39 0.32 0.79 0.73 0.72 0.02 0.03 0.01 0.41 0.42 0.41
enthusiastic 0.44 0.35 0.27 0.43 0.38 0.25 0.69 0.75 0.73 −0.04 −0.04 −0.03 0.61 0.52 0.48
improvise 0.25 0.28 0.21 0.11 0.13 0.09 0.65 0.60 0.66 0.01 −0.01 0.02 0.46 0.47 0.45
haste 0.33 0.26 0.21 0.19 0.14 0.17 0.76 0.73 0.83 0.03 −0.05 0.01 0.47 0.45 0.38
trend 0.34 0.27 0.20 0.39 0.36 0.37 0.72 0.70 0.70 0.03 0.00 0.02 0.51 0.45 0.36
impulse 0.26 0.28 0.20 0.30 0.28 0.23 0.80 0.77 0.78 −0.02 −0.01 0.09 0.43 0.44 0.42
ruminate 0.38 0.27 0.29 0.08 −0.04 −0.08 0.55 0.56 0.47 −0.01 −0.02 −0.02 0.48 0.43 0.42
mollify 0.47 0.24 0.29 0.35 0.08 0.19 0.68 0.63 0.66 0.04 −0.04 0.01 0.56 0.45 0.52
extirpate 0.35 0.24 0.23 0.07 −0.03 0.06 0.58 0.55 0.56 0.03 0.06 0.04 0.42 0.38 0.38
panacea 0.41 0.28 0.15 0.25 0.18 −0.01 0.66 0.65 0.62 0.05 0.01 −0.04 0.49 0.44 0.28
perfunctory 0.34 0.26 0.22 0.26 0.14 0.07 0.67 0.64 0.66 0.00 −0.01 −0.03 0.55 0.49 0.49
insipid 0.47 0.30 0.24 0.41 0.12 0.13 0.58 0.52 0.52 0.04 −0.03 −0.03 0.64 0.49 0.49
pavid – – – – – – – – – – – – – – –

Note In the table, ‘NaN’ means that WASI-II does not contain a response while ‘–’ means that stimulus was not found in pre-trained word embedding.
able A.3
osine similarity relationship between the stimulus and responses on original data weighted with TF-IDF.

Word2vec GloVe BERT GPT2 ELMo

stimulus 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt

shirt 0.36 0.19 0.23 0.41 0.30 0.34 0.73 0.77 0.72 0.03 −0.02 −0.04 0.49 0.39 0.44
car 0.35 NaN 0.21 0.43 NaN 0.40 0.77 NaN 0.89 0.02 NaN −0.01 0.52 NaN 0.38
lamp 0.32 0.21 0.18 0.32 0.22 0.19 0.82 0.85 0.93 −0.01 −0.03 0.02 0.39 0.34 0.27
bird 0.42 0.35 0.27 0.43 0.33 0.32 0.70 0.66 0.71 0.00 −0.02 −0.11 0.50 0.46 0.38
tongue 0.23 0.20 0.16 0.24 0.27 0.22 0.73 0.75 0.69 0.04 −0.01 0.01 0.43 0.34 0.32
pet 0.39 0.35 0.34 0.35 0.35 0.37 0.77 0.70 0.75 0.04 0.00 0.04 0.42 0.42 0.39
lunch 0.60 0.44 0.38 0.55 0.47 0.35 0.77 0.72 0.71 0.01 0.01 0.00 0.62 0.49 0.50
bell 0.30 0.26 0.16 0.29 0.28 0.20 0.87 0.89 0.84 −0.02 0.04 −0.02 0.46 0.42 0.31
calendar 0.30 0.24 0.18 0.32 0.30 0.23 0.89 0.86 0.87 0.00 0.02 −0.02 0.51 0.46 0.48
alligator 0.41 0.34 0.17 0.27 0.24 0.13 0.62 0.59 0.52 0.03 0.01 0.00 0.54 0.51 0.32
dance 0.34 0.32 0.21 0.40 0.36 0.28 0.78 0.72 0.72 0.01 0.03 0.06 0.51 0.48 0.39
summer 0.47 0.43 0.25 0.58 0.53 0.41 0.73 0.75 0.73 0.02 0.02 −0.08 0.59 0.57 0.38
reveal 0.45 0.33 0.20 0.42 0.43 0.37 0.67 0.72 0.72 −0.01 0.04 0.05 0.60 0.51 0.54
decade 0.37 0.34 0.47 0.49 0.47 0.54 0.68 0.70 0.62 −0.06 −0.02 0.00 0.47 0.49 0.54
entertain 0.35 0.30 0.14 0.29 0.26 0.20 0.78 0.82 0.90 0.01 0.01 0.00 0.54 0.49 0.47
tradition 0.27 0.26 0.21 0.41 0.40 0.31 0.78 0.73 0.71 −0.01 −0.01 0.02 0.50 0.49 0.44

(continued on next page)
13



N. Nnamoko, T. Karaminis, J. Procter et al. Natural Language Processing Journal 8 (2024) 100094
Table A.3 (continued).
Word2vec GloVe BERT GPT2 ELMo

stimulus 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt

enthusiastic 0.42 0.35 0.27 0.39 0.37 0.25 0.77 0.76 0.74 −0.02 −0.02 −0.01 0.64 0.58 0.51
improvise 0.23 0.28 0.20 0.06 0.11 0.09 0.63 0.59 0.67 0.04 0.00 0.00 0.51 0.52 0.45
haste 0.33 0.26 0.21 0.19 0.14 0.17 0.76 0.73 0.83 −0.02 −0.03 0.17 0.53 0.47 0.45
trend 0.33 0.27 0.21 0.38 0.36 0.37 0.69 0.71 0.69 0.09 −0.04 −0.02 0.56 0.51 0.45
impulse 0.28 0.28 0.20 0.28 0.27 0.23 0.77 0.76 0.78 −0.01 0.03 0.07 0.49 0.49 0.44
ruminate 0.37 0.27 0.30 0.07 −0.07 −0.06 0.56 0.55 0.49 0.02 0.05 −0.08 0.50 0.46 0.47
mollify 0.46 0.24 0.28 0.35 0.08 0.19 0.67 0.63 0.65 0.07 −0.01 −0.04 0.60 0.51 0.54
extirpate 0.35 0.24 0.23 0.06 −0.03 0.07 0.58 0.56 0.56 0.05 0.02 0.02 0.44 0.42 0.40
panacea 0.40 0.29 0.15 0.19 0.17 −0.02 0.63 0.65 0.61 −0.03 0.00 0.02 0.48 0.46 0.33
perfunctory 0.34 0.26 0.22 0.24 0.13 0.07 0.67 0.64 0.66 0.01 0.00 0.02 0.59 0.55 0.51
insipid 0.47 0.30 0.24 0.41 0.11 0.13 0.58 0.51 0.51 0.05 0.00 0.01 0.65 0.53 0.53
pavid – – – – – – – – – – – – – – –

Note In the table, NaN means that WASI-II does not contain a response while ‘–’ means that stimulus was not found in pre-trained word embedding.
Table A.4
Cosine similarity relationship between the stimulus and responses on preprocessed data weighted with TF-IDF.

Word2vec GloVe BERT GPT2 ELMo

stimulus 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt 2-pt 1-pt 0-pt

shirt 0.38 0.18 0.22 0.41 0.30 0.35 0.72 0.76 0.72 0.01 −0.02 0.02 0.50 0.41 0.43
car 0.35 NaN 0.20 0.42 NaN 0.39 0.73 NaN 0.81 0.01 NaN 0.04 0.52 NaN 0.39
lamp 0.32 0.21 0.19 0.37 0.23 0.20 0.82 0.84 0.92 −0.02 −0.02 0.02 0.41 0.35 0.29
bird 0.44 0.34 0.27 0.43 0.33 0.32 0.67 0.65 0.71 −0.02 −0.01 0.02 0.53 0.46 0.40
tongue 0.26 0.18 0.15 0.28 0.26 0.19 0.74 0.76 0.69 0.11 0.04 −0.04 0.48 0.34 0.32
pet 0.41 0.34 0.34 0.36 0.34 0.37 0.77 0.70 0.74 −0.02 −0.01 0.01 0.45 0.42 0.39
lunch 0.62 0.46 0.40 0.59 0.51 0.36 0.78 0.73 0.71 0.00 0.01 0.01 0.65 0.50 0.49
bell 0.31 0.27 0.16 0.29 0.28 0.20 0.85 0.86 0.84 0.01 0.00 0.00 0.46 0.42 0.31
calendar 0.30 0.22 0.17 0.36 0.29 0.21 0.88 0.84 0.84 0.04 0.03 0.02 0.49 0.44 0.48
alligator 0.43 0.35 0.17 0.35 0.26 0.14 0.65 0.58 0.53 0.00 0.04 0.02 0.59 0.52 0.33
dance 0.34 0.33 0.21 0.42 0.36 0.28 0.78 0.71 0.72 0.03 0.06 0.01 0.52 0.48 0.39
summer 0.47 0.42 0.25 0.56 0.52 0.42 0.72 0.74 0.73 0.06 −0.02 −0.04 0.60 0.57 0.37
reveal 0.45 0.32 0.20 0.42 0.43 0.39 0.68 0.72 0.68 0.03 0.04 0.13 0.60 0.51 0.52
decade 0.37 0.35 0.47 0.44 0.46 0.54 0.69 0.70 0.62 0.03 0.00 0.02 0.48 0.47 0.54
entertain 0.35 0.30 0.14 0.29 0.26 0.19 0.79 0.82 0.88 0.01 0.00 −0.07 0.52 0.48 0.45
tradition 0.28 0.28 0.24 0.40 0.39 0.32 0.79 0.74 0.72 −0.01 0.00 −0.01 0.50 0.48 0.44
enthusiastic 0.43 0.35 0.27 0.42 0.38 0.25 0.70 0.75 0.73 −0.02 −0.01 0.00 0.64 0.57 0.52
improvise 0.24 0.28 0.20 0.10 0.13 0.09 0.65 0.60 0.67 0.00 −0.01 0.00 0.49 0.52 0.45
haste 0.33 0.26 0.21 0.19 0.14 0.17 0.76 0.73 0.83 0.04 0.02 0.17 0.53 0.47 0.45
trend 0.33 0.27 0.20 0.38 0.35 0.36 0.71 0.71 0.70 0.11 0.01 −0.01 0.57 0.50 0.45
impulse 0.26 0.28 0.20 0.30 0.28 0.23 0.79 0.76 0.77 −0.03 0.02 0.03 0.49 0.49 0.44
ruminate 0.38 0.27 0.30 0.09 −0.04 −0.07 0.55 0.56 0.48 −0.02 −0.01 −0.03 0.49 0.45 0.46
mollify 0.46 0.24 0.28 0.35 0.09 0.19 0.68 0.63 0.65 0.09 0.01 0.05 0.58 0.50 0.54
extirpate 0.35 0.24 0.23 0.08 −0.03 0.07 0.58 0.56 0.56 0.07 0.03 −0.04 0.44 0.42 0.40
panacea 0.40 0.28 0.15 0.24 0.18 −0.01 0.65 0.65 0.62 0.06 0.01 −0.01 0.50 0.45 0.32
perfunctory 0.34 0.26 0.22 0.26 0.13 0.07 0.68 0.64 0.66 0.00 0.04 0.00 0.60 0.54 0.51
insipid 0.47 0.30 0.24 0.41 0.12 0.13 0.58 0.52 0.52 0.04 0.02 −0.02 0.65 0.53 0.52
pavid – – – – – – – – – – – – – – –

Note In the table, NaN means that WASI-II does not contain a response while ‘—’ means that stimulus was not found in pre-trained word embedding.
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