
              

City, University of London Institutional Repository

Citation: ul Khairi, D., Ayaz, F., Saeed, N., Ahsan, K. & Ali, S. Z. (2023). Analysis of Deep 

Convolutional Neural Network Models for the Fine-Grained Classification of Vehicles. Future
Transportation, 3(1), pp. 133-149. doi: 10.3390/futuretransp3010009 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/33601/

Link to published version: https://doi.org/10.3390/futuretransp3010009

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Citation: ul Khairi, D.; Ayaz, F.;

Saeed, N.; Ahsan, K.; Ali, S.Z.

Analysis of Deep Convolutional

Neural Network Models for the

Fine-Grained Classification of

Vehicles. Future Transp. 2023, 3,

133–149. https://doi.org/10.3390/

futuretransp3010009

Academic Editor: Lynnette Dray

Received: 24 December 2022

Revised: 10 January 2023

Accepted: 16 January 2023

Published: 31 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Analysis of Deep Convolutional Neural Network Models for
the Fine-Grained Classification of Vehicles
Danish ul Khairi 1,*, Ferheen Ayaz 2,* , Nagham Saeed 3,* , Kamran Ahsan 1 and Syed Zeeshan Ali 1

1 Department of Computer Science, Federal Urdu University of Science and Technology,
Karachi 75790, Pakistan

2 6G Lab, School of Engineering and Informatics, University of Sussex, Brighton BN1 9RH, UK
3 School of Computing and Engineering, University of West London, London W5 5RF, UK
* Correspondence: danishulkhairi@gmail.com (D.u.K.); f.ayaz@sussex.ac.uk (F.A.);

nagham.saeed@uwl.ac.uk (N.S.)

Abstract: Intelligent transportation systems (ITS) is a broad area that encompasses vehicle identifica-
tion, classification, monitoring, surveillance, prediction, management, reduction of traffic jams, license
plate recognition, etc. Machine learning has practical and significant applications in ITS. Intelligent
transportation systems rely heavily on vehicle classification for traffic management and monitoring.
This research uses convolutional neural networks to classify cars at fine-grained classifications (make
and model). Numerous obstacles must be overcome in order to complete the task, the greatest of
which are intra- and inter-class similarities between the manufacturer and model of vehicles, different
lighting effects, the shape and size of the vehicle, shadows, camera view angle, background, vehicle
speed, colour occlusion and environmental conditions. This paper studies various machine learning
algorithms used for the fine-grained classification of vehicles and presents a comparative analysis
in terms of accuracy and the size of the implemented deep convolutional neural network (DCNN).
Specifically, four DCNN models, mobilenet-v2, inception-v3, vgg-19 and resnet-50, are evaluated with
three datasets, BMW-10, Stanford Cars and PAKCars. The evaluation results show that mobileNet-v2
is the smallest model as it is not computationally intensive due to depthwise separable convolution.
However, resnet-50 and vgg-19 outperform inception-v3 and mobilenet-v2 in terms of accuracy due
to their complex structure.

Keywords: supervised learning; computer vision; vehicle classification; fine-grained classification;
intelligent transportation system (ITS)

1. Introduction

A traffic monitoring system is an effective method of easing traffic congestion. It is an
integral part of the intelligent traffic system (ITS), which is used to collect traffic data such
as the number of vehicles, vehicle type and vehicle speed. Based on the collected data, it
performs traffic analysis to make better use of the road system, predict future transportation
needs and improve traffic safety as it is one of the exhibition traffic infrastructures in
which traffic authorities invest large sums of money to collect and analyse traffic data to
make better use of the road system. Urban roads and highways currently have multiple
surveillance cameras initially installed for various security reasons. Traffic videos from
these cameras can be used to estimate traffic conditions and automatically identify traffic
jams, accidents and violations, helping traffic managers deal with important aspects of
traffic. Increasing the accuracy of vehicle classification has a very positive impact on traffic
monitoring systems [1].

Intelligent transportation systems (ITS) are systems that use advanced technologies,
such as sensors, cameras and communication systems, to improve the safety, efficiency and
sustainability of transportation networks [2]. Fine-grained vehicle classification is a key
component of ITS as it allows transportation systems to identify and classify individual
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vehicles accurately. This information can be used to optimise traffic flow, improve safety and
reduce emissions by enabling targeted measures such as dynamic routing and intelligent
speed adaptation.

Computer vision (CV) and deep learning (DL) are becoming popular research areas
among students and researchers. The latest advancement in deep learning has significantly
improved computer vision performance in various application areas such as intelligent
transportation, medical image analysis, facial detection, etc. [3]. Computer vision enables
computers to observe and understand the world in the same way humans do. It involves
developing algorithms and systems that can analyse, interpret and understand visual data
from the world around us, such as images and videos. The human eye is limited to seeing
only RGB (red, green and blue) and grayscale images, whereas computer vision can gather
much more information than the human eye, such as the segmentation of objects, the height
of objects’ edges, pixels, infrared (IR) information and several other minute details.

Vehicle classification is an application found on all vehicle passageways, such as
motorways, main highways, car parks and access roads leading to rest areas. The main
objective is to detect the different types of vehicles to optimise infrastructures and increase
the return on toll gates by traffic flows. As vehicle classification is a fundamental part of
intelligent transportation systems and is universally used in traffic surveillance, traffic flow
control and security coercion, the accuracy of vehicle classification data plays a crucial role
in proper future highway and road design by increasing road traffic safety and annihilating
traffic jams [4]. Any loss of accuracy in vehicle classification, even of the order of 1%, swiftly
causes a notable economic deficit; hence, vehicle classification is very arduous.

Improvements in vehicle classification accuracy have a significant impact on traffic
surveillance and traffic flow monitoring. Traffic video surveillance can help in traffic control
and gathering traffic statistics that can be used in intelligent transportation systems [5].
Due to the good accuracy of vehicle classification, the interactions between travellers and
infrastructures become ideal.

Some road vehicles are classified into a broad range of classes according to their dis-
tinctive behaviours and safety measures due to the increase in accuracy of this classification
of road safety, which is extended by notifying vehicles of dangerous situations on the road.
This problem affects many aspects of modern society, including economic development and
traffic accidents [6]. Over 70% of the weight of goods shipped in the U.S. are trucked and
substantial pavement damage is becoming more problematic. Any inaccuracy in vehicle
classification has a negative impact on traffic surveillance because it weakens interactions
between travellers and infrastructures by reducing road traffic safety and increasing traffic
jams. Vehicle classification accuracy loss has a negative impact on road design and will
jeopardise future highways.

In this study, four DCNN models were analysed on three different datasets to compare
their performance.

The following points summarise the contributions of this research.

• A detailed review investigates the most promising work in the machine/deep learning
domains for the fine-grained classification of vehicles.

• A new dataset PAKCars has been created which contains 44 models of 9 makes of
Pakistani cars.

• A comprehensive analysis of DCNN models on fine-grained vehicle classification with
three different datasets is presented.

• This study highlights the trade-off between the accuracy of DCNN models, which
assists researchers/students in selecting hardware for implementations.

• In this study, the proposed algorithm for data augmentation produces much fewer
images, which helps to reduce training time.

The research is further organised as follows. Section 1 discusses the literature related
to this study. Section 2 describes the materials and methods of this research, which incorpo-
rates DCNN models, datasets, data augmentation, training and testing processes, system
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setup, and comparisons with related work. Further, Section 3 presents and discusses the
results. The conclusion of the study is found in Section 4.

2. Literature Review

Recent advancements in deep learning have drastically enhanced the performance of
machine vision in several application areas. In image processing, the challenges of object
recognition and categorisation are crucial. Each item has its own distinct qualities. Object
detection provides information about the object’s position, whereas object categorisation
provides information about the object’s class. Object classification is a technique for identifying
specific real-world items that are based on the machine-learning field of image processing.

In [7] this research, the authors proposed a fully automated system recognising models
and colours. The proposed system was implemented using ImageNet. This type of
visual classification and identification is always complicated in terms of precision and
efficiency [8–11]. The system involves three steps, which include collecting datasets, pre-
processing images and deep learning. The publicly available dataset, Stanford Cars, that
was used to test the proposed system consists of 196 classes and 16,185 images [12] and
uses CompCars to achieve high performance.

In addition, Sighthound’s approach, which uses deep neural networks trained on a
large dataset for training and can accurately label vehicles in real-time, was proposed by
the author of [7] for vehicle make and model recognition.

In another study, the author [13] proposed a novel method for combining local features
with different viewpoint angles in a similar layout to improve the standard of MI-SVM
formulation; this method is known as the iterative multiple-learning method and is used for
vehicle classification and view-point labels with high precision. In this study, the authors
investigated the outcomes of the proposed model using two distinct datasets, INRIA and
Stanford Cars, and compared their results in terms of classification accuracy using various
attribute selection methods and varying degrees of viewpoint supervision. Combining
attribute features with low-level Fisher vector features [14] and applying a simple mixing
method to the normalised scores of each test image yielded the desired outcome.

In these studies [15,16], researchers also offered an additional technique for LIDAR-
based vehicle detection. LiDAR, or laser detection and ranging, is a technology that was
evolved from radar. On this platform, a vast number of point clouds are provided by
LiDAR that are used to detect objects. Additionally, trained SVM, CNN and DCNN models
are utilised for the classification of cars and non-vehicles. In a separate study, the authors
demonstrated vehicle identification at larger distances using the 3D LIDAR technique. For
image object segmentation, the technique RGLOS (Ring Gradient Based Local Optimal
Segmentation) was utilised. Three types of features were extracted for feature extraction
in one study [17] regarding position-related shape, object height along the length and
reflective intensity histograms.

3. Materials and Methods

This study sought to develop vehicle fine-grained classification using diverse DCNN
architectures by utilising three different datasets. The methodological procedure can be
broken into two steps: a CNN-based training process and testing of the trained model
process. Figure 1 depicts the methodology’s workflow and Figure 2 depicts the testing
procedure. As stated in Table 1, the datasets utilised by the system were BMW-10, Stanford
Cars and PAKCars. In this study, a recently created dataset was utilised that enabled
researchers to efficiently classify commonly used cars in Pakistan. The authors modified
the accessible datasets (BMW-10, Stanford Cars) by snipping raw images from the specified
bounding box and classifying images with their relevant car’s make and model directories
using the provided labels for the testing and training sets. In addition, a state-of-the-art
dataset, PakCars, was created specifically for use in this research, which is also arranged
like the other two datasets, in which each manufacturing company and model are separated
into separate folders. After the preparation of the dataset, some preprocessing of images
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was required before they were fed to the CNN models for training. For pre-processing,
first, all images were resized at the same scale and then image augmentation techniques
were applied to enhance the dataset such as flipping, zooming, rotating and rescaling. The
datasets were then ready for CNN model training. The trained models with preprocessed
data achieved distinct results, which were then validated.
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Figure 2. Process of testing the trained models by feeding the randomly selected images from the
test datasets.

Table 1. Three different vehicle datasets are presented in the table. Information on each dataset in
terms of classes and images is shown.

Dataset No. of Training Images No. of Testing Images Models Makes

Stanford Cars 8144 8041 196 45

BMW-10 256 255 10 1

PAKCars 1186 1175 44 9

The datasets were pre-processed before training the CNN models. Flipping, rotating,
zooming and re-scaling images were image augmentation techniques conducted during
the pre-processing stage. The datasets were trained on numerous different DCNN models
(MobileNet-V2, Inception-V3, VGG-19 and Residual-Net-50). The models trained using
pre-processed data obtained different results, which were then validated.

3.1. Architectures Used to Implement CNN

The structure of CNNs has been continuously improving since 1989. These improve-
ments can be classified as regularisation, parameter optimisation and structural reformula-
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tion [18]. Some common CNN models are LeNet, Alexnet, VGG, GoogleNet, Inception-V2,
Inception-V3, Inception- V4, ResNet and MobileNet.

The following CNN models were used in this research.

• Mobilenet-V2
• Inception-V3
• VGG-19
• Resnet-50

3.1.1. Mobilenet-V2

The mobilenet architecture was proposed by Google and is based on a streamlined
architecture. Due to its lower computational cost, it is used to build lightweight networks.
Mobilenet executes a single convolution on each colour channel. It does not combine and
flatten all three RGB channels; this has the effect of filtering the input. It is beneficial
for both mobile and embedded systems. This architecture is also suitable where there
is a lack of computational power. It replaces normal convolution with depth and point-
wise convolution, which is called depth-wise separable convolution [19]. In standard
convolution, a convolution is parameterised by kernel K size Dk × Dk × M × N; here, Dk is
the kernel size spatial dimension (square), M is the number of input channels and N is the
number of output channels.

The foundation of the mobilenet model is depth-wise separable convolutions, a type
of factorised convolution that factors a standard convolution into a depth-wise and point
wise convolution. Point-wise convolution, also known as 1 × 1 convolution, is a type
of convolution where the kernel size is 1 × 1. It is used to adjust the number of chan-
nels in an input feature map, while preserving the spatial resolution of the feature map.
Depth-wise convolution, on the other hand, is a type of convolution where the kernel is
applied to each channel of the input feature map separately. It is used to extract features
from each channel independently. Combining the results of point-wise and depth-wise
convolutions can be useful for extracting both channel-wise and spatial features from an
input feature map. Standard convolutions combine inputs into a new set of outputs in
one step while also filtering the inputs. This is divided into two layers by the depth-wise
separable convolution—a layer for combining and a layer for filtering. The computation
and model size are significantly decreased as a result of this factorisation. An example of
the factorisation of the depth-wise separable convolution block is shown in Figure 3.
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3.1.2. Inception-V3

A popular image classification or recognition model with high accuracy rates is
inception-V3, which was used in this study. The inception-v3 model is composed of
symmetric and asymmetric blocks. It has various layers, including convolution, max
pool, fully connected, concat, average pool, dropout and softmax. These layers have been
used to carry out intricate computations on datasets. The direction of the layers clearly
demonstrates that the information flow is feed-forward layer by layer; thus, it will limit
the number of convolutions to a maximum of 3 × 3 to avoid complexity. The complete
architecture of inception-v3 is shown in Figure 4.
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3.1.3. VGG-19

VGG-19 had greater depth compared to AlexNet and was very uncomplicated. The
model supports 19 layers, indicating the number of convolutional layers present in the model.
The model has three layers more than VGG-16. Model VGG-19 specified the structure, colour
and shape of the image very well as it has pre-trained layers with advanced CNNs. The
sequence of the 3 × 3 convolution filter was used by the VGG-19 network. Additionally,
there were two prime inadequacies of this model: (1) As VGG19 consists of 19 layers with the
same size filters due to the depth lots of parameters involved in computation, the training
process is slowed due to a large number of calculations. (2) Some features are overlooked
due to using the same size filter throughout the network design. The backpropagation
algorithm updates the weights of a neural network, slightly modifying each weight so
that the model’s loss is reduced. In order to move towards reducing loss, it updates each
weight. It simply records the weight’s slope, which can be determined using the chain rule.
The value, however, continues to rise with each local gradient as the gradient continues to
flow back to the beginning layers. The alterations to the earliest layers are consequently
drastically reduced as the gradient gets smaller. This causes some features to be overlooked
and increases the training time.

3.1.4. ResNet-50

ResNet-50 is a 50-layer deep convolutional neural network that was introduced by
Microsoft in 2015. A variant of the model that can work with 50 layers of the neural network
is resNet-50. resNet-50 is used as a starting point for learning transfer and is considered
a smaller version of resNet-152. In many computer vision tasks, it plays a vital role. This
model is able to classify images into thousands of categories of objects such as Desks, pens
and many animals. ResNet-50 models consist of 50 layers; they have 1 average pool layer
and 1 max-pool layer with 3.8 × 109 floating point operations. They also enhance the
performance of neural networks with more layers and fewer errors. ResNet-50 is also used
to connect the input of the nth layer to some (n + x)th layer directly by using shortcuts. The
image input size in this model was 224-by-224. Using this model was easy compared to
other deep convolutional neural networks. Degrading accuracy problems are also resolved
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by resNet-50. Five stages are involved in this model and each stage has its own identity
block and convolution, while each identity block and convolution further have convolution
layers of 3 × 3. Over 23 million trainable parameters are contained in ResNet-50. The
layer-by-layer architecture of the resnet model is shown in Figure 5. Figure 6 shows a
logical scheme of the base building block of ResNet-50.
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Figure 5. Layer-by-layer architecture of VGG-19. The 16 convolutional layers in VGG-19 are divided
into 5 blocks. After each block, there is a max-pool layer that reduces the input image’s size by
two and raises the convolution layer’s number of filters by two. The final three dense layers in
block 6 are 4096, 4096 and 1000, respectively, in size. The input photos are categorised by VGG into
1000 different categories.
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3.2. Datasets

In machine learning, the selection of the data set is of critical importance. Once a
model has been developed, the network must be trained using a dataset. The dataset is
a collection of samples such as images or text data and an essential part of any machine
learning system as all predictions are based on the given dataset. Datasets are usually
divided into two parts: training and testing. The training part is used to train the machine
and the testing part is used to validate or test the trained machine.

To perform the classification of cars based on their features, a dataset of cars is needed
that must contain the makes and models of the cars. This study utilised the following datasets:

• Stanford Cars
• BMW-10
• PAKCars

3.2.1. Stanford Cars

The Stanford Cars dataset contains 196 classes with makes and models. The total
number of images contained in the dataset is 16,185. The dataset was divided into two parts:
testing and training. The numbers of images used for training and testing were 8144 and
8041, respectively. Thus, the dataset was almost divided equally (50/50). Typically, a car
dataset is categorised based on make, model and year; this means that multiple classes will
have the same make and model but belong to a different manufacturing year [11]. Examples
of randomly selected images from the Stanford Cars dataset are shown in Figure 7.
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grounds: (a–c) random images taken from the dataset.

3.2.2. BMW-10

The BMW-10 dataset is an ultra-fine-grained classification dataset. The dataset contains
10 classes. The dataset contains 511 images with an average of 50 images per class. Examples
of randomly selected images from the BMW-10 dataset are shown in Figure 8.

Future Transp. 2023, 3, FOR PEER REVIEW  8 
 

 

a car  dataset is categorised based on make, model and year; this means that multiple clas-
ses will have the same make and model but belong to a different manufacturing year [11]. 
Examples of randomly selected images from the Stanford Cars dataset are shown in Figure 
7. 

 
Figure 7. Sample images from the Stanford Cars dataset with multiple objects and various back-
grounds: (a–c) random images taken from the dataset. 

3.2.2. BMW-10 

The BMW-10 dataset is an ultra-fine-grained classification dataset. The dataset con-
tains 10 classes. The dataset contains 511 images with an average of 50 images per class. 
Examples of randomly selected images from the BMW-10 dataset are shown in Figure 8.  

 
Figure 8. Sample images from the BMW-10 dataset with multiple objects and various backgrounds: 
(a–c) random images taken from the dataset. 

3.2.3. PAKCars  
Th PAKCars dataset is generally for cars commonly used on Pakistan’s roads; it is 

utilised for fine-grained vehicle classification and can also be utilised in other countries 
where these cars are used. There is a limited number of data points. The images are taken 
from different angles and perspectives. The detection and classification of vehicles in Pa-
kistan are made possible by this system. The dataset contains the models of cars made from 
the 1980s to 2018. It contains 40 classes and each class has 50 images. It contains a total 
of 2000 images. The dataset is equally divided into two parts: testing and training. 
Examples of randomly selected images from the PAKCars dataset are shown in Figure 9. 

Figure 8. Sample images from the BMW-10 dataset with multiple objects and various backgrounds:
(a–c) random images taken from the dataset.

3.2.3. PAKCars

Th PAKCars dataset is generally for cars commonly used on Pakistan’s roads; it is
utilised for fine-grained vehicle classification and can also be utilised in other countries
where these cars are used. There is a limited number of data points. The images are taken
from different angles and perspectives. The detection and classification of vehicles in
Pakistan are made possible by this system. The dataset contains the models of cars made
from the 1980s to 2018. It contains 40 classes and each class has 50 images. It contains a
total of 2000 images. The dataset is equally divided into two parts: testing and training.
Examples of randomly selected images from the PAKCars dataset are shown in Figure 9.
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3.3. Dataset Extraction

Images from the Stanford Cars and BMW-10 datasets were compiled and categorised
according to the manufacturer and model of each car using the available MAT files. These
datasets were created from web images, including images from Google, Amazon, Bing
and other sources. Noise-free images were included in the dataset to ensure successful
model training across various convolutional networks. The Stanford Cars dataset contained
196 car models of different makes, while the BMW-10 dataset contained 10 models of a
single-make BMW. Generally, classes may be categorised as SUVs, Coupes, Hatchbacks,
Pickups, Convertibles, Sedans and Station Wagons; however, in this study, classes were
categorised on the basis of models. Both of the datasets contained train and test MAT
annotation files, a cars meta (makes of cars) file, training and testing image names with
the path available within the annotation file and the bounding box of each of the vehicles,
which was accessible according to the image name. All of the images were cropped and
organised into categories with the help of the bounding box points from the provided file.
The processed images are shown in Figure 10.

Future Transp. 2023, 3, FOR PEER REVIEW  9 
 

 

 
Figure 9. Sample images from the PAKCars dataset with multiple objects and various backgrounds: 
(a–c) random images taken from the dataset. 

3.3. Dataset Extraction 

Images from the Stanford Cars and BMW-10 datasets were compiled and categorised 
according to the manufacturer and model of each car using the available MAT files. These 
datasets were created from web images, including images from Google, Amazon, Bing and 
other sources. Noise-free images were included in the dataset to ensure successful model 
training across various convolutional networks. The Stanford Cars dataset contained 196 
car models of different makes, while the BMW-10 dataset contained 10 models of a 
single-make BMW. Generally, classes may be categorised as SUVs, Coupes, Hatchbacks, 
Pickups, Convertibles, Sedans and Station Wagons; however, in this study, classes were cate-
gorised on the basis of models. Both of the datasets contained train and test MAT annota-
tion files, a cars meta (makes of cars) file, training and testing image names with the path 
available within the annotation file and the bounding box of each of the vehicles,  
which was  accessible according to the image name. All of the images were cropped and 
organised into categories with the help of the bounding box points from the provided file. 
The processed images are shown in Figure 10.  

 

Figure 10. (a) Bounding box points marking on the image; (b) Bounding box created on the image; 
(c) Cropped image. 

The PAKCars dataset is built from the most popular cars in Pakistan and can be used to 
improve the country’s traffic management system with more precise vehicle classification. 
It is a somewhat modest data set. Several photographs, taken from different view angles, are 

Figure 10. (a) Bounding box points marking on the image; (b) Bounding box created on the image;
(c) Cropped image.

The PAKCars dataset is built from the most popular cars in Pakistan and can be used to
improve the country’s traffic management system with more precise vehicle classification.
It is a somewhat modest data set. Several photographs, taken from different view angles,
are presented. In order to extract the dataset, authors cropped each image with the cropping
tool and saved it to the appropriate class directory according to the make and model. This
ensured that the images were solely focused on the vehicles in the images. There were
40 different car types included in the dataset, all of which are common in Pakistan.

3.4. Dataset Augmentation

Dataset augmentation is helpful for CNN models because it can artificially increase
the size of a dataset and thus help the model learn to recognize objects more robustly and
better generalise patterns to new, unseen images. When a CNN model is trained on a
dataset, it learns to recognise patterns in the images and makes predictions based on these
patterns. However, if the dataset is small or limited in some way, the model may learn
patterns that are specific to the images in the dataset but may not generalise well to new
images. Dataset augmentation can help to mitigate this problem by creating new images
from the original images, which can expose the model to a wider range of variations in the
images. This can help the model learn to recognise objects more robustly and be less reliant



Future Transp. 2023, 3 142

on specific patterns in the images. Training the model on a larger and more varied dataset
can reduce overfitting and make the model more robust for use with unseen data [20]. The
procedures for basic augmentation are incredibly simple. On any sort of image dataset,
these strategies can be easily deployed. The following are some of the most common basic
techniques used for data augmentation, as shown in Figure 11:

• Flipping
• 15-Degree Rotation
• 30-Degree Rotation
• Zooming
• Scaling
• Cropping
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3.5. Model Selection

It is important to identify which model will perform better for image classification
tasks in supervised machine learning. There are two types of supervised machine learning
models available: (1) Traditional models (support vector machine, decision tree, K-nearest
neighbour, etc) and (2) CNN-based models (vgg, resnet, inception, mobilenet, alexnet, etc).
Despite having several shortcomings, the conventional machine learning image classifi-
cation approach has a number of benefits in raising the efficiency of picture classification.
Traditional models lose their classification accuracy when working with large datasets
and require a lot of computing effort. Over traditional models, convolution neural net-
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works provide remarkable improvements in the recognition and classification of image
features [21]. The four most widely used models, mobilenet-V2, inception-V3, vgg-19 and
resnet-50, were chosen for fine-grained vehicle classification tasks while keeping in mind
all of the characteristics and performances reported in previously available research.

3.6. Training Process

Fine-grained vehicle classification was implemented using four different DCNN mod-
els on three datasets, with pre-trained models used as a starting point rather than starting
from scratch. This had several advantages. The pre-trained models were already trained
on a large dataset (ImageNet) that contained 1.2 million images classified into 1000 classes.
Pre-trained model weights were utilised to train the DCNN models on the given datasets.
The reason for this is that the model’s initial layers included edge and shape detection
modules, which are common for any image recognition application, and these become in-
creasingly abstract in the final layers, making them more application-specific. The learning
rate of the plan was rooted at 0.001 to attain a network that was fine-tuned. After each
batch of training sets, the learning rate was reduced by a very small factor of 0.000001; the
purpose was to reduce the learning rate and provide better training to models on the given
datasets. To evaluate the loss, cross-entropy was utilised; the function of loss was inversely
proportional to the momentum. The model was trained with a stochastic gradient descent
(SGD) optimiser with a learning rate of 0.001 to 0.000001 and augmented datasets were
used instead of the original dataset to avoid model over-fitting. Cropping, scaling, rotating,
flipping and zooming are some simple augmentation techniques that were used in this
study to make the model more robust and avoid over-fitting.

3.7. Testing Process

In the testing process of fine-grained vehicle classification, the testing dataset was
used as an input of ConvetNet models to predict classes and check the model accuracy. If
the model accuracy was not satisfied, we made some changes to the training algorithm and
dataset, including or excluding numbers of layers scratched on the CNN model, fine-tuning
the hyper-parameters and dataset augmentation. This cycle was repeated if the results were
not satisfying. Figure 12 shows the testing of the trained model in which a new image from
Google was provided as an input to the model and a prediction of the model is shown.
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3.8. System Setup

Well-known deep convolutional network models were used in this study to solve
the fine-grained vehicle classification problem. The majority of the models (Inception,
Resnet and VGG) were winners of the ImageNet challenge. Since deep convolutional
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neural networks are computationally complex, they require a high-configuration processor.
For this, a Core i7-powered, 16 GB RAM-equipped and 6 GB Nvidia GTX 1080 graphics
capable Acer Predator Helios 300 laptop was used. The following is a list of the major
toolkit components used in this work:

• Ubuntu 16.04.
• Python 3.7.
• DCNN library Tensorflow and Mxnet.
• For GPU, CUDA 8.0.4 was used.
• CUDN was used to run faster computations of CNN models.

4. Results and Discussion

The experimental findings of the implemented DCNN models on each dataset are
shown in Table 2. This study made use of three independent car classification datasets
(BMW-10, Stanford Cars and PAKCars) for fine-grained categorisation. Several researchers
have used the BMW-10 and Stanford Cars datasets to train multiple DCNN models. In
Table 3, the results of this investigation are compared to those of earlier studies. In [22],
researchers employed between 50,000 and 250,000 epochs with fine-tuned parameters.
In this work [23], Keras library was utilised for data augmentation and model training,
giving results comparable to our work but with slightly higher accuracy. However, our
proposed method of augmentation has been shown to produce better results and has the
added benefit of reducing the training time by generating fewer augmented images. This
makes it an attractive option for those seeking to optimise their model training process.
Additionally, the dataset split in this study was 50/50 for the training and testing sets.
The performance of the mobilenet-v2 model could not be compared to any other study
because the implementation of the fine-grained classification of vehicles was not found in
any further study. The implemented model’s work was only trained for 100 epochs (ResNet
and VGG) and 20,000 epochs (Mobilenet and Inception-V3) due to hardware limitations
and this is comparable with previous studies. In the future, it will be possible to engage
in training with additional epochs to better appreciate the usefulness of each model and
improve performance.

Table 2. Obtained results with respect to datasets, models, no. of classes, hyper-parameters (learning
rate, batch size) and final accuracy of models.

MobileNet-V2 Model

Datasets Training Set Testing Set Classes Learning Rate No. Epochs Training Parameters Final Test Accuracy

PakCars(Ours) 1186 1175 44 0.01 20,000 4.2 M 65%

BMW-10 245 244 10 0.01 20,000 4.2 M 72%

Stanford Cars 8144 8041 196 0.01 20,000 4.2 M 43%

Inception-V3

PakCars(Ours) 1186 1175 44 0.01 20,000 23 M 66%

BMW-10 245 244 10 0.01 20,000 23 M 74.6%

Stanford Cars 8144 8041 196 0.01 20,000 23 M 62%

VGG-19 Model

PakCars(Ours) 1186 1175 44 0.01 100 143 M 84%

BMW-10 245 244 10 0.01 100 143 M 87%

Stanford Cars 8144 8041 196 0.01 100 143 M 78%

ResNet-50 Model

PakCars(Ours) 1186 1175 44 0.01 100 25.6 M 83%

BMW-10 245 244 10 0.01 100 25.6 M 85%

Stanford Cars 8144 8041 196 0.01 100 25.6 M 82%
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Table 3. Comparison with previous work on the Stanford Cars and BMW-10 datasets.

Stanford Cars Dataset

Related Work CNN Models Epochs Accuracy %

[23]

VGG19 100 62.5

Inception-V3 100 67.5

VGG-19 - 79.20

[24] ResNet-50 - 78.87

[25] VGG-19 5732 83.1

[22] VGG-19 50,000–250,000 78.90

Inception-V3 20,000 62

Ours VGG_19 100 78

ResNet-50 100 82

BMW-10 Dataset

[26] VGG-19 - 78.74

Ours VGG-19 100 87

Test Images

We tested a trained model with the generated test dataset and the result was quite
promising; the confidence of the applied trained models on all sample test dataset images
of the three datasets (Stanford Cars, BMW-10 and PakCars) had an accuracy of up to 87%.
Tables 4–7 show the prediction output of all models on the test set.

Table 4. Testing the accuracy of Mobilenet-V2 on a randomly selected class from each of the three datasets.

Mobilenet

BMW-10 Cars
Dataset

Make: BMW
Model: Class 1
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Table 5. Testing the accuracy of Inception-V3 on a randomly selected class from each of the three datasets.
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BMW-10 Cars
Dataset
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5. Conclusions

Fine-grained vehicle classification is an important component of ITS, which encom-
passes a wide range of technologies and applications related to the efficient and safe
management of transportation systems. By demonstrating the effectiveness of CNNs for
fine-grained vehicle classification, this work contributes to the development of more ad-
vanced and intelligent transportation systems. The results of this study could be useful for
practitioners seeking to develop applications related to fine-grained vehicle classification,
such as traffic management, surveillance and prediction systems. The comparison of differ-
ent CNN models and analysis of trade-offs between accuracy and model size are useful
contributions to the machine-learning community as they provide a deeper understanding
of the capabilities and limitations of these models for fine-grained vehicle classification. The
proposed data augmentation algorithm could be useful for practitioners seeking to optimise
the training process for CNN models. Four different models were chosen for this study and
implemented on three different datasets to analyse the performance of the CNN models.
First of all, mobilenet-v2 was tested, which gave a low output percentage compared to the
inception-V3 model. Then, the vgg-19 model was tested, which provided better testing
predictions compared to the mobilenet-v2 and inception-V3 models. However, the best
model found in this study was the residual network model (ResNet-50), which gave the
best predictions for testing data but had a higher loss function. Although, the overall
performance of resnet-50 was the best among all. In the case of BMW-10 and Pak-Cars,
vgg-19 performed a little better than resnet-50. It was concluded that resnet-50 leads to
faster convergence and better prediction results compared to the other models. Significantly,
the above conclusion is not final, as some other models could also be tested. Better results
could be achieved by using proper resources and overcoming limitations. However, the
deduction obtained from this research was very substantial and proper inferences can be
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obtained to decide upon the best model. In our case, the overall performance of resnet-
50 was better but, in some cases, vgg-19 produced better results. In the future, traditional
models and other DCNN classifiers can be implemented and compared. In addition, other
large-scale vehicle datasets (Boxcars, BRCars, etc.) can be utilised to evaluate the diversity
of models for the fine-grained classification of vehicles. Many improvements can be made
with further research and analysis.
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