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Development of an insilico model 
of eccrine sweat using molecular 
modelling techniques
Parijat Deshpande 1,2*, Bharath Ravikumar 1, Siddharth Tallur 3, Debjani Paul 4 & Beena Rai 1

Eccrine sweat is an ideal surrogate diagnostic biofluid for physiological and metabolic biomarkers for 
wearable biosensor design. Its periodic and non-invasive availability for candidate analytes such as 
glucose and cortisol along with limited correlation with blood plasma is of significant research interest. 
An insilico model of eccrine sweat can assist in the development of such wearable biosensors. In this 
regard, molecular modelling can be employed to observe the most fundamental interactions. Here, 
we determine a suitable molecular model for building eccrine sweat. The basic components of sweat 
are water and sodium chloride, in which glucose and other analytes are present in trace quantities. 
Given the wide range of water models available in the molecular dynamics space, in this study, we first 
validate the water models. We use three compounds to represent the base to build bulk sweat fluid 
and validate the force fields. We compare the self-diffusivity of water, glucose, sodium, and chloride 
ions as well as bulk viscosity values and present the results which are > 90% accurate as compared with 
the available literature. This validated insilico eccrine sweat model can serve as an aid to expedite the 
development de novo biosensors by addition of other analytes of interest e.g. cortisol, uric acid etc., 
simulate various temperatures and salt concentrations, expand search space for screening candidate 
target receptors by their binding affinity and assess the interference between competing species via 
simulations.

Eccrine sweat has two distinct advantages over other candidate biofluids owing to its non-invasive, periodic 
availability and limited correlation with blood serum. This has motivated researchers to consider it as a surrogate 
diagnostic biofluid since the existence of amino acid serine was detected in  19101. Subsequently, a detailed study 
of eccrine sweat was conducted by Ray and McSwiney for its  composition2. Research in this direction was further 
fuelled by the findings of glucose and lactic acid in sweat by Silvers in  19283. Other constituents such as ammo-
nia, glucose, and chloride as candidate biomarkers were isolated and compared with the levels from patients by 
Ray and  Steck3. Similar studies were largely targeted towards differentiating sweat composition amongst healthy 
subjects and patients which demanded elaborate laboratory experiments in the early twentieth century. Further 
detailed analysis of the composition of sweat was conducted and established by Robinson and  Robinson4 which 
is considered in this paper for model development. Significant interest in other biofluids such as  saliva5,6 and 
 blood7 has motivated the development of insilico models for these fluids using molecular modelling techniques.

However, sweat offers a clear advantage over other biofluids for non-invasive and periodic monitoring of 
target analytes such as glucose and cortisol. Models for blood and saliva though with limited utility in terms of 
predicting blood viscosity and the components and properties of saliva have demonstrated their benefits. The 
detailed physiological mechanisms of determining eccrine sweat have been documented by Baker and  Wolfe8 in 
2020, where they present that sweat composition is not only influenced by extracellular solute concentrations, 
but also mechanisms of secretion and/or reabsorption, sweat flow rate, by-products of sweat gland metabolism, 
skin surface contamination, and sebum secretions, among other factors related to methodology. Human eccrine 
sweat is a biomarker-rich fluid with limited correlations with blood serum. The possibility of detecting these 
analytes via non-invasive methods using readily available sweat has been abundantly motivated. The advent of 
nano-biosensing combined with various electrochemistry methods and AI to interpret the results has made it 
possible to realize such sensors. On-going research on such point-of-care sensors is targeted towards improving 
their sensitivity and selectivity by testing the various bio-receptor combinations of target molecules and target 
receptors, ensuring reproducibility, and other allied research such as microfluidics and flexible electronics.
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Insilico models for sweat are not present to the best of our knowledge and this work attempts to develop a 
building block in the direction of insilico model of eccrine sweat. The composition of  sweat9,10 is well studied 
and the mechanism of natural sweating and  iontophoresis11 is available in the literature. Microfluidic models 
have been explored for eccrine sweat which is imperative to the development of sensor patches and wearables 
to ensure high-throughput and continuous measurements for various  analytes12. Developing this insilico model 
not only aids experimentation but also gives insight into the mechanism and processes involved in the operation 
of the sensor. Furthermore, the general challenges with respect to sensitivity and selectivity can be studied via 
simulations using the proposed insilico sweat model. Similar studies have been conducted on other body fluids 
such as composition and properties of  saliva13 and bulk properties of  blood14 such as viscosity using molecular 
dynamics (MD). Such an insilico model will aid in development of wearable biosensors by simulating various 
temperature and salt concentration conditions, screen candidate receptors and substrates via their binding energy 
levels, study competing species interferences etc. Encouraged by these factors we propose to build a molecular 
model for sweat and validate with existing literature data. There is no known available insilico sweat model 
for simulating such studies for detecting primary constituent analytes of eccrine sweat such as metabolites, 
biomolecules, and other analytes. Our model will facilitate and expedite the screening of candidate substrates, 
functionalizing as per the target molecule of interest and therefore improve selectivity. Studies with competing 
or interfering  species15 too can be carried out by using such an insilico model of sweat. This motivates a clear 
case for developing an eccrine sweat model for simulating insilico experiments.

Since eccrine sweat is a dilute salt solution with biomarkers, in this work, we restrict ourselves to the com-
parison of the molecular model consisting of glucose in a salt solution of appropriate concentration. Literature 
data for glucose in salt solutions at various temperatures and concentrations is readily available to compare and 
can serve as a benchmark in order to build a complete sweat model consisting of all the constituents. This model 
is developed using Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)  tool16 and presented 
along with validation results for diffusivity and viscosity. Additionally, the effect of variation in temperature and 
concentration of electrolytes is presented as a basis for the development of de novo biosensors. The purpose of 
modelling is to identify key experimental parameters such as transport properties to serve as an aid in the pursuit 
of the development of de novo biosensors. These parameters determine the response or output of the sensor and 
provide a way to explore the relation between key experimental parameters, the concentration of the analytes 
and sensor response. The computation of viscosity of the solution and diffusivity of analytes such as glucose via 
modelling validate the efficacy of the insilico model. The values of diffusivity of glucose are available in literature 
for various concentrations of salt water and various temperature conditions. Comparing these values with our 
model output will validate the model for further usage. Thus, validated insilico eccrine sweat model can then 
provide insight into the mechanism and processes involved in the operation and therefore aid development of 
wearable biosensors by simulating various temperature and salt concentrations, screening candidate receptors 
and substrates and studying the competing-species interferences.

Theory and method
Development of a  Matlab® based LAMMPS script generator. We present a  Matlab® based tool com-
plete with GUI as depicted in Fig. 1 which allows users to Select constituents, Input conditions (NPT/NVT), and 
Vary concentrations for the insilico Sweat Model and generate a LAMMPS script. Users can subsequently auto-

Figure 1.  LAMMPS script generator.
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mate this program for varying conditions, and concentrations e.g., the concentration of sodium ions to simulate 
dehydration and simulate the diurnal circadian cycle. Simulations with candidate substrates and receptors can 
be conducted to expedite the development of biosensors with larger search space and faster results as compared 
to experimental analysis.

Development of an insilico eccrine sweat model. The first step in developing a sweat model involves 
ensuring the appropriate composition of eccrine sweat. Most of the sweat of our body is produced via eccrine 
glands as compared to apocrine  glands9. The eccrine sweat glands are mainly located on the palms, soles, fore-
head, and armpits and cover the rest of the  body17. Sweat secreted by these glands is primarily water and the 
remaining constituents, specifically significant for wearable sensing are listed in Table 1. These concentrations 
are further translated into the number of molecules according to their molarity. Sweat is considered as a dilute 
water solution with NaCl as the primary solute and other analytes of interest in much smaller  ratios8.  Na+ or 
 Cl− can be directly measured using ion-selective  electrodes6,7 or electrical conductivity of the sweat can be meas-
ured, since  Na+ and  Cl− are the abundant ions in sweat. Small molecules (< 1000 Da) such as glucose (180.156 g/
mol or Da) are present in trace amounts. It is therefore imperative that the water model selected for this work is 
thoroughly validated to ensure the subsequent complex models developed will retain their accuracy. A sequen-
tial approach is considered to develop the proposed sweat model progressing from a pure water system to a solu-
tion as depicted in Fig. 2. The individual biomolecules are selected from protein data  bank18 and added to the 
water molecules. Since glucose diffusivity values are readily available in literature both by simulations as well as 
experiments, it is selected as the candidate analyte. Glucose is therefore added to the salt solution as a surrogate 
for several biomolecules and to validate the presented model with literature data. Thus, the development will 
have to begin with a complete molecular model of human sweat with the same composition with careful match-
ing of the primary constituents in their appropriate concentrations as listed in Table 2 and rendering presented 
in supplementary information Figure S6.

Table 1.  Typical composition of eccrine sweat as reported in  literature4,9,10.

Constituents Concentration/Molarity

Cortisol 0.022–0.386 µM

Glucose 10–200 µM

Uric Acid 2–10 mM

Na+ 10–100 mM

Cl- 10–100 mM

K+ 1–18.5 mM

Ca++ 0.41–12.4 mM

NH4 0.1–1 mM

Ethanol 2.5–22.5 mM

Ascorbic Acid 10–50 µM

Develop MD 
model with pure 
water for TIP3P 

and SPC/E 

Validate pure 
water model 

with literature 
viscosity and 

diffusivity

Incrementally 
develop insilico 
model in stages
•pure water
• water + NaCl
• water + NaCl + 

glucose as per  
sweat conc.

Develop water + 
NaCl model and 
compare with 

literature 
viscosity and 

diffusivity 

Develop water + 
NaCl + Glucose 
model as per 
eccrine sweat 

concentra�ons 
and compare 

with literature 
viscosity and 

diffusivity

Validated 
insilico eccrine 
sweat model to 
simulate 298K 
and 310K and 

NaCl 
concentra�on 

from 14-112mM

Figure 2.  Flow chart of development of insilico eccrine sweat model.

Table 2.  Molecular model constituents and their concentration for developing insilico sweat model.

Constituents Concentration of insilico sweat model

Water molecules Solvent

Glucose 200 µM

Na+ 14–112 mM

Cl− 14–112 mM
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Water models and force fields. As water is the major component of sweat, the suitability of candidate 
water models effectively determines the usability of the widely used models of water in developing the molecu-
lar model of sweat. Thus, to develop a full atomistic sweat model, various candidate water models have to be 
validated against the experimental values and established simulation results. Water models TIP3P and SPC/E 
are implemented and their transport properties such as viscosity and self-diffusivity are validated. Both these 
empirical water models used in this simulation are similar and have three interaction sites, but with differences 
in their pair potentials composed of Lennard–Jones (LJ) and Coulombic terms resulting in differences in the 
calculated self-diffusion coefficients of  water19,20. The SPC/E model assumes a water molecule as a rigid molecule 
as a rigid molecule with an intramolecular distance of 0.1 nm between oxygen and hydrogen interaction sites 
(O–H distance) and with an angle of 109.47° between the O–H bonds. The intermolecular site–site interactions 
are defined in terms of the distances between the sites. Although these sites are commonly interpreted in terms 
of oxygen and hydrogen atoms, they are merely sites for atom–atom and Coulomb interactions. There are partial 
charges assigned to the sites to mimic an effective charge distribution of a water molecule in liquid  water20. The 
charge on the oxygen site is -0.8476e and the charge on the hydrogen site is 0.4238e. The SPC/E model assumes 
an ideal tetrahedral shape (HOH angle of 109.47°) instead of the observed angle of 104.519. The TIP3P  model19 is 
similarly specified as a 3-site rigid water molecule with charges and Lennard–Jones parameters assigned to each 
of the three atoms. The charge on the oxygen site is -0.830e and the charge on the hydrogen site is 0.415e. The 
model assumes an HOH angle of 104.52°. The SHAKE algorithm was used to keep the bonds of water molecules 
 rigid21,22.

The force field selected was CHARMM36m due to its suitability for  biomolecules23. The present work utilizes 
the  CHARMM36m24 force field equations. CHARMM36m is all-atom additive protein force field with validation 
based on comparison to NMR  data25. The implementation of this force field was achieved by CHARMM–GUI26. 
The simulation input files consisting of the TIP3P model were manually altered to include the SPC/E parameters 
for improved results. Development of a molecular dynamics model of eccrine sweat demands both validation of 
composition and validation of transport coefficients such as diffusivity values and bulk properties such as viscos-
ity and density along with the data in the literature both empirical and experimental with the small molecules 
such as glucose and sodium and chloride ions.

LAMMPS simulation. The insilico sweat model was developed by using LAMMPS—molecular modelling 
tool with the above composition by developing the data file using CHARM-GUI24. All simulations were carried 
out using 11,465 water molecules in a cubic simulation cell of volume 70 × 70 × 70 Å3 with periodic boundary 
conditions. The composition of the various analytes is collected from the RCSB protein  database18 and imported 
into LAMMPS via CHARM-GUI Solution builder. The choice of timestep for a biological system is based on the 
vibrational frequency of the individual molecules which is of the order of  1015 Hz i.e., T = 1/f = 1  fs27. A cut-off 
of 10 Å is used to compute the van der Waals interactions via the LJ potential term in the force-field. The long-
range coulombic interactions are computed using particle–particle particle-mesh solver (PPPM) methodology 
by solving in K-space.

All the simulated systems follow an identical simulation procedure. Initially, the system energy is minimized 
from its initial configuration using the conjugate gradient method. This allows the placement of various atoms 
and molecules in the control volume avoiding overlap and respecting the minimum distance  criterion28. Post 
minimization, the system is equilibrated for 5 ns under NPT conditions to achieve the density at 1 atm. Sub-
sequently, the simulations are carried out at NVT for 5 ns. Here, N, V, T and P denote the number of atoms, 
volume, temperature, and pressure respectively. Subsequently, these simulations are made to run for another 5 ns 
in the production run at NPT to ensure they produce representative macroscopic values based on the statistical 
mechanic postulates of ergodicity i.e., the time average = ensemble average. For each composition, and tempera-
ture condition, the production phase is run for 5 ns. Atomic coordinates stored during the production phase 
are utilized to compute time-averaged results of static and dynamic properties such as diffusivity and viscosity 
at various temperatures. Representative plots are shown in Figure S2 in supplementary information. A sample 
simulation production run of 30 ns as presented in Figure S3 in supplementary information, was conducted to 
ensure results of the 5 ns runs are in close agreement and equilibrium is achieved.

In the following section, we initially compare the properties of pure water system with the literature to identify 
the suitable water model to develop the insilico sweat model. Subsequently, the diffusivities of the components in 
the simulation system of aqueous NaCl are compared. Following that, the diffusivities of components in aqueous 
glucose system are computed. Finally, the values of diffusivity of components in the biological solution (insilico 
sweat model) at different temperatures in the presence of different concentrations of NaCl are computed and 
compared to that of experimental values in literature.

Ethics statement. The entire data presented in this publication is simulated data and no human/animal 
tests were conducted.

Results and discussion
Validation of water model with pure water system. Comparison of viscosity of water. Simulations 
of our models (both TIP3P and SPC/E) at the same temperature 298 K conditions are presented along with other 
literature studies in Table 3 to serve as a first stage  validation19.

Table 3 shows the values of viscosity for the two different water models. The SPC/E water model shows a 
viscosity value of 0.729 mPa s. The TIP3P water model shows a viscosity value of 0.321 mPa s. The experimental 
values for dynamic viscosity of water are 0.89 mPa  s22,29 indicating that SPC/E model appears to be better suited 
than the TIP3P model. Both these simulations are carried out for a total production run of approx. 5 ns with 
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each timestep of 1 fs with the implementation of appropriate water models namely, TIP3P and SPC/E. Since 
these simulations are carried out with a sufficiently large number of water molecules i.e., 11,465 and for 5 ×  106 
steps i.e., 5 ns, the results are depicted as mean values and in close agreement with the literature. These models 
are empirical in nature and the SPC/E parameters offer a better performance, the same is supported in the 
literature and scaling is suggested for using the SPC/E  model19. The dynamic viscosity of the solution offers an 
opportunity to validate the bulk properties which are readily available both experimentally and via simulation 
in the literature. We compute the bulk viscosity based on the Green–Kubo formula which relates the ensemble 
average of the autocorrelation of the stress/pressure tensor to η. η is a measure of the propensity of a fluid to 
transmit momentum in a direction perpendicular to the direction of velocity or momentum flow.

where V is a volume of the particle system, T is a temperature,  kB is the Boltzmann constant, 〈....〉 is averaging 
over the ensemble, Pxy is the off-diagonal element of the stress  tensor30. Subsequently, these water models TIP3P 
and SPC/E have been implemented and their effects assessed on the transport properties such as diffusivity and 
bulk properties such as density and viscosity to ascertain their utility.

Comparison of water self‑diffusivity. The diffusivity of a particle indicates the pace at which the particle is 
transported and computed from the mean square displacement (MSD) of the particles. In Einstein’s theory, the 
diffusion coefficient can be calculated by using the formula:

where N is the number of particles, 0 is the reference time,ri is a radius vector of a  particle30. The diffusivity of 
given ions and molecules is computed from LAMMPS and plotted as diffusivity vs time and compared with 
literature values. These computations are carried out via LAMMPS in-built commands and corresponding dif-
fusivity values are available as output. These values are compared with the computed time average values of 
MSD for each molecule from its trajectory stored (at regular intervals of 100 fs) in a production phase run of 
5 ns and 30 ns for sample runs. The slope of this mean value of MSD as a function of time is used to compute 
the self-diffusivity. This is presented in Figure S4 and Figure S5 for 5 ns and 30 ns production runs respectively 
in the supplementary information.

The presented water model is developed using both TIP3P and SPC/E with parameters reported in the litera-
ture and compared with the values of self-diffusivity of water from these simulations to establish the transport 
properties. The values of diffusivity computed via our models namely, TIP3P and SPC/E are compared with 
these simulation results. The results for SPC/E water model are found to be in close agreement with experimen-
tal values found in literature. The self-diffusion coefficient of pure water has been experimentally measured to 
be 2.3 ×  10–9  m2/s at 298 K using the diaphragm-cell technique or the pulsed-gradient spin-echo (PGSE) NMR 
 method31. This validation of the water model, proven with experimental results ensures subsequent confidence 
in the results for pure water. Additionally, comparison with the Stokes–Einstein  equation32 further validates our 
model. The proposed insilico model diffusivity results are verified with the tool SEGWE, which is a data-based 
model developed by researchers at Manchester University NMR Methodology  Group25 as well as other recent 
available literature. The SEGWE tool offers improvisations and better prediction abilities using a combined 
analytical and data-driven approach complete with  GUI25. Diffusivity values computed via SEGWE tool are 
presented in Figure S1 in the supplementary information.

Both water models TIP3P and SPC/E have been implemented and their effects assessed on the transport 
properties such as diffusivity to ascertain their utility as listed in Table 4. A rigorous comparison of the self-
diffusivity values shows that the values computed using TIP3P is higher than what is seen in case of experimental 
data, and that given by the SEGWE tool by more than two times. This observation is in line with the viscosity 
values obtained earlier that had shown a low viscosity for water while using TIP3P model. Since, SPC/E model 
values are found to be in close agreement with both experimental and simulation results from literature, this 
model is implemented in our work.

Comparison of glucose self diffusivity for an aqueous solution of glucose. As an initial step to 
understand the usability of SPC/E model of water as a base for insilico sweat model, we understand the transport 
characteristics of a biomarker such as glucose at a maximum composition present in sweat (see Table 1). Since 

η =
V

kBT

∞

∫
0

dt�Pxy(0)|Pxy(t)�

D =
1

6t

〈[

N
∑

i=1

ri(t)− ri(0)

]2〉

Table 3.  Dynamic Viscosity of pure water model compared with TIP3P and SPC/E water models and 
experimental values.

Dynamic Viscosity at 298 K TIP3P Model [mPa s] SPC/E Model [mPa s]

Insilico Model (water) 0.325 0.710

Simulation Literature Values 19 0.321 0.729

Experimental  Values29 0.890
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glucose diffusivity values are available in literature both as simulations as well as experimental, it is selected as 
the candidate analyte. The values of glucose diffusivity are computed via molecular dynamics simulations and 
compared with the ones in the  literature34,35. All the experiments and simulations were conducted at 25˚C for 
glucose in water system and the values thus experimentally arrived at were subsequently compared with the 
diffusivity values provided by SEGWE tool. The experimental studies presented were performed using a Spinco 
Model H diffusion apparatus as a Rayleigh  interferometer36. Solvent–distilled and deionized water and sugar 
included as per molarity of 0.1 M. The values of diffusivity of glucose in water were reported as 0.63 ×  10–9  m2/s 
at  298K37. The simulated value of glucose diffusivity at 298 K obtained in this work is 0.65 ×  10–9  m2/s. However, 
comparing the values obtained using SEGWE tool we observe that it over-predicts more than what is seen in 
this simulation and in experiments. The slight variation from the Stokes–Einstein  relationship32 is attributed to 
the non-spherical nature of the glucose molecule and the effects of micro viscosity around the molecules. Since 
glucose is nearly spherical, these effects can be attributed to  microviscosity34.

Generally, mass transport can occur by three processes: migration, convection, and diffusion. Migration is 
the movement of ions in an electric field and does not occur for neutral molecules such as glucose, nor convec-
tion which is the bulk movement caused by external stimulus. Therefore, self-diffusion is the primary cause of 
the movement of the species and is considered for validation. As can be seen from the Table 5, the SPC/E water 
model is in close agreement with the modelling results and experimental data. The insilico model thus developed 
with water as the solvent with a proportionate number of glucose molecules is validated with literature data. 
The individual biomolecules are selected from protein data  bank18 and added to the water molecules from the 
earlier SPC/E insilico model. As can be seen from the Table 5, the glucose diffusivity values given by the simula-
tions at 310 K is 1.1 ×  10–9  m2/s. The experimental literature shows that the self-diffusivity is slightly lower at 
0.95 ×  10–9  m2/s. These slight differences can be attributed to the small number of glucose molecules considered 
in the simulation as well as the slight errors introduced by considering the center of mass of glucose molecule 
for the various computations.

Comparison with sodium and chloride diffusivity for an aqueous solution of NaCl. The second 
step of the development involves validating the transport behaviour of the ions of  Na+ and  Cl−, a major compo-
nent in sweat, in the aqueous solution. A simulation of NaCl of a concentration equal to 56 mM in water is simu-
lated  Na+ or  Cl− can be directly measured using ion-selective  electrodes6,7 or electrical conductivity of the sweat 
can be measured, since  Na+ and  Cl− are the abundant ions in sweat. These diffusion coefficients are available 
in the literature and can be compared with the simulated results to ensure the developed insilico model can be 
further developed into an insilico sweat model. These values are temperature-dependent, and a valid model will 
have significant utility provided all the diffusion coefficient values are in close agreement with the  literature38. 
Table 6 shows the self-diffusivity of the  Cl- ions at 298 K. The simulated value of diffusivity is 1.55 ×  10–9  m2/s. The 
experimental literature shows the value of 2.03 ×  10–9  m2/s. SEGWE tool computes the diffusivity of to be equal 
to 1.489 ×  10–9  m2/s. On the other hand, our simulated data and the experimental data of  Cl- diffusivity shows 
that it moves faster than the  Na+ ion. However, the SEGWE tool predicts that  Na+ ion moves faster than  Cl- ion. 
It indicates that MD simulation is able to capture the experimental behaviour of the NaCl aqueous solution.

Validation of insilico sweat model. In this section we describe the transport properties of an aqueous 
solution mixture consisting of NaCl (56 mM) and glucose in appropriate concentrations (200 µM) as that of 
eccrine sweat. The use of glucose as an analyte provides a way to observe the validity of the development of the 
model with the data available in the literature. This validation is the result of extensive simulations performed 
by the authors. Experimental values of the diffusivity and viscosity of aqueous solutions of salt and glucose 

Table 4.  Simulated water self-diffusivity for pure water compared with experimental and SEGWE tool values.

Water Self diffusivity at 298 K—[10–9  m2/s]

Insilico Model (water)—TIP3P model 5.64

Insilico Model (water)—SPC/E model 2.52

Experimental  Values33 2.3

SEGWE25 2.128

Table 5.  Self diffusivity of glucose in an aqueous solution of glucose of a concentration of 200 µM at two 
temperatures (298 K and 313 K). The values from the present simulation are compared to the values from 
experiments and the computed values from the SEGWE model.

Glucose diffusivity at 298 K—[10−9  m2/s] 310 K—[10−9  m2/s]

Insilico Model (water + glucose) 0.63 1.1

Literature  Values35 0.65 0.95

SEGWE25 0.681 0.930



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20263  | https://doi.org/10.1038/s41598-022-24440-x

www.nature.com/scientificreports/

from the literature are compared with the simulated values of insilico sweat model. Glucose is considered as a 
representative biomolecule for comparison of computed values of diffusivity and viscosity. Thus, validated this 
insilico model can be subsequently used for other candidate analyte biomolecules such as cortisol, uric acid, 
metabolites etc.

Validation at elevated temperatures and varying concentrations. Subsequently, the insilico sweat model was 
rigorously validated at elevated temperatures (310 K) and varying salt concentrations (10-100 mM) to simulate 
fever conditions and dehydration in subjects is presented in Table 7.

Comparison of the data with the values provided in literature for a salt concentration of 56 mM show good 
agreement. Similarly, the self-diffusivity of water also shows close agreement between the simulated values and 
the value provided in literature. At the same time, the diffusivity values of glucose are simulated to be 1.1 ×  10–9 
 m2/s. The value in the literature is 0.93 ×  10–9  m2/s for a glucose concentration of 66 mM. Encouraged by the 
validity of the insilico sweat model, we simulate the dehydration conditions of subjects by varying salt concentra-
tions between 14 and 112 mM given that the range of compositions of salt found in eccrine sweat is between 10 
and 100 mM. This simulates the transition from normal (14 mM) to dehydrated (112 mM) subjects. The varia-
tion in diffusivity of glucose shows that the values consistently decrease with increasing concentration of NaCl. 
However, the diffusivity values of water remain unchanged for the entire concentration range as listed in Table 8.

Summary
The insilico eccrine sweat model is presented and validated as a tool to assist in the development of various wear-
able biosensors such as the ones to detect glucose, cortisol and other target analytes. This model will serve as an 
aid to multiple laboratory experiments and is offered as a stand-alone application complete with GUI for fellow 
researchers in this field. The applications for this work will serve as a horizontal means for a broad spectrum 

Table 6.  Self diffusivity of sodium and chloride in an aqueous solution of NaCl of a concentration of 56 mM at 
temperature 298 K. The values from the present simulation are compared to the values from experiments and 
the computed values from the SEGWE model.

Chloride diffusivity at 298 K—[10–9 
 m2/s]

Insilico Model (water + NaCl) 1.36

Literature  values38 2.03

SEGWE  values25 1.489

Sodium diffusivity at 298 K—[10–9  m2/s]

Insilico Model (water + NaCl) 1.45

Literature  values38 1.6942

SEGWE  values25 1.867

Table 7.  Self diffusivity of species in aqueous solution of NaCl of a concentration of 56 mM at 310 K. The 
values from the insilico sweat model are compared to the values from experiments and the calculated values 
from the literature.

Comparison of viscosity and diffusivity values at 310 K

Insilico Sweat Model Literature

Viscosity [mPa  s]37 0.6942 0.6

Glucose Diffusivity  [10–9  m2/s]34 1.1 0.93

Water  [10–9  m2/s] 2.8 2.906

Table 8.  Self diffusivity of species in aqueous solution of NaCl of a concentration of 14–112 mM at 298 K. The 
diffusivity values from the insilico sweat model are listed for water, sodium and glucose.

Comparison of diffusivity values of glucose and sodium with NaCl variation at 298 K

NaCl conc. [M] No of sodium/chloride ions Water diffusivity  [10–9  m2/s] Sodium diffusivity  [10–9  m2/s]
Chloride diffusivity  [10–9 
 m2/s]

Glucose diffusivity  [10–9 
 m2/s]

0.014 8 2.6 1.58 1.4 0.66

0.028 16 2.6 1.55 1.45 0.65

0.056 32 2.59 1.54 1.37 0.63

0.112 64 2.59 1.35 1.23 0.55
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of users for design of bioreceptor element of wearable sensors for glucose, cortisol, metabolites, and other such 
analytes since experimentally conducting multiple such test conditions will require considerable time and the 
proposed insilico eccrine sweat model can augment these expensive experimental results. Such an insilico model 
for sweat is not present to the best of our knowledge and this work provides a building block in the direction of 
insilico model of eccrine sweat. This LAMMPS-based tool can simulate different eccrine sweat conditions such 
as temperature and concentration of NaCl and can further be automated to simulate circadian cycle. Thus, this 
validated insilico eccrine sweat model can serve as an aid to expedite the development de novo biosensors by 
addition of other analytes of interest e.g. cortisol, uric acid etc., simulate various temperatures and salt concen-
trations, expand search space for candidate target receptors by their binding affinity and assess the interference 
between species via simulations.

The slight variation observed in the values for diffusivity of glucose in water with various salt concentrations 
can be attributed to the micro-viscosity changes in the fluid. Additionally, the Stokes–Einstein equation assumes 
glucose to be a spherical molecule and neglects the micro-viscosity variations. The number of molecules of 
glucose is significantly less as compared to the salt ions and therefore the computed diffusivity may not have 
the averaging advantage. Besides the literature values available for the salt concentrations are slightly different 
from the simulated conditions. The available viscosity and diffusivity literature values via empirical equations 
and experiments for varying values of salt concentrations and temperatures nevertheless agrees well with the 
proposed insilico eccrine sweat model and therefore can be considered as a candidate tool for further research 
in this direction.

Data availability
The data and insilico sweat model tool developed that support this study are available upon reasonable request 
from the corresponding author.
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