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1 Introduction

In recent years there has been a lot of interest in the study of integrable quantum field
theories (IQFTs) perturbed by a very particular irrelevant operator, namely TT̄, which in 1+1
dimensions is constructed starting from the holomorphic and anti-holomorphic components
of the stress-energy tensor. This type of perturbation gives rise to theories that have many
interesting properties. They are fundamentally non-local in nature, a feature that is often
referred to as “lack of UV completion” or “UV fragility” [1–3], in other words, the UV limit
is not a conformal field theory (CFT). The introduction of the operator TT̄ and the study of
some of its fundamental properties, notably the formula for its vacuum expectation value
⟨TT̄⟩ = −⟨Θ⟩2, where Θ is the trace of the stress-energy tensor, go back to the work [4].
The works [5, 6] had the greatest influence in highlighting the special role of generalised TT̄-
perturbed theories in the context of integrability. It was shown in [5] that, under a generalised
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TT̄ perturbation, an IQFT remains integrable, in the sense that any scattering event factorises
into two-body scattering processes and there is no particle production. This also means that
the conserved charges of the original IQFT are deformed in such a way that they remain
conserved in the perturbed model. The most recent understanding of this statement is that in
fact, generalised TT̄ perturbations are even more general than suggested in [5]. In particular,
they can include all local and quasi-local charges of the original unperturbed theory [7]. This
makes it possible for instance to generate IQFTs that have a restricted set of local charges
(ie. charges of just some odd spins) by a generalised TT̄-perturbation of a theory that has a
different set of local charges (see ie. the recent work [8] where it is argued that the Lee-Yang
model may be seen as a generalised TT̄-perturbation of the Ising field theory).

Considering a massive theory, at the S-matrix level the action of this deformation is
simply given by a multiplicative CDD factor [9]. That is, if Scd

ab(ϑ) is the two-body scattering
amplitude of the process a + b 7→ c + d where the indices are particle quantum numbers,
then the new scattering matrix is

Scd
ab(ϑ) −→ e−iδab(ϑ)Scd

ab(ϑ) with δij(ϑ) =
∑
s∈S

αsms
ams

b sinh(sϑ), (1.1)

where αs is a parameter of dimension [M ]−2s which characterises the strength of the coupling
and ma, mb are the particle masses. The set S is typically that of the spins of local conserved
charges. The term with s = 1 corresponds to the standard TT̄ deformation, while higher
spin terms correspond to generalised TT̄ deformations, or TT̄s deformations, which were
also shown to exhibit an analogous form of solvability in [5, 10]. If the underlying theory is
conformal, the factor δab(ϑ) is instead introduced as an interaction term between the massless
right and left movers of the theory, δab(ϑ) =

∑
s αsM s

aM s
b esϑ, where the factors M s

a , M s
b set

the energy scale of the massless TBA equations [11–13]. See section 2 for further discussion.
Generalised TT̄-perturbed theories are not only solvable, but many physical quantities

can be explicitly related to their counterparts in the unperturbed theory. As we have seen,
this is the case for the S-matrix, but also for thermodynamic quantities such as the free
energy and the ground state energy [6], and, as shown very recently, for the matrix elements of
local and twist fields (form factors) [14–17]. The correlation functions of primary operators in
TT̄-deformed (1+1)-dimensional CFTs were also obtained in [18] as first order perturbations
of the corresponding undeformed quantities. However, until recently it was not known
how the solvability of these models reflects on their out-of-equilibrium dynamics. Building
on the pioneering work [6], and subsequent results where this analysis has been extended
and refined [10, 19–24], the works [25–27] studied the energy and momentum currents in
TT̄-perturbed CFTs in a typical out-of-equilibrium protocol. This partitioning protocol is
characterised by a scale-invariant initial state where two halves of a quantum system described
by CFT are thermalised at different temperatures TR, TL and then let to evolve for a long time
until the system reaches a non-equilibrium steady state (NESS). The main finding of [26, 27]
consisted of showing that the known results for the currents in unperturbed CFT [28–30]
are modified in the presence of a TT̄ perturbation in such a way that the currents are no
longer of the form f(TL) − f(TR) for some known function f(x). This was also observed
in [25] albeit only at first order in perturbation theory in the TT̄ coupling. The upshot
is that, for TT̄-perturbed CFTs, there is instead a “coupling” between the right and left
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temperatures, which reflects the new non-trivial interaction between the right- and left-moving
massless excitations of the theory. The separation into functions of TR and TL does not
generally extend to gapped theories (even in the absence of the TT̄ perturbation), however
it is recovered in their massless limit, a property that extends to higher spin currents too,
as recently shown [31, 32]. Although the focus of this work is on partitioning protocols in
which the two sides are described by the same theory, the case of two halves described by
different systems, such as CFTs with different central charges or spin chains with different
values of a coupling constant, was studied in a series of works [33–35].

In this paper, we approach the problem of out-of-equilibrium deformed theories from the
viewpoint of Generalised Hydrodynamics (GHD) [36, 37], a leading approach to computing
large-scale dynamics of integrable models (see [38, 39] for reviews). As the terminology
indicates, it is an approach based on hydrodynamic principles, therefore describes the physics
of emergent behaviours in many-body quantum systems. As in classical hydrodynamics,
GHD emerges naturally from local entropy maximisation over mesoscopic scale fluid cells
containing a large number of quasiparticles. For IQFTs, it is well known that the TBA [40]
is the optimal framework which allows to obtain the thermodynamics, i.e. the maximal
entropy states, of the (euclidean) field theory defined on a torus and treated in the S-matrix
formulation. This is however not the full story, since it is well known that integrable systems
do not thermalise in a standard sense: that is, the long time dynamics of some subsystem
of length L does not relax to a Gibbs state [41], in the sense of

lim
t→∞

lim
L→∞

⟨Ô⟩ = Tr
[
ρGEÔ

]
. (1.2)

This is due to the presence of an infinite tower of conserved charges, which have to be
considered in the assumption that the time evolution will lead to a state which retains the
minimal amount of information on the initial state [39]. The system then equilibrates to
a Generalised Gibbs Ensemble (GGE) [42]:

ρGGE ∝ e−
∑

s
βsQs , (1.3)

where the operators Qs form the full set of conserved changes (as mentioned earlier, this can
include non-local charges [43]). This change of ensemble leads to a natural modification of the
standard (thermal) TBA equations [44, 45], as we shall see below. We can therefore say that
GHD is a “local version”, in the (hydrodynamic) sense of fluid cells, of the TBA approach,
in which the TBA equations are suitably modified to take into account the GGE. GHD
can therefore be used to study inhomogeneous and non-equilibrium phenomena involving
IQFTs. In particular, in its simplest form, it can be used to evaluate (usually numerically)
the averages of conserved currents and densities of any spin. Given a local charge Qs we
can express it in terms of a local density qs, Qs =

∫
dxqs(x, t), from which we can find

the associated current by a continuity equation ∂tqs(x, t) = −∂xjs(x, t). The works [36, 37]
provided a prescription for computing averages of these local densities for quantum integrable
models. This is the prescription that we use in this work.

Instead of considering a CFT as it was done in [26, 27], we start from the T T̄ deformation
of a massive IQFT. We recover CFT results in the massless limit, including those of [26, 27].
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In the massless limit, we then go on to generalise these results to higher spin currents and
densities, obtaining the new formulae

qα
±s = G(s)cLR

((
T̂ s+1

L ± T̂ s+1
R

)
− απc

6 (T̂ s+1
L T̂ 2

R ± T̂ s+1
R T̂ 2

L)
)

,

jα
±s = G(s)cLR

((
T̂ s+1

L ∓ T̂ s+1
R

)
+ απc

6 (T̂ s+1
L T̂ 2

R ∓ T̂ s+1
R T̂ 2

L)
)

.

(1.4)

Here, qα
±s represent spin s density averages of even/odd charges, that is charges whose

one-particle eigenvalues are even/odd functions of the rapidity, in the NESS reached after
a partitioning protocol, and similarly for the currents jα

±s. Even charges and currents will
be labeled by positive spin index +s, while odd charges and currents by negative spin -s.
We stress that this terminology does not refer to the spin itself but to the parity of the
charge eigenvalues as functions of ϑ. The parameter α appearing in (1.4) refers to the
coupling α := α1 in (1.1), that is, these are the averages corresponding to a generic CFT
perturbed by TT̄ only. The generalised temperatures T̂R, T̂L are related to the right/left
temperatures in the original baths. They are in fact effective versions of those, as they reduce
to the “bare” temperatures TR,L when α = 0. For generic α we have the non-trivial identity
T̂R,L = TR,L(1− αTR,LEα

0 )−1, where Eα
0 is the ground state energy of the deformed theory.

The quantity G(s) in (1.4) is a theory-dependent function of the spin which was introduced
and computed exactly for free theories in [31]. For interacting theories it is only known for
s = 1 (G(1) = πc

12 ) [40]. Finally, cLR is a function of the effective temperatures such that
cLR = 1 for α = 0. Besides the formulae (1.4), which are valid at critical points, we have
found more general relations between the perturbed and unperturbed currents and densities
which are also valid away from criticality, both for partitioning protocol and at equilibrium.

The paper is structured as follows: in section 2 we review the TBA equations for TT̄-
deformed IQFTs and show how the TT̄ deformation of the S-matrix affects the equations that
describe the dressing of the single particle eigenvalues of conserved quantities. In section 3 we
study the free fermion theory, introducing techniques which will be fully developed in the next
section. In section 4 we present our main results, including universal formulae for the average
densities and currents of higher spin quantitities in generic CFT. In section 5 we discuss some
general properties of the TBA scaling function, such as its monotonicity as a function of
m, α and β. In section 6 we present numerical results and discuss their physical implications.
We conclude in section 7. Various extensions of the work are presented in the appendices.
In appendix A we consider theories with many particles. In appendix B we analyse the
case of more general TT̄ perturbations, namely those associated with a spin s conserved
change. In appendix C we present a CFT derivation of some of our results. In appendix D
we derive an equilibrium small mass expansion of the effective inverse temperature for the
TT̄-perturbed massive free fermion.

2 TT̄-deformed TBA equations and dressing

It is well known that the Thermodynamic Bethe Ansatz [40] provides the theoretical framework
to study the thermodynamics of an IQFT. It essentially reduces the problem of evaluating the
partition function of the system to the problem of solving a set of coupled integral equations
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for the energy of the elementary excitations of the system, the TBA equations. For systems
with a single massive particle of mass m there is only one equation, which takes the form:

ε(ϑ) = ν(ϑ)− (φ ∗ L)(ϑ), with L(ϑ) := ln(1 + e−ε(ϑ)), (2.1)

where ∗ represents the convolution,

(a ∗ b)(ϑ) := 1
2π

∫ ∞

−∞
dβ a(ϑ − β)b(β) . (2.2)

The scattering kernel φ(ϑ) is proportional to the logarithmic derivative of the S-matrix
φ(ϑ) := −iS′(ϑ)

S(ϑ) , ε(ϑ) is the pseudoenergy and ν(ϑ) is the driving term. In a GGE the driving
term can have a very general form, resulting from the inclusion of the one-particle eigenvalues
of local and quasi-local charges of any conserved spin:

ν(ϑ) =
∑

s

βsms cosh(sϑ) +
∑
s′

γs′m
s′ sinh(s′ϑ). (2.3)

The one-particle eigenvalues hs(ϑ), with s = {±1,±2, . . .}, can be obtained by differentiating
the driving term with respect to the generalised thermodynamic potentials,

hs(ϑ) =
∂ν(ϑ)
∂βs

= ms cosh(sϑ), h−s(ϑ) =
∂ν(ϑ)
∂γs

= ms sinh(sϑ). (2.4)

In particular, the energy and momentum eigenvalues enter many important formulae, and
for those it is common to use the notations h1(ϑ) = E(ϑ) = m coshϑ and h−1(ϑ) = P (ϑ) =
m sinhϑ.

We can now introduce the averages of currents and densities as

qs :=
∫

dϑ

2π
E(ϑ)n(ϑ)hdr

s (ϑ), and js :=
∫

dϑ

2π
P (ϑ)n(ϑ)hdr

s (ϑ) , (2.5)

where n(ϑ) = (1 + eε(ϑ))−1 is the occupation function. The dressed eigenvalue hdr
s (ϑ) is

hdr
s (ϑ) = ∂ε(ϑ)

∂βs
= hs(ϑ) + (φ ∗ gs)(ϑ), with gs(ϑ) = n(ϑ)hdr

s (ϑ) . (2.6)

The dressing equation describes how the eigenvalue of a given charge and quasiparticle
is modified by interaction with other quasiparticles, the interaction being encoded in the
scattering kernel.1 Clearly, for free theories where φ(ϑ) = 0, the dressing operation is
trivial and ε(ϑ) = ν(ϑ).

The particularly simple way in which the S-matrix is modified by the addition of the TT̄
deformation leads to a simple modification of the TBA equations through the introduction of
an additional term in the scattering kernel, that is, from (1.1) we have

φab(ϑ) 7→ φab(ϑ)− αmamb coshϑ . (2.7)
1The fact that the dressing operation is defined by differentiating the TBA equations w.r.t. the Lagrange

multipliers βi is a formal construction, meaning that the dressing equations are meaningful even in cases when
those parameters are zero. For instance, in this paper we will mostly consider the TBA with a thermal driving
term. Nonetheless, one can dress higher charges and compute their averages also in this case.

– 5 –
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For a theory with a single particle, we will call φα(ϑ) the deformed kernel and φ0(ϑ) the
original kernel. Since all TBA quantities will now depend on α we will also adopt notations
εα(ϑ), nα(ϑ) and Lα(ϑ) for the standard TBA functions. Then the convolution acts as

(φα ∗ Lα)(ϑ) = (φ0 ∗ Lα)(ϑ)− αm2(cosh ∗Lα)(ϑ), (2.8)

with

m(cosh ∗Lα)(ϑ) = m

2π

∫ ∞

−∞
cosh(ϑ − ϑ′)Lα(ϑ′)dϑ′ = −Eα

0 coshϑ + P α
0 sinhϑ , (2.9)

where
Eα

0 = − m

2π

∫ ∞

−∞
coshϑLα(ϑ)dϑ , P α

0 = − m

2π

∫ ∞

−∞
sinhϑLα(ϑ)dϑ , (2.10)

are the ground state energy and total momentum. We can then write the equilibrium TBA
equation at inverse temperature β as

εα(ϑ) = (β − αEα
0 )m coshϑ + αmP α

0 sinhϑ − (φ0 ∗ Lα)(ϑ) . (2.11)

Here we have considered a thermal driving term ν(ϑ) = mβ coshϑ. At equilibrium P α
0 = 0,

since Lα(ϑ) is an even function, therefore in this situation the effect of the perturbation is
akin to a redefinition of the inverse temperature, β → β − αEα

0 .2 This fact is physically
very interesting and suggests that the effect of a TT̄ deformation is that of either reducing
or increasing the temperature “felt” by the system. There are different viewpoints on why
this might be the case, some based on integrability [46] some on the connection between
TT̄ perturbations and coupling to JT gravity [47–50] but they all boil down to relating
finite temperature to finite volume in the mirror TBA picture, and then identifying mα as
a new length scale. Following [46] a TT̄ perturbation transforms local degrees of freedom
into extended degrees of freedom. Effectively, for α < 0 particles acquire a finite width and
so the overall available volume is decreased. The reverse occurs for α > 0, in which case
particles acquire an effective negative width and the overall available volume is increased. In
the gravity picture, the effect of the gravity field is a modification of the temperature/system
size as discussed already in very early works such as [51].

We keep the dependence on P α
0 below, since this will be useful when we consider out-of-

equilibrium situations later on. For P α
0 ̸= 0 the TT̄ perturbation introduces a state-dependent

redefinition of the temperature and a Lorenz boost. It is interesting to note that the
expression above can be rewritten as:

εα(ϑ) = (β − α(Eα
0 − P α

0 ))
m

2 eϑ + (β − α(Eα
0 + P α

0 ))
m

2 e−ϑ − φ0 ∗ Lα(ϑ), (2.12)

from which it is immediate to take the massless limit [52]: letting m → 0 and ϑ 7→ ϑ0 + ϑ,
with ϑ0 → ∞, we can define a new finite non-zero energy scale M := meϑ0 and obtain the
TBA equations for the CFT right/left (±) movers:

εα
±(ϑ) =

M

2 (β − α(Eα
0 ∓ P α

0 )) e±ϑ − (φ0 ∗ Lα
±)(ϑ) , (2.13)

2If both the driving term and the perturbation are chosen more generally, the overall effect is that of
replacing the TBA equation for a particular GGE with the TBA equation for a different GGE, in the sense
that some of the generalised inverse temperatures are modified [19]. We will consider some of these situations
in appendix B.
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which is related to the massless Bazhanov-Lukyanov-Zamolodchikov TBA equation [13]. This
derivation is slightly different from [6, 27], where an explicit interaction between right and left
movers is introduced, but the two TBA equations obtained are equivalent. This formulation
highlights the fact that the two TBA equations remain separated, and the interaction is
purely given by a “mean field” effect through a the total energy and momentum.

From the definitions above it is easy to show that (formally) ∂Eα
0

∂βs
= qα

s and ∂P α
0

∂βs
=

jα
s as defined by (2.5). It is then immediate to obtain the dressing equation for a TT̄

perturbed theory,

hdr,α
s (ϑ) = hs(ϑ)− αE(ϑ)qα

s + αP (ϑ)jα
s + (φ0 ∗ gα

s )(ϑ) , (2.14)

to be compared with (2.6). The fact that the dressing equation is modified by terms which
are proportional to the average densities and currents, that is, the same quantities we want
to compute, is crucial in order to find formulae for qα

s and jα
s in terms of their underformed

counterparts q0s and j0s. Understanding the relation between perturbed and unperturbed
quantities will be the object of much of this paper. Note that, just as for the total momentum
above, which is zero at equilibrium, also the (even) currents vanish at equilibrium (that is,
jα

s = 0). Nonetheless we write these explicitly here, since it will make it easier to generalise
the equations to out-of-equilibrium/GGE situations. It is easy to extend this analysis for
theories with a multi-particle spectrum, see appendix A.

Finally, a few words on the partitioning protocol, the only truly out-of-equilibrium
protocol we will consider in this paper. This protocol was also the focus of [29, 30, 36, 37]. As
outlined in the introduction, we consider two subsystems thermalised at temperatures TL and
TR. Taking this as our initial condition and joining the two subsystems at x = t = 0, the large-
time evolution leads to a NESS developing around x = 0, with non-trivial currents present in
the system. The initial state can be represented in terms of the occupation function as

nα(ϑ, x, 0) =


nα

L(ϑ) = nα(ϑ)
∣∣∣
{βs

L}
for x < 0

nα
R(ϑ) = nα(ϑ)

∣∣∣
{βs

R}
for x > 0

. (2.15)

The general solution for the current at the contact point between the two halves was found
in [36, 37]:

nα(ϑ) = nα
L(ϑ)Θ(ϑ − ϑα

⋆ ) + nα
R(ϑ)Θ(ϑα

⋆ − ϑ) , (2.16)

where the value ϑα
⋆ is the solution3 to veff,α(ϑα

⋆ ) = 0, and the effective velocity is defined as

veff,α(ϑ) = P dr,α(ϑ)
Edr,α(ϑ) . (2.17)

Therefore we see that the solution is determined entirely by the right/left equilibrium
solutions and by the value of ϑα

⋆ .
3This is unique if the effective velocity is a monotonic function of the rapidity, which is the case in all the

theories we will consider in this work. The monotonicity property is generally lost only in rather exotic models,
such as Zamolodchikov’s staircase model [53], for which a more sophisticated treatment is required [32].
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3 The free fermion

Free theories provide an ideal example where the formulae presented above can be analysed
in more detail and it is possible to obtain exact analytic solutions. In this case φ0(ϑ) = 0
and the TBA equations can be solved exactly, even for the TT̄-perturbed theory. At
equilibrium, we have

εα(ϑ) = (β − αEα
0 )m coshϑ , (3.1)

with
Eα

0 = − m

2π

∫ ∞

−∞
coshϑ log(1 + e−(β−αEα

0 )m coshϑ)dϑ . (3.2)

As discussed in [5, 6], the ground state energy of the TT̄-perturbed theory admits an expression
which depends non-linearly on the undeformed ground state energy. This relation is encoded
in the fact that the deformed ground state energy satisfies the inviscid Burgers’ equation.
For the free fermion, equation (3.2) can be solved exactly by expanding the logarithm and
then using Bessel functions, generalising the free fermion treatment presented in [54]. We
observe that for β − αEα

0 > 0 we can expand the logarithm, and introduce the modified
Bessel function of the second kind:

Ka(z) =
∫ ∞

0
e−z cosh t cosh (at)dt, (3.3)

so as to obtain:

Eα
0 = m

2π

∞∑
n=1

(−1)n

n

∫ ∞

−∞
coshϑe−n(β−αEα

0 )m coshϑdϑ

= m

π

∞∑
n=1

(−1)n

n
K1(n(β − αEα

0 )m) ≈ m

π

∞∑
n=1

(−1)n

n2(β − αEα
0 )m

= 1
π(β − αEα

0 )

∞∑
n=1

(−1)n

n2 = − π

12(β − αEα
0 )

= − πc

6(β − αEα
0 )

for m ≪ 1 , (3.4)

where we have used the expansion of the Bessel function for small argument, K1(z) ∼ 1
z ,

and introduced the central charge of the free fermion c = 1/2 so as to recover an expression
which in fact holds for generic CFT. We observe that for α = 0 we recover the known formula
E0

0 := − πc
6β . From (3.4) we obtain a quadratic equation in Eα

0

α(Eα
0 )2 − βEα

0 − πc

6 = 0 , (3.5)

which can be solved to:

Eα
0 = β

2α

(
1±

√
1 + 2απc

3β2

)
. (3.6)

Although we used the free fermion as our example, this expression is valid for any CFT,
as shown for instance in [6]. We see that for α < 0 the energy can become complex and
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has a square root branch point. This is related to the famous Hagedorn transition [55].
In order to avoid this complication, we will limit ourselves to the α > 0 case. Moreover,
of the two possible signs in (3.6) we will take only the negative sign, as it is the one for
which the energy remains finite as β → ∞, and for which the condition β − αEα

0 > 0 holds.
Introducing the scaling function cα as Eα

0 := −πcα

6β we obtain precisely the same formula
as in [26, 27], (with the identification α = −σ/2):

cα = −3β2

πα

(
1−

√
1 + 2απc

3β2

)
. (3.7)

Interestingly, for TT̄-perturbed theories, the scaling function is β-dependent in the conformal
limit. In fact, it depends on the only mass-independent dimensionless scale of the problem,
namely the ratio β2/α. It is useful to introduce the effective inverse temperature

β̂ := β − αEα
0 , (3.8)

which in CFT is given by:

β̂ = β

2

(
1 +

√
1 + 2πcα

3β2

)
. (3.9)

Beyond the critical point, there is generally no analytic formula for the relationship between β̂

and β. However, for the massive free fermion a formula can still be obtained (see appendix D).
Let us now consider the averages of currents and densities. Using the dressing equa-

tion (2.14) we can immediately compute the effective velocity of the theory

veff,α(ϑ) = P dr,α(ϑ)
Edr,α(ϑ) =

P (ϑ)− αqα
−1E(ϑ) + αjα

−1P (ϑ)
E(ϑ)− αqα

1E(ϑ) + αjα
1P (ϑ) . (3.10)

The crucial quantity in the partitioning protocol is the value ϑα
⋆ . This can be easily found

from the equation above:

veff,α(ϑα
⋆ ) = 0 ⇔ tanh(ϑα

⋆ ) =
αqα

−1
1 + αjα

−1
. (3.11)

Numerically, this can be used to find the currents and densities in a self-consistent fashion.
However, if we are interested in an analytical result, this is only possible in either the massless
m → 0 or the unperturbed α → 0 limits. In both cases4

lim
m→0

ϑα
⋆ = lim

α→0
ϑα

⋆ = 0 . (3.12)

Therefore, in the massless limit the value of the ϑα
⋆ is precisely the same as for the free

fermion without the perturbation. This makes the study of the partitioning protocol much
easier. Indeed, consider the expressions for the currents and densities, which we expand
by making use of (2.14):

jα
s =

∫
dϑ

2π
P (ϑ)nα(ϑ) (hs(ϑ)− αE(ϑ)qα

s + αP (ϑ)jα
s ) , (3.13)

qα
s =

∫
dϑ

2π
E(ϑ)nα(ϑ) (hs(ϑ)− αE(ϑ)qα

s + αP (ϑ)jα
s ) . (3.14)

4Regarding the m → 0 limit, the statement is true only in a sense which will be clarified for the general
case in section 4.2.
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It is possible to argue, more generally, (see subsection 4.2) that for high enough temperatures
one can take ϑα

⋆ ≈ ϑ0
⋆. Under this approximation, the function nα(ϑ) is exactly the same as

the one for the unperturbed theory up to the redefinition of temperature (3.8):

nα(ϑ)
∣∣
(βR, βL) = n0(ϑ)

∣∣
(β̂R, β̂L). (3.15)

Therefore, the quantities (3.13), (3.14) can be expressed in terms of average densities and
currents in the partitioning protocol of a free fermion at inverse temperatures β̂R and β̂L. Let
us denote those average densities and currents by ȷ̂0s, q̂0s, where the hat denotes dependence
on the effective temperatures. We then obtain the equations

jα
s = ȷ̂0s − αqα

s q̂0−1 + αjα
s ȷ̂0−1 and qα

s = q̂0s − αqα
s q̂01 + αjα

s ȷ̂01 . (3.16)

Assuming that the charges and currents of the unperturbed theory are known (they are known
exactly for free theories, see [31, 32]) this is a system of equations for jα

s and qα
s with solutions:

qα
s =

q̂0s + αȷ̂01ȷ̂
0
s − αȷ̂0−1q̂

0
s

1 + α(q̂01 − ȷ̂0−1) + α2(ȷ̂01q̂0−1 − ȷ̂0−1q̂
0
1)

, (3.17)

jα
s =

ȷ̂0s + αȷ̂0sq̂01 − αq̂0−1q̂
0
s

1 + α(q̂01 − ȷ̂0−1) + α2(ȷ̂01q̂0−1 − ȷ̂0−1q̂
0
1)

. (3.18)

These formulae relate the average currents and densities in a TT̄-deformed fermion at given
temperature(s) to those of an unperturbed free fermion at the effective temperature(s).
The formulae are exact at equilibrium and hold also in the partitioning protocol with the
aforementioned approximation ϑα

⋆ ≈ ϑ0
⋆. In particular, at equilibrium the formulae above

can be further simplified since the currents associated to even charges vanish (whereas odd
ones, like the momentum current, in general do not). Therefore, the equilibrium average
densities simplify to:

qα
s =

q̂0s − αȷ̂0−1q̂
0
s

1− αȷ̂0−1 + αq̂01 − α2ȷ̂0−1q̂
0
1
= q̂0s

1 + αq̂01
. (3.19)

Note however that even at equilibrium all solutions depend on β̂, which is known analytically
as a function of β only at the critical point. Away from that, β̂ has to be obtained through
the solution of the inviscid Burgers’ equation [5, 6].

4 Interacting theories

Consider now an interacting theory with a single particle spectrum. In this situation, the
TBA equation is of the form (2.12). To be as general as possible, we will not specify for now
whether we are in the equilibrium case or the partitioning protocol. We will start by revisiting
the dressing operation. Following [38], we can write the convolution term (φ0 ∗ (n hdr))(ϑ)
by means of an integral operator T such that (φ0 ∗ (n hdr))(ϑ) =: (Tn)hdr(ϑ). Thus, in
the undeformed theory equation (2.6) reads:

hdr,0
s (ϑ) = (1− Tn0)−1hs(ϑ) . (4.1)

– 10 –



J
H
E
P
0
8
(
2
0
2
4
)
0
9
0

The above equation should be understood as a formal power series in T:

f(T) =
∞∑

n=0

f ′(0)
n! Tn , (4.2)

where the powers of the integral operator are interpreted as multiple convolutions. Therefore
we are identifying the dressing operation in the unperturbed theory with the action of the
integral operator (1− Tn0)−1 on the bare charge eigenvalues. The TT̄ deformation leads to
the addition of two extra terms in the dressing equations, so that the same manipulation,
applied to equation (2.14), yields:

hdr,α
s (ϑ) = (1− Tnα)−1(hs(ϑ)− αqα

s E(ϑ) + αjα
s P (ϑ)) , (4.3)

which we rewrite conveniently as:

hdr,α
s (ϑ) = h̃α

s (ϑ)− αqα
s Ẽα(ϑ) + αjα

s P̃ α(ϑ) , (4.4)

where we use linearity of T and defined tilded quantities as:

Ãα(ϑ) := (1− Tnα)−1A(ϑ) . (4.5)

We then obtain similar formulae as for the free case, now in terms of tilded quantities:

qα
s =

∫
dϑ

2π
E(ϑ)nα(ϑ)

(
h̃α

s (ϑ)− αẼα(ϑ)qα
s + αP̃ α(ϑ)jα

s

)
, (4.6)

jα
s =

∫
dϑ

2π
P (ϑ)nα(ϑ)

(
h̃α

s (ϑ)− αẼα(ϑ)qα
s + αP̃ α(ϑ)jα

s

)
. (4.7)

Introducing the tilded charges and currents q̃α
s , ȷ̃α

s defined in an obvious way from the
integration of the corresponding tilded eigenvalues, we obtain again a system of two equations:

jα
s = ȷ̃α

s − αqα
s ȷ̃α

1 + αjα
s ȷ̃α

−1 and qα
s = q̃α

s − αqα
s q̃α

1 + αjα
s q̃α

−1 . (4.8)

This system is very similar to (3.16), to which indeed it specialises when the tilde operation
is trivial, namely when the unperturbed theory is free. These equations can be solved easily
to give the final expressions:

qα
s =

q̃α
s + αq̃α

−1ȷ̃
α
s − αȷ̃α

−1q̃
α
s

1 + α(q̃α
1 − ȷ̃α

−1) + α2(ȷ̃α
1 q̃α

−1 − ȷ̃α
−1q̃

α
1 )

,

jα
s = ȷ̃α

s + αq̃α
1 ȷ̃α

s − αȷ̃α
1 q̃α

s

1 + α(q̃α
1 − ȷ̃α

−1) + α2(ȷ̃α
1 q̃α

−1 − ȷ̃α
−1q̃

α
1 )

.

(4.9)

Any situation in which the tilded quantities can be explicitly expressed in terms of the
unperturbed ones leads to an exact solution, as for the free fermions seen earlier. However, in
most cases, the unperturbed quantities are only accessible numerically. There are however two
cases where simplifications occur, namely the equilibrium situation (either the free massive
case or the massless general case) and the partitioning protocol.
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4.1 Equilibrium

As we have seen for the free fermion earlier, at equilibrium the TBA and dressing equations
are identical to those in an unperturbed theory at inverse temperature β̂. Therefore the
currents and densities calculated using nα(ϑ) can be exactly calculated from n̂0(ϑ). It is then
clear that the operation (4.5) is exactly equal to the dressing operation in the unperturbed
theory at the modified temperature. This means that we can identify q̃α

s = q̂0s and ȷ̃α
s = ȷ̂0s.

If we just consider the even charges, associated with one-particle eigenvalues that are
even functions of ϑ, then all currents jα

s = 0, and from (4.9) we obtain again (3.19). We find
that this formula holds for interacting models at any temperature, and it is exact.

A situation where we can make more progress analytically is at critical points. Below,
we consider again the massless limit of the free fermion theory. Even though this section is
about interacting theories, the free fermion provides a useful benchmark for equation (3.19),
since in the free fermion case the averages of currents and densities in the massless limit
are analytically accessible and can then be compared to (3.19). Furthermore, free fermion
averages in the massless limit display the same universal dependence on β̂ that is found for
more general CFTs, albeit with a different numerical prefactor [31].

We observe that the dressing operation is simply hdr,α
s (ϑ) = hs(ϑ) − αE(ϑ)qα

s . The
charges can be easily computed:

qα
s = m

2π

∫ ∞

−∞
coshϑ′nα(ϑ′)hdr,α

s (ϑ′)dϑ′ (4.10)

= m

2π

∫ ∞

−∞
coshϑ′nα(ϑ′)hs(ϑ′)dϑ′ − αqα

s

m2

2π

∫ ∞

−∞
cosh2 ϑ′nα(ϑ′)dϑ′

= ms+1

2π

∫ ∞

−∞

coshϑ′ cosh(sϑ′)
1 + emβ̂ coshϑ′ dϑ′ − αqα

s

m2

2π

∫ ∞

−∞

cosh2 ϑ′

1 + emβ̂ coshϑ′ dϑ′ . (4.11)

Here we have taken the even charge eigenvalue hs(ϑ) = ms cosh(sϑ), but we could have
taken a combination of cosh(sϑ) and sinh(sϑ) functions without changing the essence of the
calculation. For mβ̂ > 0, the denominator in the integrals admit the geometric series expansion

1
1 + emβ̂ coshϑ′ =

∞∑
n=1

(−1)n+1e−nmβ̂ coshϑ′
, (4.12)

and thus we can again make use modified Bessel functions, this time of higher order, to
rewrite the integrals:∫ ∞

0
coshϑ cosh(sϑ)e−A coshϑdϑ =

∫ ∞

0
cosh(s + 1)ϑ e−A coshϑdϑ

−
∫ ∞

0
sinhϑ sinh(sϑ)e−A coshϑdϑ

= Ks+1(A)− s

A
Ks(A) , for A ̸= 0 . (4.13)

Using now the asymptotic expansion Ks(x) ∼ Γ(s)2s−1

xs for x ∼ 0, the exact expression for qα
s

as sum of modified Bessel function can be rewritten in terms of the Riemann zeta function
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in the m ≪ 1 limit:

qα
s = ms+1

π

∞∑
n=1

(−1)n+1
(

Ks+1(nmβ̂)− s

nmβ̂
Ks(nmβ̂)

)

−m2αqα
s

π

∞∑
n=1

(−1)n+1
(

K2(nmβ̂)− 1
nmβ̂

K1(nmβ̂)
)

≈ ms+1

π

∞∑
n=1

(−1)n+1
(

s!2s

(nmβ̂)s+1
− s!2s−1

(nmβ̂)s+1

)
−αm2qα

s

π

∞∑
n=1

(−1)n+1
(

2
(nmβ̂)2

− 1
(nmβ̂)2

)

= 1
π

∞∑
n=1

(−1)n+1
(

s!2s−1

(nβ̂)s+1
− αqα

s

(nβ̂)2

)
for m≪ 1 . (4.14)

As expected, the mass dependence cancels out in the massless limit. Using the known sum:

∞∑
n=1

(−1)n+1

ns+1 = ζ(s + 1)(1− 2−s), (4.15)

we obtain the final expression:

qα
s = s!2s−1ζ(s + 1)(1− 2−s)

πβ̂s+1
− αqα

s π

12β̂2
, (4.16)

from which finally we can read

qα
s = s!2s−1ζ(s + 1)(1− 2−s)

πβ̂s+1
(
1 + απ

12β̂2

) . (4.17)

This expression can be compared to (3.19) using the results found in [31, 32] for the free
fermion density averages:

q0s = s!2s−1

πβs+1 (1− 2−s)ζ(s + 1) , (4.18)

and in particular q01 = π
12β2 = j0−1. Substituting these free results (evaluated at β̂ ) into (3.19),

we obtain (4.17) as expected. Although these results are only valid in the conformal limit,
expression (3.19) is valid for all values of m. Therefore, it provides a starting point for
obtaining perturbative results beyond the CFT point.

4.2 Partitioning protocol

Out-of equilibrium configurations are harder to treat because the effect of the perturbation
can no longer be absorbed into redefinition of temperature. The occupation function depends
on β, ϑα

⋆ and α as shown in equations (2.16) and (2.17). The main difference with the
equilibrium case is that ϑα

⋆ ̸= ϑ0
⋆, and therefore in general nα(ϑ) ̸= n̂0(ϑ) and the relationship

between perturbed and unperturbed quantities is not obvious a priori. There are, however,
some approximations that can be made close to a critical point, a fact that will allow us
to once again rely on formulae we have obtained previously.
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Figure 1. Plateau structure arising in the perturbed Lee-Yang scaling model for βR/βL = 3
and m = 0.0001, for different values of α. For m ≪ 1 the theory is near-critical and we recover
nα(θ) = n̂0(θ). There is the same type of plateau structure as for α = 0 up to a redefinition of
right/left temperatures. Note that nα(ϑ) ̸= nα(−ϑ), although this effect is less evident for smaller m.
The height of the plateau is log Φ, where Φ = 1+

√
5

2 is the golden ratio, as predicted by the constant
TBA equations [40].

From the definition of the effective velocity (2.17), we see that the value(s) of ϑα
⋆

correspond to the solutions of

P dr,α(ϑα
⋆ ) = P̃α(ϑα

⋆ )− αqα
−1Ẽ

α(ϑα
⋆ ) + αjα

−1P̃
α(ϑα

⋆ ),= 0, (4.19)

where we used (4.4). This gives:

P̃ α(ϑα
⋆ )

Ẽα(ϑα
⋆ )

=
αqα

−1
1 + αjα

−1
. (4.20)

In general, the solution of this equation will lead to a value of ϑα
⋆ different from that of the

unperturbed case. However, we can argue that things simplify at and near a critical point.
This is due to the form of the occupation functions, which in the massless limit (that is the
limit in which the theory becomes a T T̄ deformed CFT) develop a large plateau centered
around ϑ = 0. In the partitioning protocol, n0(ϑ) is generally not symmetric with respect
to ϑ, but it becomes very nearly so when both βR, βL are large. Once the temperatures are
high enough for n0

L(ϑ), n0
R(ϑ) to develop the asymptotic high temperature plateau, the value

of the connection point ϑ0
⋆ ceases to matter (as long as it falls within the plateau region).

This intuitive idea extends to the perturbed case too and can be tested numerically as we see
in figure 1. Here, we reach the UV limit by tuning the mass scale instead (which is more
natural in the presence of the two scales β, α). In the perturbed case, we observe that the
larger α is, the smaller we need to make m in order to see a well-developed plateau.

In summary, at the critical point the same formulae (3.17)–(3.18) hold for any interacting
theory with a single particle spectrum. This is one of the main results of this work and
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generalises the findings of [26, 27] to higher spin charges and currents. The extension to
many-particle theories is straightforward as long as the scattering is diagonal, as discussed in
appendix A, while non-diagonal TBA systems require in general a case by case analysis.

The rationale behind our approach is to be as general as possible and to look at the
conformal limit only when it is impossible to obtain analytical results otherwise. In this way
we can make additional observations, namely that the results (3.17)–(3.18) are valid also
when m ≫ α or when β ≫ α in out of equilibrium configurations, and for any value of the
mass at equilibrium. A derivation of equations (3.17)–(3.18) starting directly from the CFT,
i.e. the approach adopted in [26, 27], is presented in appendix C.

4.3 General CFT

A benchmark for some of our results is the work [26], where the energy density and current
of a generic TT̄-perturbed CFT were computed in the NESS arising after a partitioning
protocol. In our case, we just need to take the formulae (3.17)–(3.18) for s = 1 and substitute
in the values for unperturbed CFT [28–30], which are given by

j01 = q0−1 =
cπ

12
(
T 2

L − T 2
R

)
and q01 = j0−1 =

cπ

12
(
T 2

L + T 2
R

)
. (4.21)

The contributions depending on βR and βL separately, a property that is also found for higher
currents and densities [31, 32] when α = 0. In the presence of a TT̄ perturbation, this strict
separation no longer holds. Substituting into (3.17)–(3.18) for s = 1 we obtain:

jα
1 = j01

1− α2(q01)2 + α2(j01)2
= cπ

12cLR

(
T̂ 2

L − T̂ 2
R

)
, (4.22)

and similarly,

qα
1 = q01 + α

(
(j01)2 − (q01)2

)
1− α2(q01)2 + α2(j01)2

= cπ

12cLR

(
T̂ 2

L + T̂ 2
R − πcα

3 T̂ 2
RT̂ 2

L

)
, (4.23)

with
cLR := 1

1− (απc
6 )2T̂ 2

RT̂ 2
L

. (4.24)

These results agree with [26] where a different approach was employed (that of massless TBA),
and therefore this provides a substantial confirmation of the validity of our formulae in the
CFT limit. Compared to the unperturbed case and even after accounting for the redefinition
of the temperatures, the factor cLR introduces a mixing of right and left variables.

Let us now consider higher spin quantities. In [31, 32] it was shown that the NESS
averages in the CFT limit are:

j0s = G(s)
(
T s+1

L − T s+1
R

)
and q0s = G(s)

(
T s+1

L + T s+1
R

)
. (4.25)

The proportionality constant5 G(s) is a theory-specific quantity that can be computed from the
TBA equations and for which no general closed expression is known, except for the free fermion

5In [31] we adopted a different normalisation of the constant, so that the coefficient C(s) defined therein is
related to G(s) by G(s) = s 2s π

24 C(s).
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case and for s = 1 where G(1) = cπ
12 . Substituting these formulae into (3.17)–(3.18) we obtain:

jα
s = G(s)cLR

((
T̂ s+1

L − T̂ s+1
R

)
+ απc

6 (T̂ s+1
L T̂ 2

R − T̂ s+1
R T̂ 2

L)
)

, (4.26)

qα
s = G(s)cLR

((
T̂ s+1

L + T̂ s+1
R

)
− απc

6 (T̂ s+1
L T̂ 2

R + T̂ s+1
R T̂ 2

L)
)

. (4.27)

As anticipated in the Introduction, these two formulae are the main finding of our work.
The results show that the presence of the TT̄ deformation breaks the left-right separation
also for the higher currents and densities. Note that these are the currents associated to
even charges with one-particle eigenvalue ms cosh(sϑ). Similar formulae can be written for
the odd charges, namely

qα
−s = G(s)cLR

((
T̂ s+1

L − T̂ s+1
R

)
− απc

6 (T̂ s+1
L T̂ 2

R − T̂ s+1
R T̂ 2

L)
)

, (4.28)

jα
−s = G(s)cLR

((
T̂ s+1

L + T̂ s+1
R

)
+ απc

6 (T̂ s+1
L T̂ 2

R + T̂ s+1
R T̂ 2

L)
)

. (4.29)

From this we obtain the value of the momentum current which was also found in [26]. As a
concluding remark, we observe that the symmetry relations qs = j−s and js = q−s, which
hold in unperturbed CFT, are violated here, again because of the interaction between right
and left movers introduced by the perturbation. The only exception is jα

1 = qα
−1: however,

while in the unperturbed theory this equation holds for massive theories as well, when α ̸= 0
it is true only in the conformal limit.

5 Scaling function

We have already defined the function cα in (3.7), that is the counterpart of the UV central
charge in the TT̄ perturbed theory. In the presence of a deformation, cα is no longer a
constant, but it is a function of β2/α. In the unperturbed theory one defines the TBA scaling
function, which away from the critical point is a function of r := mβ, through E0 := −πc0(r)

6β .
At equilibrium, we know that all TBA quantities in the TT̄-perturbed theory are identical to
those in the unperturbed theory evaluated at a modified inverse temperature β̂. Thus, we
can introduce a new scale r̂ = mβ̂ and express the free energy using our standard notation
as Eα

0 = Ê0, or equivalently:

β̂ cα(r, r′) = β c0(r̂) . (5.1)

This gives a relationship between the two scaling functions. We have written cα(r, r′) to
emphasise that the scaling function of the perturbed theory depends on two independent
dimensionless scales, with r′ = m2α. If we then employ the relation β̂ = β−αEα

0 = β+ παc0(r̂)
6β̂

,
we can further eliminate any explicit dependence on β and write

cα(r, r′) = c0(r̂)
(
1− απ

6
c0(r̂)
β̂2

)
. (5.2)

We can now try to say something about the asymptotic and monotonicity properties of cα(r, r′)
from those of c0(r̂). The main properties of the latter are the same as for Zamolodchikov’s c-
function, as demonstrated by the c-theorem [56]: it is a monotonic function of r̂ with ∂c0(r̂)

∂r̂ ≤ 0
and asymptotic values c0(0) = c (UV limit) and c0(∞) = 0 (IR limit for a massive IQFT).
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An interesting property is that cα(r, r′) ≤ c0(r) for every choice of the parameters. This
follows immediately when noting that β̂ > β (for our choice α > 0) and that c0(r) is a
decreasing function of r. The properties of the c-function, and more generally RG flows
in TT̄-perturbed theories, have been investigated in detail in [22–24]. It has also been
recently shown that functions of r′ that flow monotonically from the value c to zero can
be defined employing form factors of the stress-energy tensor and the branch point twist
field in TT̄-deformed theories [14–16].

5.1 Limiting values: large and small mass limits

The first property we can infer and which we already discussed earlier, is that for r̂ = 0
we obtain a value of cα(r, r′) which is no longer a constant, but a function of α/β̂2 (see
eq. (3.7) which is a rewriting of (5.2) in terms of β for this particular limit). One way to
make sense of this with the present formula is to take the limit r̂ → 0 by taking m → 0 while
keeping both β and α finite and fixed. Concerning the limit r̂ → ∞, we can again carry out
this by sending m → ∞ while keeping α, β fixed and finite. In this case the formula (5.2)
immediately gives cα(∞,∞) = 0.

Thus, while the small mass limit yields a universal result which depends on the scale
α/β̂2 [6], the large mass limit is the same as for the unperturbed theory. These two behaviours
are consistent with other findings about TT̄ perturbations. A simple argument is that the effect
of the TT̄ perturbation is to cause the UV theory to be ill-defined, or at least to be no longer
a local QFT, so it is a short-distance effect. In the language of generalised hydrodynamics,
we can also think of the perturbation as assigning finite length to elementary degrees of
freedom [7, 46, 57]. What emerges from these interpretations is that TT̄ perturbation should
play an important role at short distances (or, alternatively, small mass) whereas in the
infrared (for large distances/mass) the effect of the TT̄ perturbation is not seen. This is
consistent with the asymptotic properties of the c-function and of correlations functions [14].

It is also clear from (5.2) that the properties of cα(r, r′) when either r = 0 or r′ = 0 (but
not both), are non-trivial. For instance, if r = 0 but r′ ̸= 0 then β = 0 and β̂ = −αÊ0 =
πc0(−mαÊ0)

−6Ê0
which gives a recursive relation involving the ground state energy

6αÊ2
0 = c0(−mαÊ0) . (5.3)

This relation can be exploited for instance in the few special cases where the function Ê0 is
known explicitly and in perturbative calculations in m or α (see also appendix D).

5.2 Monotonicity properties

Given the discussion above, we expect that the function cα(r, r′) should also be a monotonic
function, albeit not with respect to the variable r but with respect to the mass scale, which is
the scale that allows the theory to flow from the CFT fixed point of the original unperturbed
model to the infrared. This can be shown starting from equation (5.1), namely

∂cα(r, r′)
∂m

= β

β̂2

(
∂c0(r̂)

∂m
β̂ − c0(r̂) ∂β̂

∂m

)
= β

∂c0(r̂)
∂r̂

+ β

β̂2
∂β̂

∂m

(
∂

∂r̂

(
c0(r̂)

r̂

)
r̂2
)

. (5.4)
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The mass derivative of the modified temperature can be simply obtained from the defi-
nition (3.8):

∂β̂

∂m
= −α

∂Eα
0

∂m
= απ

6β

∂cα(r, r′)
∂m

, (5.5)

which when substituted back in (5.4) yields:

m
∂cα(r, r′)

∂m
=

 r

1− πr′

6
∂
∂r̂

(
c0(r̂)

r̂

)
 ∂c0(r̂)

∂r̂
. (5.6)

Since ∂
∂r̂

(
c0(r̂)

r̂

)
< 0 the term in brackets is positive, and this proves that cα(r, r′) and c0(r̂)

have the same monotonicity. Note however the explicit dependence of (5.6) on r′. The flow
along the direction identified by the mass is the natural generalisation of the standard RG
flow in the unperturbed case, with the difference that in the present situation we have both
relevant and irrelevant deformations, and a variation of m produces a flow along the relevant
direction with the irrelevant deformation being “carried along” in the process.

We may study the monotonicity properties with respect to different flows. For instance,
one can show that cα(r, r′) is also monotonically decreasing as a function of α. The calculation
is analogous to (5.4) and yields a very similar result, namely

∂cα(r, r′)
∂α

= β

β̂2

(
∂c0(r̂)

∂α
β̂ − c0(r̂)∂β̂

∂α

)
= mr

∂β̂

∂α

∂

∂r̂

(
c0(r̂)

r̂

)
. (5.7)

Since
∂β̂

∂α
= −Eα

0 − α
∂Eα

0
∂α

= πcα(r, r′)
6β

+ απ

6β

∂cα(r, r′)
∂α

, (5.8)

we have

1
m2

∂cα(r, r′)
∂α

= π

6

 cα(r, r′)
1− πr′

6
∂
∂r̂

(
c0(r̂)

r̂

)
 ∂

∂r̂

(
c0(r̂)

r̂

)
< 0 , (5.9)

where the inequality follows from the fact that the function in brackets is positive. In contrast,
there is no monotonicity with respect to β:

1
m

∂cα(r, r′)
∂β

= c0(r̂)
r̂

+ r

∂
∂r̂

(
c0(r̂)

r̂

)
1− πr′

6
∂
∂r̂

(
c0(r̂)

r̂

) , (5.10)

since the first term on the r.h.s. is always positive and the second term is always negative.
A simple study of the asymptotics indeed shows that the derivative does change sign: for
β ≈ 0 the first term dominates, since β̂ is finite as β → 0 and the second term is very small
(r ≈ 0). On the other hand, if β → ∞ then β̂ ≈ β, in which case the first term in (5.10)
tends to zero while the second term grows linearly with β. Alternatively, by approximating
the denominator of the second term we can write:

1
m

∂cα(r, r′)
∂β

≈ c0(r)
r

+ 1
r

(
∂c0(r)

∂r
r − c0(r)

)
= ∂c0(r)

∂r
≤ 0 for β ≫ 1 . (5.11)

The non-monotonicity of cα(r, r′) with respect to β further emphasises the fact that the
parameter r is no longer the only dimensionless scale in the problem. Note that the result (5.11)
is exact for any β if r′ = 0, as monotonicity is restored when there is no perturbation.
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6 Numerical results

In this section we perform numerical tests to check the overall validity of our theoretical
predictions, in particular of the two expressions (4.26) and (4.27). These expressions predict
the behaviour of densities and currents in the m → 0 limit, which can be tested in a rather
straightforward way. First of all, one can simulate a partitioning protocol by solving iteratively
the TBA equations (see for instance [31]) to obtain the numerical values of the currents jsimul
for different values of m. Since we are interested in the NESS currents, we evaluate them for
ξ = 0. The currents can then be normalised in order to obtain a quantity which in the m → 0
limit do not depend on the choice of α nor on the right and left effective temperatures:

jnorm = jsimul

cLR

((
T̂ s+1

L − T̂ s+1
R

)
+ απc

6 (T̂ s+1
L T̂ 2

R − T̂ s+1
R T̂ 2

L)
) . (6.1)

We focus on even currents without any loss of generality, since odd currents and even/odd
charges are obtained numerically solving similar integral equations, and thus no particular
difference or complication would arise. In the conformal limit, we expect jnorm to approach
the value of G(s). In order to verify that (4.26) and (4.27) have the correct temperature
dependence, it is enough to check that jnorm is independent on TL and TR in the massless limit,
since this means that through (6.1) we are indeed removing all the temperature dependence.
Numerical simulations are performed using the same three models which were considered
in [31], namely the free fermion, the scaling Lee-Yang model and the sinh-Gordon model at the
self-dual point. These are all single-particle IQFTs which in the massless limit are described
by CFTs of (effective) central charges ceff = 1

2 , 2
5 and 1 respectively. The results of the

numerical evaluations are shown in figures 2(a) and 2(b) for different values of the parameters.
The plots show indeed that the asymptotic value which is reached is independent on the choice
of the parameters and it is given by the value of G(s), which is also evaluated numerically.

7 Conclusions and outlook

In this paper, we have studied the thermodynamic properties of massive IQFTs perturbed
by TT̄ operator both at and away from equilibrium. Our main result are formulae for the
averages of all local higher spin currents and densities. The averages in the perturbed theory
are expressed as ratios of simple functions of the averages in the unperturbed theory.

In the conformal limit, equilibrium averages have been previously found [31, 32] and, as
known since [5, 6], the same formulae hold when the theory is TT̄-perturbed as long as the
inverse temperature is replaced by a specific function of the latter and of the perturbation
parameter. These formulae are here generalised to the out-of-equilibrium partitioning protocol.
In this situation, the energy current and density were already known from [26, 27] and our
results generalised the latter by extending them to generic integer values of spin. While
in [26, 27] the authors considered the massless TBA equations as starting point, we start
from the equations for a massive model and then take the massless limit of the currents
and densities themselves. We obtain the universal dependence on the inverse temperatures
for any CFT and find that, just as for the energy, for higher spins the TT̄ perturbation
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(a) Currents for α = 1, βL = 1/3, βR = 1.
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(b) Currents for α = 3, βL = 1/2, βR = 1.

Figure 2. Normalised currents 6.1 for different values of α and of the temperatures. The curves are
obtained by varying the mass: the massless limit is attained at large ln (2/r). The horizontal dashed
lines are the values G(s), which are evaluated numerically as done in [31].

couples the right and left temperatures in a non-trivial fashion. There is, however, a spin-
dependent proportionality coefficient that is theory-dependent and for the moment not
accessible analytically, except for free fermions.

For the massive free fermion several additional analytic computations are possible, as
both the equilibrium and out-of-equilibrium averages can be obtained exactly. In addition,
at equilibrium, it is possible to obtain a perturbative expansion of the effective inverse
temperature β̂ in terms of the original inverse temperature β. For small mass, this expansion
can be resummed into a function which can be interpreted as a generalisation of Lambert’s W -
function. Although the core of the paper focuses on theories with a single massive excitation,
in the appendices we show the generalisation to many-particle spectra, as well as the study
of other thermodynamic/hydrodynamic quantities such as the effective velocities, which
are known to have special properties in TT̄-perturbed models [26, 27] (e.g. superluminal
propagation). The extension to more general TT̄-perturbations is also studied.

The determination of the non-universal functions G(s) in (1.4) remains one of the most
interesting open problems. While G(1) can be obtained exactly, for higher spins we have not
yet found a closed formula which is valid for all CFT. It has been shown [31, 32] that G(s)
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can be written in terms of integrals of TBA functions, of the same type as are encountered
when relating the central charge to Roger’s dilogarithm function. It appears natural that
also these integrals might be solved by higher order polylogarithms. We hope to return
to this problem in the future.
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A Multi-particle spectra

For systems with several particle types labeled by a = 1, . . . , N and diagonal scattering,
the TBA equations take the form:

εα
a = νa −

∑
b

φ0
ab ∗ Lα

b (θ) +
∑

b

αmamb(cosh ∗Lα
b )(θ). (A.1)

The dressing equation (4.3) can be easily generalised to this situation. We rewrite it in
matrix form by introducing the matrix of integral operators Tnα, with components Tabn

α
b

(the index b is not summed over). In this way [(Tnα)hdr]a(ϑ) =
∑

b(φ0
ab ∗ (nα

b hdr
b ))(ϑ), and

equations (4.3) and (4.4) still hold:

hdr,α
s (ϑ) = (1− Tnα)−1(hs(ϑ)− αqα

s E(ϑ) + αjα
s P(ϑ)) , (A.2)

that is, indicating with a tilde the action of the integral operator (1− Tnα)−1, we have

hdr,α
s (ϑ) = h̃α

s (ϑ)− αqα
s Ẽα(ϑ) + αjα

s P̃α(ϑ) . (A.3)

Notice that now hdr,α
s (ϑ), hs(ϑ), nα(ϑ), E(ϑ), P(ϑ), together with their tilded versions, are

n-component vectors (hence the bold font). On the other hand, qα
s and jα

s are the total
averages, that is scalars which already include the sum of contributions from all particle
species. The inversion of a matrix of integral operators is delicate and has to be dealt with
carefully. The series expansion of the inverse operator, which we introduced in section 4,
must converge for physical reasons, otherwise the dressing operation would be ill-defined.
This is however ensured here by the fact that the kernel operator involved is that of a known
IQFT, and these always display good convergence properties (they are typically exponentially
decaying functions for large |ϑ|).
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The discussion of section 4 also follows through regarding the massless and the equilibrium
limit. In both cases, the dressing operator has the effect of redefining the inverse temperature(s)
in the underformed theory. Recall that we denoted quantities at inverse temperature β̂ (or
β̂R,L in the partitioning protocol) with a hat, so tildes are replaced by hats everywhere and:

hdr,α
s (ϑ) = ĥdr,0

s (ϑ)− αqsÊdr + αjsP̂dr as m → 0 . (A.4)

The total average currents and densities are given again by (4.8) in the massive case and
by (3.16) in the massless and equilibrium limits. The solution will be exactly the same as
that given previously. This shows in particular the universality of our results, with (1.4)
valid for any TT̄-perturbed CFT, (4.9) valid in massive, interacting, out-of-equilibrium
theories and (3.19) valid at equilibrium for massive and massless theories. This applies in
particular to the famous ADE models described in [58] and [59]. An obvious generalisation
would be to consider non-diagonal theories, for example those described by magnonic TBA
equations [60, 61]. Such theories are characterised by TBA equations exhibiting both massive
(physical) and massless (magnonic) excitations. A major complication comes the fact that
the TT -deformation acts differently on the physical quasiparticles and on the magnons, thus
leading to rather intricate TBA equations for the perturbed theory. The situation is even more
complicated for models in which the TBA approach in the unperturbed theory is challenging
in itself, such as the Sine-Gordon model. A general approach for such theories is still missing,
although the expectation is that our results should be valid for any kind of scattering, as is
suggested by looking at the theory directly from the CFT limit, as shown in appendix C.

B Generalised deformations

It is possible, with some caveats, to extend the discussions to the case of generalised TT̄
deformations. The TBA for this situation was studied in detail in [19]. Here, we will restrict
ourselves to the special case of a driving term ν(ϑ) = ms cosh sϑ and S-matrix deformation
given by e−iδ(ϑ) with6 δ(ϑ) = m2sα sinh(sθ)

s . For simplicity, we will focus on the free fermion
theory, even if results in the massless limit hold more generally. Following the same kind
of derivation as presented in section 2 we find that, at equilibrium

εα(ϑ) = msβs cosh(sϑ) + m2sα cosh(sϑ)
∫

dϑ′

2π
cosh(sϑ′)L(ϑ′) . (B.1)

We can then define a generalisation of the free TBA energy that we considered before:

Eα
s := −ms

2π

∫
dϑ cosh(sϑ)L(ϑ) . (B.2)

This object is interpreted as the analogue of Eα
0 for higher spin charges, and we will refer to

it as a generalised energy. Introducing this quantity, the TBA equation becomes:

εα(ϑ) = msβs cosh(sϑ)− αmsEα
s cosh(sϑ). (B.3)

6The factor 1
s

is included for convenience, but it can always be absorbed by a redefinition of α. As discussed
in [19], there may be convergence issues if the parameter s in the driving term is different from that of the
deformation.
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From this we find a self consistent equation for the generalised energy:

Eα
s = −ms

2π

∫
cosh(sϑ) log(1 + e−ms(βs−αEα

s )ms cosh(sϑ)) . (B.4)

This is exactly the same formula as (3.4) except for a redefinition of the coefficient of cosh(sϑ),
so we can carry out the same type of computation based on the small m expansion of the
Bessel functions, obtaining:

Eα
s = − πc

6s(βs − αEα
s )

for m → 0 .

This gives

Eα
s = βs

2

(
1−

√
1 + 2πcα

3sβ2s

)
, (B.5)

where again we chose the solution with negative sign in front of the square root. Therefore,
defining the (generalised) modified inverse temperature as β̂s = βs − αEα

s , we obtain

β̂s = βs

2

(
1 +

√
1 + 2πcα

3sβ2s

)
. (B.6)

In terms of β̂s the equilibrium TBA equation (B.1) reads:

εα(ϑ) = β̂sms cosh(sϑ) , (B.7)

while the TBA for interacting theories with a generalised TT̄ perturbation is obtained by
introducing a non vanishing kernel φ0 in (B.1). It is also possible to carry out a similar
analysis in a multi-particle theory with the replacement αm2s 7→ αms

i ms
j .

Since the modified inverse temperature has no mass dependence, the CFT limits of (B.7)
for right and left movers follow straightforwardly:

εα
R(ϑ) =

M sβ̂s

2 esϑ , εα
L(ϑ) =

M sβ̂s

2 e−sϑ , (B.8)

where as usual M := meϑ0 , with ϑ0 the divergent part of the rapidity. Hence the massless
TBA equations become in this case:

εα
±(ϑ) =

M sβs

2 e±sϑ − αsM s

2 Eα
s e±sϑ ± αsM s

2 P α
s e±sϑ , (B.9)

where we included the term proportional to P α
s , which is the generalisation of P α

0 as defined
in (2.10) and vanishes if the system is at equilibrium.

B.1 Averages

Here, we present a computation of the average charge densities in the presence of a generalised
TT̄ deformation of the free fermion at equilibrium. Consider a deformation that contains
a spin-s term, so that the TBA equation is (B.7). If we are interested in average densities
and currents of a spin-s′ charge, then the dressing relation is

hdr,α
s′ (ϑ) = hs′(ϑ)− αm2s cosh(sϑ)

∫ ∞

−∞

dϑ′

2π
cosh(sϑ′)nα(ϑ′)hdr,α

s′ (ϑ′) , (B.10)
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as it simply follows from the definition (2.6). The energy dressing is particularly simple
and takes the form

Edr,α(ϑ) = E(ϑ)− αqα
s hs(ϑ) . (B.11)

For s = s′ we can compute

qα
s = 1

2π

∫
dϑEdr,α(ϑ)nα(ϑ)hs(ϑ) =

ms

2π

∫
dϑ(m coshϑ − αmsqα

s cosh sϑ)nα(ϑ) cosh(sϑ) ,

(B.12)
and since nα(ϑ) = (1+eεα(ϑ))−1 we can again expand in terms of Bessel functions using (4.12)
and (4.13) to arrive at

qα
s =

∞∑
n=1

(−1)n+1ms+1

πs

(
K1+1/s(nmsβ̂s)− 1

snmsβ̂s
K1/s(nmsβ̂s)

)

−
∞∑

n=1
(−1)n+1αm2sqs

πs

(
K2(nmsβ̂s)− 1

nmsβ̂s
K1(nmsβ̂s)

)
, (B.13)

which, up to a factor 1
s coming from a rescaling of the rapidity, is identical to (4.14) up with

the substitutions s → 1
s , mβ̂ 7→ msβ̂s and m2α 7→ m2sα. Hence, for small m:

qα
s =

Γ(1s + 1)ζ(1s + 1)(2
1
s − 1)

2πβ̂s+1
(
s + απ

12β̂2s

) , (B.14)

an expression which non depends on the dimensionless scale α/β̂2s. By following the same
procedure we can compute the averages of charge densities of arbitrary spin k, obtaining
in the small m limit:

qα
k = q0k,s − αqα

s

Γ(1 + k
s )ζ(1 +

k
s )

2πsβ̂s+k
(2k/s − 1) . (B.15)

In the equation above, q0k,s is an α-independent term which takes the form

q0k,s =
Γ(k+1

s )ζ(k+1
s )

2πsβ̂1+k
(2

k+1
s

−1 − 1) , (B.16)

while qα
s is given by (B.14). Therefore, average charge densities at equilibrium can be obtained

in a rather straightforward way even for generalised deformations.

C CFT derivation

In the main text we obtained results for massless theories starting from massive perturbed
TBA and then taking the m → 0 limit. The advantage of this approach is that it allows us
to understand which quantities can be found only in the perturbed CFT case and which
ones can be determined also in the massive case, hence with greater generality. Moreover,
the approach is useful because the TBA formulation of CFTs is in general less transparent
than the massive one. Nonetheless, it is possible to find massless results starting from the
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TBA equations of the perturbed CFT as given by (2.13). From this equation we can find
the dressed eigenvalues, which are different for right and left movers:

(h±
s )dr,α(ϑ) = h±

s (ϑ)− αh±
1 (ϑ)(qα

s ∓ jα
s ) + (φ0 ∗ n±,α(h±

s )dr)(ϑ) , (C.1)

where the one-particle eigenvalues of the massless excitations are simply

h±
s (ϑ) =

M s

2 e±sϑ. (C.2)

As before we can invert the dressing operation:

(h±
s )dr,α(ϑ) = (1 + Tn±)−1

(
h±

s − αh±
1 (qα

s ∓ jα
s )
)

. (C.3)

In the massless case it is clear that the occupation functions n±,α are the same as those of
the unperturbed theory up to a redefinition of temperature. This leads to much simpler
expressions for the effective velocities of the right and left movers. Indeed, from

(h±
1 )dr,α(ϑ) = (1− α(qα

s ∓ jα
s ))(1 + Tn±)−1h±

1 (ϑ), (C.4)

it follows that the effective velocities of the two species do not depend on the rapidity:

(veff,α)± = ±1 + α(qα
1 ∓ jα

1 )
1− α(qα

1 ∓ jα
1 )

= ±
(
1 + 2α(qα

1 ∓ jα
1 )

1− α(qα
1 ∓ jα

1 )

)
. (C.5)

The fact that the effective velocities are simply shifted by fixed constant terms was already
found in [26]. The quantity in brackets in the above expression is usually larger than
one in absolute value, hence giving rise to superluminal effects, as manifest from figure 3.
In any case, the solution of the partitioning protocol is not modified, and the equality
which relates the dressed quantities of the perturbed theory to the dressed quantities of
the unperturbed theory is

(h±
s )dr,α(ϑ) = (ĥ±

s )dr,α(ϑ)− α(qα
s ∓ jα

s )(ĥ±
1 )dr,α(ϑ) . (C.6)

The evaluation of the currents and densities has therefore to take into account the sum
over the right and the left movers. Observing that q̂+1 + q̂−1 = q̂01, and q̂+1 − q̂−1 = ĵ01, we
recover the result for massive theories:

qα
s = q̂0s − αq̂01q

α
s + αȷ̂01j

α
s . (C.7)

An identical discussion can be also performed for the current, leading to a system of equations
which is identical to (4.8) but is directly evaluated in the massless limit. Therefore, the
discussion can be simply repeated using the results of [31] to obtain the same expressions (4.26)
and (4.27) directly in the conformal limit.

D β̂ as an explicit function of β: the free fermion case

Except for the general properties discussed above, for most theories it is not possible to
find a closed-form expression for the function cα(r, r′) beyond the critical point. Once
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Figure 3. Behaviour of the effective velocity for a free fermionic theory for different values of α at
fixed finite m and fixed temperatures. The velocities (C.5) of the right and left movers are simply the
limits for θ → ±∞ of the plotted veff,α. The superluminal behaviour is evident from the fact that for
α ̸= 0 the asymptotic values are above 1 (below -1).

more, the massive free fermion provides an exception to this rule, in that the c-function
admits a perturbative expansion in terms of r̂ = mβ̂. This allows us to find a perturbative
expansion of β̂ in terms of β which holds in the massive regime and exhibits some interesting
mathematical features.

Consider again equation (3.2). This can be rewritten in terms of Bessel functions, as
shown in the main text:

Eα
0 = m

2π

∞∑
n=1

(−1)n

n

∫ ∞

−∞
coshϑe−nr̂ coshϑdϑ = m

π

∞∑
n=1

(−1)n

n
K1(nr̂) . (D.1)

In [54] a solution to this equation for α = 0 was presented, in the sense that the free energy,
or rather the scaling function, was obtained as a perturbative expansion in the parameter r.
By using the same formula, we can expand in r̂ the right-hand side of the previous equation:

c0(r̂) = 1
2 − 3r̂2

2π2

[
ln r̂

π
− 1

2 + γE

]
− 6

π

∞∑
n=1

(√
(2n − 1)2π2 + r̂2 − (2n − 1)π − r̂2

2(2n − 1)π

)
,

(D.2)
where γE = 0.577216 . . . is the Euler-Mascheroni constant. The formula can be slightly
simplified by expanding the square root as:

√
(2n − 1)2π2 + r̂2 = (2n − 1)π

∞∑
k=0

(
1/2
k

)(
r̂2

(2n − 1)2π2

)k

= (2n − 1)π + r̂2

2(2n − 1)π +
∞∑

k=2

(
1/2
k

)(
r̂2

(2n − 1)2π2

)k

, (D.3)
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where the first two terms cancel off the last two terms in the sum (D.2). Therefore, the
scaling function reads:

c0(r̂) = 1
2 − 3r̂2

2π2

[
ln r̂

π
− 1

2 + γE

]
+ 6

∞∑
k=2

(
1/2
k

)
r̂2k

π2k

∞∑
n=1

1
(2n − 1)2k−1 . (D.4)

The sum in n is given in terms of Riemann’s zeta function
∞∑

n=1

1
(2n − 1)p

= (1− 2−p)ζ(p) , (D.5)

yielding the more compact expression:

c0(r̂) = 1
2 − 3r̂2

2π2

[
ln r̂

π
− 1

2 + γE

]
+ 6

∞∑
k=2

(
1/2
k

)
r̂2k

π2k
(1− 21−2k)ζ(2k − 1) . (D.6)

This formula allows us to expand m−1Eα
0 = −πc0(r̂)

6r̂ as a perturbative series in r̂. Furthermore,
by using m−1Eα

0 = r−r̂
r′ we can find an explicit expansion of r in terms of r̂. We obtain

r

r′
= r̂

r′
− π

12r̂
+ r̂

4π
[ln r̂ + χ]−

∞∑
k=2

(
1/2
k

)
r̂2k−1

π2k−1 (1− 21−2k)ζ(2k − 1) , (D.7)

where χ = −1
2 − ln π + γE . The equation above can be solved (at least numerically and

within the radius of convergence of the series) to find the value of β̂ at all orders for a
massive free fermion

D.1 Corrections near criticality

Let us consider the leading corrections for small m. Then, we can approximate equa-
tion (D.7) to:

r

r′
= r̂

r′
− π

12r̂
+ r̂

4π
ln r̂ + · · · (D.8)

where we neglected the χ term, since it results in a next-to-leading correction. We can
start by finding the effective temperature at r = β = 0. Exponentiating the truncated
equation (D.8) at r = 0 we obtain:

r̂ exp
(
− π2

3r̂2

)
= exp

(
−4π

r′

)
. (D.9)

This equation can be solved exactly using Lambert’s W function [62], which is defined by
the equation

W (x)eW (x) = x . (D.10)

Indeed, by defining t = r̂−2 and then squaring and inverting both sides of (D.9) we have:

2π2

3 t exp
(
2π2

3 t

)
= 2π2

3 e
8π
r′ ,
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which can be solved immediately using the definition (D.10):

r̂0 :=

√
2π2

3√
W
(
2π2

3 e
8π
r′
) for m ≪ 1 and β = 0 . (D.11)

Note that, by using the relation eW (x) = x
W (x) , the previous expression can be rewritten as:

r̂0 =
exp 1

2W (η)
exp(4π

r′ )
=
√

2π2

3η
exp 1

2W (η), (D.12)

where we introduced the parameter η = 2π2

3 exp(8π
r′ ). This expression will be useful in the

following. For m → 0, r̂0 is finite, since the Lambert function behaves asymptotically as the
logarithm of its argument. In particular, the limit evaluates to:

lim
m→0

r̂0 =
√

πr

6 , (D.13)

which corresponds precisely to the result obtained in the β → 0 limit of equation (3.8),
with c = 1/2. If β ̸= 0, the solution in terms of Lambert’s function is not exact, but if we
assume β ≪

√
α, so that β̂0 ≈

√
πα
6 ≫ β, then we can proceed further in our derivation. The

procedure is analogous to the β = 0 case, but with the introduction of an extra term:

r̂ exp
(
− π2

3r̂2

(
1 + 12rr̂

πr′

))
= e−

4π
r′ . (D.14)

Unfortunately, this equation is still not solvable in terms of Lambert’s function, because
of the extra term in the exponential in the left hand side. Although generalisations of
Lambert’s function exist, we have found no generalisation that solves an equation of the
type Wa(x)eWa(x)(Wa(x)+a) = x. Here, we assume the existence of such a function Wa(x),
in terms of which equation (D.14) takes the form

π√
3r̂

= W 4
√

3r
r′

(
π√
3

e
4π
r′

)
= W 4

√
3r

r′

(√
η

2

)
, (D.15)

in the limit of small mass and at any inverse temperature β.
In the absence of more information about the function Wa(x) we can proceed by assuming

that r is small and further approximating r̂ ≈ r̂0 in the exponential (D.14). We can then write:

r̂1 exp
(
− π2

3r̂21

(
1 + 12

πr′
rr̂0

))
= e−

4π
r′ , (D.16)

where we now use the notation r̂1 to indicate that this expression provides a next-to-leading
order approximation (in β) of r̂. This procedure can then be generalised to higher orders, as
we see below. As before, equation (D.16) can be solved exactly, this time yielding:

r̂1 =

√
2π2

3

√
1 + 12

πr′ βr̂0

m

√
W
(
2π2

3

(
1 + 12

πr′ rr̂0
)

e
8π
r′
) . (D.17)
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For consistency, we can check that expression (D.17) leads to the correct conformal limit,
which we read from (3.9). Indeed, we have

lim
m→0

r̂1 =

√√√√πr′

12

(
1 + r

√
12
πr′

)
≈

√
πr′

12 + r

2 , (D.18)

which is the correct result. Proceeding as before, from eW (x) = x
W (x) we can cast expres-

sion (D.17) in a form similar to (D.12):

r̂1 =
√

2π2

3η
exp

(1
2W

(
η

(
1 +K exp

(1
2W (η)

))))
, (D.19)

where the new parameter is K = 12r
πr′

√
2π2

3η . This suggests that the complete solution will be
given by infinitely many “nested” Lambert functions, as can be seen by iterating procedure
above. In general, we have

r̂i+1 =

√
2π2

3

√
1 + 12

πr′ rr̂i√
W
(
3π2

2

(
1 + 12

πr′ rr̂i

)
e

8π
r′
) , (D.20)

and the solution has structure

r̂ =
√

2π2

3η
exp

(1
2

(
W

(
η

(
1 +K exp

(1
2W

(
η

(
1 +K exp

(1
2W (. . .)

))))))))
. (D.21)

This is the exact expression of r̂ for any value of r, with small mass. Truncating at the n-th
nested Lambert function and taking the massless limit gives the expansion of r̂ in (3.8) at
order O(rn−1). An extension of (D.21) to include higher order terms in the mass remains
elusive at this point. From our definition of the function Wa(x), the previous expression
also implies the functional relation

W 4
√

3r
r′

(√
η

2

)
=
√

η

2π
exp

(
−1
2

(
W

(
η

(
1 +K exp

(1
2W

(
η

(
1 +K exp

(1
2W (. . .)

))))))))
.

(D.22)
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