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A Transformer-Based Network for Full Object Pose
Estimation with Depth Refinement

Mahmoud Abdulsalam,* Kenan Ahiska, and Nabil Aouf

1. Introduction

Full object pose estimation is a crucial topic to address in the
robotics domain. The ability to perceive the position of an object
from a single modality such as Red,Green,Blue (RGB) image can
find a broad application area including robotics for grasping
tasks,[1] autonomous driving,[2] space applications[3] and robotics
for virtual and augmented reality applications.[4] Although full
(6D) pose estimation from a single image is intriguing,

challenges like object appearance and tex-
ture, lighting conditions and object occlu-
sion affect the estimation performance
dramatically.[5]

Conventionally, a 6D object pose estima-
tion problem is formulated as a feature
mapping problem where feature points of
3D objects are matched on 2D images.[6–8]

However, these methods are unable to
detect features on smooth objects with
minimum or no texture. Introducing an
additional modality such as depth data
has been used to solve the problem of
features on texture-less objects,[9–11] in
other words, a performance improvement
is achieved once more data is available as
in the form of RGB-D images.

With the emergence of convolutional
neural networks (CNNs), some research
leveraged this powerful tool as part of
their pipeline to estimate 6D poses.[5,12]

Compared to CNNs, transformer models
are rapidly emerging as substitutes
with higher efficiency and accuracy.[13–16]

Thus, few pipelines adopting transformer-based models for 6D
pose estimation in quest for better accuracy[17–19] exist.

In this article, we propose a novel transformer-based network
for 6D object pose estimation (TransPose) where we aim to
achieve a significant accuracy improvement compared to the
existing methods. We introduce an improved transformer-based
6D pose estimation network with a novel depth refinement mod-
ule. The pose estimation domain has several research gaps,
including performance, multiple modalities, occlusion handling,
and issues related to datasets and labeling. Among these, this
article focuses on improving accuracy while using a single
modality. Our model uses only a single RGB image, with no sup-
plementary data such as a thermal image or depth information,
and it produces a high- accuracy 3D translation and rotation
estimation. For the initial pose estimations, we adapted the
Detection Transformer (DETR) framework,[13] to directly regress
the center of the target object from the RGB input image. Then
an image patch of the target object is extracted, and the transla-
tion and rotation can directly be regressed by formulating addi-
tional prediction heads on DETR.[17] Indeed, feed-forward heads
are added to regress the two components of the 6D pose (3D
translation and 3D rotation). A novel depth refinement module
is also introduced in our estimation pipeline to increase the accu-
racy of the pose estimation.

The architecture of the proposed method inherits two interde-
pendent tasks to obtain the final 6D pose of the target object.
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In response to increasing demand for robotics manipulation, accurate vision-
based full pose estimation is essential. While convolutional neural networks-
based approaches have been introduced, the quest for higher performance
continues, especially for precise robotics manipulation, including in the Agri-
robotics domain. This article proposes an improved transformer-based pipeline
for full pose estimation, incorporating a Depth Refinement Module. Operating
solely on monocular images, the architecture features an innovative Lighter
Depth Estimation Network using a Feature Pyramid with an up-sampling method
for depth prediction. A Transformer-based Detection Network with additional
prediction heads is employed to directly regress object centers and predict the full
poses of the target objects. A novel Depth Refinement Module is then utilized
alongside the predicted centers, full poses, and depth patches to refine the
accuracy of the estimated poses. The performance of this pipeline is extensively
compared with other state-of-the-art methods, and the results are analyzed for
fruit picking applications. The results demonstrate that the pipeline improves the
accuracy of pose estimation to up to 90.79% compared to other methods
available in the literature.
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As seen in Figure 1, an RGB image is used as the input to the
pipeline. The image is passed to the transformer network which
has a ResNet-101[20] backbone for feature extraction. These fea-
tures are then passed to the transformer model consisting of a
standard encoder and decoder setup.[21]

The model is used to obtain an image patch by detecting the
object and assigning a Region Of Interest (ROI) to the detected
object. The second segment of the architecture is the
depth estimation and refinement module. The depth estimation
network encompasses a feature pyramid network (FPN)[22] that
takes in an RGB image as input and outputs an estimated depth
image. The image patch obtained from the transformer model is
used to isolate the target on the depth image and hence obtain the
depth of the target from the camera. The depth is then used to
compute other components of the translation and subsequently
used to refine the estimated 6D pose of the target. We evaluated
the performance of our model on the YCB-Video dataset[5]

as a benchmark and compared it with the performance of other
state-of-the-art approaches. The contributions introduced with
our model can be listed as follows: 1) A novel pipeline for 6D
object pose prediction is designed to favorably compare with
other state-of-the-art methods, offering improved accuracy and
robustness; 2) As part of the pipeline, we introduce an innovative
lighter depth estimation network. This network utilizes a supe-
rior up-sampling method for depth prediction, enabling accurate
depth estimation from a single monocular image. This approach
completely eliminates the need for additional modalities/sensors
such as depth images/cameras in pose estimation; and 3) We
conducted extensive analyses using a custom-generated fruit
dataset specifically designed to evaluate 6D pose estimation per-
formance in fruit-picking applications.

The article continues with a literature review in Section 2.
After introducing the solution for 6D pose estimation in
Section 3, the details of the experimental work and the results
are explained in Section 4 and finally, the article concludes with
Section 5.

2. Related Work

Many methods have been proposed to address the challenge
of 6D object pose estimation, utilizing various techniques

and approaches. Non-learning-based methods traditionally
rely heavily on object textures for accurate pose estimation.
Examples include Scale-Invariant Feature Transform (SIFT)[23]

and Speeded Up Robust Features (SURF),[24] which require
rich texture information to perform effectively. However, these
methods can struggle with texture-less objects. Miyake et al.[25]

improved upon this limitation by incorporating color information
to enhance pose estimation accuracy. Geometric information has
also been leveraged to improve estimation precision.[26]

Pose estimation approaches that utilize local descriptors com-
pute global descriptors offline, and then match local descriptors
online for pose estimation. Techniques such as Iterative Closest
Point (ICP), Oriented FAST and Rotated BRIEF (ORB),[27] and
Binary Robust Independent Elementary Features (BRIEF)[28] fall
under this category.[29–31] However, these methods are computa-
tionally expensive and may struggle with reflective surfaces.

Pose estimation methods can be categorized into template-
based and feature-based approaches.[5] Template-based methods
excel at detecting low-textured objects by matching input image
locations with pre-constructed templates of the object.[10,32,33]

However, they often fail to accurately estimate occluded objects
due to low similarity scores in such cases. Feature-based meth-
ods, on the contrary, utilize 2D-3D correspondences to estimate
poses,[6,8,34] offering better handling of occlusions but requiring
rich feature information which can be lacking in texture-less
objects. Recent advancements include learning-based feature
descriptors[35,36] and direct regression from 2D images to 3D
correspondences.[11,17,37,38]

Some recent models incorporate classical algorithms such
as the Perspective-n-Point (PnP) algorithm to enhance pose
estimation accuracy.[39–41] However, these models are often
computationally intensive and may not be suitable for real-time
applications. Models such as PoseCNN[5] and T6D-direct[17]

achieve pose regression but typically require extensive training
datasets and lack dedicated refinement modules.

CNN architectures like PoseNet[42] have shown promise
in regressing 6D poses from RGB images. However, the
absence of depth information can limit accuracy, motivating
methods like depth prediction from 2D images to derive 3D
positions.[5] Challenges in handling rotation components and post-
refinement for accurate estimation have been addressed through

Figure 1. Overall solution architecture performing object detection, depth prediction, and 6D pose prediction.
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separate treatments.[43–45] Key-point detection methods[39,46]

have also been proposed, using segmentation techniques or
frameworks like YOLO,[47] but they may struggle with occlu-
sions and truncations. Other pose estimation methods that uti-
lize depth modalities typically involve converting depth images
into point clouds for segmentation and subsequent pose
regression.[48–50] This approach is computationally demand-
ing and necessitates large datasets.

The transformer excels over CNNs by effectively capturing
spatial relationships and dependencies among object keypoints
without being limited to predefined local receptive fields. The
ability to incorporate global context is pivotal for accurately esti-
mating intricate object poses from images. Moreover, a pipeline
may benefit from integrating a depth refinement module to
enhance pose estimation accuracy, utilizing depth information
derived directly from RGB images, thereby avoiding the need
for conversion to point clouds as seen in related literature.

3. TransPose

The pipeline for TransPose 6D object pose estimation solution
can be divided into three main parts: 1) Detection and
Regression Transformer; 2) Depth Estimation Network (DEN);
and 3) Refinement Module for Final 6D Pose Estimation.

3.1. Detection and Regression Transformer

This transformer network is mainly adopted for object detection,
image patch designation and initial 6D pose regression. The
transformer architecture is inspired by Detection Transformer
DETR[13] and T6D-Direct.[17] As presented in Figure 2, an
RGB image is used as the input of the model. A ResNet-101
is adopted as the CNN backbone to extract and create a feature
vector which is used as an input to the transformer encoder-
decoder. Set of predictions of size Nc is produced by the trans-
former encoder-decoder. Prediction heads are added in the form
of Feed Forward Networks (FFNs) to regress the object pose and
patch. The losses adopted to train this transformer network are
categorized as follows:

3.1.1. Set Prediction Loss

The patch prediction in the form of region of interest (ROI) is
obtained by assigning a bounding box around the object of inter-
est. From the input image passed through the decoder, the model
produces a set of tuples with fixed cardinality, where the size of
the set is Nc which corresponds to the maximum number of the
expected targets within the image. The content of each tuple is an
image patch (left bottom pixel coordinates, height and width),
class label probabilities and 6D pose (translation and rotation)
of the predicted object. A bipartite matching is adopted to associate
the ground truth and the predicted sets to obtain matching pairs.
The model is then trained to minimize a loss between the pairs.

Consider ground truth objects x1, x2, x3, … xn, let’s assume Nc

is more than the number of objects in the image, bipartite match-
ing is performed to match the ground truth x which is a set of
size Nc padded with no-object (∅) with the predicted set x̂of the
same size. Essentially, performing a permutation between the
sets while minimizing the loss in (1).

ρ̂ ¼ argmin
ρ∈ΘNc

XNc

i

ℒmatchðxi, x̂ρðiÞÞ (1)

where ℒmatchðxi, x̂ρðiÞÞ is the pair-wise match cost between the
prediction at index ρ(i) and the ground truth tuple xi.

3.1.2. Hungarian Loss

After matching, the model is trained to minimise the Hungarian
loss. We denote the predicted patch as γ̂ρðiÞ. Thus, the Hungarian
loss is defined as in (2)

ℒhungðxi, x̂Þ ¼
XNc

i

½λpose1ci 6¼∅ℒposeðRi, ti, R̂ρ̂ðiÞ, t̂ρ̂ðiÞÞ

�logP̂ρðiÞðciÞ þ 1ci 6¼∅ℒpatchðγi, γ̂ρ̂ðiÞÞ�
(2)

where ρ̂ is the lowest cost obtained by (1), ci is the class proba-
bility and γi is a vector defining the ground truth image patch
coordinates, height and width.

Figure 2. Transformer for detection, image patch, and initial 6D pose regression.
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3.1.3. Patch Loss

The patch lossℒpatchðγi, γ̂ρðiÞÞ is a component in (2) and combines
an l1 norm loss and a generalized loss ℒiouðγi, γ̂ρðiÞÞ,[51] as in (3)

ℒpatchðγi, γ̂ρðiÞÞ ¼ σ1ℒiouðγi, γ̂ρðiÞÞ þ σ2jjγi � γ̂ρðiÞjj (3)

and

ℒiouðγi, γ̂ρðiÞÞ ¼ 1� jðγi ∩ γ̂ρðiÞj
jðγi∪γ̂ρðiÞj

� jLðγi, γ̂ρðiÞÞ=γi∪γ̂ρðiÞj
jLðγi, γ̂ρðiÞÞj

 !
(4)

where σ1, σ2 ∈ ℝ are hyperprameters. Lðγi, γ̂ρðiÞÞ is the largest patch
having the ground truth γi and the predicted γ̂ρðiÞ.

3.1.4. Pose Loss

ℒposeðRi, ti, R̂ρ̂ðiÞ, t̂ρ̂ðiÞÞ is the pose loss. The pose loss is divided
into two components, the translation t and the rotation R.
Conventional l2 norm loss is used to supervise the translation
while a ShapeMatch loss LR,

[5] is used for the rotation to deal with
symmetrical objects.

ℒposeðRi, ti, R̂ρðiÞ, t̂ρðiÞÞ ¼ LRðRi, R̂ρðiÞÞ þ jjti � t̂ρðiÞjj (5)

LR ¼

1
jKj
X
j1∈K

min
j2∈K

jjðRij1 � R̂ρðiÞj2Þjj if symmetric

1
jKj
X
j∈K

jjðRij � R̂ρðiÞjÞjj otherwise

8>>>><
>>>>:

(6)

where K represents the set of 3D points. Ri and ti are the ground
truth rotation and translation, respectively. R̂ρðiÞ and t̂ρðiÞ are the
respective predicted object rotation and translation.

3.2. DEN

Depth estimation plays a crucial role in various applications,[52]

including our implementation where the Depth Estimation
Network (DEN) is tasked with predicting depth maps from mon-
ocular images. Inspired by the effectiveness of the Feature
Pyramid Network (FPN)[22] in its ability to extract hierarchical fea-
tures at multiple scales from input images and integration of fea-
tures from different levels of abstraction, this functionality is

essential in the estimation of depth, where objects and scene
structures vary in size and complexity.

We employ a ResNet-101 backbone for feature extraction. This
architecture leverages two successive 3� 3 convolutional layers
followed by ReLU activation functions, as illustrated in Figure 3.
To enhance the up-sampling process for predicting finer details
and covering a broader spatial context, we adopt the lightweight
up-sampling technique proposed in ref. [53] This technique
enables adaptive kernel generation, improving the accuracy of
depth predictions by capturing contextual information effec-
tively. The resulting depth images are scaled down to one-fourth
of the original image size to balance computational efficiency and
accuracy. Additionally, we compute the gradient of the depth
map using a Sobel filter to further refine depth estimates.

The extracted depth information allows us to estimate addi-
tional translation parameters using the camera parameters.
This method enables refinement of the pose estimation derived
from our transformer model through weighting. The detailed
formulation is given in Section 3.3.

The depth loss adopted in the training of our network is an l1
norm loss defined as follows

ℒdepth ¼ 1
n

Xn
i¼1

jjdi � d̂ðiÞjj (7)

where, di and d̂ðiÞ are the ground truth depth and the predicted
depth of every pixel i respectively.

3.3. Refinement Module for Final 6D Pose Estimation

The refinement module consists of the depth patch generation
and final pose estimation processes. The patch and the regressed
6D pose from the transformer alongside the depth image are used
as the inputs for the refinement module as shown in Figure 3.

The patch defined as the ROI obtained by the Detection and
Regression Transformer is formulated as

ψ i ¼ ½Bopx,Bopy,Hop,Wop� (8)

where Bopx, Bopy represent the bottom left corner pixel coordi-
nates of the patch and Hop,Wop are the height and width of
the patch respectively, all with respect to the original RGB image
size (height and width) So= (Wo�Ho). Similarly, let us repre-
sent the size of the depth image as Sd= (Wd�Hd), where
So 6¼ Sd. Depth patch ψj with respect to Sd can be obtained by (9).

Figure 3. Left) Depth estimation network using feature pyramid, Right) Refinement module for final 3D pose estimation.
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ψ j ¼ ½Bdpx,Bdpy,Hdp,Wdp�

¼ ψ i �

Wd

Wo
0 0 0

0
Hd

Ho
c 0

0 0
Hd

Ho
0

0 0 0
Wd

Wo

2
6666666664

3
7777777775

(9)

where Bdpx,Bdpy now represents the bottom left pixel coordinates
of the depth patch and Hdp,Wdp are the height and width of the
depth patch, respectively, all with respect to the depth image size
Sd. The depth patch represents now our object ROI in the depth

image frame and thus we can obtain the depth tz1 from the cam-
era to the target as the depth information at the center pixel of the
depth patch. The center pixel coordinates Cd ¼ ðCdx ,CdyÞT can
be obtained as follows

Cdx ¼ Bdpx þ
Wdp

2

Cdy ¼ Bdpy þ
Hdp

2

(10)

The translation from the depth network model is
t1 ¼ ðtx1, ty1, tz1ÞT where tz1 corresponds to the depth. Assuming
the camera matrix is known, tx1 and ty1 can be obtained following
the projection equation of a pinhole camera model as follows

Algorithm 1. TransPose for 6D object pose estimation.

1: Input: Monocular RGB image I

2: Output: 6D pose estimation (R,t)

3: Initialization:

4: Initialize ResNet-101 backbone, Transformer, FFNs, and DEN

5: Detection and Regression Transformer:

6: F ← ExtractFeatures(I) ⊳Extract feature vector F from image I using ResNet-101

7: P ← TransformerEncoderDecoder(F) ⊳Pass F through Transformer Encoder-Decoder to generate predictions P

8: For each prediction p in p do

9: RegressPoseAndPatch(p) ⊳Regress object pose (R,t) and image patch ψ using FFNs

10: Lset pred ← SetPredictionLoss(p) ⊳Compute set prediction loss Lset pred

11: Lhungarian ← HungarianLoss(p) ⊳ Compute Hungarian loss Lhungarian

12: Lpatch ← PatchLoss(p) ⊳Compute patch loss Lpatch

13: Lpose ← PoseLoss(p) ⊳Compute pose loss Lpose

14: End for

15: Depth Estimation Network (DEN):

16: D ← ExtractDepthFeatures(I) ⊳Extract depth features D from image I using ResNet-101

17: Dprocessed ← ProcessDepthFeatures(D) ⊳Process D with convolutional layers and upsample using adaptive kernels

18: Ldepth ← DepthLoss(Dprocessed) ⊳Compute depth loss Ldepth

19: Refinement Module for Final 6D Pose Estimation:

20: ψdepth ← GenerateDepthPatch(Dprocessed) ⊳Generate depth patch ψ from processed depth features

21: tdepth ← DepthTranslation(ψdepth) ⊳Compute depth translation tdepth

22: TransformerTranslation(P) ⊳Compute transformer translation ttransformer

23: tfinal ← FuseTranslations(tdepth, ttransformer) ⊳Fuse translations to obtain final translation tfinal

24: Training:

25: Ltotal ← Lset pred þ Lhungarian þ Lpatch þ Lpose þ Ldepth ⊳Total loss function

26: OptimizeParameters(Ltotal) ⊳Optimize model parameters to minimize Ltotal

27: Testing and Evaluation:

28: Load test dataset (KITTI, YCB-Video, Fruity dataset)

29: For each test image in test dataset do

30: ðRest , testÞ ← PerformPoseEstimation(test image) ⊳Perform pose estimation using TransPose

31: EvaluatePerformance(Rest , test) ⊳Evaluate performance using metrics (e.g., eABS, eSQ, eRMS, elogRMS, eADD, eADDS)

32: End for

33: Output:

34: Final 6D pose estimations for test images
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Cox
Coy

� �
¼

f x
tx1
tz1

þ PPx

f y
ty1
tz1

þ PPy

2
64

3
75 (11)

where fx and fy represent the focal length of the camera, ðPPx , PPyÞT
is the principal point.Co ¼ ðCox ,CoyÞT is the object centroid, which
can be obtained from the image patch similarly to (10) to be

ðBopx þ Wop

2 ,Bopy þ Hop

2 ÞT assuming the centroid coincides with
the center of the patch. Thus, tx1 and ty1 can be calculated as

tx1
ty1

� �
¼

ðCox � PPxÞtz1
f xðCoy � PPyÞtz1
f y

2
664

3
775 (12)

Thus a complete translation from the depth image t1 is
obtained as

t1 ¼ ðtx1, ty1, tz1ÞT (13)

Finally, we can obtain the final fusion-based object translation
t as

t ¼ ðw1 � t1Þ þ ðw2 � t2Þ (14)

where the weights w1, w2≥ 0 and w1þ w2= 1. t1 is the computed
translation from the depth in (12) and t2 is the regressed trans-
lation from the transformer model. Note that w1 and w2 are
selected depending on the performance of both the transformer
and depthmodel; the model with a lower loss will have a higher w
and vice-versa.

4. Experimental Section

In this section, we present all the experiments conducted to test the
capability of TransPose. Datasets are adopted and a comparison is
made between TransPose and solutions available in the literature.

4.1. Dataset

The popular KITTI dataset is used as a benchmarking dataset for
the depth estimation network likewise, the popular YCB-Video
dataset[5] being a benchmark for 6D pose estimation. The dataset
has 133 936 images of 640� 480 pixels resolution. Each image is
accompanied with bounding box labels, depths, segmentation,
and 6D object pose annotations. Similar to ref. [5], a test was car-
ried out on 2949 keyframes from 12 scenes. Additionally, we
sampled from the Fruity dataset[54] to validate this approach in
the context of fruit picking application.

4.2. Evaluation Metrics

Themetrics adopted to evaluate the depth estimation network are
the eABS, eSQ, eRMS, and elogRMS, as proposed in ref. [55], as follows

eABS ¼ 1
jT j
XT
i¼1

jdi � d̂ij
d̂i

(15)

Figure 4. Training loss and accuracy per iteration.

Table 1. Depth estimation network comparison with other methods. Bold
is best performance.

Method Evaluation metric (lower is better)

KITTI Dataset

eABS eSQ eRMS elogRMS

Make3D[59] 0.280 3.012 8.734 0.361

Eigen et al.[55] 0.190 1.515 7.156 0.270

Liu et al.[60] 0.217 1.841 6.986 0.289

Kuznietsov et al.[58] 0.113 0.741 4.621 0.189

TransPose 0.114 0.724 4.694 0.185

Custom Fruit Dataset

Eigen et al.[55] 0.0885 1.3000 4.2440 0.2115

Liu et al.[60] 0.0755 1.0917 3.9290 0.1938

Kuznietsov et al.[58] 0.0499 0.5350 2.6907 0.1427

TransPose 0.0434 0.5153 2.5013 0.1342
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eSQ ¼ 1
jT j
XT
i¼1

jjdi � d̂ijj2
d̂i

(16)

eRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
jT j
X
i¼1

jjdi � d̂ijj2
s

(17)

elogRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
jT j
X
i¼1

jj log di � log d̂ijj2
s

(18)

where T is the number of pixels in the test set.

(15) quantifies the average percentage error in depth estima-
tion. It measures the absolute difference between the predicted
depth d̂i and the ground truth depth d, normalized by the pre-
dicted depth d̂i. (16) computes the average squared difference.
This metric penalizes larger errors more severely than eSQ
due to the squared term. (17) measures the typical deviation
of the predicted depths from the ground truth depths. (18) meas-
ures the root mean squared error of the logarithms of predicted
depth and the ground truth. It is useful for the range of depth
values that are large.

Figure 5. Qualitative results of the depth prediction network. The left column shows the ground truth RGB Images of five fruit classes. The middle column
shows the ground truth depth images of the corresponding RGB images. The right column shows the predicted depth images from our network.
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For the evaluation of the overall pose estimation, the average
distance of descriptor (ADD) metric, as suggested in ref. [56],
is used. This metric calculates the mean pairwise distance
as follows

eADD ¼ 1
jKj
X
j∈K

jjðRj þ tÞ � ðR̂j þ t̂Þjj (19)

where R and t are the ground truth object rotation and transla-
tion, respectively. R̂ and t̂ are the predicted rotation and transla-
tion respectively. K is the set of 3D points.

ADD is calculated as the closest point distance for symmetrical
objects as follows

eADDS ¼ 1
jKj
X
j1∈K

min
j2∈K

jjðRj1 þ tÞ � ðR̂j2 þ t̂Þjj (20)

(19) evaluates the accuracy of 6D pose estimation by com-
puting the mean Euclidean distance between corresponding
3D points of the predicted pose and the ground truth pose.
(20) calculates the average distance between the ground truth
pose and the predicted pose using the minimum distance
between the corresponding points. It is useful for symmetrical
objects where there is ambiguity in choosing corresponding

points the pseudo-code of the entire pipeline is enumerated
in Algorithm 1.

4.3. Training

The model is initialized using pre-trained weights as described
in ref. [13] It processes input images of size 640� 480. The initial
learning rate is set to 10�3 and decayed during training.
A batch size of 16 samples is employed, with optimization per-
formed using the AdamW optimizer.[57]

The hyper-parameters σ1 and σ2 for calculating ℒpatch in (3)
are set to 2 and 5, respectively. Additionally, the parameter
λpose for calculating ℒhungarian in (2) is set to 0.05. The number
of prediction queries Nc is fixed at 21.

4.4. Results

4.4.1. Depth Estimation Results

For the depth estimation network, the training loss and accuracy
per iteration are shown in Figure 4. As the training proceeds, the
training loss decreases thereby increasing the training accuracy
per iteration.

Figure 6. Comparison of TransPose with other methods in the literature on fruit classes in terms of eABS and eSQ metrics.

Figure 7. Comparison of TransPose with other methods in the literature on fruit classes in terms of eRMS and elogRMS.
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The results obtained for the depth evaluation using the met-
rics in (15)–(18) are presented in Table 1.

We compare the performance of our depth estimation net-
work with other methods on the popular KITTI dataset and
our custom fruit dataset. On the KITTI dataset, our method
outperformed the others in the eSQ and elogRMS metrics and com-
pares very closely with[58] in the eABS and eRMS metrics.
On the fruit dataset, our network outperforms the other in

eABS, eSQ, elogRMS metrics and compares closely in the eRMS met-
ric. This comparison shows the accuracy of our network as com-
pared with others available in the literature and the flexibility to
adapt for depth estimation as part of the TransPose pipeline. It is
worth noting that higher depth accuracy comes at a computa-
tional cost and the depth estimation network is just one part
of the TransPose pipeline. Thus, a reasonable trade-off between
computational cost and accuracy is established to satisfy both

Figure 8. Pose estimate performance of TransPose for apple fruit class. Red is the ground truth while green is the prediction. a) Translation [tx, ty, tz]
T

across 20 frames. b) Quaternion [Qx, Qy, Qz, Qw]
T across 20 frames.

Figure 9. Pose estimate performance of TransPose for avocado fruit class. Red is the ground truth while green is the prediction. a) Translation [tx, ty, tz]
T

across 20 frames. b) Quaternion [Qx, Qy, Qz, Qw]
T across 20 frames.
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decent estimation and future real-time implementation. Hence,
the depth results are considered satisfactory.

The depth estimation qualitative results are shown in Figure 5.
Samples from all the classes of our Fruit dataset including their
ground truths and the corresponding predictions are shown.
A colour map is added to the depth images for better visualiza-
tion and evaluation.

Further comparisons with other methods are carried out
across each individual class of fruit. Figure 6 shows the compar-
ison of each class of the fruit dataset using the eABS and eSQ
metrics. From the results, it is observed that TransPose
outperformed all the methods across all the fruit classes.

For the eSQ, TransPose performs better in the banana class
and slightly performs better in the other fruit classes.

Figure 7 compares the eRMS and elogRMS of each class of the fruit
dataset. TransPose performs better on the banana, orange and
lemon classes in terms of eRMS metric and compares with[58] on
the apple and avocado classes. For the elogRMS metric, TransPose
outperforms in the apple, avocado, banana, and lemon classes.

4.4.2. Performance of TransPose in Pose Estimation

We sample 20 test frames for the 6D pose estimation and com-
pare the ground truth and the predicted poses. The translation

Figure 10. Pose estimate performance of TransPose for banana fruit class. Red is the ground truth while green is the prediction. a) Translation
[tx, ty, tz]

T across 20 frames. b) Quaternion [Qx, Qy, Qz, Qw]
T across 20 frames. a) Translation [tx, ty, tz]

T across 20 frames. b) Quaternion
[Qx, Qy, Qz, Qw]

T across 20 frames.

Figure 11. Pose estimate performance of TransPose for lemon fruit class. Red is the ground truth while green is the prediction. a) Translation [tx, ty, tz]
T

across 20 frames. b) Quaternion [Qx, Qy, Qz, Qw]
T across 20 frames.
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Figure 12. Pose estimate performance of TransPose for orange fruit class. Red is the ground truth while green is the prediction.

Figure 13. Qualitative samples from the fruit dataset across all the classes.
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½tx , ty, tz�T and the Quaternion ½Qx,Qy,Qz,Qw�T which define the
orientation are compared for all fruit classes as shown in
Figure 8–12.

The samples are randomly selected from the test data
to visualize the difference between the ground truth and
the prediction. We can see that TransPose prediction
solution matches well with the ground truth poses across all
the fruit classes. The qualitative results we obtained for
some sample frames from the fruit dataset are shown in
Figure 13.

Table 2 shows a detailed evaluation of the objects from the
YCB dataset using the eADD and eADDS metrics.

Table 2 demonstrates that TransPose outperforms the other
methods considering the ADD metric for all the objects except
the “tuna fish can”, “bowl”, “wood block”, and “banana” where it
closely compares with the other methods. Similarly, using the
ADD-S metric, TransPose outperforms the other methods except
for the objects “tuna fish can” and “wood block”.

A similar comparison is conducted for the newly acquired
fruit dataset using the ADD and ADD-S metric as shown in
Table 3.

Table 2 and 3 show the overall performance of TransPose
across the sample objects. From the average eADD and eADDS

values, we can see that the depth refinement module improves
the performance of 6D pose estimation.

4.4.3. Inference Time

We implemented the algorithm on a computer system equipped
with an NVIDIA GeForce RTX 2060 GPU and an Intel Core i7
2.60 GHz CPU. The average processing times for a single input
image are as follows: 31ms for depth estimation, 23ms for the
transformer component, and 2ms for the refinement module.
This results in an average total time of 56ms for the complete
pipeline.

5. Conclusion

This article introduces TransPose, an advanced transformer-
based network for 6D pose estimation enhanced by a depth
refinement module to elevate overall performance. Unlike exist-
ing multi-modal networks that rely on multiple sensors and data
types, TransPose achieves 6D pose estimation using only RGB
images, augmented by depth information from a dedicated depth
estimation network. The transformer network directly predicts
6D poses and incorporates depth refinement to enhance accuracy.
We benchmark our depth estimation results against existing
methods using standard evaluation metrics, demonstrating com-
petitive performance. TransPose is evaluated acrossmultiple data-
sets for both depth estimation and final 6D object pose regression.
We expand our experimental scope to include a fruit dataset, vali-
dating the efficacy of our approach in precision agriculture.

In terms of limitations, TransPose currently relies on a depth
estimation network whose performance may vary with environ-
mental conditions and scene complexity to improve the overall
accuracy. Future research could explore methods to enhance
robustness to varying lighting conditions and occlusions, which
are common challenges in real-world scenarios. Additionally,

Table 2. Pose estimation performance comparison using various
approaches on some objects from YCB-V dataset. Symmetrical objects
are highlighted in italics.

eADD (Higher is better)

Object T6D-Direct PoseCNN TransPose

Mug 72.1 57.7 75.7

Tuna fish can 59.0 70.4 60.2

Sugar box 81.8 68.6 84.5

Bowl 91.6 69.7 89.7

Master chef can 61.5 50.9 63.4

Tomato soup can 72.0 66.0 75.6

Wood block 90.7 65.8 90.7

Pudding box 72.7 62.9 78.3

Banana 87.4 91.3 90.4

Bleach cleanser 65.0 50.5 70.2

eADDS (Higher is better)

Mug 89.8 78.0 90.1

Tuna fish can 92.2 87.9 91.7

Sugar box 90.3 84.3 93.1

Bowl 91.6 69.7 92.3

Master chef can 91.9 84.0 92.4

Tomato soup can 88.9 80.9 90.8

Wood block 90.7 65.8 90.6

Pudding box 85.1 79.0 88.1

Banana 93.8 85.9 94.5

Bleach cleanser 83.0 71.9 84.3

Average (eADD) 75.38 65.38 77.87

Average (eADDS) 88.50 80.44 91.52

Table 3. Pose estimation performance comparison using various
approaches on fruit Dataset.

eADD (Higher is better)

Object T6D-Direct PoseCNN TransPose

Apple 78.7 62.4 82.4

Avocado 81.3 71.4 82.6

Banana 90.4 76.6 92.4

Orange 71.4 59.7 79.3

Lemon 89.5 71.9 89.8

eADDS (Higher is better)

Apple 87.5 73.2 89.7

Avocado 86.2 82.9 92.6

Banana 92.7 82.3 93.2

Orange 84.6 80.2 87.8

Lemon 91.5 83.6 94.3

Average (eADD) 82.26 68.40 85.30

Average (eADDS) 89.73 78.74 90.79
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while our approach shows promising results in controlled envi-
ronments, its scalability and performance in diverse real-world
settings warrant further investigation. Although there’s always
a trade-off between speed and accuracy, methods optimizing
the computational efficiency of our pipeline, especially with
the fine-tuning of the number of queries Nc can be investigated.
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