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Abstract

We provide an ample characterization for Risk Budgeting/Parity portfolios with gen-

eral convex and homogeneous risk preferences for long-only portfolios, as well as for

long-short portfolios. We propose a more general novel definition of Risk Budget-

ing/Parity portfolios that is less restrictive than the classical definition, and it guaran-

tees their existence and uniqueness, at least for the long-only case. This case is shown

to always be less risky than the Equal Weighted portfolio and a thorough mathemat-

ical characterization of Risk Budgeting/Parity portfolios is also provided. Equivalent

properties are concluded for long-short risk budgeting portfolios under some addi-

tional conditions. We provide new insights about the Risk Budgeting/Parity portfo-

lios, including that those portfolios are a rich subset of the newly coined set of Gen-

eralized Weighted Mean Constrained portfolios that, according to our knowledge, is

defined for the first time in this paper. This new class of portfolios contains other

portfolios with good performance, e.g., norm constrained and shortsale-constrained

portfolios. Statistical inferences for Risk Budgeting portfolios are provided for volatil-

ity and Conditional-Value-at-Risk risk preferences, and a by-product of our work is
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the introduction of a novel Conditional-Value-at-Risk estimator. An extensive real

data analysis shows that Risk Parity portfolios have an enhanced out-of-sample per-

formance than its benchmark portfolios by reducing the risk, but also by better balanc-

ing the trade-off between risk and return that pays off during adverse and booming

market conditions.

Keywords: Risk budgeting/parity portfolio, Portfolio theory, Risk measure.

1. Introduction

One of the most important activities in financial markets is to construct an investment
portfolio with good out-of-sample performance that is resistant to market downturns
and recessionary periods. This paper focuses on explaining and characterizing the
Risk budgeting (RB) and Risk parity (RP) portfolios that are recognised to perform well
across various adverse market conditions (Cesarone and Colucci, 2018), though the
theoretical and empirical evidence is still developing. The first RP fund recognized
by practitioners is the Bridgewater’s All Weather Fund in 1996 and there are reported
examples of RP investments prior to the 2008 global financial crisis (Qian, 2005). How-
ever, in the aftermath of the global financial crisis RP portfolio construction was seen
as a suitable solution to control risk, and the RP portfolio management sector reached
an estimated USD 150-175 billion at year-end 20171, which motivated S&P Global to
introduce the S&P Risk Parity Index Series. The RP portfolio is also known as Equal
Risk Contribution (ERC) portfolio (Roncalli, 2013) and such portfolios achieve diversi-
fication through imposing equal individual risk contributions.
The first RP formulation can be traced back to Qian (2005). The initial RP/ERC imple-
mentation makes simplified assumptions from which the weights are inversely pro-
portional to the asset-class risk position (known as IWP portfolios) when risk pref-
erences are ordered by the standard deviation (SD). That solution however only ap-
proximates RP portfolios, which was the practical way to perform RP-like evaluations
before bespoke RP algorithms became available, and for this reason, the IWP and RP
definitions are mistakenly assumed interchangeable. The first theoretical and practical
contributions to understanding long-only RB/RP portfolios appeared after the 2008 fi-
nancial crisis (Maillard et al., 2010; Roncalli, 2013; Spinu, 2013), but only for SD risk
preferences; further extensions for other specific risk preferences are for Conditional
Value-at-Risk (CVaR) (Mausser and Romanko, 2018) and expectiles (Bellini et al., 2021).
Theoretical contributions to understanding the properties of long-only RB/RP portfo-

1See the 2020 S&P Global report from https://www.spglobal.com/spdji/en/documents/
research/research-indexing-risk-parity-strategies.pdf
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lios with general differentiable risk preferences have recently appeared in the mathe-
matical finance and operations research literature (Cesarone et al., 2020; Cetingoz et al.,
2024). The characterization of long-short RB portfolios is a challenging problem and
very few papers have discussed this problem (Spinu, 2013; Bai et al., 2016), and these
two references deal with RB portfolios only with SD risk preferences. Factor RP portfo-
lios have been also considered in the literature (Roncalli and Weisang, 2016; Lassance
et al., 2022; Cetingoz and Guéant, 2024).
The Equal Weight (EW) (also known as 1/N ) portfolio is a very good benchmark
(DeMiguel et al., 2009b) due to its simplicity and lack of estimation error, and RP
portfolios tend to outperform EW. The more recent literature has provided theoret-
ical evidence in that respect for various settings (Roncalli, 2013; Bellini et al., 2021;
Cetingoz et al., 2024) besides the empirical evidence that has been showcased in the
grey literature. Note that independent of the RP literature, IWP portfolios with SD
risk preferences are investigated under the name of Volatility Timing portfolios where
they are shown to outperform EW (Kirby and Ostdiek, 2012). The norm constrained
portfolios could outperform EW as well (Jagannathan and Ma, 2003; DeMiguel et al.,
2009a,b), and our work explains this positive trait in a more general setting; that is,
we show that RB/RP and the rich class of norm constrained portfolios are part of the
same set of portfolios that we define in this paper and this large set of portfolios is
shown to have this positive trait of being less risky than EW.
The first main contribution of this paper is to provide new insights about RB/RP,
meaning that we provide a new mathematical RB/RP formulation that generalizes the
classical definition for non-differentiable risk preferences, and CVaR is a well-known
example. A new economic interpretation of RP for differentiable risk measures is given
in terms of the portfolio risk position elasticities. We show how different the RP and
IWP portfolios with SD risk preferences could be, which raises awareness that one
should not rely on IWP formulations to simplify RP computations; this finding has
practical significance as the IWP formulation is often misunderstood as the RP formu-
lation. Finally, we discover new links between the class of RB/RP portfolios and an
existing class of portfolios known as the norm constrained portfolios (DeMiguel et al.,
2009a) which includes the shortsale-constrained portfolios (Jagannathan and Ma, 2003;
DeMiguel et al., 2009b). We demonstrate that both RB/RP and norm constrained port-
folios are rich sub-classes of the set of Generalized Weighted Mean Constrained (GWMC)
portfolios that, according to our knowledge, is defined for the first time in this paper.
We succinctly provide some properties of the GWMC class, one of which being that
the long-only GWMC are always less risky than EW.
The second main contribution of this paper is to provide a mathematical characteriza-
tion for RB/RP portfolios with general risk preferences when short selling is possible
under the new and more general RB/RP definition that we coin in this paper. Our
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general theoretical results provide a comprehensive mathematical characterization of
the existence and uniqueness of RB/RP portfolios when the long/short positions un-
der general risk preferences. These findings confirm and generalize previous results
that have been found in the literature for specific risk preferences; e.g., CVaR (Mausser
and Romanko, 2018), expectiles (Bellini et al., 2021), SD (Maillard et al., 2010; Roncalli,
2013), which are mainly focused on long-only portfolios. In addition, our mathemat-
ical formulation generalizes two recent results (Cesarone et al., 2020; Cetingoz et al.,
2024) that focus on the existence and uniqueness of long-only RB/RP portfolios un-
der general risk preferences that are differentiable. Therefore, besides dropping the
technical differentiability condition that could be problematic – e.g., see (Mausser and
Romanko, 2018) for CVaR risk preferences – this paper is the first one to provide a
mathematical characterization of long-short RB/RP portfolios with general risk pref-
erences though some papers only discuss the long-short setting for a specific risk pref-
erence, namely, for SD (Spinu, 2013; Bai et al., 2016). Finally, we show that EW is riskier
than any RB portfolio, which generalizes previous attempts in the literature showing
that EW is riskier than the RP portfolio for specific risk preferences and general dif-
ferentiable risk preferences. Such an important result is backed up by our ample data
analyses.
The third main contribution of this paper is to provide statistical inferences and their
asymptotic properties for RB/RP portfolios, which according to our knowledge is the
first attempt in the literature. Our setting includes dependent data and we focus only
on CVaR and SD preferences. A by-product of such mathematical statistics results is
the introduction of a new CVaR estimator. These findings allow us to run an extensive
data analysis for US financial time series data and to illustrate the resilience of RP
investment portfolios as compared to standard benchmark portfolios during various
adverse or favorable market conditions. We found that RP outperforms EW under
favorable market conditions and it is no worse than EW otherwise; in addition, RP also
reduces the portfolio losses under extremely unfavorable market conditions which
implies that RP portfolios are not only risk conservative strategies, but also have a
good trade-off between risk and return that pays off during adverse and booming
market conditions.
The paper is organized as follows: Section 2 provides all definitions and notations
and essential background, while new insights about RB/RP are provided in Section 3;
Section 4 contains the main theoretical results of the RB/RP portfolios, while the statis-
tical inferences theory is provided in Section 5; ample numerical evidence is provided
in Section 6; the main conclusions and recommendations are provided in Section 7;
some ancillary results are collected in Appendix A, while further empirical evidence
is included in Appendix B.
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2. Problem formulation

We first introduce some generic notations used throughout this paper. Note that all
returns in this paper are in fact loss (minus returns) random variables.
Let ∆d be the unit d-simplex ∆d := {x ∈ <d : 1Tx = 1} for any positive integer
d. The non-negative d-simplex is denoted as ∆+

d := {x ∈ <d+ : 1Tx = 1}, where
<d+ := {x ∈ <d : x ≥ 0} is the standard polyhedral cone of the non-negative quadrant
of <d. Similarly, the positive d-simplex is defined as ∆++

d := {x ∈ <d++ : 1Tx = 1},
where <d++ := {x ∈ <d : x > 0}.
The financial field is represented by (Ω,F ,P), an atomless probability space, endowed
with L0 := L0(Ω,F ,P), the set of all real-valued random variables on this probability
space. Let Lq, q ∈ [0,∞), be the set of random variables with finite qth moment, and
L∞ be the set of bounded random variables. A risk measure ϕ is a function that maps
an element of L0 to the real set, i.e. ϕ : L0 → <∪{±∞}; we then say that the investor’s
risk preferences are ordered by ϕ. We recall below some properties for a generic risk
measure and generic random variable Y that represents the future loss of a financial
asset. These properties are well-known in the literature (Föllmer and Schied, 2011),
and are outlined below:

Convexity: ϕ(aY1 + (1− a)Y2) ≤ aϕ(Y1) + (1− a)ϕ(Y2) for any Y1, Y2 ∈ L0 and a ∈ [0, 1];

Homogeneous of order τ > 0: ϕ (cY ) = cτϕ(Y ) for any Y ∈ L0 and c ≥ 0;

Shift invariance: ϕ(Y + c) = ϕ(Y ) for any Y ∈ L0 and c ∈ <;

Translation invariance: ϕ (Y + c) = ϕ(Y ) + c for any Y ∈ L0 and c ∈ <.

Four risk measures are often recalled in this paper: SD, var, Value-at-Risk (VaR) and
CVaR. For any p ∈ (0, 1), VaR at probability level p is VaRp(Y ) := infx

{
P(Y ≤ x) ≥ p

}
,

while CVaR at probability level p is CVaRp(Y ) := minθ
{
θ+ 1

1−pE(Y −θ)+

}
with (·)+ :=

max(·, 0) on <. There are other risk measures interrelated to those four choices; e.g.,
Median Shortfall (MS) (median of the tail distribution, i.e., a VaR-type risk measure).
The investor is assumed to invest in a given opportunity portfolio set containing d > 1

assets, and let X = (X1, . . . , Xd) be the vector of assets’ losses. The investment strat-
egy is uniquely determined by a vector of proportions α ∈ ∆d; that is, the portfolio
loss/profit isαTX. Note that long-only portfolios are considered in Sections 4.1, which
is a reasonable assumption; e.g., (Jagannathan and Ma, 2003; DeMiguel et al., 2009b)
show that constraining the amount of short sales could improve the out-of-sample
performance. Furthermore, we assume that the risk preferences of an investor are
represented by the risk measure ϕ and therefore, the investor’s perception of risk is
given by R(α) := ϕ

(
αTX

)
. In our paper, we rely on the mathematical properties of

various risk measures assumed to be homogeneous of order τ ∈ R. Hence, by Euler’s
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Homogeneous Function Theorem for differentiableR(α), we have that

R(α) =
1

τ

d∑
k=1

αk
∂R(α)

∂αk
=

d∑
k=1

RCk(α), where RCk (α) :=
αk
τ

∂ϕ
(
αTX

)
∂αk

. (2.1)

By definition, RCk(α) is the risk (or loss) contribution of the kth individual risk. Even
though the risk contributions depend upon the risk measure choice, we do not add
ϕ in RCk(α) so that the notations are kept as simple as possible. The classical RB
definition says that an investing strategy α ∈ ∆d is a RB portfolio with a budgeting
vector b ∈ ∆++

d if

RCk (α) = bkϕ
(
αTX

)
, for all k ∈ {1, 2, . . . , d} , whereRCk(α) is given in (2.1). (2.2)

Note that this definition assumesR(α) to have partial derivatives, and differentiability
has been directly or indirectly assumed, which reduces the degree of generality; e.g.,
see Example 2.2. The homogeneity property of ϕ (and thus of R) implies that R has
partial derivatives almost everywhere, meaning that the set of points at whichR does
not admit partial derivatives is at most countable that could be finite or infinite. One
could extend (2.2) by using the concept of subdifferential which is the set of all subgradi-
ents that generalizes the concept of gradient/differentiability. Any convex and proper
function R on <d admits a non-null subgradient for any point in the relative interior
of its domain, denoted as relint(R); for details, see Rockafellar (1970). Theorem 2.2 in
Hendrickson and Buehler (1971) extends the Euler’s Homogeneous Function Theorem
for non-differential functions and implies that for any α ∈ relint(R)

R(α) =
1

τ
αTa, where a ∈ ∂R(α), (2.3)

provided that R is convex, proper and homogeneous of degree τ . We could now pro-
vide the generalized definition of RB/RP strategies, which is given in Definition 2.1.
Note that we add ϕ in the notation of RB/RP strategies, so that one could distinguish
RB/RP portfolios based on different risk preferences.

Definition 2.1. Let b := (b1, . . . , bd)
T be a given constant vector such that b ∈ ∆++

d . An
investing strategy α ∈ ∆d is a solution to the RB problem based on the risk measure ϕ if there
exists a ∈ ∂R(α) such that

1

τ
αkak = bkϕ

(
αTX

)
, for all k ∈ {1, 2, . . . , d} . (2.4)

Let RB(b, ϕ) := {α ∈ ∆d : α satisfies (2.4) relative to ϕ} be the set of RB portfolios for a
given budgeting allocation vector b and a general risk measure ϕ. In particular, RB(1

d
1, ϕ) is

the set of RP allocation strategies based on a general risk measure ϕ.
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Note that Definition 2.1 and (2.2) coincide if R is differentiable at any point in <d. For
a specific risk preference, e.g., ϕ = SD, any element of RB(b, SD) (or RB(1

d
1, SD)) is

an RB (or RP) portfolio based on the SD risk measure, and we say that the portfolio is
RB−SD (or RP −SD). Table 1 summarizes the closed-form risk contributions for the
four previously-mentioned risk measures and note that RB-SD and RB-var strategies
are always equivalent. Further, we implicitly assume that the VaR risk allocations are
well-defined, and a sufficient condition is for X to admit a joint probability density
function; similarly, the simplified formulation of CVaR risk allocations in Table 1 is
possible whenαTX has a continuous distribution. A more general discussion on CVaR

risk allocations is presented in Hong and Liu (2009) for non-linear portfolios.

ϕ RCk(α) τ

Standard deviation
cov(αkXk,αTX)√

var(αTX)
1

Variance cov
(
αkXk,α

TX
)

2
Value-at-Risk at level p ∈ (0, 1) E

[
αkXk|αTX = VaRp

(
αTX

) ]
1

Conditional Value-at-Risk at level p ∈ (0, 1) E
[
αkXk|αTX ≥ VaRp

(
αTX

) ]
1

Table 1: Individual risk contributions for some well-known risk measures.

Early versions of RB portfolios were reduced to approximations of RP-SD portfolios
known in the literature as the inverse volatility weighted portfolio (Qian, 2005), which
is a special case of Volatility Timing portfolios (Kirby and Ostdiek, 2012). Spinu (2013)
showed that (2.2) could be written as an efficient convex optimization problem, which
is a much simpler numerical problem than solving the system of non-linear equations
in (2.2), whenever the aggregate risk position is measured by SD. Finding RP portfo-
lios under CVaR risk preferences is discussed in Mausser and Romanko (2018), while
Bellini et al. (2021) investigate the RP portfolios for expectiles. Both articles provide
excellent computationally efficient algorithms that make their proposed investment
strategies implementable even for a large number of assets.
We end this section with an example that shows the benefits of using Definition 2.1 that
generalizes (2.2), which is given as Example 2.2 and is inspired by Example 2 in Bellini
et al. (2021). Our main results in Section 4 take advantage of this less restrictive defini-
tion of RB/RP portfolios that removes the differentiability condition which has been
assumed in the existing literature. The impact of non-differentiability is discussed in
Mausser and Romanko (2018) for RP-CVaR portfolios, and a solution is provided in
that particular setting; this issue is resolved in Section 4 for generalized risk prefer-
ences and any RB (not only RP) portfolios.

Example 2.2. Let (X1, X2) be two loss variables such that Pr(X1 = x1, X2 = x2) = 1/6

for any (x1, x2) ∈ {0, 1} and Pr(X1 = X2 = 2) = 1/3. Thus, VaR40%(α1X1 + α2X2) =
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max(α1, α2) and CVaR40%(α1X1+α2X2) = 500
36

(α1+α2)+ 1
6

max(α1, α2) for any α1, α2 > 0,
and the formulae in Table 1 for ϕ ∈ {VaR40%,CVaR40%} do not apply.
Assume ϕ = VaR40%. There exists exactly one RB/RP long-only portfolio for any b ∈ (0, 1) if
using Definition 2.1, i.e., RB

(
(b, 1 − b),VaR40%

)
∩∆++

2 has one element for any b ∈ (0, 1).
Further, the set of long-only portfolios in ∆++

2 satisfying (2.2) is empty for any b ∈ (0, 1).
Assume ϕ = CVaR40%. There exists exactly one RB/RP long-only portfolio for any b ∈ (0, 1) if
using Definition 2.1, i.e.,RB

(
(b, 1− b),CVaR40%

)
∩∆++

2 has one element for any b ∈ (0, 1).
The set of long-only portfolios in ∆++

2 satisfying (2.2) is empty if 250
503
≤ b ≤ 253

503
, and has

exactly one element if b ∈
(
0, 250

503

)
∪
(

253
503
, 1
)
.

In summary, Definition 2.1 always leads to a unique long-only RB strategy, while RB strategies
based on (2.2) may not exist; e.g., there is no RP strategy if one relies on (2.2).

3. Some new insights about RB/RP

A series of new insights are summarized in this section and according to our knowl-
edge, such insights have not been discussed in the literature. First, we provide in
Section 3.1 a novel economic interpretation of RP portfolios. Second, the newly coined
set of constrained portfolios is defined in Section 3.2, and we called this rich class as
the GWMC set. Third, a succinct list of facts about the IWP set of portfolios is discussed
in Section 3.3 given that IWP and RP are often interchangeable in the literature.

3.1. Economic interpretation of RP

There are various interpretations of RB/RP portfolios, and we would like to contribute
with a new economic interpretation of RP portfolios for differentiable risk measures.
That is, if ϕ is differentiable, then (2.2) implies that

∂R(α)

∂αk

(
R(α)

αk

)−1

=
∂R(α)

∂αl

(
R(α)

αl

)−1

for all 1 ≤ k < l ≤ d (3.1)

ifα ∈ RB(1
d
1, ϕ). Thus, RP portfolios have equal elasticity of the portfolio risk position

with respect to each asset’s weight, which makes the aggregate risk position to be
equally sensitive to each weight.

3.2. GWMC portfolios

We next demonstrate that RB/RP portfolios are elements of the set of GWMC portfo-
lios that is further defined. The generalized weighted mean for a vector x ∈ <d with a
weighting vector b is denoted as

mp(x; b) :=

(
d∑

k=1

bk|xk|p
)1/p

for any p ∈ < ∪ {±∞}.
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It is well-known that

mp(x; b) ≤ mq(x; b) for all −∞ ≤ p < q ≤ ∞ and b ∈ ∆++
d , (3.2)

where the limiting cases are for p = 0 (known as the weighted geometric mean)

m0 (x; b) := lim
p→0

mp (x; b) =
d∏

k=1

|xk|bk for any b ∈ ∆++
d ,

and p = ±∞

m−∞ (x; b) = min
1≤k≤d

|xk| and m∞ (x; b) = max
1≤k≤d

|xk| for any b ∈ ∆++
d . (3.3)

The case p = −1 yields the weighted harmonic mean. Clearly, the equal weights case,
b = 1

d
1, implies that mp

(
x; 1

d
1
)

= d−1/p||x||p, where || · ||p is the usual p-norm; by
convention, ||x||−∞ := min1≤k≤d |xk| and ||x||∞ := max1≤k≤d |xk| for any x ∈ <d.
Let ∆d(δ) := {x ∈ ∆d : δ ◦ x ∈ <d++} with ◦ being the usual Hadamard product, and
δ ∈ <d \ {−1} such that δ ◦ δ = 1. Clearly, ∆d(1) = ∆++

d is the long-only case. GWMC
portfolios are defined as follows:

min
x∈∆d(δ)

R(x) such that mp(x; b) ≤ ε with ε ∈ <++ if p ≥ 1 (3.4)

and

min
x∈∆d(δ)

R(x) such that mp(x; b) ≥ ε with ε ∈ <++ if p < 1, (3.5)

and

min
x∈∆d

R(x) such that mp(x; b) ≤ ε with ε ∈ <++ if p ∈ N∗, (3.6)

sincemp(x; b) is convex in x on ∆d(δ) if p ≥ 1 and concave if p < 1 for any δ ∈ <d\{−1},
while mp(x; b) is convex in x on ∆d if p ∈ N∗.
The rich class of norm constrained portfolios (DeMiguel et al., 2009a) is a special case
of (3.4) and (3.6) with ϕ = SD and b = 1

d
1, where portfolios with p ∈ {1, 2} show

good performance as compared to the EW benchmark. Note that p = 1 recovers some
shortsale-constrained portfolios from (Jagannathan and Ma, 2003; DeMiguel et al.,
2009b); for details, see (DeMiguel et al., 2009a). It is shown in (DeMiguel et al., 2009a)
that EW is a special case of the norm constrained class of portfolios with p = 2, but one
may show that EW is a special case of GWMC class from (3.4)– (3.6) with ε = 1/d and
b = 1

d
1 for any p ∈ <∩{±∞}\{1} and any risk measure ϕ due to (3.11). Long-only RB
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portfolios have been shown to be logarithmic constrained risk minimization problems,
and we show that this is true for long-short RB portfolios as well; see Theorems 4.1
and 4.5. One may find RB portfolios through solving (3.5) with p = 0, which shows
that RB/RP are GWMC portfolios. One difficulty with GWMC class is that ε is a tun-
ing parameter, though cross-validation is one way to overcome this drawback, but EW
and RP do not have this implementation issue.
It is clear that GWMC portfolios defined in (3.4)–(3.6) are convex instances if ϕ is a
convex risk measure, and therefore, their optimal solutions always exist as long as ε
is chosen such that the generalized weighted mean constraint is not infeasible in the
corresponding instance from (3.4)–(3.6), which is assumed from now on. We first in-
vestigate when their optimal solutions are well-behaved by looking whether or not the
GWMC portfolios are boundary solutions. These findings are summarized in Propo-
sition 3.1.

Proposition 3.1. Let b ∈ ∆++
d and ε ∈ <++, and assume that ϕ is a convex risk measure.

a) Any optimal solution x∗ of (3.4) satisfies ||x∗||∞ <∞ for any δ ∈ <d \{−1} and p ≥ 1.

b) Any optimal solution x∗ of (3.5) satisfies ||x∗||∞ < ∞ for any δ ∈ <d \ {−1} and
0 < p < 1 provided that ϕ is a homogeneous risk measure of order τ ≥ 1 and

min
x∈<d\{0}
δ◦x∈<d+

R(x) > 0. (3.7)

c) Any optimal solution x∗ of (3.5) satisfies ||x∗||∞ < ∞ and ||x∗||−∞ > 0 for any δ ∈
<d \ {−1} and p ≤ 0 provided that ϕ is a homogeneous risk measure of order τ ≥ 1 and
(3.7) holds.

d) Any optimal solution x∗ of (3.6) satisfies ||x∗||∞ <∞ for any p ∈ N∗.

Proof. Parts a) and d) could be proved by noting that there exists M0 > 0 sufficiently
large such that x ∈ ∆d(δ) is infeasible whenever ||x||∞ > M0.
Part b) is now proved. For any ε ∈ <++ and sufficiently large M0 > 0, any x ∈ ∆d(δ)

such that ||x||∞ > M0 is feasible in (3.5). The homogeneity assumption implies that
R(x) = R

(
x

||x||∞

)
||x||τ∞→∞whenever ||x||∞→∞ due to (3.7). This concludes part b).

Finally, we show part c). First, note that there existsM0 > 0 sufficiently small such that
x ∈ ∆d(δ) is infeasible whenever ||x||−∞ < M0, since p ≤ 0, and in turn, ||x∗||−∞ > 0

holds. One may show that ||x∗||∞ <∞ by using the same arguments as in the proof of
part b). The proof is now complete.
Proposition 3.1 outlines the sufficient conditions under which the GWMC portfolio
solutions are bounded away from neighborhoods of ±∞. Note that Proposition 3.1 c)
with p = 0 confirms our results in Theorem 4.1 a) and Theorem 4.5 a).
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The well-behaved optimal solutions guaranteed by Proposition 3.1 have some appeal-
ing properties, and they are summarized in Proposition 3.2. For a given δ, denote by
d+/d− the number of positive/negative elements of δ.

Proposition 3.2. Let b ∈ ∆++
d and ε ∈ <++, and assume that ϕ is a convex risk measure.

a) Let x∗(ε; p) and x∗(ε; q) be an optimal solution of (3.4) with a generalized weighted mean
constraint mp(x; b) ≤ ε and mq(x; b) ≤ ε, respectively. Then,

R
(
x∗(ε; p)

)
≤ R

(
x∗(ε; q)

)
for any 1 ≤ p < q. (3.8)

b) Assume that ϕ is a homogeneous risk measure of order τ ≥ 1 and (3.7) holds. Let x∗(ε; p)
and x∗(ε; q) be an optimal solution of (3.5) with a generalized weighted mean constraint
mp(x; b) ≥ ε and mq(x; b) ≥ ε, respectively. Then,

R
(
x∗(ε; q)

)
≤ R

(
x∗(ε; p)

)
for any p < q < 1. (3.9)

c) Let x∗(ε; p) and x∗(ε; q) be an optimal solution of (3.6) with a generalized weighted mean
constraint mp(x; b) ≤ ε and mq(x; b) ≤ ε, respectively. Then,

R
(
x∗(ε; p)

)
≤ R

(
x∗(ε; q)

)
for any integers 1 ≤ p < q. (3.10)

d) Assume that d+ > d− and let x∗(ε; p) be an optimal solution of (3.4) with a generalized
weighted mean constraint mp

(
x; 1

d
1
)
≤ ε. Then,R

(
x∗(ε; p)

)
≤ R

(
1

2d+−dδ ◦ 1
)

.

e) Assume that ϕ is a homogeneous risk measure of order τ ≥ 1 and (3.7) holds. Further,
d+ > d− and let x∗(ε; p) be an optimal solution of (3.5) with a generalized weighted
mean constraint mp

(
x; 1

d
1
)
≤ ε. Then,R

(
x∗(ε; p)

)
≤ R

(
1

2d+−dδ ◦ 1
)

.

f) Let x∗(ε; p) be an optimal solution of (3.6) with a generalized weighted mean constraint
mp

(
x; 1

d
1
)
≤ ε. Then,R

(
x∗(ε; p)

)
≤ min{δ:d+>d−}R

(
1

2d+−dδ ◦ 1
)

.

Proof. One may show parts a)–c) by using (3.2) since the generalized weighted mean
constraint reduces the feasibility set in parts a) and c) when q increases and it reduces
the feasibility set in part b) when p decreases. Similar arguments could be used to
demonstrate parts d)–f) by recalling that

arg min
x∈∆d(δ)

mp

(
x;

1

d
1
)

=
1

2d+− d
δ ◦ 1 = arg max

x∈∆d(δ)

mq

(
x;

1

d
1
)
, (3.11)

for all −∞ ≤ q < 1 ≤ p ≤ ∞. This completes the proof.
One interesting conclusion of Proposition 3.2 is that GWMC long-only portfolios
are less risky than EW, a very competitive benchmark portfolio. Further, Proposi-
tion 3.2 a)–c) tells us that the GWMC portfolios with p = 1 are very effective in
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reducing the portfolio risk, which confirms the good performance of the shortsale-
constrained portfolios from (Jagannathan and Ma, 2003; DeMiguel et al., 2009a,b).
Furthermore, Proposition 3.2 e) with p = 0 confirms our results in Theorem 4.1 c)
and Theorem 4.5 b). Finally, recall that 1

2d+−dδ ◦ 1 is the generalized equal weight (GEW)
portfolio that is an element of ∆d(δ), where EW is a particular case when δ = 1.
We conclude this section by inferring that the GWMC class of portfolios is very rich
which could be linked to the class of RB portfolios that is the main aim of this paper.

3.3. Short discussion about IWP and RP

We aim to compare IWP and RP portfolios, and show that these portfolios are not
quite the same and do not share the same properties. For a given ϕ, RP − ϕ is as
in Definition 2.1 with b = 1

d
1 and it could be computed via Theorem 4.1 a), while

IWP − ϕ has the following weights

1/ϕ(Xk)∑d
k=1 1/ϕ(Xk)

for all k ∈ {1, 2, . . . , d}. (3.12)

The latter is often used to approximate RP −ϕ in empirical studies, and therefore, the
two are often interchanged, meaning that RP portfolios are computed with the sim-
plified formula in (3.12). Note that IWP-SD is the same as RP-SD when all pairwise
returns are uncorrelated; it is also true that RP-SD and IWP-SD coincide if the asset
correlations are equal (Roncalli, 2013), but equivalent results are unknown for other
risk preferences. Independent of the RP literature, IWP portfolios with SD risk prefer-
ences are investigated under the name of Volatility Timing portfolios, where is shown
to outperform EW (Kirby and Ostdiek, 2012). Our empirical analyses in Section 6.2
– see Tables 3 and 4 – show that IWP and RP could be quite different, especially in
periods with very poor market performance (Periods 1 and 3) and very stable market
conditions (Period 2) where the IWP performance is quite poor. The same is observed
in the synthetic Example 3.3.

Example 3.3. Let (X1, X2, X3) be three loss variables such that SD(X1) = 1.2, SD(X2) =

1.1, SD(X3) = 1, corr(X1, X2) = corr(X1, X3) = −a and corr(X2, X3) = a. We assume
that the risk preferences are ordered via SD, and thus,R = SD.
Five portfolios are considered, but we report only four of them in Table 2 as two portfolios are
identical. That is, we compute the MinVar portfolio, which is the unconstrained minimum
SD portfolio as in (3.6) with ε = ∞ and p = 1; we also computed the long-only minimum
SD portfolio as (3.4) with ε = 1 and p = 1, but this portfolio is identical to MinVar for all
settings displayed in Table 2. We also compute the long-only RP-SD, which is computed via
Theorem 4.1 a) and is an element of (3.5) with p = 0. EW is another GWMC as explained
previously, while IWP-SD is usually not an element of GWMC except for some very specific
settings (only a = 0 in this example). All results are summarized in Table 2.

12



a MinVar RP-SD EW IWP-SD

0.5 0.4733 0.4748 0.4978 0.5157
0.25 0.5676 0.5683 0.5715 0.5765

0 0.6298 0.6316 0.6368 0.6316
-0.25 0.6351 0.6618 0.6960 0.6822

Table 2: Portfolio SD with d = 3 assets as set in Example 3.3 for various values of a.

Table 2 shows that IWP and RP may not share the same properties; RP is always less
risky than EW – see Theorem 4.1 c) – but IWP may be riskier (a ∈ {0.25, 0.5}) or less
risky (a ∈ {−0.25, 0}) than EW.

4. Main theoretical results

The main theoretical results are included in this section. Long-only and long-short
portfolios are investigated in Appendix A when the loss returns are assumed to be
elliptically distributed. This parametric assumption is removed in this section, where
a mathematical characterization of the long-only RB portfolio solutions – given by
Definition 2.1 – is provided in Sections 4.1; such a mathematical characterization is
then extended for long-short portfolios in Section 4.2.

4.1. Long-only RB for generally distributed risks

We are now ready to provide two methods of finding and characterizing long-only RB
portfolios for a large class of risk measures without making any assumption on the un-
derlying asset returns distribution. Two methods are investigated, which are known in
the literature (e.g., see Roncalli (2013) and Bellini et al. (2021)) as the logarithmic barrier
formulation in (4.2) and logarithmic constraint RB formulation in (4.3).

Theorem 4.1. Let b ∈ ∆++
d , and ϕ be a convex, homogeneous risk measure of order τ ≥ 1.

Further, assume that

min
x∈∆+

d

R(x) > 0. (4.1)

a) For any given λ > 0, the following instance

min
x∈<d++

1

τ
R(x)− λ

d∑
k=1

bk log xk (4.2)

admits a unique solution, denoted as x∗(λ, b), that is an interior point of <d++. Then,
α∗(b) ∈ RB(b, ϕ) ∩∆++

d , where α∗(b) = x∗(λ, b)/1Tx∗(λ, b). Moreover,

α∗(b) = x∗(λ∗, b) = (λ∗)1/τx∗(1, b), where λ∗ =
(
1Tx∗(1, b)

)−τ .
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b) For any given c ∈ <, the following instance

min
x∈<d++

R(x) such that
d∑

k=1

bk log xk ≥ c with c ∈ < (4.3)

admits a unique solution, denoted as x∗∗(c, b), that is an interior point of the feasibility
set. Then, α∗∗(b) ∈ RB(b, ϕ)∩∆++

d , where α∗∗(b) = x∗∗(c, b)/1Tx∗∗(c, b). Moreover,

α∗∗(b) = x∗∗(c∗, b) = ec
∗−1x∗∗(1, b), where c∗ = 1− log

(
1Tx∗∗(1, b)

)
.

Furthermore, strong duality holds in (4.3).

c) For any b, we have that α∗(b) = α∗∗(b),

min
x∈∆++

d

R(x) ≤ R
(
α∗(b)

)
≤ R(b) and R

(
α∗(b)

)
≤ R

(
1

d
1
)
. (4.4)

Proof. We first prove part a). Let F (x;λ) be the objective function in (4.2). The first
step is to show that the optimal solution in (4.2) exists and is an interior point of the
feasible set. Now, for any x ∈ <d++

F (x;λ) =
1

τ
R

 1

d max
1≤k≤d

xk
x

 dτ
(

max
1≤k≤d

xk

)τ
− λ

d∑
k=1

bk log xk (4.5)

≥ δ∗dτ

τ

(
max
1≤k≤d

xk

)τ
− λ log

(
max
1≤k≤d

xk

)
,

since ϕ is homogeneous of order τ , where δ∗ > 0 does not depend upon x and its
existence is guaranteed by (4.1). Since limt→∞ δt

τ − λ log t =∞ for any δ, λ, τ > 0, then
(4.5) implies that

F (x;λ)→∞, whenever ||x||∞ →∞. (4.6)

We now prove that (4.6) holds on the boundary (of the feasibility set) regions away
from infinity. That is, let M > ε > 0; note that for any x ∈ <d++ such that ||x||−∞ ≤ ε

and ||x||∞ ≤ M , there exists 0 < b∗ ≤ 1 such that F (x;λ) ≥ −λb∗ log ε by using similar
arguments as in (4.5). Thus,

F (x;λ)→∞, whenever ||x||−∞ ↓ 0 and ||x||∞ ≤M for any finite M > 0. (4.7)

Equations (4.6) and (4.7) imply that there exist an a > 0 and an ε ∈ (0, a] such that

inf
x∈<d++

F (x;λ) = inf
x∈Ba,ε

F (x;λ), where Ba,ε := {x ∈ Ba : ||x||−∞ ≥ ε}
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with Ba := {x ∈ <d++ : ||x||2 ≤ a}. Since Ba,ε is a compact set, the global minimum of
F (·;λ) on <d++ is an interior point of the feasibility set for any given λ > 0. Thus, (4.2)
must have an optimal solution that is an interior point of the feasible set.
The objective function in (4.2) is strictly convex in x over the convex cone <d++ for any
given λ > 0, since the logarithmic barrier term (−λ

∑d
k=1 bk log xk) is convex and the

fact that ϕ is a convex risk measure. Thus, (4.2) admits a unique solution.
It only remains to prove for part a) the relationship between the unique solution in
(4.2) for various penalty parameters λ. Note that

F (x;λ) = λF
(
λ−1/τx; 1

)
− λ

τ
log λ, for any x ∈ <d++ and λ > 0,

and any given b ∈ ∆++
d , since ϕ is a homogeneous risk measure of order τ , and in

turn, x∗(λ,b) = λ1/τx∗(1,b) for any λ > 0 and b ∈ ∆++
d . The first-order conditions

in (4.2) imply that 0 ∈ ∂F (x∗(λ,b);λ), and thus, λ
(
b1/x

∗
1(λ,b), . . . , bd/x

∗
d(λ,b)

)T ∈
∂R(x∗(λ,b)), which in turn gives that x∗(λ,b) ∈ RB(b, ϕ) due to (2.3). Now, the
homogeneity of ϕ implies tτa ∈ ∂R(tx) for any t > 0 if a ∈ ∂R(x), and in turn,
α∗(b) = x∗(λ,b)/1Tx∗(λ,b) ∈ RB(b, ϕ) ∩∆++

d for any b ∈ ∆++
d . We finish the proof of

part a) by noting that

α∗(b) =
x∗(λ,b)

1Tx∗(λ,b)
=

x∗(1,b)

1Tx∗(1,b)
and x∗(λ∗,b) =

(
λ∗
)1/τx∗(1,b) =

x∗(1,b)

1Tx∗(1,b)
.

We now prove part b). As before, we initially show that (4.3) admits a unique solution
that is an interior point. The interior point could be proved as in Proposition 3.1 c) and
we only show the uniqueness property. The homogeneity property of the objective
function in (4.3) implies that any optimal solution of (4.3) satisfies

d∑
k=1

bk log x∗∗k (c,b) = c. (4.8)

If (4.8) does not hold, (1− ε)x∗∗(c,b) is feasible for any ε > 0 sufficiently small; further,

R
(
(1− ε)x∗∗(c,b)

)
= (1− ε)τR

(
x∗∗(c,b)

)
< R

(
x∗∗(c,b)

)
due to the homogeneity of ϕ and the factR

(
x∗∗k (c,b)

)
> 0 (see (4.1)), which contradicts

our assumption and concludes (4.8). The optimal solution in (4.3) is unique, since the
inequality constraint in (4.3) is strictly concave due to (4.8). One could show that by
assuming a case in which there are two optimal solutions, x∗∗(c,b) and y∗∗(c,b). The
latter implies that

z∗∗(c,b) := γx∗∗(c,b) + (1− γ)y∗∗(c,b)
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is another optimal solution of (4.3) for any 0 < γ < 1, since ϕ is a convex risk measure.
Moreover,

d∑
k=1

bk log z∗∗k > γ
d∑

k=1

bk log x∗∗k + (1− γ)
d∑

k=1

bk log y∗∗k = c,

since the log function is strictly concave, which in turn contradicts that z∗∗(c,b) must
satisfy (4.8). Therefore, (4.3) admits a unique optimal solution.
It only remains to prove for part b) the relationship between the unique solution in
(4.3) for various penalty parameters c. We first show that

x∗∗(c,b) = ec−1x∗∗(1,b) for any given b ∈ ∆++
d . (4.9)

Again, we show this claim by contradiction and assume that x∗∗(1,b) solves (4.3) when
c = 1, but there exists c0 6= 1 such that ec0−1x∗∗(1,b) does not solve (4.3) whenever
c = c0. Therefore, there exists y ∈ <d++ such that

R(y) < R
(
ec0−1x∗∗(1,b)

)
and

d∑
k=1

bk log yk = c0.

Clearly, the above imply that e1−c0y is feasible in (4.3) when c = 1, and

R
(
e1−c0y

)
= e(1−c0)τR

(
y
)
< e(1−c0)τR

(
ec0−1x∗∗(1,b)

)
= R

(
x∗∗(1,b)

)
by keeping in mind that ϕ is a homogeneous risk measure of order τ , which in turn
contradicts our assumption and concludes (4.9). The relationships among various op-
timal solutions stated in part b) could be easily shown as in part a). Finally, the Slater’s
condition is clearly satisfied in (4.3), and therefore, the strong duality holds in (4.3).
The proof of part b) is fully argued.
We show the claims from part c). Note that α∗(b) = α∗∗(b), which is true since

α∗(b) = x∗(λ,b)/1Tx∗(λ,b), α∗∗(b) = x∗∗(c,b)/1Tx∗∗(c,b),

and the fact that there exists γ∗ > 0 such that x∗∗(c,b) = γ∗x∗(λ,b) for all λ > 0 and
any c ∈ <. The latter is a direct consequence of the fact that solving the primal optimal
in (4.3) is the same as solving (4.2) with λ = γ∗/τ , where γ∗ is the dual optimal in (4.3)
corresponding to the logarithmic constraint

∑d
k=1 bk log xk ≥ c.

The left-hand side inequality in (4.4) is trivial, and thus, we show now the right-hand
side inequality in (4.4). The proof of part a) allows us to say that α∗(b) solves

min
x∈∆++

d

1

τ
R(x)− λ∗

d∑
k=1

bk log xk, (4.10)

16



which implies that

1

τ

(
R
(
α∗(b)

)
−R(b)

)
≤ λ∗

d∑
k=1

bk log

(
α∗k(b)

bk

)
= −λ∗ ×DKL

(
b||α∗(b)

)
≤ 0

where DKL

(
b||α∗(b)

)
is the Kullback-Leibler divergence between the probability dis-

tributions induced by (the probability vectors) b and α∗(b). Thus, R
(
α∗(b)

)
≤ R(b)

for any b. The very last step is to showR
(
α∗(b)

)
≤ R

(
1
d
1
)
. From (4.10) we get that

1

τ

(
R
(
α∗(b)

)
−R

(
1

d
1
))
≤ λ∗

(
d∑

k=1

bk logα∗k(b)−
d∑

k=1

bk log

(
1

d

))

≤ λ∗

(
max
1T x=1

d∑
k=1

bk log xk + log d

)

= λ∗

(
d∑

k=1

bk log bk + log d

)

≤ λ∗

(
max
1T x=1

d∑
k=1

xk log xk + log d

)

= λ∗

(
d∑

k=1

1

d
log

(
1

d

)
+ log d

)
= 0,

which implies that R
(
α∗(b)

)
≤ R

(
1
d
1
)
, and in turn, part c) is concluded. This com-

pletes the proof.

Theorem 4.1 suggests thatRB(b, ϕ)∩∆++
d might have exactly one element under some

conditions for a general risk measure choice. We clarify this point in Theorem 4.2.

Theorem 4.2. Let b ∈ ∆++
d , and ϕ be a convex, homogeneous risk measure of order τ ≥ 1.

Also, (4.1) holds. Then, RB(b, ϕ) ∩ ∆++
d and the set of parametric optimal solutions (in λ)

of the surrogate problem (4.2) that also are in ∆++
d coincide. Further, RB(b, ϕ) ∩ ∆++

d has
exactly one solution.

Proof.
We first prove that RB(b, ϕ) ∩ ∆++

d coincides with the set of parametric optimal so-
lutions (in λ) of the surrogate convex problem (4.2) that are also in ∆++

d . If x∗ ∈
RB(b, ϕ) ∩ ∆++

d , then x∗ solves the surrogate problem (4.2) with λ∗ = ϕ
(
x∗TX

)
by

applying the first-order Karush-Kuhn-Tucker conditions. The converse is also true for
similar reasons.
We next show that RB(b, ϕ) ∩ ∆++

d has exactly one solution. Since RB(b, ϕ) ∩ ∆++
d

coincides with the set of parametric optimal solutions in (4.2), then any element of
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RB(b, ϕ) ∩ ∆++
d solves (4.2) with λ∗ =

(
1Tx∗(1,b)

)−τ due to Theorem 4.1 a). This
yields the required results. The proof is now complete.
The positiveness property in (4.1) plays a crucial role, and we show that in Theo-
rem 4.3 below. Specifically, if the positiveness property in (4.1) does not hold, then
the objective function in (4.2) is unbounded from below, and thus, the logarithmic bar-
rier/constraint RB formulations in (4.2)/(4.3) are not useful to find RB/RP portfolios. In
addition, if all long-only portfolios have a non-negative risk position and some have a
zero risk position, then portfolios with minimal risk are RB portfolios.

Theorem 4.3. Let ϕ be a convex and homogeneous risk measure of order τ ≥ 1.

a) Let b ∈ ∆++
d . If there exists x̃ ∈ ∆+

d such that R(x̃) ≤ 0, then for any given λ > 0, the
objective function in (4.2) satisfies

inf
x∈<d++

F (x;λ) = −∞. (4.11)

b) Let b ∈ ∆d. Assume that minx∈∆+
d
R(x) ≥ 0 and there exists x̃ ∈ ∆+

d such that
R(x̃) = 0. Then,

x∗ ∈ arg min
x∈∆+

d

R(x)⇔ x∗ ∈ {x ∈ ∆+
d : R(x) = 0} ⇒ x∗ ∈ RB(b, ϕ). (4.12)

Proof. We first prove part a). Without loss of generalityR(x̃) = 0 is assumed, since the
proof does not change ifR(x̃) < 0. If x̃ ∈ ∆++

d , then

F (tx̃;λ) =
tτ

τ
R(x̃)− λ

d∑
k=1

bk log x̃k − λ log t

= −λ
d∑

k=1

bk log x̃k − λ log t→ −∞ as t→∞,

since ϕ is homogeneous and the fact that 1Tb = 1, which concludes (4.11). Assume
now that x̃ ∈ ∆+

d \∆
++
d ; without loss of generality, assume that x̃k > 0 for all 1 ≤ k ≤ d′,

and x̃k = 0 for all d′ + 1 ≤ k ≤ d, where 1 ≤ d′ < d. Let ε > 0. Now,

F
(
tεx̃1, t

εx̃2, . . . , t
εx̃d′ , 1/t, 1/t, . . . , 1/t;λ

)
=

1

τ
R
(
tεx̃1, t

εx̃2, . . . , t
εx̃d′ , 1/t, 1/t, . . . , 1/t

)
− λ

d′∑
k=1

bk log x̃k

−λ log t

(
ε

d′∑
k=1

bk −
d∑

k=d′+1

bk

)

≤ 2τ−1

τ
R
(
tεx̃1, t

εx̃2, . . . , t
εx̃d′ , 0, 0, . . . , 0

)
+

2τ−1

τ
R
(
0, 0, . . . , 0, 1/t, 1/t, . . . , 1/t

)
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−λ log t

(
ε

d′∑
k=1

bk −
d∑

k=d′+1

bk

)
− λ

d′∑
k=1

bk log x̃k

=
2τ−1

τtτ
R
(
0, 0, . . . , 0, 1, 1, . . . , 1

)
−λ log t

(
ε

d′∑
k=1

bk −
d∑

k=d′+1

bk

)
−λ

d′∑
k=1

bk log x̃k

→ −∞ as t→∞ for ε sufficiently large,

where the first inequality holds since ϕ is homogeneous and convex, while the latter
identity is true due to the homogeneity property and the fact that R(x̃) = 0. Thus,
(4.11) holds, and in turn, part a) is fully proved.
We now prove part b). If x∗ ∈ arg minx∈∆+

d
R(x), then 0 ∈ ∂R(x∗), and thus,

R(x∗) = 0 due to (2.3). The reverse can be obtained in the same manner. Finally,
x∗ ∈ arg minx∈∆+

d
R(x) implies that x∗ ∈ RB(b, ϕ), since x∗ ∈ relint(R) and 0 ∈ ∂R(x∗).

The proof is now complete.

Note 4.4. Theorem 4.3 shows how important the positiveness assumption (4.1) is. Specifically,
if the portfolio risk position may take non-positive values then Theorem 4.1 cannot be applied to
find RB long-only portfolios, but this does not mean that long-only RB portfolios do not exist,
or if exists, their number is finite. This is exemplified further for the RP-SD case.
Assume that ϕ = SD and the assets have equal variances. Let us consider the following three
cases for which there exists x̃ ∈ ∆+

d such thatR(x̃) = 0:

i) Four assets (d = 4) with corr(X1, X2) = 1, corr(X3, X4) = −1 and all other pairs are
uncorrelated; direct calculations show that

RB
(

1

4
1, SD

)
∩∆++

4 = ∅ and RB
(

1

4
1, SD

)
∩∆+

4 =
{

(0, 0, 1/2, 1/2)
}
.

ii) Four assets (d = 4) with corr(X1, X2) = −1, corr(X3, X4) = −1 and all other pairs
are uncorrelated; direct calculations show that

RB
(

1

4
1, SD

)
∩∆++

4 =

{(
t, t,

1

2
− t, 1

2
− t
)

: 0 < t <
1

2

}
and

RB
(

1

4
1, SD

)
∩∆+

4 =

{(
t, t,

1

2
− t, 1

2
− t
)

: 0 ≤ t ≤ 1

2

}
.

iii) Three assets (d = 3) with corr(X1, X2) = −0.5, corr(X1, X3) = −0.5 and
corr(X2, X3) = −0.5; direct calculations show that

RB
(

1

3
1, SD

)
∩∆++

3 = RB
(

1

3
1, SD

)
∩∆+

3 =
{

(1/3, 1/3, 1/3)
}
.

These confirm Theorem 4.3 b) and show that we may have zero, a unique or infinitely many
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RB long-only portfolios if (4.1) does not hold. This means that (4.1) is a sufficient (but not
necessary) condition for having a unique long-only RB portfolio.

Theorems 4.1 and 4.2 extend previous results for specific risk preferences such as
ϕ ∈ {var, SD} (Theorem 1.1 in Spinu (2013) and Lemma 2.2 in Bai et al. (2016)) and
ϕ = expectile (Theorem 4 in Bellini et al. (2021)), but also for general risk preferences
for long-only RP (Theorem 2 in Cesarone et al. (2020)) and long-only RB (Theorem 1
in Cetingoz et al. (2024)) though our ample mathematical characterization helps in un-
derstanding the RB/RP strategies in more depth. Theorems 4.1 and 4.2 summarize a
series of very interesting results that we next outline in a non-technical language.
First, Theorem 4.1 tells us through (4.2) and (4.3) that RB portfolios could be found
under the positiveness condition (4.1) without requiring a differentiability condition
of the portfolio risk position that is required in the current literature, even when the
risk preferences are very general (Cesarone et al., 2020; Cetingoz et al., 2024). We also
show the existence and uniqueness of RB/RP portfolios for any homogeneous risk
preferences if (4.1) holds. The lack of differentiability for CVaR risk preferences is dis-
cussed in the literature (Mausser and Romanko, 2018) where it is pointed out that RP
solutions based on the standard RB/RP definition in (2.2) may not exist even though
(4.3) has a solution. This led us to redesign the RB/RP mathematical formulation as in
Definition 2.1 that is also motivated by Example 2.2, and conclude the existence and
uniqueness of RB/RP portfolios under very general assumptions.
Second, the technical condition in (4.1) is sufficient (but not necessary) to ensure that
our RB portfolios are found without major computational issues, since (4.1) guarantees
finite optimal solutions in (4.2) and (4.3). The uniqueness property in Proposition 4.2 is
not guaranteed for long-only RB portfolios even if the portfolio risk position is always
non-negative but not positive everywhere; if so, Note 4.4 shows that the RP/RB set
may be a null set, consist of one element, or be an infinite set.
Third, the logarithmic barrier and logarithmic constraint RB formulations in (4.2) and (4.3),
respectively, lead to the same RB portfolio that does not depend upon the normalizing
parameters λ and c. This means that λ = 1 and c = 0 are recommended for numer-
ical implementations, and thus, these parameters do not need any tuning, which is
beneficial to establishing more powerful statistical inference results in Section 5.
Finally, we found that long-only RB/RP portfolios are always less risky than EW for
general risk preferences. This confirms similar properties found in the literature for
some particular risk preference choices (Roncalli, 2013; Bellini et al., 2021), which is
confirmed by our numerical evidence in Section 6.2.

4.2. Long-short RB for generally distributed risks

Note that according to our knowledge, there is no attempt in the literature to character-
ize long-short RB/RB for general risk preferences. We now explain how the previous
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mathematical characterization could be extended to the case in which short-sales are
permitted. That is, we look for RB strategies in RB(b, ϕ) ∩ ∆d(δ). The equivalent of
Theorems 4.1 and 4.2 are given as Theorem 4.5 for which only the logarithmic barrier
formulation in (4.2) is investigated, since the logarithmic constraint RB formulation in
(4.3) could be dealt similarly.

Theorem 4.5. Let b ∈ ∆++
d , and ϕ be a convex, homogeneous risk measure of order τ ≥ 1.

Further, let δ ∈ <d \ {−1, 1} such that δ ◦ δ = 1. Furthermore, assume that

min
x∈∆+

d

R(δ ◦ x) > 0 (4.13)

and let K(δ) := {x ∈ <d : δ ◦ x ∈ <d++} be the search cone.

a) For any given λ > 0, the following instance

min
x∈K(δ)

1

τ
R(x)− λ

d∑
k=1

bk log δkxk (4.14)

admits a unique solution, denoted as x∗(λ, b), that is an interior point of K(δ). If
1Tx∗(1, b) > 0, then α∗(b) ∈ RB(b, ϕ) ∩∆d(δ), where α∗(b) = x∗(λ, b)/1Tx∗(λ, b).
Moreover,

α∗(b) = x∗(λ∗, b) = (λ∗)1/τx∗(1, b), where λ∗ =
(
1Tx∗(1, b)

)−τ .

b) Assume that α∗(b) ∈ RB(b, ϕ) ∩∆d(δ) from part a) exists. Then,

min
x∈∆d(δ)

R(x) ≤ R
(
α∗(b)

)
≤ R

(
δ ◦ b

1T
(
δ ◦ b

)) if 1T
(
δ ◦ b

)
> 0. (4.15)

Further, if d+ > d/2, where d+ is the number of assets having a long position, then
R
(
α∗(b)

)
≤ R

(
1

2d+−dδ ◦ 1
)

; the latter holds with strict inequality if d+ < d.

c) If (4.13) holds and 1Tx∗(1, b) > 0, thenα∗(b) = x∗(λ, b)/1Tx∗(λ, b) is the only element
ofRB(b, ϕ) ∩∆d(δ). Define

min
x∈∆+

d

R(δ ◦ x) > 0 and R(−x) = R(x) for all x ∈ <d. (4.16)

If (4.16) and 1Tx∗(1, b) > 0 hold, then α∗(b) = x∗(λ, b)/1Tx∗(λ, b) is the only element
ofRB(b, ϕ) ∩∆d(δ) andRB(b, ϕ) ∩∆d(δ

C) = ∅, where δC = −δ.
If (4.16) and 1Tx∗(1, b) < 0 hold, then α∗(b) = x∗(λ, b)/1Tx∗(λ, b) is the only element
ofRB(b, ϕ) ∩∆d(δ

C) andRB(b, ϕ) ∩∆d(δ) = ∅.

d) Let b ∈ ∆d. Assume that minx∈∆+
d
R(δ ◦ x) ≥ 0 and there exists x̃ ∈ {δ ◦ x : x ∈ ∆+

d }
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such thatR(x̃) = 0. Then,

x∗∈arg min
x∈∆d

δ◦x∈<d+

R(x)⇔ x∗∈{x ∈ ∆d : δ ◦ x ∈ <d+,R(x) = 0} ⇒ x∗∈RB(b, ϕ). (4.17)

Proof. Part a) could be proved in a similar way to the proof of Theorem 4.1 a), and we
thus skip its proof. We now show part b), and as before, we only show the right-hand
side inequality in (4.15). Equation (4.14) implies that α∗(b) solves

min
x∈∆d(δ)

1

τ
R(x)− λ∗

d∑
k=1

bk log δkxk, (4.18)

which implies that

1

τ

(
R
(
α∗(b)

)
−R

(
δ ◦ b

1T
(
δ ◦ b

))) ≤ λ∗

(
log
(

1T
(
δ ◦ b

))
+

d∑
k=1

bk log

(
δkα

∗
k(b)

bk

))
= λ∗

(
log
(

1T
(
δ ◦ b

))
−DKL

(
b||δ ◦α∗(b)

))
≤ 0,

since 1T
(
δ ◦ b

)
≤ 1Tb ≤ 1, where DKL

(
b||δ ◦ α∗(b)

)
is the Kullback-Leibler diver-

gence between the probability distributions induced by (the probability vectors) b and
δ ◦α∗(b); recall thatα∗(b) ∈ ∆d(δ), which in turn gives that δ ◦α∗(b) is a proper prob-
ability vector.
The very last step is to showR

(
α∗(b)

)
≤ R

(
1

2d+−dδ ◦ 1
)

. Equation (4.18) implies that

1

τ

(
R
(
α∗(b)

)
−R

(
1

2d+ − d
δ ◦ 1

))
≤ λ∗

(
d∑

k=1

bk logα∗k(b)−
d∑

k=1

bk log

(
1

2d+ − d

))

≤ λ∗

(
max
1T x=1

d∑
k=1

bk log xk + log(2d+ − d)

)

= λ∗

(
d∑

k=1

bk log bk + log(2d+ − d)

)

≤ λ∗

(
max
1T x=1

d∑
k=1

xk log xk + log(2d+ − d)

)

= λ∗
(

log
2d+ − d

d

)
≤ 0,

which becomes a strict inequality whenever d+ < d. This concludes part b).
Part c) is clear by noting that y ∈ RB(b, ϕ) implies that −y ∈ RB(b, ϕ) as (4.16) holds
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and the fact that a ∈ ∂R(y) if and only if −a ∈ ∂R(−y) due to (4.16). Part d) could be
proved as in Theorem 4.3 b), and its proof is thus omitted. The proof is now complete.

Before explaining the main results in Theorem 4.5, we provide Example 4.6 to shed
some light over the importance of the positiveness condition (4.13) that is of crucial
importance to understanding the properties of long-short RB/RP portfolios.

Example 4.6. Let X = (X1, X2) be a bivariate normally distributed random vector (of negative
returns) with correlation coefficient ρ, unit variances (SD(X1) = SD(X2) = 1), and mean
losses of E(X1) = µ1 and E(X2) = µ2. The following three settings are considered:

A) µ1 = −1, µ2 = −1 and ρ = 0.5;

B) µ1 = −1, µ2 = −3 and ρ = 0.5;

C) µ1 = −1, µ2 = −3 and ρ = −0.9.

Risk preferences are ordered via CVaR95% and due to (A.2), the portfolio’s risk position is

R(x1, x2) = µ1x1 + µ2x2 +
(
x2

1 + x2
2 + 2ρx1x2

)1/2
CVaR95%(Z1), (4.19)

where CVaR95%(Z1) = 2.06271 as Z1 is a standard normal Gaussian random variable. Note
that R(·) is differentiable on <2, and thus, we use (2.2) to find RP strategies. We first check
whether (4.13) is true, and if so, we check if 1Tx∗(1, b) > 0 holds; recall that x∗(1, b) is the
unique solution in (4.14) for a given cone K(δ). Clearly, τ = 1 and the risk contributions are

RCk(x1, x2) = µkxk +
x2
k + ρx1x2(

x2
1 + x2

2 + 2ρx1x2

)1/2
CVaR95%(Z1) for k = 1, 2. (4.20)

Assume setting A. Direct computations for solving RC1(x1, x2) = RC2(x1, x2) in (x1, x2) ∈
∆2 show that there are exactly three RP strategies inRB

(
1
2
1,CVaR95%

)
∩∆2:

x∗(A1) = (0.5, 0.5), x∗(A2) = (−1.3721, 2.3721) and x∗(A3) = (2.3721,−1.3721).

We recover these RP strategies by using Theorem 4.5; (4.13) holds for all four cones, and one
may check that 1Tx∗(1, b) > 0 for all cones except the negative cone with δ = (−1,−1). After
standardizing the solutions in (4.14), one could find the three RP strategies, x∗(A1), x∗(A2)

and x∗(A3), which are the unique RP strategies in the cone with (1, 1), (−1, 1) and (1,−1),
respectively. Even though (4.16) does not hold, standardizing the solutions in (4.14) when
δ = (−1,−1) leads to x∗(A1), which is just a coincidence triggered by the symmetry of R, i.e.,
R(x1, x2) = R(x2, x1) for (x1, x2) ∈ <2.
Assume setting B. As before, solvingRC1(x1, x2) = RC2(x1, x2) in (x1, x2) ∈ ∆2 shows that
there is only one RP strategy inRB

(
1
2
1,CVaR95%

)
∩∆2, namely, x∗(B) = (1.5437,−0.5437).

Now, we recover this RP strategy by using Theorem 4.5. Condition (4.13) holds only for the

23



cones with δ = (1,−1) and δ = (−1,−1), while 1Tx∗(1, b) > 0 is true only when δ =

(1,−1). After standardizing the solution in (4.14) for the cone with δ = (1,−1), one could
recover x∗(B) as the unique element ofRB

(
1
2
1,CVaR95%

)
∩∆2(1,−1). After standardizing the

solution in (4.14) for the cone with δ = (−1,−1), one gets x∗ = (0.6146, 0.3853), which is not
a RP strategy. This is not surprising, since (4.16) does not hold (R is not an even function).
Assume setting C. Once again, solving RC1(x1, x2) = RC2(x1, x2) in (x1, x2) ∈ ∆2 shows
that there are exactly three RP strategies inRB

(
1
2
1,CVaR95%

)
∩∆2:

x∗(C1) = (0.2816, 0.7184), x∗(C2) = (0.3975, 0.6025) and x∗(C3) = (1.2733,−0.2733).

We can recover only the latter RP portfolio by the findings in Theorem 4.5. Condition (4.13)
holds only for the cones with δ = (1,−1) and δ = (−1,−1), while 1Tx∗(1, b) > 0 is true
only for the cone with δ = (1,−1). After standardizing the solution in (4.14) for the cone
with δ = (1,−1), one could recover x∗(C3) as the unique element of RB

(
1
2
1,CVaR95%

)
∩

∆2(1,−1). After standardizing the solution in (4.14) for the cone with δ = (−1,−1), one
gets x∗ = (0.5475, 0.4525), which is not a RP strategy as (4.16) does not hold (R is not an
even function). Unfortunately, the two RP portfolios in the positive cone (x∗(C1) and x∗(C2))
could not be identified by the logarithmic barrier formulation as the main necessary condition
in (4.1) (or its generalisation in (4.13)) is not satisfied. Further,

R
(
x∗(C2)

)
< R

(1

2
1
)
< R

(
x∗(C1)

)
,

which means that long-only RB portfolios may be riskier than the EW portfolio if (4.1) does
not hold; e.g., x∗(C1). This is in contrast with our finding in Theorem 4.1 c), though the two do
not contradict each other.
In a nutshell, Example 4.6 tells us that if (4.13) does not hold in a particular cone, then we
may have no RB/RP portfolio (see setting B) or multiple RB/RP portfolios (see setting C) in that
cone. Further, if (4.13) holds in a particular cone and 1Tx∗(1, b) < 0, then the standardised
portfolio α∗(b) = x∗(λ, b)/1Tx∗(λ, b) may be (see setting A) or may not be (see settings B
and C) a RB/RP portfolio in the complementary cone if (4.16) does not hold. Therefore, the
standard logarithmic barrier formulation is helpful to identify RB/RP portfolios, but its use
does not guarantee that all portfolios are found, since the logarithmic barrier procedure requires
some regularity conditions.

Theorem 4.5 is a replica of Theorems 4.1 and 4.2 for the long-short RB/RP case, and
explains how to find RB/RP strategies in any cone, except the case in which there is
no asset in a long position, which is an infeasible setting. A series of very interesting
results are implied by Theorem 4.5, and we outline them in a non-technical language.
First, Theorem 4.5 provides the existence and uniqueness of long-short RB/RP port-
folios within one given cone for general risk preferences, which is guaranteed if two
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conditions are satisfied: i) the positiveness condition (4.13) and ii) 1Tx∗(1,b) > 0 with-
out any differentiability condition. The positiveness condition is similar to our con-
dition in Theorem 4.1, and ii) helps to preserve the cone after standardization (sum
the weights to 1). If the second condition is not satisfied and 1Tx∗(1,b) < 0, then
we require (4.16) (portfolio risk position is an even functional) to guarantee no RB/RP
portfolio within the search cone and the existence and uniqueness of RB/RP portfolios
within the complement cone. Finally, if 1Tx∗(1,b) = 0, the so-called “market-neutral”
portfolios (as explained in Bai et al. (2016) when ϕ ∈ {SD, var}), is not tractable and
no possible characterization is available.
Second, the technical positiveness condition i) (see (4.16)) is an essential condition to
guarantee that RB/RP exists and is unique. Example 4.6 shows that without (4.16)
RB/RP portfolios may not exist or multiple solutions are possible. If condition ii) does
not hold, then finding RB/RP portfolios could be difficult. Note that (4.16) holds if
ϕ ∈ {SD, var} provided that the covariance matrix is positive definite, and thus, the
RB/RP portfolio in the search cone (δ) and complementary cone (δC) exist in only one
cone; in turn, we have at most 2d−1 RB/RP strategies in all feasible 2d − 1 search cones
which recovers the discussion from Section 2.2 in Bai et al. (2016).
Third, finding RB/RP portfolios does not depend upon λ, and therefore, one can
choose λ = 1 in the implementation phase as λ does not need any tuning.
Finally, we found that long-short RB/RP portfolios are always less risky than GEW for
general risk preferences, where GEW is introduced in Section 3.2. Note that the GEW
portfolio 1

2d+−dδ ◦ 1 is the equivalent of the EW portfolio in ∆d(δ) and
(

1
2
, 1

2
, 1

2
,−1

2

)
is

an example for four assets with only the fourth one being in a short position.

5. Statistical inferences

The previous section explains how to find RB portfolios with the help of Theorems 4.1
and 4.5. We note that according to our knowledge, there are no statistical inferences
for RB portfolios, which is the main aim of this section. Our statistical inferences are
focused on two risk preferences, CVaR and SD, which are popular choices in practice.
In this section, we observe

{
Xt = (Xt,1, . . . , Xt,d)

T
}n
t=1

from the strictly stationary α-
mixing sequence of

{
Xt = (Xt,1, . . . , Xt,d)

T
}∞
t=−∞ satisfying

αX(k) = sup
{
|P(A ∩B)− P(A)P(B)| : A ∈ F i−∞, B ∈ F∞i+k,−∞ < i <∞

}
→ 0

as k → ∞, where F ba denotes the σ-field generated by {Xt : a ≤ t ≤ b}. For statistical
inferences, Theorem 4.1 suggests searching for a non-parametric estimator for R(x),
which is convex and homogeneous.
First, we consider CVaRp risk preferences with 0 < p < 1, for which the portfolio risk
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position is measured as follows:

inf
θ

{
θ +

1

1− p
E
(
(xTXt − θ)+

)}
;

see Rockafellar and Uryasev (2002). Hence, the simple non-parametric estimator is

R̂emp
cvar(x) := inf

θ

{
θ +

1

n(1− p)

n∑
t=1

(
xTXt − θ

)
+

}
,

which is convex, homogeneous, but not differentiable, though differentiable almost
everywhere implied by the convexity. To derive the asymptotic properties of the RB
estimator, one can use the smooth non-parametric estimation in Scaillet (2004) and
Chen (2008), defined as

R̂KD
cvar(x) :=

1

n(1− p)

n∑
t=1

xTXt

{
1−K

(
θ − xTXt

h

)}
,

where θ = θ(x) solves
1

n

n∑
t=1

K

(
θ − xTXt

h

)
= p,

K(·) is a smooth distribution function on <, and h = h(n) > 0 is the kernel bandwidth.
Unfortunately, we cannot ensure R̂KD

cvar (x) to be convex and homogeneous. By writing
that

E
(
(xTXt − θ)+

)
=

∫
(xTs− θ)+fX(s1, · · · , sd) ds,

where s = (s1, · · · , sd)T and fX(s) is the density function of Xt, we propose the fol-
lowing smooth non-parametric estimator

R̂cvar(x) := inf
θ

{
θ +

1

n(1− p)

n∑
t=1

∫
(xTs− θ)+

d∏
i=1

h−1
i k

(
si −Xt,i

hi

)
ds

}
,

where k(·) = K ′(·) on <, and hi = hi(n) > 0 is a bandwidth for all i ∈ {1, 2, . . . , d}. It
is straightforward to verify that R̂cvar(x) is convex, homogeneous with order one, and
differentiable everywhere. Also,

R̂cvar(x) =
1

n(1− p)

n∑
t=1

∫
I(xTs > θ)xTs

d∏
i=1

h−1
i k

(
si −Xt,i

hi

)
ds, (5.1)
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with θ = θ(x) satisfying

1− 1

n(1− p)

n∑
t=1

∫
I(xTs > θ)

d∏
i=1

h−1
i k

(
si −Xt,i

hi

)
ds = 0 (5.2)

and I denoting the indicator function with I(A) = 1 if A is true, and I(A) = 0 other-
wise. Hence, using τ = 1 for CVaR risk measure and taking λ = 1 in Theorem 4.1, we
estimate x and α by

x̂cvar = arg min
x∈<d++

R̂cvar(x)−
d∑
i=1

bi log xi and α̂cvar = x̂cvar/1
T x̂cvar.

That is, x̂cvar and θ̂cvar = θ(x̂cvar) solve the system of equations for x > 0:

1

n(1− p)

n∑
t=1

∫
I(xTs > θ(x))si

d∏
j=1

h−1
j k

(
sj −Xt,j

hj

)
ds− bi

xi
= 0

for i ∈ {1, 2, . . . , d} ,

1− 1

n(1− p)

n∑
t=1

∫
I(xTs > θ(x))

d∏
j=1

h−1
j k

(
sj −Xt,j

hj

)
ds = 0.

(5.3)

On the other hand, the true values x0 and θ0 = θ(x0) solve

E[Z̄t(x, θ)] = 0 for x > 0, (5.4)

where Z̄t(x, θ) =
(
Z̄t,1(x, θ), . . . , Z̄t,d+1(x, θ)

)T is given by{
Z̄t,i(x, θ) = 1

1−pXt,iI
(
xTXt > θ(x)

)
− bi

xi
for all i ∈ {1, 2, . . . , d} ,

Z̄t,d+1(x, θ) = 1− 1
1−pI

(
xTXt > θ(x)

)
.

Define Γ̄(x, θ) = EZ̄1(x, θ) and denote the partial derivatives of Γ̄(·, ·) by ˙̄Γ(·, ·) on
<d×<. We assume the following regularity conditions to derive the asymptotic limits
of x̂cvar, θ̂cvar, and α̂cvar:

C1) {Xt}∞t=−∞ is a strictly stationary α-mixing sequence with αX(m) = O
(
am
)

for
some a ∈ (0, 1) as m→∞. Furthermore, assume E||Xt||2+δ

2 <∞ for some δ > 0.

C2) (xT0 , θ0)T is the unique solution to (5.4).

C3) The probability density function of Xt has bounded second partial derivatives
on the closure of Ω = ∪(xT ,θ)T∈Ω0

{
s ∈ <r : xTs ≥ θ

}
, where Ω0 is an open set

covering (xT0 , θ0)T . For any s ≥ 1, the joint density of Xt and Xt+s has bounded
second partial derivatives on the closure of Ω× Ω.

C4) k(·) is a symmetric density function on [−1, 1]. For each i ∈ {1, 2, . . . , d}, hi =
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cin
−1/3 for some positive constant ci.

The next theorem provides the result for deriving inference when risk preferences are
ordered by the CVaRp risk measure.

Theorem 5.1. Assume conditions C1)–C4) hold and consider the case in which ϕ = CVaRp

with 0 < p < 1. Then, there is a positive definite matrix Σ̄ such that

E
{
Z̄1(x0, θ0)Z̄T

1 (x0, θ0)
}

+ 2 lim
n→∞

n−1∑
m=1

E
{
Z̄1(x0, θ0)Z̄T

1+m(x0, θ0)
}

= Σ̄. (5.5)

Furthermore, as n→∞,

√
n
(
x̂Tcvar − xT0 , θ̂cvar − θ0

)T w→ N
(
0, ˙̄Γ−1(x0, θ0)Σ̄

( ˙̄Γ−1(x0, θ0)
)T)

, (5.6)

√
n(α̂cvar −α0)

w→ N

(
0,

Σ̄0

(1Tx0)2
− 2x01

T Σ̄0

(1Tx0)3
+
x01

T Σ̄01x
T
0

(1Tx0)4

)
, (5.7)

where Σ̄0 is the first d× d matrix of ˙̄Γ−1(x0, θ0)Σ̄
( ˙̄Γ−1(x0, θ0)

)T
.

Proof. For simplicity, assume hi = h for all i ∈ {1, . . . , d}. Let f1,1+r(x, x̄) de-
note the joint density function of

(
Xt,Xt+r

)
. Put s, s̄,y, ȳ,x ∈ <d, Zt(x, θ) =(

Zt,1(x, θ), . . . , Zt,d+1(x, θ)
)T ,

Zt,i(x, θ) =
1

1− p

∫
I
(
xTs > θ(x)

)
si

d∏
j=1

h−1
j k

(
Xt,j − sj

hj

)
ds− bi

xi

for all i = 1, . . . , d,

Zt,d+1(x, θ) = 1− 1

1− p

∫
I(xTs > θ(x))

d∏
j=1

h−1
j k

(
Xt,j − sj

hj

)
ds.

Then, (5.3) becomes
1

n

n∑
t=1

Zt(x̂cvar, θ̂cvar) = 0. (5.8)

Define

γi(s;x, θ) = E
{(
Zt,i(x, θ)− Z̄t,i(x, θ)

)(
Zt+s,i(x, θ)− Z̄t+s,i(x, θ)

)}
−
{
E
(
Zt,i(x, θ)− Z̄t,i(x, θ)

)}2

for i = 1, · · · , d+ 1 and nonnegative integer s. Write

Zt,d+1(x, θ)− Z̄t,d+1(x, θ)

=
1

1− p

∫ { d∏
j=1

k(sj)

}{
I
(
xTXt + hxTs > θ(x)

)
− I
(
xTXt > θ(x)

)}
ds,
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Zt,i(x, θ)− Z̄t,i(x, θ) =
1

1− p

∫ { d∏
j=1

k(sj)

}{
I
(
xTXt + hxTs > θ(x)

)
sih

+Xt,iI
(
xTXt + hxTs > θ(x)

)
−Xt,iI

(
xTXt > θ(x)

)}
ds

for i = 1, · · · , d. Then,

E{Zt,i(x, θ)− Z̄t,i(x, θ)} = O(h2), E{Zt,i(x, θ)− Z̄t,i(x, θ)}2 = O(h2) (5.9)

hold uniformly in
{(
xT , θ

)T
: ||x − x0||2 + |θ − θ0| ≤ n−1/3

}
for all i ∈ {1, . . . , d + 1},

implying that
|γi(0;x, θ)| = O(h2) (5.10)

uniformly in
{(
xT , θ

)T
: ||x − x0||2 + |θ − θ0| ≤ n−1/3

}
for all i ∈ {1, . . . , d + 1}. Here,

O(h2) means less than a constant times h2. Using C2), we have that for any r ≥ 1,

E

{∫
I
(
xTs > θ(x)

) d∏
j=1

h−1k

(
Xt,j − sj

h

)
ds

×
∫
I
(
xTs > θ(x)

) d∏
j=1

h−1k

(
Xt+r,j − sj

h

)
ds

}

=

∫
I
(
xTs > θ(x)

)
I
(
xT s̄ > θ(x)

){ d∏
j=1

h−1k

(
yj − sj
h

)}{ d∏
j=1

h−1k(
ȳj − s̄j
h

)

}
×f1,1+r

(
y, ȳ

)
ds ds̄ dy dȳ

=

∫
I
(
xTs > θ(x)

)
I
(
xT s̄ > θ(x)

){ d∏
j=1

k(yj)

}

×

{
d∏
j=1

k(ȳj)

}
f1,1+r(s+ hy, s̄+ hȳ) dy dȳ ds ds̄

=

∫
I
(
xTs > θ(x)

)
I
(
xT s̄ > θ(x)

){ d∏
j=1

k(yj)

}{
d∏
j=1

k(ȳj)

}{
f1,1+r(s, s̄)

+ h
d∑
j=1

∂

∂sj
f1,1+r(s, s̄)yj + h

d∑
j=1

∂

∂s̄j
f1,1+r(s, s̄)ȳj +O(h2)

}
dy dȳ ds ds̄

=

∫
I
(
xTs > θ(x)

)
I
(
xT s̄ > θ(x)

){ d∏
j=1

k(yj)

}{
d∏
j=1

k(ȳj)

}
f1,1+r(s, s̄) ds ds̄

+O(h2)

holds uniformly in
{

(xT , θ)T : ||x − x0||2 + |θ − θ0| ≤ n−1/3
}

. Similarly, we can show
that

|γi(s;x, θ)| = O(h2) (5.11)

holds uniformly in positive integer s and
{

(xT , θ)T : ||x− x0||2 + |θ − θ0| ≤ n−1/3
}

for
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all i ∈ {1, · · · , d+ 1}. Using C1) and the Davydov inequality, we have

|γi(s;x, θ)| = O
(
{α(s)}1−2/(2+δ)

)
(5.12)

uniformly in nonnegative integer s and
{

(xT , θ)T : ||x − x0||2 + |θ − θ0| ≤ n−1/3
}

for
all i ∈ {1, · · · , d+ 1}. Hence, it follows from (5.10), (5.11), and (5.12) that for any given
ξ ∈ (1/2, 1),

|γi(s;x, θ)| = O
(
h2ξ{α(s)}1−ξ−2(1−ξ)/(2+δ)

)
(5.13)

uniformly in nonnegative integer s and
{

(xT , θ)T : ||x−x0||2 + |θ− θ0| ≤ n−1/3
}

for all
i ∈ {1, · · · , d+ 1}. It follows from (5.9), (5.10), (5.13), and C1) that

E

{
1√
n

n∑
t=1

(
Zt,i(x, θ)− Z̄t,i(x, θ)

)}2

= γi(0;x, θ) + 2
n−1∑
m=1

(1−m/n)γi(m;x, θ) + n
{
E
(
Z1,i(x, θ)− Z̄1,i(x, θ)

)}2

= O(h2) + h2ξO

(
n−1∑
m=1

{α(m)}1−ξ−2(1−ξ)/(2+δ)

)
+O(nh4)

= o(1)

uniformly in
{

(xT , θ)T : ||x−x0||2 + |θ− θ0| ≤ n−1/3
}

for all i = 1, · · · , d+ 1, implying
that

1√
n

n∑
t=1

{
Zt(x, θ)− Z̄t(x, θ)

}
= op(1) as n→∞ (5.14)

uniformly in
{

(xT , θ)T : ||x− x0||2 + |θ − θ0| ≤ n−1/3
}

.
For any constant λ ∈ <d+1 \{0}, it follows from C1) that

{
λT Z̄t

(
x0, θ0

)}
is a strictly

stationary α-mixing sequence with αλT Z̄(m) = O(am) as m → ∞. Hence, using the
Central Limit Theorem for α-mixing sequence (e.g., see Rosenblatt (1956)), (5.5) in
Theorem 5.1 holds and

1√
n

n∑
t=1

λT Z̄t(x0, θ0)
w→ N

(
0,λT Σ̄λ

)
as n→∞.

Using the Cramér-Wold device, we have that

1√
n

n∑
t=1

Z̄t(x0, θ0)
w→ N(0, Σ̄) as n→∞. (5.15)
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Decomposing

1

n

n∑
t=1

{
Z̄t(x, θ)− Z̄t(x0, θ0)− Γ(x, θ) + Γ(x0, θ0)

}
=

1

n

n∑
t=1

{
Z̄t(x, θ)− Z̄t(x0, θ)− Γ(x, θ) + Γ(x0, θ)

}
+

1

n

n∑
t=1

{
Z̄t(x0, θ)− Z̄t(x0, θ0)− Γ(x0, θ) + Γ(x0, θ0)

}
:= I1 + I2,

similar to the proofs of Lemmas 1 and 2 in Chen (2008), one can show that

I1 = op
(
||x− x0||2 + |θ − θ0|

)
and I2 = op

(
||x− x0||2 + |θ − θ0|

)
as n→∞

uniformly in
{

(xT , θ)T : ||x− x0||2 + |θ − θ0| ≤ n−1/3
}

. That is,

1

n

n∑
t=1

{
Z̄t(x, θ)− Z̄t(x0, θ0)− Γ(x, θ) + Γ(x0, θ0)

}
= op(||x− x0||2 + |θ − θ0|) (5.16)

as n→∞ uniformly in
{

(xT , θ)T : ||x− x0||2 + |θ − θ0| ≤ n−1/3
}
. Therefore, it follows

from (5.8)–(5.16) that

0 =
1√
n

n∑
t=1

Zt(x̂cvar, θ̂cvar)

=
1√
n

n∑
t=1

Z̄t(x̂cvar, θ̂cvar) + op(1)

=
1√
n

n∑
t=1

Z̄t(x0, θ0) +
√
n

1

n

n∑
t=1

{
Z̄t(x̂cvar, θ̂cvar)− Z̄t(x0, θ0)

}
+ op(1)

=
1√
n

n∑
t=1

Z̄t(x0, θ0) +
√
n
{

Γ̄(x̂cvar, θ̂cvar)− Γ̄(x0, θ0)
}

+ op(1)

=
1√
n

n∑
t=1

Z̄t(x0, θ0) +
√
n ˙̄Γ(x0, θ0)

(
x̂Tcvar − xT0 , θ̂cvar − θ0

)T
+ op(1),

which implies (5.6). Equation (5.7) follows from (5.6) and the fact that

√
n(α̂cvar −α0) =

√
n
x̂cvar − x0

1Tx0

− x0

(1Tx0)2
1T
√
n(x̂cvar − x0) + op(1).

Next, we study SD risk preferences, which is equivalent to studying variance risk
preferences, and thus, we assume ϕ = var from now on. Clearly, the portfolio risk
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position is measured by the following non-parametric estimator:

R̂v(x) =
1

n

n∑
t=1

xTXtX
T
t x−

(
1

n

n∑
t=1

xTXt

)2

,

which is convex, homogeneous, and differentiable. Using τ = 2 for the variance risk
measure and taking λ = 1 in Theorem 4.1, we estimate x and α by

x̂v = arg min
x∈<d++

1

2
R̂v(x)−

d∑
i=1

bi log xi and α̂v = x̂v/1
T x̂v.

That is, x̂v and θ̂v = θ(x̂v) solve the system of equations for x > 0:{
1
n

∑n
t=1Xt,i{xTXt − θ} − bi

xi
= 0 for i ∈ {1, 2, . . . , d} ,

1
n

∑n
t=1 x

TXt = θ.
(5.17)

On the other hand, the true values x0 and θ0 = θ(x0) solve

E[Z̃t(x, θ)] = 0 for x > 0, (5.18)

where Z̃t(x, θ) =
(
Z̃t,1(x, θ), . . . , Z̃t,d+1(x, θ)

)T is given by{
Z̃t,i(x, θ) = Xt,i{xTXt − θ} − bi

xi
for all i = k ∈ {1, 2, . . . , d} ,

Z̃t,d+1(x, θ) = xTXt.

Define Γ̃(x, θ) = EZ̃1(x, θ) and denote the partial derivatives of Γ̃(·, ·) by ˙̃Γ(·, ·) on
<d ×<.
The following regularity conditions are required for deriving the asymptotic behavior
of our estimators, namely x̂v, θ̂v, and α̂v. These conditions are formalized below:

C5) {Xt}∞t=−∞ is a strictly stationary α-mixing sequence with αX(m) = O
(
am
)

for
some a ∈ (0, 1) as m→∞. Furthermore, assume E||Xt||4+δ

2 <∞ for some δ > 0.

C6) (xT0 , θ0)T is the unique solution to (5.18).

The next theorem provides the result for deriving inference when risk preferences are
ordered by the SD/variance risk measure.

Theorem 5.2. Assume conditions C5) and C6) hold and consider SD/variance risk preferences,
i.e., ϕ = var. Then, there is a positive definite matrix Σ̃ such that

E
{
Z̃1(x0, θ0)Z̃T

1 (x0, θ0)
}

+ 2 lim
n→∞

n−1∑
m=1

E
{
Z̃1(x0, θ0)Z̃T

1+m(x0, θ0)
}

= Σ̃. (5.19)
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Furthermore, as n→∞,

√
n
(
x̂Tv − xT0 , θ̂v − θ0

)T w→ N
(
0, ˙̃Γ−1(x0, θ0)Σ̃

( ˙̃Γ−1(x0, θ0)
)T)

, (5.20)

and
√
n(α̂v −α0)

w→ N

(
0,

Σ̃0

(1Tx0)2
− 2x01

T Σ̃0

(1Tx0)3
+
x01

T Σ̃01x
T
0

(1Tx0)4

)
, (5.21)

where Σ̃0 is the first d× d matrix of ˙̃Γ−1(x0, θ0)Σ̃
( ˙̃Γ−1(x0, θ0)

)T
.

Proof. It follows from the same arguments after (5.14) in the proof of Theorem 5.1, and
thus, no specific derivations are further required.

6. Real data analyses

Our empirical analysis focuses on the US equity market from 01/01/2000 to
31/12/2023, and we identify ten structural break periods for the S&P500 index, which
are explained in Appendix B. We also collect historical daily stock returns (with adjust-
ments for dividends) for all S&P500 constituents between year 2000 and 2023, from the
Wharton Research Data Services according to the unique PERMNO code in the CRSP
dataset. A total of 1, 070 companies have been part of S&P500 during these 24 years
and we identify the exact dates when these companies entered and/or exited S&P500.
Our numerical section includes two data analyses: i) a fixed opportunity set of 441
companies selected from the 1, 070 S&P500 constituents (that continue to exist over the
24-year period) for which portfolios are rebalanced at the beginning of each structural
break; this data analysis is recalled as DA441 from now on; ii) a dynamic opportu-
nity set of almost2 500 companies that consists of the full set of S&P500 constituents
(that changes quarterly) for which portfolios are rebalanced at the beginning of each
quarter; this data analysis is recalled as DA500 from now on. We choose DA500 to test
the impact of survivorship bias in DA441, but the two data analyses show consistent
results and both illustrate good performances of the RP-like portfolios. Section 6.1
provides a description of our long-only portfolios considered in DA441 and DA500,
while Section 6.2 compares the performance of these portfolios.

6.1. Long-only Portfolios Description

We investigate six long-only portfolios in our real-data analyses. The first one is EW
that became a standard benchmark portfolio since the seminal paper of (DeMiguel
et al., 2009b); since we focus on US stocks, the S&P500 benchmark index is included
in our comparisons as well. The second and third portfolios are standard RP portfo-
lios (namely, RP-SD and RP-CVaR95%), while the fourth and fifth portfolios (namely,

2Rarely, there are fewer than 500 companies in S&P500 constituents at the beginning of a quarter.
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IWP-SD and IWP-CVaR95%) are discussed in Section 3.3. Further details about the six
portfolios are given below:

1. EW portfolio (also known as 1/N ) with weights 1
d
1;

2. RP-SD, an RP portfolio with ϕ = SD by solving (4.2) withR = R̂v;

3. RP-CVaR95%, an RP portfolio with ϕ = CVaR95% by solving (4.3) withR = R̂cvar;

4. IWP-SD, an inverse weighted portfolio as in (3.12) with ϕ = SD;

5. IWP-CVaR95%, an inverse weighted portfolio as in (3.12) with ϕ = CVaR95%, where
the assets’ CVaR95% are estimated via our R̂cvar estimator;

6. S&P500.

Note that only Portfolios 2 and 3 require bespoke algorithms, which are briefly ex-
plained. Specific numerical methods are required for finding the RP-SD and RP-
CVaR95% portfolios. Recall that Theorem 4.1 provides two general methods – logarith-
mic barrier and logarithmic constraint – that could be applied to finding RB/RP portfo-
lios. The logarithmic barrier formulation is used for SD risk preferences; Spinu (2013)
is the first reference to show that RB-SD portfolios could be found via an efficient con-
vex algorithm and it is implemented in the riskParityPortfolio R package that we rely
on in our implementations. The logarithmic constraint formulation is useful to effi-
ciently find RP-CVaR portfolios, while RB-CVaR (that are not RP-CVaR, i.e., b 6= 1

d
1)

could be found only via general convex programming algorithms. RP-CVaR involves
a hyperbolic constraint such as−1

d

∑d
k=1 log(αk) ≤ 0, which is second-order cone repre-

sentable; thus, we compute the RP-CVaR95% via (4.3) with c = 0 andR = R̂cvar through
the efficient SOCP implementation described in Mausser and Romanko (2018). Note
that the multiple integrals in the R̂cvar estimator are approximated via the Monte-
Carlo method; further, the Epanechnikov kernel function and a bandwidth choice of
hk = 0.2n−1/3 for all k ∈ {1, 2, . . . , d} is used for R̂cvar estimations.
We now describe the rebalancing details for our portfolios except for S&P500 that is
quarterly rebalanced by construction. DA441 has the same opportunity set over all ten
periods and the five portfolios (EW, RP-SD, RP-CVaR95%, IWP-SD and IWP-CVaR95%)
are rebalanced at the beginning of each structural break period. The portfolios’ initial
weights for each period are calculated by considering the historical stock returns from
01/01/2000 up to the day just before the first day of the considered period.
DA500 mimics the dynamic process of S&P500 and the three portfolios (EW, RP-SD
and IWP-SD) are reset at the beginning of each quarter from 2002 to 2023 (88 quar-
ters). The three portfolios (in a given quarter) consist of the S&P500 constituents from
the first day of that quarter. The portfolios’ initial weights are usually calculated by
considering the historical stock returns from 01/01/2000 up to the day just before the
first day of the considered quarter. Note that some S&P500 constituents (newly entries
on NYSE or NASDAQ stock exchanges) have shorter periods of historical data than
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most of the S&P500 constituents (well-established firms), and these unequal sample
sizes may lead to an ill conditioned sample covariance matrix estimate that may not
even be positive definite if one uses the full information to estimate the pairwise co-
variance estimates based on the overlapping available data. We have not had such an
issue in any of the 88 quarters, otherwise we would have used the covariance matrix
shrinkage estimator (Ledoit and Wolf, 2004). RP-SD and IWP-SD have been imple-
mented this way, since IWP-SD requires only the information from the main diagonal
of the sample covariance matrix estimate. The main difference between DA500 and
DA441 is that companies may be delisted in between two rebalancing points since
S&P500 constituents could be delisted from the stock exchange during a quarter3 and
thus, we adjust the three portfolios accordingly. Specifically, we hold the investment
part corresponding to a delisted company as cash (without earning any interest) from
the trading day the company is delisted until the end of the quarter, i.e., the daily re-
turns are zero. Thus, EW, RP-SD and IWP-SD account for delisted firms in this fashion.
We could not compute RP-CVaR since such calculations require complete data and the
only option would have been to consider the overlapping observation period for all
500 firms to compute the RP-CVaR initial weights. However, that would lead to results
with low power as some new entries to S&P500 may be new entries on NYSE or NAS-
DAQ stock exchanges with an observation period as short as one month. Therefore,
RP-CVaR95% and IWP-CVaR95% portfolios are not included in DA500.

6.2. Portfolio performance comparisons

This section provides the DA441 and DA500 portfolio performances. Multiple per-
formance measures are reported in Tables 3 and 4 for DA441 and DA500, respectively;
we compute the mean and SD return, Sharpe ratio (SR), skew-Adjusted Sharpe ratio (skew-
Adj SR) and Calmar ratio performance measures. Note that skew-Adj SR incorporates
a penalty factor for negative skewness, while the Calmar ratio is defined as the ratio
of annualized return over the absolute value of the maximum drawdown of an invest-
ment computed over each structural break period. A diversification index (DI) when
the risk preferences are ordered by SD, SD(αTX)/

∑d
k=1 αkSD(Xk), is computed in Ta-

ble 3. DI-SD is not tabulated in Table 4 since its average (over all quarters in a given
period) would not be informative measure of performance; note that the lower (but
positive) the DI-SD value is, the more diversified portfolio is.
The S&P500 daily return dynamic displayed in Figure B.2 and the summary S&P500
statistics (see Tables 3 or 4) show that the ten periods could be grouped as follows:
i) stable market conditions (Periods 2, 6 and 7), ii) moderately volatile market condi-

3On average, less than three (eleven) firms are delisted per quarter (year) during the period 2002–
2023; the fourth quarter of 2007 is an outlier with 10 firms being delisted at that time, and year 2007 is
an outlier as well with 27 firms being delisted in that year.
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tions (Periods 5, 8 and 10) and iii) turbulent market conditions (Periods 1, 3, 4 and
9). Our main findings are summarized in Tables 3 and 4, and their interpretations are
discussed across the three groups of market conditions. Figure 1 is a granular like-
for-like comparison of DA441 and DA500 in terms of SRs that helps to conclude that
the overall trends on the two data analyses are very similar, and thus, our conclu-
sions in DA441 are not affected by a possible survivorship bias that one may infer. To
test the statistical significance of whether two portfolios are different (in terms of SR),
we compute two-sided p-values with the circular-bootstrapping methods (Ledoit and
Wolf, 2008); these computations rely on the R package PeerPerformance, i.e., function
sharpeTesting with nBoot = 500 bootstrap resamples and a block length in the circular
bootstrap of bBoot = 5.
Under turbulent market conditions – Periods 1, 3, 4 and 9 – Tables 3 and 4 show that
EW has a slightly better performance in crises periods (Periods 4 and 9) in terms of
expected returns than the other portfolios, which is not the case for all other perfor-
mance measures; RP portfolios have a slightly better performance than EW in periods
with very poor market performance (Periods 1 and 3) and RP strategies are shown to
be very effective to reduce the overall loss or to even make a marginal profit while all
other portfolios are loss-making. Further, the SR tests could not differentiate between
EW and RP portfolios (by means of large p-values) in any of these four periods, which
is also confirmed by Figure 1.
The mirror extreme case is under stable market conditions, which is seen in Periods
2, 6 and 7. We should note that Period 7 includes the US market dive in 2018; fur-
ther, Period 7 was affected by the slowdown in global economic growth that was also
signified by the historical low crude oil prices, which makes this period atypical and
different than the other two. We note that RP-SD and RP-CVaR95% are well diversified
and show a slightly better performance than their IWP equivalent, but outperform EW
and S&P500 in Periods 2 and 6, while EW and RP-SD are statistically indistinguishable
in the atypical Period 7 which is confirmed by Figure 1. Further, the SR tests compar-
ing EW and RP-SD show small p-values for DA500 (p = 0.024 and p = 0.01 for Periods
2 and 6) and not as conclusive for DA441 (p = 0.09 for the first part of Period 2 – from
22/04/2003 until 11/01/2005 – and p = 0.04 for Period 6).
Under moderately volatile market conditions seen in Periods 5, 8 and 10, the conclu-
sions are in line with the previous trends. Period 10 is affected by high inflation that
triggers a stock market decline, and while EW shows a slightly better performance
than the other portfolios, the SR tests conclude no statistical evidence to differentiate
any of the six portfolios; this matches our findings for periods under turbulent market
conditions, which is sensible given the traits of Period 10. The global economic fac-
tors were more favorable in Period 5 than Period 8, which explains why RP and IWP
outperform EW in these two periods, though EW and RP-SD are statistically distin-
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Figure 1: Smoothed annualized SRs (weekly averages) for DA441(first and third rows) and DA500 (second and fourth
rows) are illustrated for EW, RP-SD and S&P500 over the ten structural break periods.

guishable only in DA500 for Period 5 (p = 0.05).
We conclude this section by recalling Theorem 4.1 c) where it is shown that RP-SD
has a lower volatility than EW. This property is guaranteed to hold only for in-sample
comparisons, but DA441 and DA500 show that this property holds in all settings for
any out-of-sample comparisons except for DA441 for Period 2 though RP-SD has a
higher SR than EW in that particular instance.

7. Conclusions

This paper discusses many aspects of RB/RP portfolios. We start by redefining them
and argue why the new definition has more practical value than the classical defini-
tion. Based on that novel definition, we show the existence and uniqueness of long-
only RB/RP portfolios under the least restrictive conditions possible that exist in the
literature and replicate the same results for long-short RB/RP portfolios, which have
not been previously attempted. We found that RB/RP are always less risky than the
equivalent GEW (that is the same as EW for long-only portfolio setting). We coined
a new very large class of portfolios and we named it as GWMC, and it is shown that
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Table 3: Various performance measures in DA441
Structural Portfolio Mean SD SD-SR skew-Adj Calmar DI-SD
Break SR Ratio
Period 1 EW -3.87% 0.2190 -0.1769 -0.2713 -0.2127 0.5068
01/01/2002 RP-SD 0.51% 0.1773 0.0286 -0.0591 -0.0448 0.4630
- RP-CVaR95% 0.45% 0.1746 0.0255 -0.0609 -0.0448 0.4551
21/04/2003 IWP-SD -1.80% 0.1976 -0.0908 -0.1833 -0.1445 0.5194

IWP-CVaR95% -1.85% 0.1982 -0.0935 -0.1861 -0.1474 0.5190
S&P500 -16.24% 0.2538 -0.6398 -0.6520 -0.5236 NA

Period 2 EW 27.90% 0.1436 1.9433 2.0291 2.2894 0.5466
22/04/2003 RP-SD 31.36% 0.1544 2.0312 0.5957 2.2050 0.6223
- RP-CVaR95% 30.14% 0.1478 2.0387 1.2813 2.3697 0.5938
05/10/2006 IWP-SD 25.85% 0.1303 1.9836 2.0498 2.4075 0.5445

IWP-CVaR95% 25.73% 0.1304 1.9730 2.0426 2.3945 0.5432
S&P500 12.68% 0.1139 1.1132 1.1165 1.5657 NA

Period 3 EW -4.69% 0.2096 -0.2238 -0.3251 -0.2338 0.5803
06/10/2006 RP-SD -3.46% 0.1962 -0.1766 -0.2732 -0.2065 0.5711
- RP-CVaR95% -3.41% 0.1993 -0.1710 -0.2690 -0.2047 0.5730
06/10/2008 IWP-SD -4.39% 0.2056 -0.2136 -0.3124 -0.2368 0.5876

IWP-CVaR95% -4.38% 0.2062 -0.2124 -0.3116 -0.2363 0.5882
S&P500 -10.26% 0.2052 -0.5002 -0.5628 -0.3587 NA

Period 4 EW 19.46% 0.3187 0.6105 0.4579 0.4044 0.6658
07/10/2008 RP-SD 17.84% 0.2938 0.6071 0.4617 0.4023 0.6590
- RP-CVaR95% 18.12% 0.2946 0.6152 0.4697 0.4092 0.6612
03/08/2011 IWP-SD 17.79% 0.3077 0.5783 0.4302 0.3644 0.6689

IWP-CVaR95% 17.83% 0.3075 0.5799 0.4318 0.3664 0.6696
S&P500 10.27% 0.2846 0.3609 0.2237 0.1786 NA

Period 5 EW 21.94% 0.1912 1.1476 0.6989 1.4359 0.6726
04/08/2011 RP-SD 21.11% 0.1734 1.2175 0.6743 1.7233 0.6610
- RP-CVaR95% 21.23% 0.1735 1.2238 0.6768 1.7414 0.6603
20/03/2014 IWP-SD 21.40% 0.1787 1.1976 0.6820 1.6301 0.6762

IWP-CVaR95% 21.43% 0.1789 1.1984 0.6835 1.6310 0.6757
S&P500 16.54% 0.1692 0.9776 0.6907 1.2757 NA

Period 6 EW 5.99% 0.1347 0.4448 0.3752 0.4560 0.5588
21/03/2014 RP-SD 7.60% 0.1279 0.5942 0.5188 0.6827 0.5575
- RP-CVaR95% 7.71% 0.1281 0.6019 0.5262 0.6951 0.5586
05/01/2016 IWP-SD 7.15% 0.1296 0.5522 0.4798 0.6188 0.5691

IWP-CVaR95% 7.12% 0.1297 0.5487 0.4765 0.6153 0.5688
S&P500 5.10% 0.1375 0.3707 0.3020 0.3431 NA

Period 7 EW 14.96% 0.1273 1.1755 0.8052 1.4977 0.4994
06/01/2016 RP-SD 14.14% 0.1145 1.2343 0.7968 1.4652 0.4747
- RP-CVaR95% 14.29% 0.1149 1.2433 0.7966 1.4827 0.4757
19/10/2018 IWP-SD 14.15% 0.1176 1.2025 0.7857 1.4457 0.4911

IWP-CVaR95% 14.15% 0.1178 1.2011 0.7858 1.4451 0.4909
S&P500 12.03% 0.1174 1.0243 0.6628 1.1811 NA

Period 8 EW 14.64% 0.1464 1.0004 0.8278 0.8801 0.5150
20/10/2018 RP-SD 14.87% 0.1331 1.1178 0.8781 0.9835 0.4902
- RP-CVaR95% 15.06% 0.1336 1.1274 0.8830 0.9966 0.4918
02/01/2020 IWP-SD 15.05% 0.1363 1.1037 0.8716 0.9820 0.5080

IWP-CVaR95% 15.06% 0.1365 1.1031 0.8719 0.9820 0.5078
S&P500 14.80% 0.1517 0.9754 0.7938 0.8892 NA

Period 9 EW 22.53% 0.2851 0.7901 0.4854 0.5042 0.6323
03/01/2020 RP-SD 20.45% 0.2646 0.7730 0.4761 0.4880 0.6247
- RP-CVaR95% 20.56% 0.2635 0.7803 0.4777 0.4954 0.6236
14/01/2022 IWP-SD 20.76% 0.2729 0.7606 0.4749 0.4771 0.6385

IWP-CVaR95% 20.84% 0.2733 0.7628 0.4748 0.4787 0.6383
S&P500 20.96% 0.2588 0.8097 0.4469 0.5665 NA

Period 10 EW 4.01% 0.1894 0.2116 0.1182 0.1130 0.5636
15/01/2022 RP-SD 3.30% 0.1731 0.1909 0.1052 0.0979 0.5471
- RP-CVaR95% 3.31% 0.1734 0.1912 0.1054 0.0978 0.5467
31/12/2023 IWP-SD 3.53% 0.1772 0.1992 0.1117 0.1070 0.5612

IWP-CVaR95% 3.56% 0.1776 0.2006 0.1129 0.1081 0.5609
S&P500 3.08% 0.1958 0.1572 0.0597 0.0503 NA

Portfolio performance is illustrated for DA441 (within each period and performance criterion), where the “best” portfolio is in
bold and underlined. (Column 1) includes the ten periods identified by the Bai-Perron test. (Column 2) shows the considered
portfolios. The remaining columns include some specific portfolio performance measures: (Column 3) Annualized Mean
(Return); (Column 4) Annualized SD; (Column 5) Annualized Sharpe Ratio (SR) based on SD; (Column 6) Annualized
skew-adjusted SR, which adjusts for negative skewness; (Column 7) Calmar Ratio; (Column 8) DI based on annualized SD
estimates.
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Table 4: Various performance measures in DA500
Structural Portfolio Mean SD SD-SR skew-Adj Calmar
Break SR Ratio
Period 1 EW -10.73% 0.2613 -0.4106 -0.4844 -0.3603
01/01/2002 RP-SD -7.83% 0.2178 -0.3594 -0.4300 -0.3155
- IWP-SD -8.37% 0.2366 -0.3539 -0.4306 -0.3313
21/04/2003 S&P500 -16.24% 0.2538 -0.6398 -0.6520 -0.5236
Period 2 EW 20.32% 0.1255 1.6201 1.6769 2.5035
22/04/2003 RP-SD 20.45% 0.1120 1.8248 1.9003 3.1634
- IWP-SD 19.77% 0.1154 1.7132 1.7852 2.9527
05/10/2006 S&P500 12.68% 0.1139 1.1132 1.1165 1.5657
Period 3 EW -9.03% 0.2215 -0.4078 -0.4934 -0.3283
06/10/2006 RP-SD -7.09% 0.2040 -0.3475 -0.4362 -0.2995
- IWP-SD -8.05% 0.2159 -0.3729 -0.4600 -0.3188
06/10/2008 S&P500 -10.26% 0.2052 -0.5002 -0.5628 -0.3587
Period 4 EW 19.06% 0.3225 0.5911 0.4393 0.3734
07/10/2008 RP-SD 16.96% 0.2912 0.5822 0.4404 0.3650
- IWP-SD 17.09% 0.3032 0.5636 0.4181 0.3392
03/08/2011 S&P500 10.27% 0.2846 0.3609 0.2237 0.1786
Period 5 EW 20.23% 0.1865 1.0848 0.7107 1.6169
04/08/2011 RP-SD 19.90% 0.1698 1.1718 0.6978 1.7967
- IWP-SD 19.87% 0.1745 1.1388 0.6963 1.7279
20/03/2014 S&P500 16.54% 0.1692 0.9776 0.6907 1.2757
Period 6 EW 6.03% 0.1373 0.4389 0.3694 0.4160
21/03/2014 RP-SD 7.87% 0.1310 0.6009 0.5279 0.6352
- IWP-SD 7.30% 0.1320 0.5530 0.4826 0.5705
05/01/2016 S&P500 5.10% 0.1375 0.3707 0.3020 0.3431
Period 7 EW 12.13% 0.1220 0.9940 0.7160 1.1749
06/01/2016 RP-SD 11.62% 0.1133 1.0263 0.7344 1.1414
- IWP-SD 11.88% 0.1148 1.0344 0.7275 1.1741
19/10/2018 S&P500 12.03% 0.1174 1.0243 0.6628 1.1811
Period 8 EW 14.45% 0.1474 0.9804 0.8186 0.8991
20/10/2018 RP-SD 14.69% 0.1367 1.0747 0.8618 0.9744
- IWP-SD 14.96% 0.1384 1.0808 0.8673 0.9982
02/01/2020 S&P500 14.80% 0.1517 0.9754 0.7938 0.8892
Period 9 EW 21.99% 0.2855 0.7702 0.4894 0.5032
03/01/2020 RP-SD 19.75% 0.2674 0.7387 0.4696 0.4680
- IWP-SD 20.65% 0.2759 0.7488 0.4801 0.4794
14/01/2022 S&P500 20.96% 0.2588 0.8097 0.4469 0.5665
Period 10 EW 2.91% 0.1934 0.1506 0.0544 0.0549
15/01/2022 RP-SD 2.40% 0.1788 0.1340 0.0449 0.0459
- IWP-SD 2.67% 0.1823 0.1463 0.0556 0.0565
31/12/2023 S&P500 3.08% 0.1958 0.1572 0.0597 0.0503

Portfolio performance is illustrated for DA500 (within each period and performance criterion), where the “best” portfolio is in
bold and underlined. (Column 1) includes the ten periods identified by the Bai-Perron test. (Column 2) shows the considered
portfolios. The remaining columns include some specific portfolio performance measures: (Column 3) Annualized Mean
(Return); (Column 4) Annualized SD; (Column 5) Annualized Sharpe Ratio (SR) based on SD; (Column 6) Annualized
skew-adjusted SR, which adjusts for negative skewness; (Column 7) Calmar Ratio.

39



EW, RB/RP, norm constrained and shortsale-constrained portfolios are elements of the
GWMC set; these special cases had shown good out-of-sample performance, and our
numerical analyses have confirmed that RP portfolios could better balance the trade-
off between risk and return.
Our empirical evidence has shown that RP outperforms EW under favorable mar-
ket conditions and it is no worse than EW otherwise; these comparisons are made
in terms of SR, portfolio volatility and other performance measures. RP also reduces
the portfolio losses under extremely unfavorable market conditions. This means that
RP portfolios are not only risk conservative strategies, but also have a good trade-off
between risk and return that pays off during adverse and booming market conditions.
Statistical inferences for RB portfolios with time dependent data are also employed for
CVaR and SD risk preferences, which is the first attempt in the existing literature; a
by-product of our work is the introduction of a novel CVaR non-parametric estimator.
Finally, we believe that further research is needed to understand the GWMC set of
portfolios and its current mathematical characterization is briefly discussed as this is
another by-product of the research questions raised in this paper.
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Appendix A. RB for elliptically distributed risks

Appendix A.1. Some theoretical results

Long-only and long-short RB portfolios are investigated by assuming a specific para-
metric distribution of portfolio loss (not returns) X, namely the elliptical family due to
its tractability of aggregating the risks (McNeil et al., 2015). The elliptical class includes
multivariate Gaussian and multivariate t- families of distributions.
We work with a multivariate random vector X that is elliptically distributed. This
is signified by X ∼ Ed

(
µ,Σ, ψ

)
, where µ is the location vector, Σ is the covariance

matrix, and ψ is its generator. This means that X and µ + AZ have the same joint
distribution, where A ∈ <d×k such that Σ = AAT , and Z is a k-dimensional spherical
random vector with generator ψ, i.e. E

(
exp{itTZ}

)
= ψ(tT t) for all t ∈ <k (McNeil

et al., 2015). Without loss of generality, we assume that all variances are finite, and in
turn, the elliptical distribution is precisely determined by the triplet (µ,Σ, ψ

)
.

Proposition Appendix A.1 provides an extension of Theorem 8.28 in McNeil et al.
(2015) that determines closed-form risk measurements for elliptically distributed risks.

Proposition Appendix A.1. Let X ∼ Ed
(
µ,Σ, ψ

)
. If ϕ is a homogeneous risk measure of

order τ > 0 that is shift invariant, then

ϕ(αTX + c) =
(
αTΣα

)τ/2
ϕ(Z1) for any c ∈ <, (A.1)
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and if ϕ is a homogeneous risk measure of order τ > 0 that is translation invariant, then τ = 1

and

ϕ(αTX + c) = c+αTµ+
(
αTΣα

)1/2
ϕ(Z1) for any c ∈ <, (A.2)

where Z1 is a spherical random variable with generator ψ.

Proof. Theorem 8.28 (1) of McNeil et al. (2015) gives that αTX and ||αTΣα||2Z1 +αTµ

have the same distribution, which immediately justifies (A.1) if ϕ is shift invariant.
The other case, when ϕ is translation invariant, is also true if τ = 1. The latter follows
from the fact that

ϕ(tY + tc) = tτϕ(Y + c) = tτ (ϕ(Y ) + c) and ϕ(tY + tc) = ϕ(tY ) + tc = tτϕ(Y ) + tc

hold for any t > 0 and c ∈ <, which in turn implies that τ = 1.
If X ∼ Ed

(
µ,Σ, ψ

)
with ϕ being a shift invariant and homogeneous risk measure of

order τ > 0 such that ϕ(Z1) 6= 0, then (A.1) implies that finding RB portfolio strategies
relative to ϕ is equivalent to solving in α ∈ ∆d

αk

d∑
i=1

αiΣik = bkα
TΣα for all k ∈ {1, 2, . . . , d} , (A.3)

for any given b ∈ ∆++
d , where Σik represents the (i, k)th entry of Σ. Equation (A.3) tells

us that all shift invariant and homogeneous risk measures of order τ > 0 lead to the
same set of RB portfolio strategies for a fixed b ∈ ∆++

d if the assets in a short position
are pre-specified. If ϕ is a translation invariant and homogeneous risk measure, then
the latter conclusion holds under the condition that the aggregated risk position does
not change. These are summarized in Corollary Appendix A.2 below.

Corollary Appendix A.2. Let X ∼ Ed
(
µ,Σ, ψ

)
and b ∈ ∆++

d . Further, let ϕ and ϕ̃ be two
homogeneous risk measures of order τ > 0 and τ̃ > 0, respectively such that ϕ(Z1) 6= 0 and
ϕ̃(Z1) 6= 0.

a) Assume that ϕ and ϕ̃ are shift invariant risk measures. If α∗ ∈ RB(b, ϕ), then α∗ ∈
RB(b, ϕ̃).

b) Assume that ϕ and ϕ̃ are translation invariant risk measures such that τ = τ̃ = 1 and
ϕ(Z1) = ϕ̃(Z1). If α∗ ∈ RB(b, ϕ), then α∗ ∈ RB(b, ϕ̃).

Corollary Appendix A.2 shows that the set of RB portfolios is invariant with respect to
the choice of risk measure whenever the loss returns are jointly elliptically distributed.
For example, the set of RB portfolios based on either variance, standard deviation,
skewness (skew), kurtosis (kurt), excess risk (measured by either MS/VaR or CVaR) over
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the expected return, or any other risk measure that is a function of centred moments
would lead to the same RB set, i.e., if

ϕ ∈
{
var, SD, skew, kurt,VaRp − E,CVaRq − E

}
for any 0 < p, q < 1. (A.4)

This invariance result shows that RB/RP portfolios balance the risk across individual
assets in the same way across all shift invariant and homogeneous risk preferences.
The same result follows when the risk preferences are modelled by translation invari-
ant and homogeneous risk measures of order τ = 1 provided that the aggregate risk
for these RB portfolios are equal. A similar result was shown in Asimit et al. (2019)
in the context of capital allocation, where VaR and CVaR based capital allocations are
found to be equivalent if the same total amount of capital ought to be allocated.

Appendix A.2. Some examples

The idealized elliptical assumption in Corollary Appendix A.2 is a good illustration
of the inherit properties of RB/RP portfolios. The next example given as Example Ap-
pendix A.3 shows that Corollary Appendix A.2 does not hold if the elliptical assump-
tion is removed.

Example Appendix A.3. Assume that d = 2, X2 = X3
1 almost surely and X1 ∼ N(0, 1),

i.e. X1 and X2 are comonotonic; by definition, X1 and X2 are comonotonic if there exists a
non-decreasing function f such that Pr(X2 = f(X1)) = 1. By construction, (X1, X2) is not
elliptically distributed.

We now discuss the long-only portfolios for Example Appendix A.3 if the budgeting
target vector is b = (b, 1 − b) with 0 < b < 1, then the RB-SD long-only portfolio,
denoted as α∗SD(b), is the solution of

x2
1 + 3x1x2 = b

(
x2

1 + 6x1x2 + 15x2
2

)
such that x ∈ ∆++

2 ,

since cov(X1, X2) = 3 and var(X2) = 15. Thus,

α∗SD1 (b) =
24b+ 3−

√
−24b2 + 24b+ 9

20b+ 4
and α∗SD2 (b) = 1− α∗SD1 (b),

for any 0 < b < 1. Particularly, the unique RP-SD long-only portfolio is achieved with
α∗SD1

(
1
2
1
)

= 0.7948.
Since ϕ ∈ {VaR,CVaR} are comonotonic additive risk measures, we have that ϕ(X1 +

X2) = ϕ(X1) +ϕ(X2) for any comonotonic risks X1 and X2 (Föllmer and Schied, 2011).
Thus, the RB-CVaR95% long-only portfolio, denoted as α∗CVaR95%(b), is the solution of

x1CVaR95%(X1) = b
(
x1CVaR95%(X1) + x2CVaR95%(X2)

)
such that x ∈ ∆++

2 .
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Particularly, the unique RP-CVaR95% long-only portfolio is achieved with
α
∗CVaR95%
1

(
1
2
1
)

= 0.8247, since CVaR95%(X1) = ψ
(
VaR95%(X1)

)
and

CVaR95%(X2) =
1

0.05

∫ 1

0.95

(
VaRs(X1)

)3
ds = ψ

(
VaR95%(X1)

)(
2 +

(
VaR95%(X1)

)2
)
,

where ψ(·) := 1
0.05
√

2π
e−
·2
2 on <. Similarly, one may find that the unique RP-VaR95%

long-only portfolio, denoted as α∗VaR95%
(

1
2
1
)
, is achieved with α∗VaR95%

1

(
1
2
1
)

= 0.7301.
Since E[X1] = E[X2] = 0, then α∗CVaR95%

(
1
2
1
)
∈ RB

(
1
2
1,CVaR95% − E

)
∩ ∆++

2 and
α∗VaR95%

(
1
2
1
)
∈ RB

(
1
2
1,VaR95% − E

)
∩ ∆++

2 . Note that X2 is a non-linear function
of X1, and for this reason, SD does not capture the perfect association between the
two assets4 though the RP-SD weights are closer to those of RP-CVaR95% than RP-
VaR95%. Further, CVaR95% is tail sensitive, and the strong association between the
assets is better captured by CVaR95% (than VaR95%) that invests 82.47% (instead of
73.01%) in the less risky asset X1; similarly, RP-SD balances the risk better than RP-
VaR95% by partially capturing the strong association.
These show how different the portfolios in RB

(
1
2
1, SD

)
∩ ∆++

2 are from those in
RB
(

1
2
1,CVaR95% − E

)
∩ ∆++

2 and RB
(

1
2
1,VaR95% − E

)
∩ ∆++

2 , even though all three
risk preferences are based on shift invariant risk measures. This confirms that Corol-
lary Appendix A.2 a) may not hold if the elliptical assumption is invalid.

Appendix B. Determination of structural breaks

The US equity market data from 01/01/2000 to 31/12/2023 is used in our data analy-
ses, and its evolution could be captured by the S&P500 index dynamic.
We determine the ten periods in the S&P500 index that were delineated by various
important events. The structural break points are identified with the test from Bai and
Perron (2003) by using the S&P500 daily returns. Their timestamps are provided in the
top of Figure B.2, while the bottom of Figure B.2 illustrates the accumulated S&P500
return over the same period in order to show the effectiveness of that test.
These ten structural breaks could be explained by the following events: April 21, 2003
is the end of the dot-com aftermath period; October 5, 2006 is shortly after the housing
prices fell by more than 6% in 20 large metropolitan areas, according to Standard &
Poor’s/Case-Shiller indices; October 6, 2008 is about two weeks after the collapse of
Lehman Brothers; August 3, 2011 indicates the time when US and global stock markets
crashed upon Standard & Poor’s credit rating downgrade of the US sovereign debt
from AAA to AA+, the first time in history the United States was downgraded; March

4Note that (X1, X2) are comonotonic, which is the strongest positive association (Nelsen, 2006), but
such non-linear perfect dependence is not captured by the linear correlation measure of association as
corr(X1, X2) = 0.7746.
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S&P500 (01/01/2000 − 31/12/2023)
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Figure B.2: Structural break points for the S&P500 time series based on a Bai-Perron test.

20, 2014 marks the Maidan revolution in Ukraine; January 5, 2016 relates to the period
August 2015-2016 stock market sell off when S&P500 and Dow Jones dropped twice by
more than 10%; October 19, 2018 is associated with the loss of nearly 2 trillion dollars
in the US stock markets leading to S&P500 losing about 20% by the end of that year;
January 2, 2020 marks the beginning of the COVID-19 period; finally, January 14, 2022
is the ending of a two-year COVID-19 period with signals of high inflation.
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