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Abstract
Evolutionary graph theory has considerably advanced the process of modelling the
evolution of structured populations, which models the interactions between individu-
als as pairwise contests. In recent years, these classical evolution models have been
extended to incorporate more realistic features, e.g. multiplayer games. A recent series
of papers have developed a new evolutionary framework including structure, mul-
tiplayer interactions, evolutionary dynamics, and movement. However, so far, the
developed models have mainly considered independent movement without coordi-
nated behaviour. Although the theory underlying the framework has been developed
and explored in various directions, several movement mechanisms have been pro-
ducedwhich characterise coordinatedmovement, for example, herding. By embedding
these newly constructed movement distributions, within the evolutionary setting of
the framework, we demonstrate that certain levels of aggregation and dispersal benefit
specific types of individuals. Moreover, by extending existing parameters within the
framework, we are not only able to develop a general process of embedding any of the
considered movement distributions into the evolutionary setting on complete graphs
but also analytically produce the probability of fixation of a mutant on a complete
N-sized network, for the multiplayer Public Goods and Hawk–Dove games. Also, by
applying weak selection methods, we extended existing previous analyses on the pair-
wiseHawk–DoveGame to encompass themultiplayer version considered in this paper.
By producing neutrality and equilibrium conditions, we show that hawks generally do
worse in our models due to the multiplayer nature of the interactions.
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1 Introduction

Evolutionary game theory has demonstrated its versatility as a multifaceted mathe-
matical modelling tool for understanding the evolution of, and behaviour of biological
populations. The classical evolutionary models focused on infinite, well-mixed popu-
lations, assuming equal probabilities of interaction among individuals, often involving
pairwise contests (Maynard Smith 1982). In certain scenarios, pairwise interactions
were absent, and instead, games involving the entire population, known as "against
the field" games, were modelled. The original models of evolutionary game theory
introduced the concept of an individual’s fitness being dependent on the frequency of
their types within the population. These models employed either a static analysis of
Evolutionarily Stable Strategies (ESS) (Maynard Smith and Price 1973), the biolog-
ical extension of the Nash Equilibrium from classical game theory (Nash 1951) or a
dynamic analysis involving the replicator equation (Hofbauer et al. 1979; Hofbauer
and Sigmund 1998; Taylor and Jonker 1978) which examined how the population
composition changes over time.

While simple models such as the sex ratio game have been utilised to explain
biological phenomena (Darwin 1874; Fisher 1930; Hamilton 1967), they rely on the
unrealistic assumption of infinite populations as real populations are finite in size.
Consequently, the Moran process (Moran 1958, 1962) was adapted to incorporate
frequency-dependent fitness, leading to the study of evolutionary processes in finite
populations. More recently, the approach of modelling the evolution of finite popu-
lations through a graph, where individuals exclusively interact with their neighbours,
was introduced as evolutionary graph theory (Lieberman et al. 2005). In this frame-
work, individuals are situated on the vertices of a graphical structure and engage in
pairwise contests with their connected neighbours. These interactions determine the
individuals’ fitness and govern the population’s dynamics during the evolutionary
process. The significant advantage of evolutionary graph theory lies in its ability to
consider a wide range of population structures (Antal and Scheuring 2006; Broom
and Rychtar 2008; Maciejewski 2014; Hindersin and Traulsen 2014; Cuesta et al.
2017). Both population structure and evolutionary dynamics play influential roles in
population evolution (Santos and Pacheco 2006; Broom and Rychtar 2008; Voorhees
2013; Tkadlec et al. 2020) in fact, heterogeneous structures are pivotal in facilitating
the formation of clusters of cooperators (Li et al. 2013).

However, a limitation of evolutionary graph theory is its pairwise modelling of
interactions rather than considering a more realistic arbitrary multiplayer game sce-
nario, thus lacking adaptability and realism. To address this limitation, recent research
papers have developed a comprehensive modelling approach that allows for the study
of structured population evolution involving multiplayer contests which we denote
as the Broom–Rychtár̂ framework (Broom and Rychtar 2012; Broom et al. 2015,
2019). Evolutionary multiplayer games were first introduced by Palm (1984) and fur-
ther developed by, by Broom et al. (1997), see also Bukowski and Miekisz (2004)
and Gokhale and Traulsen (2014). These contests between individuals employ stan-
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dard games such as Public Goods, Hawk–Dove, and Prisoner’s Dilemma (Ohtsuki
et al. 2006; Santos et al. 2008; van Veelen and Nowak 2012; Hadjichrysanthou
et al. 2011; Broom and Rychtar 2013). A typical application of the framework is
in Broom et al. (2015) which utilises the territorial raider model (an extension of
the Broom–Rychtár̂ framework) as the underlying structure of the population and
models the interactions between individuals using three games: Public Goods, Hawk–
Dove, and Fixed Fitness under a standard BDB dynamics (invasion process) where
an individual is selected to reproduce first with probability proportional to their fit-
ness relative to the total population. Following this, the death event occurs where the
offspring randomly replaces another member of the parent’s group (see Sect. 2.3).
Within this model, individuals move independently i.e. without any influence from
past movements (history-independent) nor from other individuals’ movements (row-
independent). This type of movement has been frequently considered (Broom et al.
2015; Pattni et al. 2017; Schimit et al. 2019, 2022) alongside history-dependent move-
ment models (Pattni et al. 2018; Erovenko et al. 2019). What has yet to be considered
is row-dependent movement, where individuals move in a manner in which they take
into account the current movement decisions of other individuals within the popula-
tion. Broom et al. (2020) developed various mechanisms that represent coordinated
movement. These realistic movement mechanisms characterise behaviours displayed
by animals (Schmidt et al. 1997; Buhl et al. 2006; Marker et al. 2008) which was
explained in detail in Broom et al. (2020).

The purpose of this paper is to develop a methodology to enable us to embed these
newly developed row-dependent movement models from Broom et al. (2020) into the
evolutionary setting of Broom et al. (2015) on complete graph structures. By doing
this, we explore the consequences coordinated movement has on the evolution of
cooperation.

2 The Broom–Rychtár̂ framework

The modelling framework originated in Broom and Rychtar (2012) and is a very
general and versatilemethodology.However, we omit the intricate details which can be
found in Broom and Rychtar (2012). The framework contains three core components:
the population structure, the evolutionary dynamics and the multiplayer games. We
first explain the fully independent model of this framework in which individuals move
independently of each other and of any past movements and a particular case from the
framework, the territorial raider model introduced in Broom and Rychtar (2012) and
further developed (Broom et al. 2015; Pattni et al. 2017).

2.1 The fully independent model

We first describe the fully independent model. Consider a population of N individuals
I1, ..., IN who can move around M places P1, ..., PM . The probability of individual
In being at place Pm is denoted by pnm ; see Fig. 1 for a visual representation using a
bi-partite graph. Individuals move along the graph according to their own movement
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Fig. 1 The fully independent model from Broom and Rychtar (2012). There are N individuals who are
distributed over M places such that In visits place Pm with probability pnm . Individuals interact with one
another when they meet, for example, I1 and I2 can interact with one another when they meet in P1

distributions and form groups on the vertices of the graph. Let G denote a group of
individuals, then χ(m,G), the probability of group G forming at place Pm is given by

χ(m,G) =
∏

i∈G
pim

∏

j /∈G
(1 − p jm). (1)

When a group of individuals is formed, they interact with one another via amultiplayer
game. Individual In receives a payoff that depends upon the composition of the group
G itself and the place Pm the group is present in, denoted by Rn,m,G . Individual In’s
average fitness is calculated by considering all payoffs they can receive averaged over
all possible groups and places,

Fn =
∑

m

∑

G
n∈G

χ(m,G)Rn,m,G . (2)

2.2 The territorial raider model

Different examples using the fully independent model were developed in Broom and
Rychtar (2012). The most significant of these is the territorial raider model, see Fig. 2,
which has been extensively explored (Broom et al. 2015; Pattni et al. 2017; Schimit
et al. 2019). This model acts as a basis for the work in this paper. In the territorial raider
model, there are N individuals who can move and interact with other individuals at M
places. It is assumed individual Ii lives at place Pm throughout the entire evolutionary
process. In the original territorial raider model from Broom and Rychtar (2012) there
was a one-to-one correspondence between individuals and places, although this was
generalised in Pattni et al. (2017). The amount of time an individual spends on their
home vertex is governed by a global home fidelity parameter h, which measures the
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preference individuals have towards staying on their home vertex. The higher h is,
the more likely individuals are to stay at home and, therefore, less likely to move
and interact with other individuals and vice-versa. Given an individual Ii with d
neighbouring places, the probability of Ii staying home is h/(h + d) and moving
is d/(h + d). If h = 1, this represents an indifference individuals have between all
reachable places and, therefore, equally likely to visit any of them.

2.3 Evolutionary dynamics

An evolutionary graph (Lieberman et al. 2005; Nowak 2006; Pattni et al. 2015; Möller
et al. 2019) is a graph with an associated weighted adjacency matrixW = (wij)where
wi j ∈ [0, 1) is referred to as the replacement weight which governs which members
of the population can replace each other. Every vertex vn of the evolutionary graph
is occupied by exactly one individual and if wi j > 0, then the individual on vi can
replace the current individual on v j by placing a copy of itself onto the vertex. The
weights are often selected to ensure that the evolutionary graph is strongly connected
i.e. there is a finite path between vertices vi and v j .

A general set of evolutionary dynamics for the Broom–Rychtár̂ framework, analo-
gous to the corresponding evolutionary graph theory dynamics,was developed inPattni
et al. (2017). We note that this process is an idealisation of the original evolutionary
process described in Broom et al. (2015), which is represented by the simulations in
Sect. 5, allowing for analytical results to be considered. It was identified in Pires et al.
(2023) that under certain circumstances, such as highly variable fitnesses or large
self-weights, there can be significant differences between these outcomes for some
dynamics, including BDD (but not BDB).

In this paper,we consider twodynamicswhere selection acts ondifferent events. The
first is BDB, a birth-death process where selection acts on the birth event, otherwise
known as an Invasion Process (Lieberman et al. 2005) which has been frequently
utilised in evolutionary graph theory, and adjusted to the modelling framework in
Broom et al. (2015).

First, an individual Ii is selected to reproduce with probability proportional to their
fitness i.e.

bi = Fi∑
k Fk

. (3)

The offspring then replaces another individual I j with probability

di j = wi j∑N
k=1 wik

. (4)

Theother dynamic process isBDD(Masuda2009),where selection acts on the death
event. In this evolutionary dynamic, individual Ii is randomly selected to reproduce
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with probability

bi = 1

N
. (5)

The offspring then replaces another individual I j with probability

di j = wi j F
−1
j∑N

k=1 wik F
−1
k

. (6)

The replacement weights within this paper are based on the assumption that an
offspring of individual Ii will replace individual I j with probability proportional to
the time Ii and I j spend together. The offspring of Ii can also replace its parent Ii , and
it does so with probability proportional to the time Ii spends on its own. When i �= j
The probability of individuals Ii and I j meeting is given by summing all χ(m,G)

over all m such that Ii , I j ∈ G. We assume that Ii spends an equal amount of time
with all other members of group G, therefore we weight by 1/(|G| − 1) as there are
|G| − 1 other members of the group. However, when i = j , we sum χ(m,G) over all
m such that G = {i}. Here there is no need to weight χ(m,G) because Ii is alone. The
replacements weights are thus given as

wi j =

⎧
⎪⎪⎨

⎪⎪⎩

∑
m

∑
G

i, j∈G

χ(m,G)
|G|−1 , i �= j,

∑
m

χ(m, {i}), i = j .
(7)

As our work in this paper is only focused on complete graphs, di j is the same for all
individuals, as all individuals are equally likely to be replaced i.e. we can simply write
di j as d (and sometimes as dN , when we consider the influence of varying population
size on d, since d depends upon N ).

2.4 The fixation probability

To determine the likelihood of the evolutionary success of a particular strategy within
a finite population, we calculate its fixation probability. The fixation probability is
regarded as the most significant quantity of a finite evolutionary process. From Broom
et al. (2015), the fixation probability of a type A individual is defined by the following
recurrence relation

pA
S =

∑

S′⊂{1,2,...,N }
PSS′ pA

S′ , (8)

with boundary conditions

pA
∅

= 0, (9)
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pA
N = 1. (10)

Here pA
S is the fixation probability of a type A individual from the state S, where S

represents the composition of the population with a certain number of type A individ-
uals. PSS′ is the probability of the population transitioning from state S which contains
a given number of type A individuals. to a new state, S’ which contains a new number
of type A individuals.

2.5 Multiplayer games in structured populations

We used two different multiplayer games to describe the interactions between indi-
viduals. The Public Goods and Hawk–Dove games. Each of the games describes a
contest between two different types of individuals, A and B. Using these games, we
will describe an evolutionary process of a single type A individual within a population
of Bs and vice-versa to determine the fixation probability for both types of individuals.

2.5.1 The multiplayer public goods game

The multiplayer public goods game consists of two types of individuals, cooperators
(A) and defectors (B). The cooperator pays a cost of C which is shared among the
rest of the group as a reward V but not shared among the individual who paid the cost.
Defectors pay no cost and cooperators pay a cost even when they are alone. After a
game is played between a group of a cooperators and b defectors, the payoffs for a
cooperator and defector are respectively

RA
a,b =

⎧
⎨

⎩

R − C, a = 1,

R − C +
(

a−1
a+b−1

)
V , a > 1,

(11)

RB
a,b =

⎧
⎨

⎩

R, a = 0,

R +
(

a
a+b−1

)
V , a > 0.

(12)

where R is the background payoffs individuals receive unrelated to the games. The
public good game presented here is one of many variations with other cooperative
strategy games being included in Archetti and Scheuring (2012).

2.5.2 The multiplayer Hawk–Dove game

The Hawk–Dove game was developed by Maynard Smith and Price (1973) and
attempts to explain the occasional use of violence in contests over valuable resources
between animals such as in populations of red deer (Clutton-Brock and Albon 1979).
A represents the Hawk strategy, and B the Dove strategy. When individuals meet, they
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compete for a reward V . If all individuals in the group are Doves, then they all split
the reward equally. If any Hawks are present, then the Doves concede and the Hawks
fight, with the winner receiving the reward of V while the losing Hawks pay a cost of
C . All individuals receive a background payoff of R, a reward gained from activities
unrelated to the contests. In a group of a Hawks and b Doves, the average payoffs are
given by

RA
a,b = R + V − (a − 1)C

a
, (13)

RB
a,b =

{
R, if a > 0,

R + V
b , if a = 0.

(14)

3 Row-dependent movement

Row-dependent movement refers to the type of movement where the moving indi-
vidual is influenced by the movement of other individuals. Various row-dependent
movement mechanisms which characterise herding and dispersal behaviour were
developed (Broom et al. 2020). These models serve two purposes; firstly to repre-
sent certain movement mechanisms that lead to a particular distribution of individuals
over the places, and secondly to model movement distributions with certain coordi-
nated movement properties. We will consider a target apriori distribution, denoted
by am , representing the probability of a randomly selected individual going to any
particular place. Our processes will be designed to achieve this target whilst moving
non-independently, for example tomaximise herding or dispersal. Processes where the
target distribution matches the apriori distribution were called faithful (Broom et al.
2020).

For example, for the territorial raider model on a complete graph with M vertices,
the apriori distribution for any individual staying at home is h

h+M−1 and moving to a

specific neighbouring vertex is 1
h+M−1 . More generally, we can select an appropriate

apriori distribution to any given movement scenario.
Wefirst consider twomovement processeswhere individuals are placed sequentially

based on their utility functions (Broom et al. 2020). It is assumed that there is a set of
utility functions {Um} based upon several place characteristics. The form of the utility
functionUm varies according to themovement distribution governing the evolutionary
process. The first type of movement we consider is deterministic movement, where
individuals simply move to the location which provides them with the most utility.
The second is the stochastic counterpart, in the form of a polya-urn model, where an
individual will have a higher probability of moving to a place that provides them with
a larger utility. Then we consider a more novel type of movement, that simultaneously
places all moving individuals.

3.1 Deterministic movement: follow themajority

In this process, individual allocation to places is decided sequentially. This represents
a simultaneous movement of the group, however, so that the first step of the process is
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to assign the ordering uniformly at random over all possible orderings (or if simulating
a large population, make selection among the remaining individuals at each step of
the sequence with uniform probability).

The type of deterministic movement we consider is the follow the majority move-
ment process where the first individual moves to a place according to its apriori
distribution and subsequent individuals simply move to the location containing the
largest number of individuals. This mathematically translates to any increasing func-
tion, but the simplest example was considered (Broom et al. 2020) which we also use.
The utility an individual receives from place Pm is given by

Um = Ym + 1, (15)

where Ym is the current number of occupants on place Pm .
For a well-mixed process (equivalent to a territorial raider model on a complete

graph with h = 1) this leads to all individuals being in a single group, the location of
which follows the apriori distribution. We note that if h �= 1 we need a variant of this
process to achieve the target apriori distribution, as we see in Sect. 4.1.

3.2 Probabilistic movement: the polya-urn

Here, we consider a stochastic counterpart to follow the majority, where individuals
move to a place Pm with probability proportional to their utility function i.e. an indi-
vidual moves to place Pm with probability Um/

∑
k Uk . This probabilistic model is

represented by a standard urn model (Johnson and Kotz 1977), where balls are num-
bered 1, 2, ..., M and placed into an urn and then sequentially drawn out at random.
The nth ball with number m being drawn out correspond to the nth individual mov-
ing to place Pm . As utility positively correlates with place occupancy, an extra ball
with the same number is placed back into the urn alongside the original ball. This is
represented by the following utility function

Um = Bam + Ym, (16)

where B ∈ (0,∞) corresponds to the initial number of balls in the urn, and am is the
apriori probability distribution. The scaling parameter B moderates the dependency
social aggregation has on population density. Bam represents the initial number of
balls in the urn corresponding to place Pm . Note that as we are simply selecting the
place following a probability distribution rather than actually picking out balls, there
is no requirement for this number to be integer-valued.

3.3 The wheel and basemodel

Whereas in the previous sections, an underlying movement mechanism had sequen-
tially allocated individuals onto the places, the wheel and base model assumes a
simultaneous allocation of all individuals partaking in the movement process. We
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Fig. 2 The territorial raidermodel of Broom andRychtar (2012), Broom et al. (2015). a Population structure
is represented using a graph where vertices represent individuals and places. Individual In lives in place Pn
and can visit any neighbouring places. For example, the home place of I1 is P1 but can visit places P2,P3,
and P4. b An alternative visualization on a bi-partite graph where individuals and places are separated. c
An example of the territorial raider model for a well-mixed population of three individuals. The probability
any individual stays at home is h

h+2 and the probability they move to a neighbouring place is 1
h+2

suppose a base disc of perimeter 1 is divided into M place P1, ..., PM in the shape
of wedges where Pm has perimeter length am (see Fig. 3a) such that

∑
m am = 1.

On top of the base disc, is an upper disc, the wheel representing the N individuals in
the form of N spikes; see Fig. 3b. The angle between individuals Ii and I j is given
by 2πθi j , where θi j ∈ [−1/2, 1/2] can possibly be determined via a probability dis-
tribution. Note that θi j = −θ j i . When the angles between the spikes have been set,
the wheel is spun and rotates by an angle of θ selected uniformly at random. Then,
individual Ii moves to place Pm if and only if the corresponding spike lands above the
corresponding segment; see Fig. 3c.

4 Theoretical results

In this section, we consider our theoretical results. Initially, we describe a generalised
movement method that ensures we can achieve our apriori target for h �= 1. We then
consider explicit fixation probability formulae for specific cases.

4.1 A generalisedmovement modelling approach

Our analysis aims to extend the existing territorial raider model to include other types
of movement distributions whilst ensuring the other constituent parts of the model
remain the same, that is, the population structure, the games played, and the evo-
lutionary dynamics. By considering the home fidelity parameter and the number of
connections an individual has on a complete graph,we can develop a general procedure
that allows us to embed any of the considered row-dependent movement models into
the evolutionary setting of the territorial raidermodel on complete networks. In the fol-
lowing, we describe a method of combining a movement process of the type described
in Sect. 3 (which we refer to as following the process) with a simple additional process
to achieve our apriori targets.

The procedure involves deriving a probability distribution that accounts for the var-
ious movement choices available to individuals within the population. This includes
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both those who follow the process and those who do not, with the available actions
for the latter group depending on the value of h. Specifically, if h > 1, this indicates
a preference for remaining at home; h = 1 represents an indifference between an
individual’s home vertex and their neighbouring vertices; and h < 1 shows a pref-
erence for moving elsewhere. We incorporated these scenarios within the probability
distribution.

Consider a complete graph where there are M places.

• If h > 1, then an individual can either partake in the process and move via the
movement mechanism with probability M

h+M−1 or they do not move and stay at

their home vertex with probability h−1
h+M−1 .• If h = 1, then every member of the population plays the process.

• If h < 1, then an individual can either move via the process with probability
Mh

h+M−1 or they move to a random non-home place with probability (M−1)(1−h)
h+M−1 .

Incorporating this probability distribution into themodel ensures that all individuals
within the population achieve the target distribution. We show how this distribution
explicitly satisfies the apriori targets. If h > 1, the probability of an individual occu-
pying their home vertex is h−1

h+M−1 + 1
M ( M

h+M−1 ) = h
h+M−1 and the probability of an

individual being elsewhere is M
h+M−1 − 1

M ( M
h+M−1 ) = M−1

h+M−1 . If h < 1, the proba-

bility of an individual occupying their home vertex is 1
M ( Mh

h+M−1 ) = h
h+M−1 and the

probability of an individual being elsewhere is (M−1)(1−h)
h+M−1 + ( Mh

h+M−1 − 1
M

Mh
h+M−1 ) =

M−1
h+M−1 .

As opposed to the wheel which simultaneously allocates all individuals participat-
ing in the movement process, ensuring the apriori targets are hit, sequential movement
processes such as the polya-urn involve individuals moving later on in the process
being influenced by preceding individuals. Assuming all individuals have the same
distribution, it was proven that polya-urn process achieves the apriori targets (Broom
et al. 2020), therefore this property naturally extends to our movement modelling
approach. It is important to note that individuals who move via the movement mech-
anism are not influenced by the presence of individuals who did not move via the
mechanism. This condition was important to add to our approach as it ensures the
apriori targets are met. For example, an individual who moves via follow the majority,
will not follow those who did not partake in the movement process. They may end up
in the same place, but this will not be due to the movement mechanism process.

Regardless of the movement distribution chosen for the evolutionary model, we
define a standard practice to follow when computing the fitnesses of mutants and
residents within a well-mixed population, which can be characterised as follows: First,
outline the distribution that describes all conceivableways inwhichmembers of a given
population can move. For each specific movement case, establish the distribution that
defines all potential groupings that can emerge as a result of the considered movement
case. Then, average the payoffs from each case to obtain the average payoffs. These
average payoffs are used to compute the necessary evolutionary metrics such as the
fitnesses for deriving an analytical expression for the fixation probability.

As an example, we examined a well-mixed population of three individuals on a
complete triangle graph (see Fig. 2). Using the methodology developed in Sect. 4.1,
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Fig. 3 a M = 3 places with a1 = 1
3 , a2 = 1

6 , a3 = 1
2 . b Represents the N = 3 individuals as spikes.

The angle between individuals Ii and I j is given by 2πθi j . In this case, θ12 = 1
4 = −θ21. c Shows the

simultaneous placement of all individuals after the upper disc is spun on top of the base. In this case,
individuals I1, I2, I3 move to places P3, P1, P3 respectively

we calculated average group distributions for each of the movement mechanisms. For
h > 1, we show an example of the average group distribution for the follow the
majority process (the polya-urn and the wheel can be found in the appendix).

• P(all together) = 27+9(h−1)
(h+2)3

,

• P(I1 I2 together, I3 alone) = P(I1 I3 together, I2 alone) = P(I2 I3 together, I1
alone) = 2(h−1)2+6(h−1)

(h+2)3
,

• P(All individuals are alone) = 3(h−1)2+(h−1)3

(h+2)3
.

4.1.1 Fitness calculations

In our analysis, we evaluated the fitness of cooperators and defectors for any row-
dependent movement distribution by considering the following scenario: in an N -
sized, well-mixed population consisting of k cooperators and N − k defectors, what
proportion of reward V does a specific cooperator, denoted as C1 receive on average?

First, we examined what fraction of V that C1 receives from another cooperator
in the population, denoted as C2. We considered all possible groupings in which
C1 and C2 could be together. We arbitrarily stated that the probability of C1 and
C2 being together in a specific group with S others is γS+2. Therefore, C1 receives
precisely 1

S+1V from C2 which is then weighted by the probability of the group
forming, resulting in V γS+2

S+1 . This quantity is then summed to consider all possible

group sizes i.e. V
∑N−2

S=0
γS+2
S+1 . This expression represents the total probability of C1

and C2 being in the same group, which is also a measure of how likely they are to
interact, therefore, this was re-expressed as

∑N−2
S=0

γS+2
S+1 = dN . In other words, the

total proportion of V that C1 receives from C2 can be expressed as dNV .

FC = R − C + (k − 1)VdN and FD = R + kVdN . (17)

(17) expresses the fitness of a cooperator and defector for any movement mechanism
described in Sect. 3, captured by the dN term. The value of dN , measures the likelihood
of two individuals being in the same group, thus influencing their chances of receiving
rewards from each other.
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A similar, more complex calculation for fitnesses in the Hawk–Dove game is pro-
vided in the appendix, assuming only independent movement for simplicity. In an
N -sized, well-mixed population with k doves and N − k hawks, the fitnesses for the
Dove and Hawk are given by

R + τ(h, N , k)V , (18)

where

τ(h, N , k) =
((

h + N − 2

h + N − 1

)N−k

−
(

(h + N − 2)N−1

(h + N − 1)N

)

(
k(N − 1) + (N − k)(N − 1)

k

)
+ (N − k)(N − 1)(h + N − 2)N−k−1

k(h + N − 1)N−k

)
,

and

R + ω(h, N , k)V − ν(h, N , k)C, (19)

where

ω(h, N , k) =
(
1 + k

N − k
− (N − 1)(h + N − 2)N−k−1

(h + N − 1)N−k
− k(h + N − 2)N−k

(N − k)(h + N − 1)N−k

)
,

ν(h, N , k) =
(
k − N + 1

h + N − 1
− k

N − k
+ h(N − k − 1) + (N − k − 1)(N − 1)

(h + N − 1)2

+ k(h + N − 2)N−k

(N − k)(h + N − 1)N−k
+ (N − 1)(h + N − 2)N−k−1

(h + N − 1)N−k

)
.

(18) and (19) are the Dove’s and Hawk’s fitness respectively and the calculations for
these can be found in the appendix given by (41) and (42).

4.2 General fixation probability formulae

In this section, we consider only well-mixed populations, equivalent to a complete
graph with N = M on a territorial raider model. The fixation probability of a mutant
(M) in an N -sized, well-mixed population can be expressed by the standard formula
(Karlin and Taylor 1975).

ρM
1 = 1

1 + ∑N−1
j=1

∏ j
k=1

δk
βk

. (20)

Here βK and δK are the respective birth and death rates of the mutant, the ratio of
which we show to be equivalent to the fitnesses of the mutant and resident respectively
under BDB dynamics. The birth rate of a mutant corresponds to an offspring of the
mutant replacing a resident member of the population and vice-versa for the death rate.
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This mathematically translates to the following equation where there are k mutants
(M) and N − k residents (R).

δk

βk
= P(a resident replaces a mutant)

P(a mutant replaces a resident)
(21)

=
FR(dk(N−k))

kFM+(N−k)FR

FM(dk(N−k))
kFM+(N−k)FR

(22)

= FR
FM

. (23)

(20) now becomes

ρM
1 = 1

1 + ∑N−1
j=1

∏ j
k=1

FR
FM

. (24)

This result means that under a complete graph and BDB dynamics, for any particular
game, we need only substitute the average fitnesses of the mutant and resident to
determine the fixation probability. Using a similar approach, if there are k individuals
in the set of mutants K, and N − k in the set of residents L the corresponding ratio of
the death and birth rates under BDD is

δk

βk
= P(a resident replaces a mutant)

P(a mutant replaces a resident)

=

(
1
N wi j F

−1
M(k(N−k))

∑
z∈K

wi z F
−1
M+∑

z∈L
wi z F

−1
R

)

(
1
N w j i F

−1
R (k(N−k))

∑
z∈K

w j z F
−1
M+∑

z∈L
w j z F

−1
R

)

=

(
N − k + (k + w∗) FR

FM

)

(
k + (N − k + w∗) FMFR

) ,

where w = wi j = w j i , ws = wi i = w j j and w∗ = ws−w
w

.
Therefore, under BDD dynamics, the fixation probability of a single mutant (20) is

expressed as

ρM
1 = 1

1 + ∑N−1
j=1

∏ j
k=1

(N−k+(k+w∗) FR
FM )

(k+(N−k+w∗) FM
FR )

. (25)

With the fitnesses calculated, we can directly substitute them into the fixation prob-
ability of a mutant on a complete N -sized network under BDB dynamics (24) and
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BDD dynamics (25). By substituting (17) and (18) into (24) respectively, we have that
the fixation probability of a mutant cooperator and dove under BDB dynamics are
respectively given by

ρA
1 = 1

1 + ∑N−1
j=1

∏ j
k=1

R+kVdN
R−C+(k−1)VdN

, (26)

ρB
1 = 1

1 + ∑N−1
j=1

∏ j
k=1

R+ωV−νC
R+τV

. (27)

Similarly, by substituting (17) and (18) into (25), the fixation probability of amutant
cooperator and dove, under BDD dynamics are respectively given by

ρA
1 = 1

1 + ∑N−1
j=1

∏ j
k=1

(N−k+(k+w∗) R+kVdN
R−C+(k−1)VdN

)

(k+(N−k+w∗) R−C+(k−1)VdN
R+kVdN

)

, (28)

ρB
1 = 1

1 + ∑N−1
j=1

∏ j
k=1

(N−k+(k+w∗) R+ωV−νC
R+τV )

(k+(N−k+w∗) R+τV
R+ωV−νC )

. (29)

4.3 Weak selection

The concept of selection intensity to consider situations in which the game exerts a
minor influence on the evolutionary process was considered and the rule of 1/3 was
established (Taylor et al. 2004) and states that selection favours type A fixating if
the internal equilibrium point is less than 1/3. This general rule was considered for
the Hawk–Dove game and it was found that if V

C > 2
3 , then selection favours the

fixation of the dove. It is worth noting that this analysis only considered pairwise
contests between individuals therefore, we have extended this analysis to encompass
the multiplayer Hawk–Dove game from our model, allowing us to explore the effects
multiplayer interactions have on the evolution of cooperation.We considered the effect
weak selection has on the fixation formulae in Sect. 4.2 by assuming R is very large
compared to V and C i.e. the game has little influence in the evolutionary process.

4.3.1 The public goods game

We first considered the cooperator’s fixation probability under BDB. Consider the
expression inside the product term of (26).

R + kVdN
R − C + (k − 1)VdN

� 1 + VdN + C

R
, (30)
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so (26) now becomes

1

1 + ∑N−1
j=1 (1 + VdN+C

R ) j
. (31)

The term inside the summation can be approximated by the following,

(
1 + VdN + C

R

) j

� 1 + j

(
VdN + C

R

)
. (32)

Therefore, (31) becomes

1

1 + ∑N−1
j=1 (1 + j( VdN+C

R ))
, (33)

which simplifies to

1

N + (
VdN+C

R )
∑N−1

j=1 ( j)
= 1

N

(
1

1 + N−1
2R (VdN + C)

)

�
1

N

(
1 − N − 1

2R
(VdN + C)

)
. (34)

From (34), as the parameter dN increases, the situation becomes increasingly
unfavourable for the mutant cooperator due to the defector’s advantageous position.
The defector can receive an additional reward without incurring any cost because,
from their perspective, there is an extra cooperator within the population from whom
they will receive this benefit. Conversely, the cooperator does not have this advan-
tage as they receive no share from their own contributions. With the growing value
of dN , the likelihood of the mutant cooperator interacting with defectors rises, further
reinforcing the defector’s advantageous position.

We also considered the cooperator’s fixation probability under BDD dynamics. By
applying similar weak selection methods to (28), we have

1

N

(
1 − (N + 2w∗)(N − 1)

2R(N + w∗)
(VdN + C)

)
. (35)

(35) is an approximation of the fixation probability of the mutant cooperator under
BDD dynamics.

4.3.2 The Hawk–Dove game

We carried out a similar, more complicated calculation for considering the dove’s
fixation probability which can be found in the appendix. Using the dove’s fixation
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probability (27), a calculation was done to determine the dove’s neutrality condition
by setting the dove’s fixation probability to equal 1

N i.e. ρB
1 = 1

N .

V = ( 12 − 1
e )

( 1e (γ − 1 − f (h)) + 1)
C, (36)

where f (h) = H [N − 1,

(
h+N−1
h+N−2

)k

] − ln(N − 1) and H [N − 1, a] = ∑N−1
k=1

ak
k

For varying h, the neutrality condition is approximately given byC = 1.11V which
means that under our models, hawks are generally worse off compared to doves as
the cost does not need to be raised as significantly in the classical models for hawks
and doves to be doing equally well. This intuitively makes sense as larger groups are
generally bad for hawks who are more likely to encounter competition and, therefore,
incur a greater cost due to a larger presence of other hawks in their game interactions.
We also applied weak selection methods to the dove’s fixation probability under BDD
dynamics which can be found in the appendix. We saw that the dynamics do not affect
the dove’s neutrality condition.

The BDD approximations for the fixation probabilities of the cooperator (35) and
dove (64) have a similar form to their respective BDB approximations (34), (51). If
w∗ = 0, then the approximations are equal. In otherwords, if the self-weights are equal
to all other weights, then under weak selection, the fixation probability of a mutant
cooperator or dove is the same regardless of whether selection acts on the first or
second event. Other dynamics were considered and their functionality was explained
in Pattni et al. (2017), such as the DBD dynamics where death acts first and selection
acts on this event. It was found that the results of DBD and BDB were identical. If the
self-weights are the same as all other weights, then implementing DBD is equivalent
to BDD; therefore, BDD is the same as BDB.

A general condition for the fixation probability of a type A mutant in a type B
population is greater than the fixation probability of a type B mutant in a type A
population was established in Tarnita et al. (2009) given by

σa + b > c + σd. (37)

where σ is the structure coefficient of the process. The value of σ depends on both
the graph and the updating rule, but not on the values a, b, c and d (which are the
payoffs to the pairwise matrix game) for example. For regular graphs with degree k
and N � k, we have σ = k+1

k−1 . Using this analysis for the pairwise Hawk–Dove game,
it was shown that in an infinite, well-mixed population (k → ∞), hawks and doves
do equally well when V = 2C . We also extended this analysis to our models under
the assumption of an infinite, well-mixed population, where hawks and doves interact
with one another in arbitrary group sizes rather than limiting pairwise interactions.

By considering the fitness of a dove and hawk in an infinite, well-mixed population
with a proportion of p doves, we were able to extend the analysis from Tarnita et al.
(2009) by introducing a multiplayer Hawk–Dove game. By using the substitution
p = k

N , and then assuming N → ∞, the fitnesses of a dove (18) and hawk (19) are
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respectively given by

R +
(
ep − 1

ep

)
V , (38)

R +
(
1 − ep−1

1 − p

)
V −

(
ep−1 − p

1 − p

)
C . (39)

By equating these two fitnesses together and solving for V
C , we have

V

C
= ep(ep−1 − p)

(1 − ep−1)(ep) − (ep − 1)(1 − p)
. (40)

For each value of p, (40) provides the corresponding equilibrium ratio of V
C . Our

point of interest is at p = 1
2 where both doves and hawks are doing equally well.

This equilibrium condition is given by V
C = 0.688 i.e. C = 1.453V which supports

our previous neutrality condition for a dove (36), that in a multiplayer game context,
hawks are generally doing worse than in the traditional pairwise game analysis.

5 Numerical results

For considering higher populations on larger graphs, we carried out computational
methods to simulate such processes as analytically carrying themoutwould be imprac-
tical. The computational methods are the same as the ones carried out in Schimit et al.
(2019) except here, the simulations are carried out on much simpler, complete net-
works, and individuals move via our approach developed in Sect. 4.1.

One simulation is defined as follows:

• The chosen complete network is formed using the iGraph library (Csardi and
Nepusz 2006).

• The mutant is randomly placed on one of the nodes.
• Every individual probabilisticallymoves (or not) from their home vertex according
to the parameters of the model. Groups are formed and multiplayer games are
played where R = 10,C = 1 and V = 2 for both of the considered games.

• Individuals return to their home patches.
• Each individual moves (or not) and groups are formed. Here, no games are played,
instead, the dynamic process occurs. One individual is selected to reproduce an
offspring that will replace another random member of the group (or its parent if
the parent is alone). Selection either acts on the birth or death even according to
the chosen dynamics.

• The simulation terminates once the population is entirely composed of a single
type of individual.

• This process is averaged over 1,000,000 runs to minimise statistical variability.

As discussed in Sect. 2.3, the assumptions in this section are slightly different to
Sect. 4. In the simulations, a single step is used in the contests and in the dynamic pro-
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cess i.e. individuals only move once. The theoretical section assumes average weights
corresponding to where individuals move many times to accrue average fitnesses and
weights.

Figure 4 illustrates the fixation probability of a mutant cooperator under polya-
urn processes for BDB and BDD dynamics on complete decagon and pentadecagon
graphs. As h approaches 0.1, the fixation probability remains constant, attributed to
individuals randomly moving to non-home places.

The cooperator’s fixation probability reaches its lowest point when h = 1 where
all members of the population must participate in the movement process, leading
to the formation of groups of varying sizes (depending on the type of movement
governing the process). This is disadvantageous for cooperators as they are more
likely to encounter defectors. The "follow the majority" process is the worst type of
movement for cooperators as it ensures all individuals partaking in the movement
process, herd together at the same place; therefore, ensuring that defectors receive
rewards from cooperators. As h tends to larger values, regardless of the movement
process, the cooperator’s fixation probability gradually increases because individuals
are more likely to remain on their own therefore, cooperators are highly unlikely to
interact with defectors, thus increasing their relative fitness.

Figure4 also shows plots of the fixation probability of the cooperator against B
(scaled to B

B+1 ). As B increases, the cooperator’s fixation probability increases. This
is attributed to the gradual shift in the movement mechanism from a deterministic
type (B = 0), where individuals simply move to the place containing the largest
number of individuals, to an independent type (B → ∞) where individuals move
randomly, without influence from other individuals. As B increases, individuals are
less likely to herd together therefore the relative difference in the average cooperator’s
and defector’s fitness gradually decreases, thus increasing the cooperator’s fixation
probability.

The cooperator’s fixation probability is higher under BDD dynamics because selec-
tion affects the second event. During the birth event, the probability of the cooperator
reproducing is simply 1

N (5) as opposed to the less favourable BDB dynamics where
the probability is proportional to the cooperator’s fitness (3). For large h, the fixa-
tion probability tends to 1

N shown in Fig. 4e, g. Here, individuals are mostly alone
or occasionally with another individual. If an alone individual is randomly selected
to reproduce, then its offspring will replace them. Suppose an individual within a
pair is randomly selected to reproduce. In that case, the other individual within the
pair is guaranteed to be replaced, thus rendering the influence of selection within the
replacement process irrelevant.

Furthermore, Fig. 4 shows that row-dependent movement has a more prominent
effect on the cooperator’s fixation probability when selection acts on the second event.
In Fig. 4e–h, there is a greater disparity in the fixation probabilities between the
different movement processes compared to Fig. 4a–d where there is a smaller effect.
Under BDD dynamics, even though cooperators are more likely to reproduce, they are
alsomore likely to be replaced (depending on themovement mechanism governing the
process). For instance, if individuals aremovingvia follow themajority andh = 1, then
all individuals herd together and cooperators are more likely to be replaced because
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Fig. 4 The fixation probability of a mutant cooperator in a population of defectors on complete decagon
and pentadecagon graphs under BDB and BDD dynamics for varying h under distinct polya-urn movement
processes, For a, c, e and g, we set B = 0 (follow the majority), B = 2, B = 6 and B = 10,000 (a
sufficiently large value to mirror independent movement). For b, d, f and h we set h = 0.5, h = 1, and
h = 10 and vary B
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of selection acting on the replacement event (6). Whereas under BDB dynamics, all
individuals within the group are equally likely to be replaced.

Figure 5 portrays the fixation probability of a mutant dove under distinct polya-urn
processes for BDB and BDD dynamics on the complete decagon and pentadecagon.
In these figures, as h approaches one, the dove’s fixation probability increases and
reaches its maximum when h = 1.

As all members of the population partake in the movement process when h =
1, hawks are more likely to interact with one another, incurring greater costs, thus
reducing their relative fitness. Therefore, in this game, follow the majority is the most
beneficial movement process for doves because this process forces all hawks partaking
in the movement process to interact with each other. As h increases, the dove’s fixation
probability decreases because hawks are more likely to stay on their home vertices
and, therefore, less likely to interact with each other, increasing their relative fitness.
As h becomes infinitely large, the dove’s fixation probability tends to 1

N regardless of
the dynamics. Hawks and doves will have the same fitness if they are always alone
therefore, selection does not affect the process. Also, Fig. 5 shows that as B increases,
the dove’s fixation probability falls. This occurs because as B increases, hawks are no
longer forced to group, thus their relative fitness gradually increases alongside B.

Furthermore, if selection acts on the second event, independent movement is no
longer the worst type of movement for doves. Instead, a polya-urn process (close to
independent movement) is the worst type of movement as shown in Fig. 5f, h, where
the value of B

B+1 reaches its lowest point slightly below 1 but begins to increase after.
This occurs due to the combined effects of the game and dynamics but this effect is
largely insignificant.

Figure 6 shows the fixation probability of a mutant cooperator under the wheel pro-
cess for both BDB and BDD dynamics on the complete decagon and pentadecagon.
The chosen values of theta remain consistent for each graph. θ = 0 represents the
follow the majority process, while θ = 2π

N signifies a near complete dispersal process
where all individuals are separated. Note that in our simulations, theta is rounded to
three decimal places to allow for a minimal degree of pairwise interaction between
individuals under this angle.Without this adjustment, the simulationwould fail to com-
plete as individuals would only replace themselves if they were always separated, thus
the evolutionary process would never reach extinction or fixation. θ = π

N corresponds
to an intermediary angle between complete herding and separation.

The trends depicted in Fig. 6 resemble those observed in the polya-urn in Fig. 4,
particularly concerning the influences of herding, dynamics, and the level of h have
on the cooperator’s fixation probability. However, the key finding from these figures
is that θ = 2π

N , provides the maximum fixation probability for the mutant cooperator
for all h. When h = 1 and θ = 2π

N , all individuals are nearly always alone. This leads
to an increase in the cooperator’s relative fitness, as they rarely provide any rewards
to defectors. Consequently, the fixation probability rises significantly at this point.
Figure 6e, g show that when θ = 2π

N or θ = π
N and h = 1, the fixation probability is

1
N because individuals are either alone or in a pair rendering selection insignificant as
fitness is negligible in these cases due to selection acting on the second event.
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Fig. 5 The fixation probability of a mutant dove in a population of hawks on complete decagon and
pentadecagon graphs under BDB and BDD dynamics for varying h under distinct polya-urn movement
processes, For a, c, e and g, we set B = 0 (follow the majority), B = 2, B = 6 and B = 10,000 (a
sufficiently large value to mirror independent movement). For b, d, f and h we set h = 0.5, h = 1 and
h = 10 and vary B

Figure 7 depicts the fixation probability of a mutant dove under the wheel process
for both BDB and BDD dynamics on the complete decagon and pentadecagon.

Figure 7a–d show that when h = 1 and θ = 2π
N , the dove’s fixation probability is

1
N despite selection acting on the first event. This occurs as nearly every member of
the population is separated, therefore individuals do not compete with each other over
resources. Therefore, both hawks and doves have the same fitness rendering selection
insignificant. When h = 1 and θ = π

N , the fixation probability is at its lowest. Under
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Fig. 6 The fixation probability of a mutant cooperator in a population of defectors on complete decagon
and pentadecagon graphs under BDB and BDD dynamics for varying h under distinct wheel movement
processes, For a, c, e and g, we set θ = 0 (follow the majority), θ = 2π

N (represents a near complete
dispersal process), θ = π

N . For b, d, f and h we set h = 0.5, h = 1 and h = 10 and vary θ
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Fig. 7 The fixation probability of a mutant dove in a population of hawks on complete decagon and pen-
tadecagon graphs under BDB and BDD dynamics for varying h under distinct wheel movement processes,
For a, c, e and g, we set θ = 0 (follow the majority), θ = 2π

N (represents a near complete dispersal process),
θ = π

N . For b, d, f and h we set h = 0.5, h = 1, and h = 10 and vary θ
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this angle, there are at most pairwise groups which is beneficial for hawks who incur
very small costs from the game interactions.

Also, Fig. 7 shows that follow the majority (θ = 0) gives a fixation probability
greater than 1

N . As there is a large native hawk population, they herd together leading
to them incurring significant costs, greatly reducing their relative fitness, therefore,
increasing the dove’s fixation probability. In the Hawk–Dove Game, it is clear that
herding favours the evolution of cooperation more than dispersal.

Below, we show a Table 1 summarising how the different movement processes
generally affect the mutant cooperator’s and dove’s fixation probability (FP).

6 Discussion

In this paper, we have developed the framework from Broom and Rychtar (2012), by
considering the evolution of structured populations on complete networks involving
multiplayer interactions where individuals move in a coordinated manner (row-
dependent movement). Specifically, we have extended the territorial raider model
developed by Broom et al. (2015) as we have devised a methodology to model an
evolutionary process where individuals move in a coordinated manner described by
the movement mechanisms developed by Broom et al. 2020. In previous models,
(Broom et al. 2015; Schimit et al. 2022) individuals moved independently irrespective
of howother individualsmoved. Othermodels (Pattni et al. 2018; Erovenko et al. 2019;
Pires et al. 2023; Erovenko and Broom 2024) involved the development of a Markov
movement model, where the movement of individuals depends upon the population’s
history. Hence, the model in this paper provides a different perspective on the move-
ment of individuals. In particular, we explored the relation between row-dependent
movement and the evolution of cooperation.

The main objective of this paper was to embed realistic coordinated movement
systems into a complete evolutionary setting and use different social dilemma games
to illustrate this as this has previously not been considered in modelling the evolution
of structured populations. In Krieger et al. (2017) the effects of an abstract type of
motion on the evolution of cooperation in structured populations were explored. In
the context of evolutionary graph theory, individuals swap or shuffle vertices on the
graph structure, independent of the reproductive events. They demonstrated that the
presence ofmotion can amplify or suppress selection depending on the graph structure.
For instance, motion suppresses selection on the cycle graph. However, it was also
shown that this type of motion did not change the population’s configuration on the
complete graph and, therefore, has no effects on the evolutionary dynamics. This,
however, differs from our results in this paper focused on complete graphs as we
have illustrated the several effects the movement mechanisms have on the evolution
of cooperation. However, the work done in our paper is largely different as individuals
move more realistically and can form multiplayer groups.

In the context of the Public Goods Game, we demonstrated that herding hinders
the evolution of cooperation as aggregation provides defectors with opportunities to
exploit cooperators in their contest interactions. Dispersal, however, increases the like-
lihood of cooperative behaviour evolving as defectors are less likely to be in groups
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Table 1 Fixation probabilities (FP) of cooperators and doves under different movement processes: follow
the majority (B = 0), polya-urn (increasing B), random movement (B → ∞), and the wheel (separation
angle)

Cooperator’s FP Dove’s FP

Follow the majority (B = 0) Minimum Maximum

Polya-Urn (increasing B) Increases Decreases

Random movement (B → ∞) Increases Minimum

The wheel (separation angle) Maximum Increases

containing cooperators and, therefore, cannot receive a benefit from their presence.
Ohtsuki et al. (2006) showed that, in general, birth-death processes do not favour the
evolution of cooperation. Consequently, in the public goods game, the cooperator’s fix-
ation probability is always under 1/N , even with the implementation of the movement
mechanisms. However, in the Hawk–Dove Game, aggregation benefits the evolution
of cooperation. In Broom et al. (2015), it was shown that the dove’s fixation proba-
bility can occasionally exceed 1/N if the reward is adjusted. However, the results in
this paper show that even if the reward remains constant, the movement distributions,
particularly follow the majority, have a stronger effect in increasing the dove’s fixa-
tion probability above 1/N as hawks are forced to herd together. This forces hawks
to interact with one another, incurring a greater cost, thus decreasing their relative
fitness. While dispersal also benefits doves, herding has a stronger effect.

Moreover, we derived analytical expressions for the fixation probabilities of the
cooperator and dove in both BDB and BDD dynamics. By applying weak selection
methods, we extended previous analyses (Tarnita et al. 2009; Taylor et al. 2004) by
producing neutrality and equilibrium conditions for the Hawk–Dove game. These
conditions align with our expectations, indicating that, in the models developed in
this paper, hawks generally perform worse than in the traditional evolutionary graph
theory models. The work in this paper accounts for a more realistic multiplayer game
scenario compared to the limiting pairwise case. Notably, larger group sizes negatively
impact the hawk’s fixation probability as expected.

There are several directions for future work. Broom et al. (2015) explored other
evolutionary measures such as mean group size and temperature and their impact on
fixation probability. Our primary focus was to develop a methodology to explore the
relationship between row-dependent movement and fixation probabilities. We intend
to investigate these evolutionary measures and their relationship with the movement
mechanisms under our models in future work. Another potential direction involves
extending the methodology developed in this paper to the generalised territorial raider
model established by (Pattni et al. 2017). This extension would allow for the consid-
eration of evolutionary processes where individuals reside within subpopulations and
move according to the movement distributions described in this paper. We also intend
to consider non-complete graph structures, representing non-well-mixed populations,
where individuals will have different apriori distributions. Incorporating such graph
structures into the evolutionary process raises the question of whether our developed
methodology in this paper will naturally extend to the non-well-mixed case accommo-
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dating the various, distinct apriori distributions. Alternatively, it may be the case that
a new approach will need to be developed. Furthermore, the movement mechanisms
could also be adjusted to instead allow for biasedmovement dependent upon the strate-
gies present at each of the patches. For example, the follow the majority process could
be amended to state that individuals move to the patch that contains the largest number
of cooperators. A much more complex avenue involves the simultaneous implemen-
tation of both row-dependent movement and history-dependent movement within the
evolutionary process. In the Markov models (Pattni et al. 2018), individuals prefer to
remain at places that benefit their fitness, characterised by parameters measuring an
individual’s preference for staying in a specific group, such as the staying propensity
and a group’s attractiveness. We aim to investigate how these parameters will need to
be modified to also accommodate row-dependent movement.

Appendix

Average group distribution on complete triangle graph

Using the methodology defined in Sect. 4.1, we showed how to calculate the average
group distribution by considering a well-mixed population of three individuals I1, I2,
and I3 on a complete triangle graph under the follow the majority, Polya-urn, and
wheel processes.

The average group distribution for the follow the majority process is

• P(all individuals are together) = 9(h−1)
(h+2)3

+ 27
(h+2)3

= 27+9(h−1)
(h+2)3

,

• P(I1 and I2 are together while I3 is alone) = 2(h−1)2

(h+2)3
+ 6(h−1)

(h+2)3
= 2(h−1)2+6(h−1)

(h+2)3
,

• P(I1 and I3 are together while I2 is alone) = 2(h−1)2

(h+2)3
+ 6(h−1)

(h+2)3
= 2(h−1)2+6(h−1)

(h+2)3
,

• P(I2 and I3 are together while I1 is alone) = 2(h−1)2

(h+2)3
+ 6(h−1)

(h+2)3
= 2(h−1)2+6(h−1)

(h+2)3
,

• P(all individuals are alone) = 3(h−1)2

(h+2)3
+ (h−1)3

(h+2)3
= 3(h−1)2+(h−1)3

(h+2)3
.

The average group distribution under a general polya-urn process is given by

• P(all individuals are together) = 3(h−1)(B+3)(B+2)+3(B+3)(B+6)
(h+2)3(B+1)(B+2)

,

• P(I1 and I2 are together while I3 is alone)

= 2(h−1)2(B+1)(B+2)+6(h−1)(B+3)(B+6)+3(B+3)(2B)

(h+2)3(B+1)(B+2)
,

• P(I1 and I3 are together while I2 is alone)

= 2(h−1)2(B+1)(B+2)+6(h−1)(B+3)(B+6)+3(B+3)(2B)

(h+2)3(B+1)(B+2)
,

• P(I2 and I3 are together while I1 is alone)

= 2(h−1)2(B+1)(B+2)+6(h−1)(B+3)(B+6)+3(B+3)(2B)

(h+2)3(B+1)(B+2)
,

• P(all individuals are alone)

= 3(h−1)2(B+1)(B+2)+3(h−1)(2B)(B+2)+3B(2B)+(h−1)3(B+1)(B+2)
(h+2)3(B+1)(B+2)

.

For the wheel process, we considered an example where 0 ≤ θ < π
3 ,

• P(All individuals are together) = 9h(1− 2θ
π

)+18− 63θ
π

(h+2)3
,
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• P(I1 and I2 are together but not with I3) = 2(h−1)2+6(h−1)+ 27θ
π

(h+2)3

• P(I1 and I3 are together but not with I2) = 2(h−1)2+6(h−1)+ 27θ
π

(h+2)3
,

• P(I2 and I3 are together but not with I1) = 2(h−1)2+6(h−1)+ 27θ
π

(h+2)3
,

• P(All individuals are separate) = 3(h−1)2+27(h−1)( 2θ
3π )+(h−1)3

(h+2)3
.

The fitness of a dove and hawk

In the Hawk–Dove game, we opted to assume only independent movement to simplify
the fitness calculation. This simplification was necessary because the Hawk–Dove
game exhibits greater complexity in the payoffs to each strategy, which are contingent
on group composition and, therefore, themovement distribution. By focusing on solely
independent movement for this game, we were able to evaluate the fitness of hawks
and doves within this framework more effectively.

Consider a population of size N , well-mixed, and composed of k doves and N − k
hawks. A dove will only receive a proportion of a reward V if it is present in a group
that contains no hawks. This can occur in four distinct scenarios. Consider two doves,
D1, D2 and a hawk H1:

• D1 remains in its home, and a group of L doves forms on D1’s home patch.
• D1 moves to D2’s home patch, where D2 stays at home, and a group of L doves
forms on D2’s home patch.

• D1 moves to D2’s home patch, where an L-sized group of doves forms, but D2
leaves their home and moves elsewhere.

• D1 moves to H1’s home patch, where an L-sized group of doves forms, but H1
leaves their home and moves elsewhere.

To compute the average fitness of a dove, we weighted the reward that D1 receives in
each of these scenarios by the probability of each group forming. We consider the first
scenario as an example. The probability of D1 staying at home and an L-sized group
of doves forming on D1’s home patch is given by

βL =
(

h

h + N − 1

)(
1

h + N − 1

)L−1(k − 1

L − 1

)(
h + N − 2

h + N − 1

)N−k(h + N − 2

h + N − 1

)k−L

.

Note that the term
(
h+N−2
h+N−1

)N−k
ensures the absence of hawks in the group, and

(
h+N−2
h+N−1

)k−L
ensures that all other k − L doves are located elsewhere. We must then

weight βL by the number of doves in the group, as each dove receives an equal share
of the reward, resulting in βL( 1

L )V . This is summed over all possible group sizes to

cover the entire range,
∑k

L=1 βL( 1
L )V . This expression can be simplified as follows

k∑

L=1

βL(
1

L
) = h

k

((
h + N − 2

h + N − 1

)N−k

−
(
h + N − 2

h + N − 1

)N)
.
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By employing similar methods for the other scenarios and combining these expres-
sions, we derive the average fitness of a dove as:

R +
((

h + N − 2

h + N − 1

)N−k

−
(

(h + N − 2)N−1

(h + N − 1)N

) (
k(N − 1) + (N − k)(N − 1)

k

)

+ (N − k)(N − 1)(h + N − 2)N−k−1

k(h + N − 1)N−k

)
V ,

which we re-express as

R + τ(h, N , k)V , (41)

where

τ(h, N , k) =
((

h + N − 2

h + N − 1

)N−k

−
(

(h + N − 2)N−1

(h + N − 1)N

)

(
k(N − 1) + (N − k)(N − 1)

k

)
+ (N − k)(N − 1)(h + N − 2)N−k−1

k(h + N − 1)N−k

)
.

Similarly, to calculate the fitness of a hawk, we must consider all scenarios in which
a hawk can receive a share of the reward and possibly endure a cost. Hawks are
indifferent to the presence of doves within the group, as they will always flee from a
hawk’s presence, leading to them receiving no share of the reward. The portion of V
that a hawk receives depends on whether other hawks are present within the group.
Consider two hawks, H1 and H2, along with a dove, D1:

• H1 stays at home, and a group of L hawks forms on H1’s home patch.
• H1 moves to D1’s home patch, where a group of L hawks forms.
• H1 moves to H2’s home patch, where H2 stays home and a group of L hawks is
formed.

• H1 moves to H2’s home patch, where a group of L hawks forms, but H2 has moved
elsewhere.

To calculate the average fitness of a hawk, we must weight the reward that H1 receives
in each of these scenarios by the probability of each group forming. Consider the first
scenario as an example. The probability of H1 staying at home and a group of L hawks
forming on H1’s home patch is given by

αL =
(

h

h + N − 1

)(
1

h + N − 1

)L−1(N − k − 1

L − 1

)(
h + N − 2

h + N − 1

)N−k−L

.

Note that the term
(
h+N−2
h+N−1

)N−k−L
ensures that only L hawks are present on H1’s

home patch, with the remaining N − k − L hawks elsewhere. αL must be weighed by
the number of hawks in the group, resulting in αL( 1

L )V . However, the cost that the
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average hawk endures must be weighed by
( L−1

L

)
C . This is then summed over all

possible group sizes to cover the entire range,
∑N−k

L=1 αL( 1
L )V and

∑N−k
L=1 αL( L−1

L )C .
These expressions can be simplified as follows:

For the reward component:

N−k∑

L=1

αL(
1

L
) = h

N − k

(
1 −

(
h + N − 2

h + N − 1

)N−k)
.

And for the cost component:

N−k∑

L=1

αL(
L − 1

L
) = h

h + N − 1

(
1 −

(
h + N − 2

h + N − 1

)N−k−1)
.

By using similar methods for the other scenarios and combining these expressions,
we derive the average fitness of a hawk as:

R +
(
1 + k

N − k
− (N − 1)(h + N − 2)N−k−1

(h + N − 1)N−k
− k(h + N − 2)N−k

(N − k)(h + N − 1)N−k

)
V

−
(
k − N + 1

h + N − 1
− k

N − k
+ h(N − k − 1) + (N − k − 1)(N − 1)

(h + N − 1)2

+ k(h + N − 2)N−k

(N − k)(h + N − 1)N−k
+ (N − 1)(h + N − 2)N−k−1

(h + N − 1)N−k

)
C,

which we re-express as

R + ω(h, N , k)V − ν(h, N , k)C . (42)

where

ω(h, N , k) =
(
1 + k

N − k
− (N − 1)(h + N − 2)N−k−1

(h + N − 1)N−k
− k(h + N − 2)N−k

(N − k)(h + N − 1)N−k

)
,

ν(h, N , k) =
(
k − N + 1

h + N − 1
− k

N − k
+ h(N − k − 1) + (N − k − 1)(N − 1)

(h + N − 1)2

+ k(h + N − 2)N−k

(N − k)(h + N − 1)N−k
+ (N − 1)(h + N − 2)N−k−1

(h + N − 1)N−k

)
.

Weak selection: dove’s fixation probability

The Dove’s fixation probability under BDB dynamics is given by

ρB
1 = 1

1 + ∑N−1
j=1

∏ j
k=1

R+ωV−νC
R+τV

. (43)
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We carried out weak selection methods on (43). Consider the expression inside the
product term of (43).

R + ωV − νC

R + τV
= 1 + A

R

1 + B
R

,

where

A = ωV − νC, and B = τV ,

1 + A
R

1 + B
R

� 1 + A − B

R
.

The term inside the product of (43) now becomes

j∏

k=1

(
1 + A

R

1 + B
R

)
=

(
1 + A(1) − B(1)

R

)(
1 + A(2) − B(2)

R

)
...

(
1 + A( j) − B( j)

R

)

= 1 +
j∑

k=1

(
A(k) − B(k)

R

)
. (44)

So from Eq. (43)

N−1∑

j=1

j∏

k=1

R + ωV − νC

R + τV
=

N−1∑

j=1

(
1 +

j∑

k=1

(
A(k) − B(k)

R

))

= N − 1 + 1

R

N−1∑

k=1

(
ωV − νC − τV

)(
N − k

)
,

which simplifies to

N − 1 + 1

R

( N−1∑

k=1

(ωV )(N − k) −
N−1∑

k=1

(νC)(N − k) −
N−1∑

k=1

(τV )(N − k)

)
. (45)

By substituting the fitnesses from (41) and (42) and simplifying, we have

N−1∑

k=1

(ωV )(N − k) =
(
N

(
N − 1 − x − xN

1 − x

)

+
(

(N − 1)xN+1 − NxN + x

(x − 1)2

)(
h − 1

h + N − 2

))
V , (46)
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N−1∑

k=1

(νC)(N − k) =
((

1 − h

h + N − 2

)(
(N − 1)xN+1 − NxN + x

(x − 1)2

)

−1

2
N (N − 1) + N

(
x − xN

1 − x

) )
C, (47)

N−1∑

k=1

(
τV

)(
N − k

)
= −

(
N (N − 1)(h + N − 2)N−1(h + N − 1)−N

+ h − 1

h + N − 2

(
(N − 1)xN+1 − NxN + x

(x − 1)2

)

+ N (N − 1)

h + N − 2

(
NxN H [N − 1,

1

xk
] − x − xN

1 − x

))
,

(48)

where

H [N − 1, a] =
N−1∑

k=1

ak

k
and x = h + N − 2

h + N − 1
. (49)

By inserting (46), (47) and (48) into (45), we arrive at the following

N − 1 + N

R

((
(N − 1 − x − xN

1 − x
) + (N − 1)

(
(h + N − 2)N−1

(h + N − 1)N

)

(NH [N − 1, 1] + 1 − N )

− (N − 1)

h + N − 2

(
NxN H

[
N − 1,

1

xk

]
− x − xN

1 − x

) )
V

−
((

1 − h

h + N − 2

)(
(N − 1)xN+1−NxN + x

N (x − 1)2

)
− 1

2
(N − 1)+

(
x−xN

1 − x

))
C

)
.

(50)

Substituting (50) into (43) and simplifying, we have

1

N + N
R

(
(λ1+λ2−λ3)V − (λ4)C

) �
1

N

(
1 − 1

R
((λ1+λ2−λ3)V − (λ4)C)

)
,

(51)
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which is the approximation of the fixation probability of a mutant dove under BDB
dynamics where

λ1 =
(
N − 1 − x − xN

1 − x

)
, (52)

λ2 = (N − 1)

(
(h + N − 2)N−1

(h + N − 1)N

)
(NH [N − 1, 1] + 1 − N ), (53)

λ3 = (N − 1)

h + N − 2

(
NxN H [N − 1,

1

xk
] − x − xN

1 − x

)
, (54)

λ4 =
(

1 − h

h + N − 2

)(
(N − 1)xN+1 − NxN + x

N (x − 1)2

)
− 1

2
(N − 1) +

(
x − xN

1 − x

)
.

(55)

We assumed an infinite well-mixed population i.e. as N → ∞. We consider each
λi for i ∈ {1, 2, 3, 4} and deduce an approximation for each λi as N tends to infinity.

For (52), we have,

λ1 �
N

e
. (56)

For (53), we have

λ2 �

(
N − 1

e

)(
ln(N − 1) + γ + 1

N
− 1

)
, (57)

where γ is the Euler-Mascheroni constant.
For (54) we have,

λ3 �
N

e
ln(N − 1) + N

e
f (h) − N + N

e
, (58)

where f (h) = H [N − 1,

(
h+N−1
h+N−2

)k

] − ln(N − 1).

From (55) we have,

λ4 � (1 − h)(1 − 2

e
) + N (

1

2
− 1

e
) + 1

2
. (59)

By simplifying (56), (57), and (58),

(λ1 + λ2 − λ3)V = N

e

(
γ − 1 − f (h, N )

)
+ 1

e

(
2 − ln(N − 1) − γ − 1

N

)
+ N .

(60)
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Substituting (60) and (59) into (51), we have

1

N

(
1 − 1

R

((
N

e

(
γ − 1 − f (h, N )

)
+ 1

e

(
2 − ln(N − 1) − γ − 1

N

)
+ N

)
V

−
(

(1 − h)(1 − 2

e
) + N (

1

2
− 1

e
) + 1

2

)
C

))
, (61)

which is an approximation of the fixation probability of a mutant dove in an infinite,
well-mixed population. The neutrality condition for this case is given by ρB

1 = 1
N i.e.

N

e

(
γ − 1 − f (h, N )

)
+ 1

e

(
2 − ln(N − 1) − γ − 1

N

)
+ N

)
V

−
(

(1 − h)(1 − 2

e
) + N (

1

2
− 1

e
) + 1

2

)
C = 0, (62)

which simplifies to

V = ( 12 − 1
e )

( 1e (γ − 1 − f (h)) + 1)
C . (63)

By using similar methods to the dove’s fixation probability under BDD dynamics
(29), we deduce a similar weak selection approximation given by

1

N

(
1 − (N + 2w∗)

R(N + w∗)
((λ1 + λ2 − λ3)V − (λ4)C)

)
. (64)

where the neutrality condition remains unchanged.
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