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CaDNET: An End-to-End Plenoptic
Camera-Based Deep Learning Pose Estimation

Approach For Space Orbital Rendezvous
Zakaria Chekakta and Nabil Aouf

Abstract— This paper presents a novel deep
learning-based approach for relative pose esti-
mation using a focused Plenoptic camera for
space rendezvous operations of On-Orbit Servic-
ing (OOS) applications. Plenoptic cameras, also
known as light-field cameras, are similar to tradi-
tional cameras but have an array of microlenses
in front of the sensor. This configuration offers
several advantages, such as software-based refo-
cusing and increased image quality in low-light
conditions while maintaining an extended depth
of field. Moreover, it enables the derivation of 3D
depth images from the same light field, making it
possible to use a single camera as a stereo vision system for autonomous space rendezvous navigation challenges.
We propose a robust deep learning solution suitable for uncooperative close-range rendezvous missions, such as debris
removal, based on a Bidirectional Long Short-Term Memory (BiLSTM) network and a Convolutional Neural Network (CNN),
to accurately estimate the target’s pose from images captured by a Plenoptic camera mounted rigidly on the chaser
satellite. We validate the proposed approach, named Cascaded Deep Network (CaDNET), using on-ground data obtained
from a designed experimental setup. Through the quality experimental results achieved, we demonstrate the feasibility of
adopting the Plenoptic camera as an AI-based relative navigation solution for space rendezvous missions.

Index Terms— Plenoptic Camera, Deep Learning, Navigation, Space Rendezvous

I. INTRODUCTION

RELATIVE navigation algorithms for space close-range
rendezvous (RV) such as in On-Orbit Servicing (OOS)

have been empirically proven to be essential to guarantee
collision-free and reliable space operations such as docking,
grasping, refueling, debris removal and inspection. One of the
main OOS objectives is to reduce the further accumulation of
space debris and due to the necessary high accuracy require-
ments in terms of target approaching in all OOS missions,
adequate autonomous relative navigation algorithms capable
of determining the target’s movements in space relative to
a chaser satellites/spacecraft are essential. The OOS task
will be substantially complicated if the target is deemed to
be uncooperative and has no supporting equipment for the
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operation such as in Active Debris Removal (ADR) operations.
Conventionally, optical sensors, are typically used to achieve
mission autonomy [1], therefore, compact and lightweight
passive cameras have been introduced and become the norm
as the low-cost sensor for the orbital rendezvous task [2]–[5].

In autonomous rendezvous, the chaser spacecraft carrying
the camera should be able to estimate the target spacecraft’s
relative pose using an onboard navigation algorithm without
human intervention. Adopting optical camera sensors onboard
the chaser, it is then natural for the pose estimation algorithms
to be vision-based. The monocular camera setup tends to
be selected as the onboard relative navigation sensor and
is chosen over stereo ones [6], [7]. This is because of its
simplicity and the limitation of space onboard the chaser
satellite in the case of space deployment. Further, during close-
range operations, the images must be well-focused throughout
the whole mission to allow for reliable tracking, where the
Depth of Field (DoF) is required to be relatively large [8].

To overcome the limitation of conventional cameras and
fulfill the requirement in terms of accuracy and real-time
computation for space rendezvous operations, Plenoptic cam-
eras could be a serious candidate to be considered instead.
Due to their enhanced focus range and depth estimation
capabilities with a more open aperture, which would allow
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sharp and well-focused images during a larger range operation
under different lighting conditions, adopting such a camera for
orbital rendezvous becomes an attractive camera alternative.
Indeed, using only one Plenoptic camera gives the possibility
to create 2D images and 3D range images simultaneously
[9]. As a result, a Plenoptic camera is considered a passive
monocular that can replace a stereo camera offering a 3D range
capability.

The concept of Plenoptic cameras is presented in Figure
1(a) and Figure 1(b). It is based on the use of a microlens
array (MLA) between the main sensor of the camera lens and
its imaging lens. The difference between the focused and the
unfocused Plenoptic camera is in the way they capture and pro-
cess light rays. A focused Plenoptic camera uses microlenses
to focus the incoming light onto the sensor, resulting in a
sharp image with a well-defined depth of field. In contrast, an
unfocused Plenoptic camera captures all the light rays within
the field of view, resulting in a low-resolution image with
information about light rays coming from multiple directions.
The captured light field can be processed to generate different
views of the same scene by refocusing the image at different
depths.

Fig. 1. Plenoptic Camera Concept: (a) Unfocused Plenoptic, (b)
Focused Plenoptic

Recently, Plenoptic cameras attracted the interest of re-
searchers around the world. European Space Agency (ESA)
has been developing vision-based navigation solutions using
various sensors [10], including the option to investigate the
merits of adopting the Plenoptic camera as an alternative
onboard sensor for future rendezvous missions [11]. The
objective of this work is to investigate the benefits of using the
Plenoptic camera for close-range uncooperative rendezvous
navigation. The Plenoptic sensor technology was initially
available for commercial use by Lytro, and later by Raytrix.
Significant work related to the Plenoptic camera is focused
on the sensor calibration process, its use in the estimation of
depth, and the simulation of the Plenoptic camera functionality
since acquiring Plenoptic cameras can be quite expensive [12],
[13].

In this paper, we propose the following contributions:
• A deep learning architecture for pose estimation using

Plenoptic camera sensor data for uncooperative close-
range rendezvous operations with on-ground experiment
validation.

• An innovative experimental light-field close-range dataset
that is well suited for space rendezvous navigation sce-

narios including different target positions and a range of
variable trajectories.

The rest of this paper is organized as follows: Section II
introduces the work on Plenoptic cameras in robotics appli-
cations, provides existing works on pose estimation in space,
and presents the depth map optimization strategy used in our
work. Section III details the deep learning relative navigation
solution proposed in this work. Section IV is devoted to the
experiments and dataset collection, describes the scenarios,
and presents the results obtained. Conclusion and remarks are
given in Section V.

II. PLENOPTIC CAMERA AND POSE ESTIMATION

A. Related work

In the literature, research adopting a Plenoptic camera for
robotics applications is rare, and more specifically for space
applications. Dansereau et al. [14] show that visual odometry
plays a crucial role in autonomous robot navigation and how
it can be improved for underwater robotics by deploying a
Plenoptic Light Field camera. Zeller et al. [15] present a
narrow field-of-view vision-based odometry method for indoor
robot navigation. Their approach fused the depth data obtained
from a monocular Simultaneous Localization and Mapping
(SLAM) algorithm with the depth estimated by the Plenoptic
camera. In [8], M. Lingenauber et al. discuss the application
of Plenoptic cameras for enhancing robot vision during close-
range on-orbit servicing maneuvers. Their work highlights the
camera’s ability to capture 4D light fields, enabling high-
quality 2D and 3D depth images that assist in precise robotic
arm movements for tasks like grasping and docking with
millimeter accuracy under low-light orbital conditions.

Other works show the benefit of using Plenoptic cameras
in low-light conditions. Dansereau et al. [16] demonstrate
that Plenoptic cameras, through the use of volumetric focus,
significantly enhance image quality in low-light conditions
by improving the signal-to-noise ratio and maintaining focus
across various depths. Their method outperforms traditional
imaging techniques, showcasing its efficacy in challenging
lighting environments. The same authors show the effec-
tiveness of light field cameras in low-light conditions by
using a linear 4D Frequency-Hyperfan filter to enhance image
quality. Their approach leverages the redundant information
captured by light field cameras to effectively reduce noise
while preserving detail and depth of field, making it suitable
for challenging lighting environments [17]. S. Zhang et al.
[18] explore using Plenoptic cameras to improve depth map
estimations in challenging scenarios such as low-light condi-
tions. They highlight that the unique capabilities of Plenoptic
cameras allow for capturing depth information more accurately
by using the rich structure of light fields, even in environments
with minimal illumination.

Concurrently, the field of pose estimation is expanding to
machine learning (ML) algorithms. Researchers are leveraging
ML techniques, particularly deep learning such as Convolu-
tional Neural Networks (CNNs), to improve the accuracy and
robustness of pose estimation algorithms. These advances are
crucial for various applications, including terrestrial robotics
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vehicles but more importantly, spacecraft rendezvous opera-
tions, where precise and reliable pose estimation is essential
for the success of space missions.

By 2019, CNNs began to be applied in the realm of
spacecraft relative pose estimation for rendezvous and docking
(RV), as demonstrated in the ESA Kelvins’ Satellite Pose
Estimation Challenge [19]. This marked a shift in applying
AI to space navigation using vision-based systems. Notably,
the most successful approaches in this challenge employed an
indirect method of pose estimation, utilizing CNNs primar-
ily for feature extraction combined with Machine Learning
techniques, such as a PnP solver, for final pose determination
[20], [21](See Figure 2). This strategy, leveraging predefined
natural landmarks on the target’s surface, suits uncooperative
scenarios and represents a departure from traditional image
processing methods that require customized feature detection
and matching techniques for each scenario. Hence, in the
recent development of rendezvous visual-based pose estima-
tion approaches, the Image Processing (IP) step has been
completely shifted to a deep learning model able to generalize
for different image conditions [5].

In addition to the indirect pose estimation approaches, there
has also been a development in end-to-end DNN models that
directly generate a pose from image inputs. This methodology
has been explored for close-range rendezvous scenarios, tested
with various types of imagery and continuous trajectories
[5], [22]. End-to-end methods are particularly advantageous
because they do not require supplementary ML pipelines to
determine the pose, streamlining the process significantly.
Furthermore, these methods facilitate the incorporation of
Deep Learning-based temporal modeling, which enhances
solutions for time-series data by exploiting correlations be-
tween successive relative poses. This capability represents a
key advancement in applying AI to dynamic and complex
scenarios like space navigation.

Fig. 2. Direct versus indirect methods for DL-based pose estimation
[20]

Despite advancements in the on-ground experiment setup
and camera calibration procedures [23], challenges remain in
accurately estimating the camera-target relative pose while
replicating realistic illumination conditions and other con-
straining conditions that are required to be met in real ren-
dezvous missions. Numerous studies aim to tackle the domain
shift problem [24]. Tobin et al. [24] show that by training

a CNN on a diverse set of random, yet unrealistic, textures,
it can generalize from synthetic to real-world environments,
allowing CNNs to adapt to new domains. Building upon this
idea, Jackson et al. [25] and Geirhos et al. [26] mention that
randomizing textures during training helps CNNs to focus on
learning object shapes rather than textures, thereby increasing
the network’s robustness. The work of L.P. Cassinis et al.
[27] details the development of a CNN-based monocular
pose estimation system designed to enhance the accuracy of
spacecraft pose estimation in on-orbit servicing and debris
removal missions. Their approach leverages a unique on-
ground testbed to simulate space-like conditions, focusing on
bridging the gap between synthetic and real-world imagery to
improve the robustness and accuracy of pose estimates under
challenging conditions.

Other studies explore the effects of simple training augmen-
tation on CNN performance using lab-generated images from
the SPEED dataset. In [28] authors examine the application
of texture randomization in training, which enhances the
network’s performance on spaceborne images, demonstrat-
ing substantial improvements in recognizing and processing
images. K. Black et al. [29] introduce a novel CNN-based
monocular pose estimation system designed for real-time,
flight-ready applications in non-cooperative spacecraft scenar-
ios. Their method demonstrates improvements in achieving
state-of-the-art accuracy with low computational demands,
effectively generalizing from synthetic training data to real
in-space imagery, and optimizing for performance on low-
power flight-like hardware. S. Zhang et al. [30] introduce a
novel neural network approach called Deep Coherent Point
Drift (DeepCPD), for 6D pose estimation of noncooperative
spacecraft using point cloud data. The DeepCPD enhances the
registration of unorganized scan point clouds to their reference
models by replacing the traditional Expectation-Maximization
step with a neural network, improving performance and ac-
celerating the process while maintaining robustness against
various data imperfections.

In an attempt to assess the performance of a CNN-based
pose estimation system in more challenging scenarios, we
[5] present a deep learning pipeline named ChiNet 1 using a
combination of a CNN and long short-term memory (LSTM).
It uses three different training strategies to improve feature
learning and end-to-end pose estimation through regressions.
The pipeline also fuses thermal infrared data with RGB inputs
to mitigate the effects of artifacts from imaging space objects.
The capabilities of the proposed framework are demonstrated
on a synthetic dataset and validated on experimental data.
In the studies, [31], [32], we develop a deep learning-based
navigation architecture that combines a CNN with a Recurrent
Neural Network (RNN) using LSTM layers. This hybrid archi-
tecture is called a Deep Recurrent Convolutional Neural Net-
work (DRCNN). The DRCNN is adopted for 3D LiDAR data.
The data collected from the LiDAR sensor are transformed
into multi-projected images keeping depth information. The
approach is evaluated for a space orbital robotics rendezvous

1Pronounced “kai-net,” the first term is an abbreviation of the Greek word
“chimera,” meaning “something made up of parts of things that are different
from each other.”
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relative navigation, and a space landing scenario using both
simulation and on-ground validation data.

B. Plenoptic Depth Map Optimization
To this day, the landscape of software tools handling Plenop-

tic content has been marked by diversity. In 2012, Lytro,
a prominent camera manufacturer, released a highly devel-
oped and influential software application, the Lytro Desktop
Software (LDS) to handle image processing for the Lytro I
first-generation and second-generation Illum models. Export
options included depth maps (in greyscale), fully focused
images, perspective-shift images, a brief video clip of the
captured scene, and stereo image pairs. The Lytro I generation
and Illum cameras stored images in .lfp and .lfr for-
mats respectively. However, Lytro’s image processing pipeline
remains proprietary and has not been publicly maintained
since the company ceased operations in 2018. During Lytro’s
earlier years, independent programmers reverse-engineered the
company’s file formats to create binary file decoders such as
lfptools and python-lfp-reader. Regrettably, these
tools cannot execute essential light-field rendering functions
like refocusing. In Matlab, various researchers have pub-
lished methods that focus on algorithmic calibration and
decoding of Lytro’s Plenoptic camera [33]–[35]. These ap-
proaches utilize provided metadata and concentrate on tasks
such as detecting the micro image center, rearranging the
4D data, and rectifying radial lens distortions. More recently,
research has shifted towards successfully recovering physical
information at the boundaries of light fields [36], [37]. In
[13], the author presented a framework for enhancing the
decoding process. It incorporates advanced techniques such
as scale-space analysis, centroid grid fitting, de-vignetting,
illumination channel correction, micro-image resampling, and
computational refocusing. PlenoptiCam v1.0 [13] stands
out by supporting cameras with arbitrary dimensions, handling
footage from custom-built prototypes and Lytro cameras, and
achieving improved accuracy and performance. Its ability to
suppress noise, address color variances, and provide accurate
angular sampling ensures high-quality results. By offering
extensive capabilities and delivering exceptional performance,
PlenoptiCam emerges as the ideal software for our research
in Plenoptic imaging. Figure 3 illustrates the depth estimation
strategy employed in our work, highlighting the optimization
process.

Fig. 3. Depth estimation process

In the study of our research, the captured frames from
the Lytro camera undergo processing using the Lytro Desk-

top Software. Subsequently, the raw images are exported as
lfp frames. We employed PlenoptiCam software, which
integrates advanced algorithms for depth estimation from
Plenoptic camera data. As illustrated in Figure 3, the depth
estimation process is facilitated by the LfpDepth class within
PlenoptiCam, which executes a sequence of calibrated
operations to produce depth maps. The process begins with
pitch estimation, where the software evaluates the scale-space
of micro images to accurately gauge the pitch of the MLA.
Following the pitch estimation, the Centroid Extraction pro-
cess uses the Levenberg-Marquardt optimization algorithm for
reducing least-squares errors globally while detecting micro-
lens centers. It simultaneously determines centroid spacing and
projective mapping, providing the necessary data for depth
calculation. The centroids extracted are then refined to improve
their accuracy. This refinement process adjusts the centroid
coordinates, enhancing the precision of the subsequent depth
extraction process. With the refined centroids, the LfpDepth
class proceeds to extract depth information. It calculates depth
by analyzing the disparities and geometric relations between
the different micro images based on their centroid alignments.
Further details regarding the process can be found in [13].

III. CASCADED DEEP NETWORK (CADNET) RELATIVE
POSE ESTIMATION

The objective of the monocular orbital space navigation
solution is to estimate the target frame (R) relative position
and orientation to the chaser camera frame (C) using a single
monocular image captured by the onboard chaser camera.
The relative position between the frames is represented by
a translation vector tRC , which specifies the displacement
from the origin of the camera frame C to the origin of the
target frame R. The relative orientation between the frames
is represented by a rotation matrix RRC , which defines the
orientation of the target frame with respect to the camera
frame.

Figure 4 provides a visual representation of the target
and camera reference frames, as well as the position and
orientation variables. It shows the relationship between the
reference frames and the position and orientation variables.

Fig. 4. The target reference frame (R), camera reference frame (C),
relative position (tRC), and relative attitude (RRC).

The process of estimating the pose of a new camera frame
relative to a reference target frame can be mathematically
formulated as follows:
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Fig. 5. CaDNET overview. The architecture performs end-to-end spacecraft pose estimation from RGB and the depth map obtained by the
Plenoptic camera.

Let xR = [xR, yR, zR, 1]
T be a point in the reference

frame, and let xC = [xC , yC , zC , 1]
T be the corresponding

point in the camera frame, where xR and xC are expressed
in homogeneous coordinates. Then, the rigid transformation
G ∈ SE(3) (Special Euclidean Group in three dimensions)
that maps xR to xC can be represented as:

xC = GxR (1)

where G is a 4× 4 homogeneous transformation matrix of
the form:

G =

[
Rot t
01×3 1

]
, Rot =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 , t =
tXtY
tZ

 (2)

Rot ∈ SO(3) (Special Orthogonal Group in three dimen-
sions) is a rotation matrix and t is a translation vector.

To estimate the pose of a new camera frame relative to
a reference target frame, we need to find the values of the
rotation matrix Rot and the translation vector t that best
describe the transformation G. This is primarily achieved by
minimizing the re-projection error, which is the discrepancy
between observed 2D points in the camera frame and their
predicted 2D locations obtained by projecting 3D points from
the reference frame using the estimated pose. For systems that
can capture depth directly, such as cameras equipped with
depth sensors or LIDAR, the pose estimation can also leverage
the depth information to enhance accuracy by aligning 3D
points directly

Let PR = p1, p2, . . . , pn be a set of n 3D points in the
reference target frame, and let PC = q1, q2, . . . , qn be the
same set of points in the camera frame. Then, we can define
the registration error as the difference between the observed
points in the camera frame and their corresponding points in
the reference frame after applying the estimated transformation
G.

ei = qi −Gpi, i = 1, 2, . . . , n. (3)

The goal is to find the values of R and t that minimize the
sum of the squares of the registration error:

min
R,t

n∑
i=1

||qi −Gpi||2. (4)

This is a non-linear optimization problem that can be solved
using various techniques, such as Gauss-Newton, Levenberg-
Marquardt, or gradient descent.

In practice, the estimation of the relative camera pose is
usually done incrementally, using a sequence of frames of the
reference target frame. This allows for tracking the camera’s
motion over time. However, to handle scale ambiguity, the
camera pose between consecutive frames is often represented
as a 3D similarity transformation, which includes a scaling
factor to account for changes in the camera’s distance from
the scene.

To solve this relative pose estimation problem, this paper
proposes the adoption of a hybrid deep learning network
composed of an RNN module to process the features extracted
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by another network module built as a Cascaded CNN network.
The resulting CaDNET architecture is shown in Figure 5 to
provide a smooth and precise estimate of the 6-Degree Of
Freedom (DOF) poses. The CaDNET represents an end-to-
end Deep Learning Monocular Pose Estimator where one
CNN network contains a set of convolutional layers to extract
features from the input RGB image, thus exploiting the natural
ability of CNNs to autonomously extract features from images.
The other depth CNN network is also composed of a set
of convolutional layers in order to extract features from the
depth map. The outputs of both networks are concatenated
in a feature layer = fully connected1 || fully connected2,
where ||(.) denotes the process of vertical concatenation. The
RNN network is then constructed using bidirectional LSTM
(BiLSTM) layers to regress the relative poses in close-range
rendezvous application between the target satellite and the
chaser satellite. The detailed architecture of the proposed
CaDNET and its parameters are presented in Table I.

The main reason to adopt the BiLSTM cells instead of a
standard LSTM (presented in Figure 6) in a pose estimation
network is to take advantage of the information in the input
sequence in both forward and backward directions. While a
standard LSTM network processes the input sequence in a
forward direction, a BiLSTM network processes the input
sequence in both the forward and backward directions, cap-
turing the dependencies in the data in both directions. This
can provide a more comprehensive representation of the input
data, leading to improved performance in tasks such as pose
estimation. During space rendezvous, predicting the current
pose accurately can benefit significantly from knowing the
subsequent positions, which could indicate the trajectory’s
direction and velocity.

It is important to clarify that while the future data for a
current timestep is not available during prediction (in real-time
scenarios), during the training phase, the model learns to uti-
lize the complete sequence context effectively. The BiLSTM,
therefore, is trained on full sequences, allowing it to establish
patterns that involve both preceding and succeeding elements
in the data. BiLSTMs manage to use future information,
especially in testing and real-world deployment scenarios
where real-time processing is not necessary (e.g., processing
batches of data every few seconds or minutes), the incoming
data can be buffered until enough future context is collected.
This approach is common in applications where a slight delay
is acceptable for the benefit of more accurate predictions. In
our work, when future data cannot be delayed, the CaDNET
reverts to using only past data for real-world testing, utilizing
only the unidirectional LSTM approach while still employing
BiLSTM for non-real-time analysis.

For each new Plenoptic camera frame, its pose with respect
to the reference target frame has to be estimated using the
transformation between the reference target coordinate system
xR and the camera coordinates of the new frame xC as given
in (2). The matrix G has six degrees of freedom which need
to be estimated. Those are the three rotation angles ϕ, θ and ψ
as well as the coefficients of the translation vector tX , tY , and
tZ . In our approach, the Euler angles are ordered in a ZYX,
Yaw around the Z-axis, followed by pitch around the Y-axis,

Fig. 6. Top: Long short-term memory (LSTM). Bottom: Bidirectional
LSTM (BiLSTM).

and concluding with roll around the X-axis. This convention
was chosen because it is commonly used in spacecraft and it
effectively represents the rotational dynamics and orientation
changes of the spacecraft during rendezvous operations.

Using CaDNET, those quantities are estimated based on the
RGB images and depth map both obtained from the onboard
Plenoptic camera. In our architecture, detailed in Table I,
the output dimension (1024) is being optimized to enhance
performance. The elements 1−12 of the output are extracted.
Specifically, the regression vector is defined as:
Regression = [ r11 r21 r31 r12 r22 r32 r13 r23 r33 tX tY tZ ]

The training scheme for the CaDNET model ensures that
it learns the SO(3) constraints of the rotation matrix from
the known ground truth rotation matrix. During training,
CaDNET naturally optimizes the estimation of the rotation
matrix to meet these constraints because the ground truth
rotation matrix adheres to them. As a result, CaDNET usually
produces rotation matrices that respect the SO(3) constraints
during testing. If an estimated rotation matrix fails to meet
these constraints during testing, the solution is rejected and
recalculated. However, this is rare since the training process
effectively enforces these constraints.

Initially, we investigated using a regression output that
directly outputs a 12 × 1 vector corresponding to the pose
estimation. However, empirical results indicated that extending
the output layer to 1024 components before keeping only
the necessary 12 leads to better performance. By extending
the output layer to 1024 components, even though the final
pose estimation only requires a 12×1 vector, this mechanism
encourages the network to learn a broader range of features
and dependencies. This expansion forces the layers preceding
the final output, especially the last fully connected layer, to
handle and process a more complex feature space. This also
helps prevent overfitting to the pose estimation with more
generalized learning, which is lost with a smaller output layer.
The unused components from 13 to 1024 do not contribute
directly to the pose estimation but do enhance the learning
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TABLE I
CADNET ARCHITECTURE PARAMETERS

RGB CNN Depth CNN
Layer Type Variables Layer Type Variables

Input Layer RGB image [281 405 3] Input Layer Depth map [ 141 203]
Conv1 Filter size 5× 5, padding 3, stride 2, channels 64 Conv1 Filter size 5× 5, padding 3, stride 2, channels 64
ReLU1 - ReLU1 -
Conv2 Filter size 5× 5, padding 2, stride 2, channels 128 Conv2 Filter size 5× 5, padding 2, stride 2, channels 128
ReLU2 - ReLU2 -
Conv3 Filter size 5× 5, padding 2, stride 2, channels 256 Conv3 Filter size 5× 5, padding 2, stride 2, channels 256
ReLU3 - ReLU3 -
Conv4 Filter size 5× 5, padding 2, stride 2, channels 512 Conv4 Filter size 5× 5, padding 2, stride 2, channels 512
ReLU4 - ReLU4 -
Conv5 Filter size 5× 5, padding 2, stride 2, channels 1024 Conv5 Filter size 5× 5, padding 2, stride 2, channels 1024
ReLU5 - ReLU5 -
Fully Connected1 1024× 1 matrix Fully Connected1 1024× 1 matrix

Layer Type Variables

Features layer 2048× 1
BiLSTM1 hidden values 1000
BiLSTM2 hidden values 1000

RNN BiLSTM3 hidden values 1000
Fully Connected2 1024× 1 matrix
Regression 1024× 1 matrix use 12 first variables to predict the pose

process.

IV. EXPERIMENTS AND RESULTS

To evaluate our Plenoptic camera deep learning architecture
for pose estimation, several experiments considering different
rendezvous scenarios, including different backgrounds behind
the target, are performed. Since our main goal is to show the
Plenoptic depth map of the scene and how it can improve the
pose estimation accuracy when used as an additional input,
the ground truth for the scenario’s trajectories is measured.
All our experiments are performed using the Plenoptic Lytro
Illum camera (Parameters in Table II).

TABLE II
PARAMETERS OF THE PLENOPTIC LYTRO ILLUM CAMERA

Parameter Value
Camera Model Plenoptic Lytro Illum

Resolution 1404× 2022 pixels
Focal Length 35 mm

Field of View (FOV) 18◦ horizontally and vertically

A. Experiments and platform setup

The main goal of the experiments is to create a complete
dataset of a mock-up satellite for close-range rendezvous using
a Plenoptic technology for training, testing, and validating our
deep learning relative pose estimation solution. Motivated by
the lack of the Plenoptic camera extension in Space simulation
software, we devoted our effort to creating real-world data
suitable for the space rendezvous environment and providing
realistic data. The setup for acquiring the real data is based on
the Testbed facility at the City University of London as shown
in Figure 7.

The setup attaches the Lytro camera to the end-effector of
the arm robot (Sawyer in this case) to allow simulation of the

Fig. 7. Overview of the experimental setup. Left : an arm robot, a mock-
up of the target satellite, and a simulated sun with a black background
for a similar space conditions. Right: A real setup scene using a mock-
up of the Jason satellite, and the Lytro camera is attached to the Sawyer
robot.

approaching phase of a spacecraft’s close-range rendezvous
operation. Using the Computer-Aided Design (CAD) model
of Jason-1 as a basis, a laboratory mock-up was created, with
a 1:4 scale replica of the original full size of the satellite, with
1-DOF in rotation. A light source has been used to emulate sun
illumination. The setup is placed inside an area equipped with
an Optitrack system to allow the tracking of all the bodies
and calculating the ground truth data of the relative motion
between the onboard chaser camera and the target satellite.
Additionally, the camera has been calibrated (See II-B) to
provide better depth estimation of the scene as shown in Figure
8.

The motion capture system for recording the ground truth
measures approximately 5×5×3 m. OptiTrack can record 6-
DOF pose data of rigid and flexible bodies by detecting, track-
ing, and triangulating passive near infrared markers placed on
targets. The data can be saved or streamed over a local network
in real-time. The OptiTrack setup at the City University of
London consists of six PrimeX 13 cameras with a resolution
of 1280 × 1024 px running at a native framerate of 240 Hz,
capable of achieving positional errors less than 0.20 mm and
rotational errors less than 0.5 deg.
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Fig. 8. Left: Camera frame, Right: depth estimation

B. Dataset generation
It is worth mentioning that the Jason 1 mock-up is attached

to a stand and can be rotated and placed in a different
orientation which gives us the opportunity to create multiple
scenarios based on the target’s initial pose and the different
backgrounds. We propose and create two scenarios for the data
collection experiments.

1) Scenario 1: In this scenario, we utilize the Optitrack
software to record the initial pose of the target by attaching
markers to it. The scenario considers the target as floating in
space without any Earth background in the scene. Additional
markers were also placed on the chaser Plenoptic camera
to track its movement. The collected data consists of 10
trajectories, with the chaser moving approximately half a meter
closer to the target. For each trajectory, 10 frames are captured.

2) Scenario 2: In this scenario, the Earth is introduced
in the background. As previously mentioned, the Jason 1
target can be rotated and its initial orientation adjusted. To
expand the diversity of the dataset, we re-recorded all previous
trajectories with different initial poses and with the Earth as
the background. The camera depth estimation can be observed
in Figure 8.

The dataset is primarily divided into three groups: one group
60% for training, the second 20% for validation, and the last
one 20% for testing. The entire dataset consists of 1, 000
Plenoptic Lytro camera frames, 900 frames from scenario 2,
and 100 frames from scenario 1. The frames were captured
using the following steps: initially, we positioned the target
mock-up satellite with no orientation displacement relative
to the camera frame, which aligns with the world frame.
We then recorded 10 different trajectories from this baseline
pose. Subsequently, we systematically adjusted the target’s
orientation by rotating it around the Y-axis by increments
of 2π

10 radians for each subsequent set of trajectories. This
procedure was repeated until the target had been rotated
by a full 2π radians, ensuring comprehensive coverage of
potential observation directions. Each increment aimed to
simulate distinct observational angles of the target, enhancing
the robustness and generalization capability of the network
across varying pose estimations. In this study, the light source
was stationary and maintained a constant position relative to
the target throughout the dataset creation process.

C. Training phase
The training of the CaDNET model involves optimizing

the model’s parameters to minimize the error between the
predicted and the ground truth poses. This process is done
through an iterative optimization algorithm called stochastic

gradient descent (SGD), where the model is updated based
on the error of the prediction on a batch of training data. The
training process is monitored using the root mean squared error
(RMSE) between the predicted and ground truth poses, as well
as the loss function that is used to optimize our CaDNET
model. It is important to keep in mind that overfitting, where
the model memorizes the training data but fails to generalize
to unseen testing data, can occur during the training process.
To avoid this situation few hyperparameters of the network
training have been optimized leading to the final values given
in Table III. The computational time of the CaDNET to run an
estimation of one frame is 0.389440(s) on an Intel® Core™
i5-7400 CPU, with NVIDIA GeForce GTX 1060 6GB.

TABLE III
TRAINING PARAMETERS FOR CADNET

Parameter CNN DepthCNN RNN
Max Epochs 3000 1000 300
Mini Batch Size 10 10 5
Initial Learning Rate 0.002 0.002 0.1
Gradient Threshold 1 1 1

In the training phase, each component of the CaDNET
architecture—CNN, DepthCNN, and RNN—is trained inde-
pendently with specific parameters optimized for its role. The
label data used to train the three components is the ground
truth pose associated with each frame. The CNN, being a
crucial element for initial feature extraction, is trained for 3000
epochs to ensure robust feature detection. This training allows
for a more thorough learning process, using a mean squared
error (MSE) loss function to accurately predict continuous
output variables.

MSE =
1

N

N∑
i=1

(ti − yi)
2, (5)

where N is the number of responses, ti is the target output,
and yi is the network’s prediction for response i.

Similarly, DepthCNN, which focuses on capturing depth-
related features, is also trained for 1000 epochs. On the other
hand, the RNN is trained in the same way with 300 epochs.

After training each network component with the outlined
parameters, the CaDNET model integrates these trained mod-
els as described in Table III. This modular training approach
allows for specialized optimization of different network parts,
ensuring that each component performs its function effectively
within the entire network architecture.

D. Estimation results

In Figure 9, we present the 3D estimation of the camera pose
relative to the target along a single test trajectory from scenario
1. On the left, the results of our proposed CaDNET approach
are compared to the performance of a CNN-RNN(RGB)
architecture without depth information. For visualization and
comparison, the ground truth trajectory (GT) is plotted as well.
The right figure displays the 2D y-z camera motion, with
the CaDNET pose estimation being compared to the CNN-
RNN(RGB).
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Fig. 9. First test trajectory estimation

Figure 10 showcases the estimation of the translation along
the X, Y, and Z axes throughout the entire trajectory. The
CaDNET approach outperforms the CNN-RNN(RGB) estima-
tion without depth information and provides more accurate
estimation of the translational pose.

Fig. 10. Translational motion estimation for the first test trajectory

Similarly, the estimation results for the second scenario test
trajectory are presented in Figure 11, and Figure 12.

The accuracy of our pose estimation improves as the camera
approaches the target. In Figures 9 and 11, the trajectories start
from approximately −2000(mm) from the target and progress
to about −1600(mm). Initially, the accuracy at the start
distances is lower. As the camera moves closer, the BiLSTM
module becomes more effective. The BiLSTM is designed
to leverage sequential data, enhancing its capability to refine
pose estimations by incorporating temporal consistency and
learning from the progression of frames. This demonstrates
the important role of the RNN in adapting and optimizing the
pose estimation performance.

Based on Figures 13, 14 that compare the translational and
orientation error for the entire test trajectories of the CaDNET
approach with the CNN-RNN(RGB) approach without depth
information, respectively, several possible observations can be

Fig. 11. Second test trajectory estimation

Fig. 12. Translational motion estimation for the second test trajectory

made: the performance of the CaDNET approach compared
to CNN-RNN(RGB) approach in terms of the position error
and orientation error is highlighted and the CaDNET approach
outperforms the CNN-RNN(RGB) approach. The CaDNET
is more accurate in the orientation estimation as it varies
from approximately between ±7(◦) reaching the maximum
when complex motions between two consecutive frames, as
evidenced in test trajectory 1 between frames 2 and 3. Overall,
the figures show valuable insights into the performance of the
CaDNET compared to the CNN-RNN(RGB) approach and the
impact of Plenoptic depth information on the pose estimation
process.

Table IV shows the results of the two approaches, CaDNET
and CNN-RNN(RGB), for the test trajectories in terms of the
drift metric, which is measured in millimeters. In our trials,
the drift is the RSS ”Root-Sum-Square”, between the estimated
point and the ground truth (GT) point. The table shows that
CaDNET has a lower drift compared to CNN-RNN(RGB) for
all three axes.

Table V compares the performance of the architectures in
terms of the global RMSE. The results show that CaDNET
outperforms CNN-RNN(RGB) with a lower global RMSE
value of 255.1 compared to 552.2.

Figure 15 illustrates the translational error across randomly
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Fig. 13. Translational error throughout the entire test dataset

Fig. 14. Orientation error throughout the entire test dataset

TABLE IV
TEST TRAJECTORIES DRIFT

DriftX (mm) DriftY (mm) DriftZ (mm)
CaDNET 234.2 244.2 776.9

CNN-RNN(RGB) 793.4 735.4 1582.7

TABLE V
GLOBAL RMSE

Global RMSE in (mm) CaDNET CNN-RNN(RGB)√
1
N

∑N
i=1(ti − yi)2 255.1 552.2

selected frames from the test dataset. It compares the trans-
lational estimation performance of the proposed CaDNET
against the baseline cascaded CNNs architecture, which in-
cludes Depth CNN and RGB CNN without the RNN com-
ponent. The comparative analysis highlights the importance
of incorporating the RNN module, specifically a BiLSTM,
in our model. The RNN’s ability to effectively model the
dynamics of navigation kinematics is evident, as demonstrated

by the reduced translational errors with the CaDNET approach.
Without the RNN, the CNN-only model exhibits noticeably
higher errors, showing the RNN’s role in enhancing the
accuracy of sequential data processing within the context of
pose estimation.

Fig. 15. Translational error throughout randomly selected frames

V. CONCLUSION

This paper highlights the effectiveness of a deep learning
approach called Cascaded Deep Network (CaDNET) for pose
estimation in space rendezvous operations using a focused
Plenoptic camera. In this ’end-to-end’ method, the network
is trained directly on images to predict the relative pose.
This simplifies the process and directs the focus more toward
designing the network architecture and optimizing the param-
eters. Additionally, the use of a Plenoptic camera provides
several advantages, including improved image quality and the
ability to generate enhanced depth maps, making it a good
option for autonomous navigation challenges.

The experimental validation conducted using a Plenoptic
Lytro camera demonstrates the feasibility of the proposed
approach for close-range, uncooperative rendezvous missions.
The results support the adoption of a Plenoptic camera in AI-
based relative navigation solutions for space rendezvous mis-
sions. However, it is important to acknowledge certain limita-
tions of the CaDNET approach. The system’s performance is
heavily dependent on the quality and variability of the training
data. In scenarios where the camera faces extreme lighting
conditions or highly reflective surfaces, the accuracy of pose
estimation may degrade. Additionally, the computational re-
quirements for processing high-resolution Plenoptic images in
real-time can be substantial, posing challenges for onboard
spacecraft systems with limited processing capabilities.

Future work will focus on enhancing the robustness of the
CaDNET model under varied and challenging environmental
conditions. We plan to integrate more diverse datasets, includ-
ing those simulated under extreme conditions. Furthermore,
efforts will be directed toward optimizing the computational
efficiency of the model, making it feasible for deployment on
spacecraft with constrained computational resources.
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Märtens, and Simone D’Amico. Satellite pose estimation challenge:
Dataset, competition design, and results. IEEE Transactions on
Aerospace and Electronic Systems, 56(5):4083–4098, 2020.

[20] Jianing Song, Duarte Rondao, and Nabil Aouf. Deep learning-based
spacecraft relative navigation methods: A survey. Acta Astronautica,
191:22–40, 2022.

[21] Bo Chen, Jiewei Cao, Alvaro Parra, and Tat-Jun Chin. Satellite pose
estimation with deep landmark regression and nonlinear pose refinement.
In Proceedings of the IEEE/CVF International Conference on Computer
Vision Workshops, pages 0–0, 2019.

[22] Pedro F Proença and Yang Gao. Deep learning for spacecraft pose
estimation from photorealistic rendering. In 2020 IEEE International
Conference on Robotics and Automation (ICRA), pages 6007–6013.
IEEE, 2020.
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Aljosa Smolic. A pipeline for lenslet light field quality enhancement. In
2018 25th IEEE International Conference on Image Processing (ICIP),
pages 639–643. IEEE, 2018.



12 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

Zakaria Chekakta received his Ph.D. in Elec-
tronics and Industrial System Control from the
National Polytechnic School of Oran, Algeria, in
2021. He is currently a Postdoctoral Research
Fellow in Intelligent Navigation for Space with
the Robotics and Machine Intelligence Group
at City, University of London, U.K. Zakaria has
more than three years of experience in the space
sector, having contributed to various high-profile
projects funded by the European Space Agency
(ESA) and the UK Space Agency. His work

includes leading the development of AI-based autonomous refueling
systems for satellites and advancing deep neural network-based navi-
gation for space landing operations.

Nabil Aouf received the Ph.D. degree in robust
control for aerospace vehicles from the Depart-
ment of Electrical and Computer Engineering,
McGill University, Montreal, QC, USA, in 2002.
He is currently a Professor of Autonomous Sys-
tems and Machine Intelligence with the City
University of London, London, U.K., where he is
also the Director of the Systems, Autonomy and
Control Centre and the co-Director of the Lon-
don Space Institute. He also leads the Robotics,
Autonomy and Machine Intelligence Group.


	Introduction
	Plenoptic Camera and Pose Estimation
	Related work
	Plenoptic Depth Map Optimization

	Cascaded Deep Network (CaDNET) Relative Pose Estimation
	Experiments and results
	Experiments and platform setup
	Dataset generation
	Scenario 1
	Scenario 2

	Training phase
	Estimation results

	Conclusion
	References
	Biographies
	Zakaria Chekakta
	Nabil Aouf


