

City, University of London Institutional Repository

Citation: Dixit, A. (2024). Improving the Identity and Access Management Capabilities of

Industrial Internet of Things. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/33812/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Improving the Identity and Access
Management Capabilities of Industrial

Internet of Things

Akanksha Dixit

Supervisor: Prof. Muttukrishnan Rajarajan

A Thesis Submitted to
School of Science and Technology, City, University of London, UK

In Partial Fulfilment of the Requirement for the Degree Doctor of
Philosophy (PhD)

In Information Engineering

September 2024

1

Declaration

I hereby declare that no portion of the work contained in this document has been submitted
in support of an application for a degree or qualification of this or any other university or
other institution of learning. All verbatim extracts have been distinguished by quotation
marks, and all sources of information have been specifically acknowledged.

Akanksha Dixit
September 2024

2

Acknowledgement

The last four years have been a journey to remember. It has been a journey that demanded
the utmost discipline, hard work and resilience from me. This thesis would not have come
to fruition without the selfless and unwavering support of a considerable number of people.
This section is intended as a small gesture from my side to thank the following people.

I would first like to thank my PhD supervisor, Professor Muttukrishanan Rajarajan.
When I first applied to City in late 2019, Professor Raj kindly accepted to mentor me as
his student. He advised and answered my questions at each step from publishing my first
conference paper as a PhD student to motivating me to present my research at various
forums to gather a holistic insight in my domain. He has always acted as a mentor and
shared his wisdom whenever I was confronted with a roadblock in my research. His
unparalleled work ethic and sincere dedication to work have always inspired me. Thank
you, Professor.

I have been fortunate to have the support of amazing fellow researchers through this
PhD. The following deserve thanks for their help and guidance: Dr Waqar Asif for his
guidance during the initial days of my PhD; Dr Max Smith-Creasey for his help and
support throughout my internship at BT and beyond; Dr Yogachandran Rahulamathavan
for his support in the data marketplace work; Dr Bruno Bogaz Zarpelo for the invaluable
discussion during our paper collaboration, giving comments on my thesis and beyond. My
friends Shahrbano, Safwana, Subhajit and Veniamin at the City and my friends Vijaya,
Subhra, Manish and Sangita back home.

At every stage of my research, through good days and bad, my family stood by my
side as my rock. My mother and father always believed in the importance of education and
they always went out of their way to support me in my academic endeavours. My siblings
Anketa and Harsh, have always been my greatest champions. Thank you all for believing
in me more than I did myself. I would lastly like to thank my partner (now husband) Arjun.
He has been my strongest support, collaborator and guide in many ways than I could have
imagined. When I decided to move abroad for my PhD studies, he supported me with the
biggest heart and smile. Thank you for always being there.

3

Abstract

Internet-of-Things is one of the most widely used technologies in the world. It is used in
personal spaces in the forms of virtual assistant technologies, home sensors, baby monitors
etc. and in enterprise/public settings to monitor the health and safety of citizens. But the
ecosystem that has seen the most significant disruption due to this technology is industry,
supply chain and retail management. In these settings, IoT provides monitoring of very
specific parameters. It is worth noting that the mode and purpose of using IoT in an
industrial setting also known as Industry 4.0 are quite different from the above-mentioned
use cases. IoT devices in an industrial setting are quite mobile, distributed across different
networks and often handled by various operators. These devices collect critical data
that could cause large-scale damage if obtained by attackers or insider malicious entities.
Recently, traditional authentication and authorization techniques have been shown to have
flaws that enable attackers to bypass them. Furthermore, traditional authentication schemes
are designed with a client-server setup which does not scale well with the growing number
of IoT devices. These systems are highly centralized which makes it difficult to scale and
protect against large-scale attacks as the single root of trust is compromised. Another
operational challenge includes the use of static one-time-off authorization mechanism
which enables attackers to cause damage if they maliciously gain access to the system.
These challenges not only deter the secure functioning of current forms of IoT networks but
also creates hindrance in the evolution of IoT networks to support more collaborative use
cases that entail device sharing, IoT data sharing and peer-to-peer transactions to support
innovative use cases.

While significant progress has been made in adopting existing connectivity, identity and
access management frameworks for IoT, most of these frameworks are designed to work
for unconstrained devices in centralized settings. IoT devices are usually constrained with
an inherent tendency to operate in a decentralized and peer-to-peer arrangement. Therefore,
the thesis utilises the concepts of decentralization introduced in Distributed Ledger (DLT)
technologies and the capability of automating business flows through smart contracts. This
thesis focuses on advancing the traditional identity and access management techniques
to enable scalable, decentralized and secure identification of devices by providing novel

4

mechanisms. In order to achieve this, the thesis proposes four novel contributions described
in the following:

The first contribution is a smart contract-enabled decentralized identity management
framework for Industry 4.0. A novel methodology to create and manage identities and
access control using the autonomous functioning of smart contracts on distributed ledgers
is proposed. This framework boasts inherent decentralization and scalability, addressing
a critical gap in the existing IIoT management landscape, which is largely dominated by
centralized models.

The second contribution provides an improvement on the previous contribution in the
form of a decentralized IIoT identity framework based on self-sovereign identity. While
the core principle of decentralized identity management endures, the innovative model
introduces a robust decoupling between the roles of issuer, holder, and verifier. This
strategic evolution seeks to reconcile the decentralized digital identity concept, introduced
in our prior work, with the emerging standard of Self-Sovereign Identity (SSI).

The third contribution is a fair, secure and trusted decentralized IIoT data marketplace
enabled by blockchain. The insights derived from their first two contributions were
ingeniously harnessed in this contribution, leading to the consolidation of their expertise
in exploring a forward-looking application of IoT within the context of recent advances
in AI/ML-driven innovations. Through this design, we explore the parameters like trust,
fairness and fault tolerance of such a design pattern.

The last contribution extends and improves some aspects of the previous contribution.
Existing data exchange schemes depend on a trusted third party for key management during
authentication and rely on a ‘one-time-off’ approach to authorization. This contribution
proposes a user-empowered, privacy-aware, authentication and usage-controlled access
protocol for IIoT data marketplace.

5

Publications

The following publications have been produced from the research conducted in this thesis.
International Conference Papers

• Publication I: Akanksha Dixit, W. Asif and M. Rajarajan, “Smart-Contract Enabled
Decentralized Identity Management Framework for Industry 4.0,” IECON 2020
The 46th Annual Conference of the IEEE Industrial Electronics Society (IECON),
Singapore, 2020, pp. 2221-2227, doi: 10.1109/IECON43393.2020.9254545.

• Publication II: Akanksha Dixit, M. Smith-Creasey and M. Rajarajan, “A Decentral-
ized IIoT Identity Framework based on Self-Sovereign Identity using Blockchain,”
2022 IEEE 47th Conference on Local Computer Networks (LCN), Edmonton,
Canada, 2022, pp. 335-338, doi: 10.1109/LCN53696.2022.9843700.

Journal Papers

• Publication III: Akanksha Dixit, A. Singh, Y. Rahulamathavan and M. Rajara-
jan, “FAST DATA: A Fair, Secure and Trusted Decentralized IIoT Data Market-
place enabled by Blockchain,” in IEEE Internet of Things Journal, 2021, doi:
10.1109/JIOT.2021.3120640.

• Publication IV: Akanksha Dixit, B.B. Zarpelao, M. Smith-Creasey and M. Rajara-
jan, “A privacy-aware authentication and usage-controlled access protocol for IIoT
decentralized data marketplace”, in Computers & Security, Volume 146, 2024, doi:
10.1016/j.cose.2024.104050.

6

Abbreviations

ABAC
Attribute-Based Access Control
ABI
Application Binary Interface
ACE
Authentication and Authorization for Constrained Environments
ACL
Access Control List
AES
Advanced Encryption Standard
API
Application Programming Interface
BFT
Byzantine Fault Tolerant
BOPS
Biometric Open Protocol Standard
CA
Certificate Authorities
CBC
Cipher-Block Chaining
CCPA
California Consumer Privacy Act
CFT
Crash Fault Tolerant
CoAP
Constrained Application Protocol
CPU
Central Processing Unit
CRL
Certificate Revocation List
CTAP
Client to Authenticator Protocol
DApp
Decentralized Application
DB

7

Database
DBMS
Database Management Systems
DeFi
Decentralized Finance
DIDs
Decentralized Identifiers
DoS
Denial-of-Service
DDoS
Distributed Denial-of-Service
DLT
Distributed Ledger Technology
DPKI
Distributed Public Key Infrastructure
EOA
Externally Owned Account
ECDSA
Elliptic Curve Digital Signature Algorithm
ERC
Ethereum Request for Comment
EVM
Ethereum Virtual Machine
FIDO
Fast ID Online
GCP
Google Cloud Platform
GDPR
General Data Protection Regulation
GPS
Global Positioning System
HDD
Hard Disk Drive
HIPAA
Health Insurance Portability and Accountability Act
HMAC
Hash-based Message Authentication Code
HTTP

8

Hypertext Transfer Protocol
IAM
Identity and Access Management
ICANN
Internet Corporation for Assigned Names and Number
IDAMS
Identity and Access Management System
IdM
Identity Management
IIoT
Industrial Internet of Things
IoT
Internet of Things
IP
Internet Protocol
IPv6
Internet Protocol Version 6
IPFS
Inter-Planatery File System
JSON
JavaScript Object Notation
JSON-RPC
JavaScript Object Notation- Remote Procedure Call
KYC
Know Your Customer
LwM2M
Lightweight Machine-to-Machine
MAC
Message Authentication Code
MITM
Man-in-the-Middle
M2M
Machine-to-Machine
MSP
Membership Service Provider
MQTT
Machine Queuing Telemetry Transportation
NFT

9

Non-Fungible Token
OEM
Original Equipment Manufacturer
OPC-UA
Open Platform Communications United Architecture
P2P
Peer-to-Peer
PBFT
Practical Byzantine Fault Tolerant
PGP
Pretty-Good Privacy
PII
Personally Identifiable Information
PKC
Public Key Certificate
PKI
Public Key Infrastructure
PoC
Proof-of-Concept
PoS
Proof-of-Stake
PoW
Proof-of-Work
RAFT
Reliable, Replicated, Redundant, And Fault-Tolerant
RAM
Random Access Memory
REST
Representational State Transfer
RFID
Radio-frequency identification
RPC
Remote Procedure Call
SAML
Security Assertion Markup Language
SDK
Software Development Kit
SHA

10

Secure Hash Algorithm
SSI
Self-Sovereign Identity
SSL
Secure Sockets Layer
TLS
Transport Layer Security
TTP
Trusted Third Party
UCON
Usage Control
URI
Uniform Resource Identifier
UUID
Universally Unique Identifier
VCs
Verifiable Credentials
VCR
Verifiable Credential Registry
VDR
Verifiable Data Registry
W3C
World Wide Web Consortium
WSN
Wireless Sensor Network
XAML
Extensible Access Control Markup Language
ZT
Zero Trust

11

Table of Contents

List of Figures 16

List of Tables 20

1 Introduction 21
1.1 Motivation . 23
1.2 Research Challenges . 25
1.3 Research Objectives . 27
1.4 Research Methodology . 29
1.5 Research Contribution . 31
1.6 Structure of the Dissertation . 33

2 Technological Foundation 35
2.1 IoT Architecture Overview . 35
2.2 Identity Management in IoT . 37

2.2.1 Classification of Identifiers in IoT networks 39
2.2.2 Identity and Access Management 41

2.3 Evolution of Identity Management Models 42
2.4 Self Sovereign Identity Model . 43

2.4.1 Decentralized Identifier (DID) 44
2.4.2 Verifiable Credentials (VC) . 45
2.4.3 Limitations and areas of improvement in SSI 46

2.5 Distributed Ledger Technology Overview 48
2.5.1 Blockchain Architecture . 49
2.5.2 Types of Blockchains . 52
2.5.3 Blockchain Platforms suitable for IoT environments 53

2.6 Blockchain Projects used in this dissertation 56
2.6.1 Ethereum Blockchain . 56
2.6.2 Hyperledger Fabric . 57
2.6.3 Hyperledger Indy . 60

12

Table of Contents

2.7 Decentralized Storage . 61
2.8 Usage Control . 63
2.9 Cryptographic Primitives . 64
2.10 Summary . 68

3 Decentralized Identity Management Framework for Industry 4.0 69
3.1 Introduction . 69
3.2 Blockchain-Based Identity and Access Management Systems: A look at

state-of-the-art . 71
3.3 Case Study: Factory Floor Automation 73

3.3.1 Contributions . 73
3.4 Proposed Architecture Overview . 74

3.4.1 System architecture . 74
3.4.2 Smart Contract Methods . 77
3.4.3 System Interaction and WorkFlow 78

3.5 Implementation and results . 81
3.5.1 Experimental setup . 81
3.5.2 Performance Evaluation . 84

3.6 Security Analysis . 87
3.7 Conclusion . 88

4 A Decentralized IoT Identity Framework based on Self-Sovereign Identity
and Blockchain 90
4.1 Background and Motivation . 90
4.2 Current Practices and State-of-the-art Identity Management Models . . . 93

4.2.1 Use of DIDs for IoT Devices Identity 94
4.3 Proposed Model . 95

4.3.1 System Actors . 95
4.3.2 Components of the architecture 97
4.3.3 Framework Explained . 99

4.4 Evaluation and Discussion . 101
4.4.1 Evaluation Results . 101
4.4.2 Discussion and Analysis . 104

4.5 Security of the proposed framework . 105
4.6 Conclusion . 106

5 A Fair, Secure and Trusted Decentralized IoT Data Marketplace enabled by
Blockchain 107
5.1 Background and Motivation . 107

13

Table of Contents

5.2 Related Work and State-of-the-Art . 109
5.3 Case Study . 110

5.3.1 Contributions . 111
5.4 System Elements and Design Features 111

5.4.1 System Actors . 111
5.4.2 Design Features . 112

5.5 System Components and Roles . 114
5.5.1 Data Marketplace . 114
5.5.2 Event Processing Engine . 115
5.5.3 Security Manager . 115
5.5.4 Network Layer . 115
5.5.5 ChainCode . 116

5.6 Problem Definition . 116
5.7 Solution . 117

5.7.1 System Architecture Overview 117
5.7.2 Notations and Preliminaries . 118
5.7.3 Smart Contract Functions . 119
5.7.4 Protocol Flow . 120
5.7.5 Design Analysis . 123

5.8 Implementation and Result Evaluation 125
5.8.1 System Components . 125
5.8.2 Evaluation . 127

5.9 Security Analysis . 132
5.9.1 Man-in-the-Middle (MITM) Attack 132
5.9.2 Distributed Denial of Service (DDoS) attack 133
5.9.3 Sybil Attack . 133
5.9.4 Information Disclosure Attack 134
5.9.5 Forking Attack . 134

5.10 Conclusion . 134

6 A Privacy-Aware Authentication and Usage-Controlled Access Protocol for
IIoT Decentralized Data Marketplace 135
6.1 Background and Motivation . 136
6.2 Related Work . 139
6.3 Proposed Protocol . 141

6.3.1 Overview . 141
6.3.2 System Setup and Registration Phase 143
6.3.3 Authentication and UCON Phase 147

14

Table of Contents

6.3.4 Design Analysis: Dynamics of SSI in a data marketplace 150
6.4 Implementation and Evaluation . 151

6.4.1 System Components . 151
6.4.2 Evaluation . 151

6.5 Security Analysis . 155
6.5.1 Formal Security Verification: A simulation study using Scyther tool156
6.5.2 Informal Security Analysis . 159

6.6 Conclusion . 162

7 Conclusion and Future Work 163
7.1 Contributions . 165
7.2 Key Insights . 166
7.3 Future Work Directions . 169

References 171

15

List of Figures

1.1 Showing the estimated enterprise IoT market growth between 2019-2027
with CAGR (Compound Annual Growth Rate) 22

1.2 Showing the different levels of IoT security at Device, Communication,
Cloud and Lifecycle management and their further subcomponents 22

1.3 Showing the result of a survey illustrating the ranking of a range of IoT
security weakness that need greatest improvement 23

2.1 Showing the different layers of 3, 4 and 5 layered architecture of an IoT
system . 36

2.2 Showing the Identity Management general overview along with various
components that form identifiers, attributes and credentials and their func-
tionalities . 38

2.3 Showing the evolution of Identity Management models in terms of how
identities are created, managed and controlled over their lifecycle 43

2.4 Showing the workflow of interaction between actors to create DID and VC 44
2.5 Showing the Overview of DID architecture and the relationship of the

basic DID components . 45
2.6 VCs issued to two types of IoT devices (a stationary robotic arm and a

mobile autonomous bot) by two separate issuers. 46
2.7 Showing the difference in the models for : Centralized - Decentralized -

Distributed types of networks . 48
2.8 Showing the structure of a blockchain represented by cryptographically

linked data blocks and the fields that constitute a block 50
2.9 Showing the Ethereum Blockchain Architecture which consists of the base

blockchain network, the smart contract layer and the top most decentralized
application layer . 56

2.10 Showing the transaction flow in the Hyperledger Fabric network right from
the point it is created by client to the transaction getting included in the
world state . 57

16

List of Figures

2.11 Components of a Ledger in Hyperledger Fabric: A Ledger L comprises
blockchain B and world state W, where blockchain B determines world
state W . 59

2.12 Showing the Hyperledger Indy Architecture 60
2.13 Showing the different stages of UCON system: pre, ongoing and post the

usage of the resource requested . 63

3.1 Showing the architectural difference between Client-Server network model
and Decentralized network model . 70

3.2 Decentralized framework for Industrial IoT. Each industrial facility hosts
a blockchain ledger and IPFS file system as a local copy. 75

3.3 Showing the process of Supervisor Registration as part of network setup . 78
3.4 Showing the process of IoT Device Registration as part of network setup . 79
3.5 Illustrating the format of a device ticket ℑ that contains a unique fingerprint

of each device . 80
3.6 Showing the steps involved in granting access to a device for a requested

resource hosted by another IoT device 81
3.7 Performance Results illustrating the Throughput and Message Transmis-

sion Latency varying with the number of concurrent client requests. Q =
Quality of Service (QoS) . 83

3.8 Statistical Results illustrating the Mean and Standard Deviation(SD) of
subscriber duration against the number of concurrent client requests . . . 86

4.1 Reference Architecture for proposed framework showing M2M communi-
cation carried out by IoT device agent 96

4.2 Flow Diagram illustrating the interaction between the different components
of framework . 100

5.1 Showing the high-level view of sub-components of the proposed digital
marketplace . 111

5.2 Showing the architectural layer diagram outlining the various layers of the
framework and their respective roles . 114

5.3 A detailed diagram illustrating all the system components of the architecture117
5.4 Showing the protocol flow outlining interactions between all the compo-

nents of the data marketplace . 121
5.5 The graph represents the variation of Total Runtime/Seller against no. of

sellers when blockchain peer nodes = 3 128
5.6 The graph represents the variation of Total Runtime/Seller against no. of

sellers when blockchain peer nodes = 6 129

17

List of Figures

5.7 The graph represents the variation of Average Upload Time against no. of
sellers when blockchain peer nodes = 3 129

5.8 The graph represents the variation of Average Upload Time against no. of
sellers when blockchain peer nodes = 6 130

5.9 The graph represents the variation of Upload Throughput against no. of
sellers when blockchain peer nodes = 3 131

5.10 The graph represents the variation of Upload Throughput against no. of
sellers when blockchain peer nodes = 6 131

5.11 The graph represents the Avg Runtime with file size variation when the
number of blockchain peer nodes = 3 . 132

5.12 The graph represents the Avg Runtime with file size variation when the
number of blockchain peer nodes = 6 . 133

6.1 System Actors in the Proposed Protocol 142
6.2 Overview of proposed protocol with detailed flow of interactions between

actors . 142
6.3 Credential Schema details of the fields of an issued credential and Creden-

tial Definition informs the identity and public keys of the issuer 152
6.4 System Setup Time with varying number of Indy Nodes(N) and number of

claims(C) . 153
6.5 Time taken for VC Creation/Verification 153
6.6 Time taken for usage-controlled policy evaluation 154
6.7 Role for Seller Sx in SPDL . 156
6.8 Role for Buyer Bi in SPDL . 157
6.9 Role for Storage Operator So in SPDL 158

18

Listings

2.1 DID Document Syntax . 44
4.1 Ethereum DID Registry . 98
4.2 Verifiable Claims Registry . 98

19

List of Tables

2.1 A comparison of BFT based Consensus Algorithms 52
2.2 Comparison between different blockchain architectures : Public, Private

and Consortium (R: Read, W: Write, C: Consensus) 53
2.3 ZKP Algorithms . 66

3.1 A table summarizing all the symbols used in the algorithm for this chapter 76
3.2 A table summarizing susceptibility of each component to a set of threats

under STRIDE model . 87

4.1 A table to summarize the architectural difference between the blockchain
projects used to conduct tests for the proposed scheme 102

4.2 A table showing results of simulation for the parameters: Gas Used, Gas
Cost and Confirmation Time . 103

4.3 A table showing results of simulation for the parameter: Storage Overhead
for Smart Contracts and DIDDocs . 103

4.4 Framework Performance on Hyperledger Indy 103
4.5 A table showing Malicious Entities, Threats and Inbuilt Prevention for

blockhain peer and IPFS node . 105

6.1 Comparison of Blockchain Marketplace Solutions based on design features
[P = Proposed work] . 141

6.2 Notations . 143
6.3 Usage-Controlled Access Components 149
6.4 Storage Cost: SL/Buyer Wallet [C = No. of claims] 154
6.5 Computation Cost Independent of VC setup 155
6.6 Scyther Results: Verification of reachability of the roles for Sx, Bi and So 159
6.7 Scyther results: verification of claims 160

20

Chapter 1

Introduction

IoT has emerged as one of the most important and widely deployed computing paradigms
over the past years. The term Internet of Things was initially used to refer to “connected
data-collecting hardware”. It had few potential use cases back then and was merely a way
of collecting sensor data from the environment. However, given a decade-long course
of technological development dedicated to IoT-specific protocols, network infrastructure,
cloud-based platforms, endpoints and hardware (processors etc.), IoT has made its way
to technologically advanced applications such as healthcare, connected vehicles, and
supply-chain. This dissertation adopts a rather advanced definition of the term Internet of
Things which indicates the capability to connect any physical object to the Internet in a
decentralized way to cater for innovative enterprise use cases.

The increased proliferation of IoT devices has given rise to new use cases and business
models. As shown in Figure 1.1, the spending on Enterprise IoT alone is expected to grow
from 158 billion USD to a whopping 525 billion USD in 2027. Recently a plethora of new
opportunities has emerged in a wide spectrum of domains on how data and services offered
by IoT devices can be monetized. Several startups [1] are taking the lead in innovative IoT
products with big organizations such as Cisco, Bosch, Philips, [2], [3] following the lead
to capture the market. Corporations such as Amazon, Google, and Thinger [4] are also
providing cloud-based IoT platforms for data logging and analytics. These trends indicate
the rising supply-demand cycle in the IoT ecosystem.

Whilst IoT as a technology is being widely adopted, its security has long been inherently
overlooked. As seen in Figure 1.1, in 2021, out of the total 158 billion USD spent on
Enterprise IoT only 4% was spent on security. IoT security can be achieved at four different
levels as shown in Figure 1.2. Although readiness at each level ensures distinct security
guarantees, securing the device itself is a key step towards the security of the overall
ecosystem. According to an industry report prepared by collecting data from key players

1https://iot-analytics.com/iot-market-size/

21

Fig. 1.1 Showing the estimated enterprise IoT market growth between 2019-2027 with CAGR
(Compound Annual Growth Rate) [Source: IoTAnalytics]1

Fig. 1.2 Showing the different levels of IoT security at Device, Communication, Cloud and Lifecycle
management and their further subcomponents [Source: IoTAnalytics]

22

1.1 Motivation

in the IoT market, as shown in Figure 1.3, among all the areas of security concerns, the
greatest need for improvement lies in the area of authentication/authorization process,
with access control being the second one. A fundamental requirement of secure digital
communication is authentication and authorisation of legitimate entities. This is possible
with strong identifiers in place at the beginning and their management throughout the
device life cycle

Fig. 1.3 Showing the result of a survey illustrating the ranking of a range of IoT security weakness
that need greatest improvement [Source: IoT Analytics]1

1.1 Motivation

IoT devices have rapidly become a ubiquitous part of modern industry. We have witnessed
a rise in the use of interconnected devices for various applications like in healthcare, supply
chain, smart home, power systems etc. The continuous development of capabilities and
applications of IoT devices have made them a platform for both personal and business use.

Industry 4.0 is characterised by the integration of digital technologies into production
processes powered by IoT-based advancements. Smart factories equipped with IoT sensors
and robotics enable efficient manufacturing operations. IoT facilitates predictive main-
tenance of machinery, minimising downtime and optimising productivity. Additionally,
IoT-powered production system leverages the abundance of high quality data in processing
and decision making.

1https://www.iiot-world.com/news/reports/an-overview-of-the-iot-security-market-report-2017-2022/

23

1.1 Motivation

The increased adoption of IoT devices means that they are deeply embedded in and
around critical processes. This indicates that there lies an incentive to hack them and gain
access to sensitive data such as financial details in the case of mobile devices, infrastructure
and sensitive manufacturing data details in the case of industries, and critical health data in
the case of healthcare devices. The dynamic and heterogeneous nature of IoT networks
can make them prone to attacks if not safeguarded adequately [5].

The thesis primarily explores the challenges with the current state-of-the-art identity
management practises in IoT and how it hinders the evolution of novel use-cases to help
monetize the IoT data. The prevalent practice of assigning default username-passwords to
devices at the bootstrapping stage is a weak authentication mechanism. In industrial setting,
this mechanism is generally replaced by use of digital certificates as device identifiers to
provides a greater level of security.

There are various inherent weaknesses with the use of complex digital certificates in
IoT platforms. Traditional identity servers are employed to maintain the bulk of such
certificates, thus they are lucrative assets for malicious entities and therefore potential
attack vectors. There is significant financial gain for hackers in compromising such a
server [6]. Maintaining such infrastructure is also an arduous task as it requires frequent
update of identifiers in case of the root certificate compromise/expiry.

Another challenge is that the vast majority of classical IoT platforms available today
are based on a centralized model where the platform provider is trusted with authorization
and access control [7]. These solutions are heavily centralized around the cloud framework
which creates a bottleneck in real-time data access and enabling access control policies
for smart devices [8]. Centralized databases affect scalability and does not allow for
peer-to-peer verification. The devices can only operate in their identity silos and the scope
of interoperability is limited. This also leads to the issue of vendor lock-in for businesses.

Furthermore, current IoT authentication mechanisms are one-time off systems; they
do not monitor the communication after the initial device verification. This puts hacked
devices at risk of data theft and in case of a malicious device, it gives the device more
time to hide under the disguise and cause damage to the network. In order to ensure that
imposters do not cause great damage if they happen to get on-time access, there would
need to be a mechanism in place to authenticate and monitor the behaviours of devices in
the critical process beyond an initial check-in.

Another weakness of the current authentication and access control mechanism is that
they reveal a lot of unnecessary information during the process. These current mechanisms
do not focus on privacy and data minimization when it comes to designing identity lifecycle.
This can lead to device footprint being available to platform owners which can be harvested
by them for monetary benefits. Therefore, a transition is required in the way identities are
created, managed and maintained in IoT networks [7].

24

1.2 Research Challenges

IoT device data generated is a valuable resource with reusable vale. The IoT devices
installed in various settings can help build applications that consume various types of data
and generate helpful insights. This is only possible if this data can be exchanged/traded in
a secure and fair setting. Data marketplaces are one such opportunity to monetize data and
reuse its value outside the context in which it was generated for sustained value extraction.

The research of this thesis is motivated by the need for a secure, interoperable and
privacy-preserving form of identity management aided by the advancements of new and
novel authentication techniques in the context of IoT devices. The evolution and adoption
of such an identity and access management system is presented in the IoT data marketplace
context.

1.2 Research Challenges

As IoT becomes ubiquitous, there emerges a wide spectrum of novel use cases to monetize
IoT data and the associated services [9], [10], [11]. New device-sharing and data-sharing
models [12] are emerging that demand a new approach to how identities and their manage-
ment is carried out in the modern IDAMS. In a dynamic enterprise IoT setting, multiple
stakeholders collaborate to share devices, data and network infrastructure in an evolving
ecosystem. The legacy access control mechanism is not designed to account for granular
permission levels and fails to detect real-time threats. The static authentication techniques
can only protect systems at the entry and do not consider the subject’s behaviour once
admitted [13]. The primary technical challenges associated with the “Secure Device”
identity and access management paradigm as discussed above can be listed as follows:

• Issues with devices identifiers (Repetitive/ Identity Theft): Unique identifiers are
crucial to ascertain the identity of a device on the network. Default username-
password combinations, weak passwords and non-standard identifiers for IoT devices
are the root cause of a large proportion of attacks on IoT networks [14], [5], [15]. The
different ways of identifying IoT devices paired with large-scale deployments of the
various IoT platforms have made it increasingly difficult to uniquely identify a device
on a global scale. We need new forms of identifiers that are unique, interoperable
and cannot be stolen by compromise of a central entity.

• Fragmented Identity Silos/Honeypot Databases in IDAMS: [16], [6] When enter-
prises onboard IoT devices, they follow a nomenclature strategy based on their
characteristic requirements. These requirements may not overlap with that of other
enterprises and hence create identity silos. These fragmented identity silos con-
sequently lead to creation of centralized ID databases. With large-scale adoption

25

1.2 Research Challenges

of cloud-based IoT platforms, centralized repositories of username-passwords that
often store this information in unencrypted format are on the rise. Such platforms
are only a hack away from revealing information of thousands to millions of devices.
There have been several attacks in the past [17], [15] with the intent to steal informa-
tion about IoT devices/personal devices to hack into a network. Hence, what was
originally designed to be an identity-related repository is often a lucrative target of
hackers making them the “honeypot” of sensitive data.

• Interoperability & Poor Scalability: [18], [8] Due to the heterogeneous nature of
IoT networks, it is not feasible to extrapolate the web-based solutions to an IoT
system. The proliferation of different IoT systems and lack of their interoperability
have withheld the emergence of novel IoT use cases that demand interoperability on
the application level. Lack of interoperability leads to poor scalability of solutions.
Due to a lack of interoperable identity and access control solutions for IoT it is very
difficult to design secure solutions that can scale.

• Poor Access Control: [19] In a real-world collaborative IoT system where multiple
stakeholders engage in an exchange as well as sharing of information and resources,
proper access control management is crucial. However, the legacy access control
mechanism [20] is not designed to account for granular permission levels and fails to
detect real-time threats. Static and ‘one-time-off’ authentication techniques do not
safeguard against malicious entities that accidentally get access to the network [21].

• Peer-to-Peer services: [22], [11] Modern Peer-to-peer IoT scenarios such as self-
driving vehicles, electrical-charging kiosks, IoT data marketplaces, and autonomous
cargo-fleets inspire novel ways of interacting with machines in an M2M economy.
This will include ways in which identities and access control between devices/ma-
chines are designed, managed and maintained over their lifecycle.

As discussed above, IoT faces a number of critical challenges that hinder its full-scale
adoption in emerging dynamic use cases. This dissertation focuses on finding solutions
to the challenges associated with identity and access management practises in IoT and
how they can motivate novel use cases that are emerging in the computing paradigm. IoT
networks are inherently distributed in nature, therefore improving their capabilities requires
a novel approach to onboarding, assigning and maintaining their identity lifecycle. This is
a challenge that can be approached from different perspectives. Considering the fairly large
number of research challenges in this area, this dissertation identifies a set of most relevant
challenges that affect the security of IoT networks right from the beginning i.e. device
identity, device authentication and device authorization. The objective of this work is to
design, propose and analyse the feasibility of a decentralized framework for the identity

26

1.3 Research Objectives

management of IoT networks. For designing such an architecture, we leverage Distributed
Ledger Technology (DLT) in specific scenarios. The use of smart contracts (automated
computer codes that execute according to the terms of the agreement) is proposed to
eliminate the requirement of a trusted third party to act on behalf of IoT entities. The use of
smart contracts to enhance privacy, security and authenticity of data exchange along with
designing smart peer-to-peer applications is studied. Later, this dissertation also delves
into the issues surrounding static authorization techniques and threats associated with such
techniques.

1.3 Research Objectives

As detailed in the previous section, IoT faces a number of critical challenges that hinder
its full-scale adoption across various industries. IoT networks are inherently distributed
in nature, therefore improving their capabilities requires a novel approach to onboarding,
assigning and maintaining their identity lifecycle. Considering the fairly large number of
research challenges in this area, this dissertation identifies a set of most relevant challenges
that affect the security of IoT networks right from the beginning i.e. device identity, device
authentication and device authorization. The objective of this work is to design, propose
and analyse the feasibility of a decentralized framework for the identity management of
IoT networks. For designing such an architecture, we leverage DLT in specific scenarios.
DLT network can provide several benefits when connected to IoT network. In specific
IoT use cases that demand mutual trust and transparency by removing a centralized entity,
DLT can offer transparency and auditable transactions. This can lead to improved network
resiliency, reduced single points of failure, and increased trust among participants. The use
of smart contracts (automated computer codes that execute according to the terms of the
agreement) is proposed to eliminate the requirement of a trusted third party to act on behalf
of IoT entities. The use of smart contracts to enhance privacy, security and authenticity
of data exchange along with designing smart peer-to-peer applications is studied. This
dissertation concentrates on following five specific goals:
Objective 1: Decentralized identity and access management framework for IIoT

• To design and adapt new forms of global identifiers for IoT devices that provides
unique addressability, avoid single point of failure and siloed identity verticals. To
design a decentralized framework for managing the lifecycle of such identifiers and
devise access management policies that can function without a centralized authority.

• To explore and adapt advanced identity related standards like SSI (DIDs and VCs)
for industrial IoT use-cases while ensuring decentralization and compatibility with
the state-of-the-art IoT protocols.

27

1.3 Research Objectives

• To develop authentication and authorization protocols for the proposed framework
that not only ensures backward compatibility but also support granular control,
continuity of decision and continuous monitoring of resources being accessed.

Objective 2: Representation of Complex Industrial IoT use-cases

• To explore and develop proof-of-concept for above stated objective 1. The proof-of-
concept (PoC) implementations are developed for complex and novel IoT use-cases
that demand decentralized architecture for managing identity and permissions for
devices and users.

• To design and develop efficient device discovery and claim presentation mechanism
for remote device access using machine to machine communication. It extends the
capabilities of machines to function autonomously in complex real case operations.
Thus the distributed devices that constitute the network can manage operations like
verification/presentation of claims and data signing autonomously.

• To design and develop a fair, secure and trusted decentralized IoT data trading
marketplace. To ensure that such a marketplace supports user verification, trust
metric calculation, fair payment settlement, fault-tolerance and secure exchange of
IoT data. To implement and test such a data trading framework.

Objective 3: Interoperability

• To design and develop identity management framework that provide interoperability
of device identifiers. Such a framework should allow device identifiers to be rec-
ognizable beyond a specific platform and allow the rotation of such identifiers. It
should allow claims of the device to be presentable and verifiable in an interoperable
format.

• To design and develop authentication and authorization protocols that are interopera-
ble across vendors and/or platforms for managing device identity lifecycle.

Objective 4: Scalability

• To design and architect the aforementioned identity and access management frame-
work in such a way that it is able to scale with the increased device and concurrent
request load.

• To design and develop the architecture for measuring the load scalability of the
proposed frameworks in terms of operations it is able to perform when increasing or
decreasing the number of the distributed entities/concurrent request load and other
relevant parameters.

28

1.4 Research Methodology

Objective 5: Security

• To tightly and seamlessly integrate the security mechanism with authentication
protocols in the framework in such a way that it causes minimum overhead for the
throughput and latency in the communication.

• To design and develop a security protocol for preventing unauthenticated and unau-
thorised actors from gaining admission to the proposed frameworks and compare
its performance with state-of-the-art protocols. The protocols should provide con-
tinuous monitoring of resources as opposed to a ’one-time off’ solution to ensure
enhanced security.

• To design and develop inbuilt security mechanism in the proposed framework that
ensures the integrity, trust and confidentiality of the devices/users of an application
deploying our identity and access management framework.

1.4 Research Methodology

This dissertation embraces different research methodologies to evaluate the author’s ideas
and claims. First, a preliminary literature survey was conducted that helped to identify the
set of most significant challenges in the area of secure IoT computing from the IDAMS
perspective. For each challenge, a framework was designed, implemented as a software
prototype and finally tested. Each successive design/framework was an improvement
over the previous one. To ascertain the feasibility and performance of the design, its
software prototype was analyzed using repeated simulations under controlled environments.
Therefore, the research methods applied in this dissertation draw inspiration from software
design, system design, proof-of-concept (PoC) development and performance analysis
areas of computing.

The objective of PoC development was to have an independent and modular library
that can be easily replicated and improved over time. A major part of this work consists of
designing and implementing the PoC. Wherever required the design extends or modifies
the open-source libraries and projects to reuse the specific functionality implemented by
them. However, most of the components were implemented fully as they had to achieve
a very specific functionality being targeted in the dissertation. When open-source code
was used, the author contributed to the open-source community on various levels by
being involved in community discussion, raising issues and bug reporting. The software
prototypes developed in this dissertation are open-source too and available on the online
code-management platform Github [23].

29

1.4 Research Methodology

In order to evaluate the design, many concurrent programs had to be designed to
understand and measure the system’s performance. Most of the evaluations, therefore, had
to be run on cloud platforms as they provided upgraded hardware support. Linux operating
system was selected for PoC development and evaluation on these cloud platforms. Linux
OS supports most of the system libraries and makes the extension of a project much more
effortless. Concurrency was a major design feature in the project evaluation as IoT devices
were modelled as concurrent services requesting a resource.

Each solution was designed by using standard IoT communication and data-sharing
protocols. Following the standard development practices helps to ensure the reusability
and interoperability of the solutions along with their easy adoption and acceptance by the
open-source community. Specific databases more suitable to the decentralized design of
IoT networks were selected to seamlessly integrate the solution.

To design a complex working model of any system, experimental computer science
methods [24] can prove effective in evaluating the hypothesis. The experimental computer
science methods are built on experimentation used industriously in this dissertation. It
proposes to evaluate and validate a solution using the construction of a prototype system.
The results, frameworks and mechanisms designed in this dissertation together are difficult
to represent in a mathematical fashion, as prototyping was the only type of holistic tool that
could be used to represent and analyse the research problem in a comprehensive manner.
However, wherever possible, system components and their respective designs have been
represented in the form of mathematical formulae, derivations and computer algorithms.

In summation, the scientific process used in each publication comprises the following
steps [24]:

Problem → Hypothesis → Implementation → Evaluation → Conclusion
First, a problem statement is defined after conducting a relevant literature survey.

Subsequently, the solution hypothesis is designed as an architecture or theoretically func-
tioning framework. A PoC prototype is implemented as a modular software library. This
software library is evaluated under various parameters to study its performance in an IoT
landscape. The work is detailed in the form of a research paper. The conclusion along
with observations is published in international scientific publications. Finally, the designed
solution and research statement are re-evaluated according to the reviews received from
the scientific community. As a final note, all the prototypes in this dissertation were fully
designed, implemented and evaluated by the author herself and her research collaborators
whose names are acknowledged in the acknowledgement section of this thesis.

30

1.5 Research Contribution

1.5 Research Contribution

Designing a scalable, interoperable and decentralized identity and access management
scheme for distributed networks such as IoT that is robust and resilient is challenging as it
must operate consistently and securely in all scenarios. This thesis presents a collection of
novel modules that build on top of each other to form a secure, scalable and resilient IoT
network to enable novel real-world use cases. These modules in conjunction with each
other fulfil the above-discussed objectives. This dissertation consists of four peer-reviewed
publications that are the primary contribution of the author. The research was conducted
as a progression and each successive contribution was taken up as an improvement to the
previous contribution. Therefore, these contributions complement each other and provide
a comprehensive secure IDAMS for the IoT ecosystem. Below is a brief overview of the
contributions of each publication.

A novel smart-contract enabled framework for identity and access management
of distributed IoT networks

In the domain of industrial IoT (IIoT) infrastructure, the prevalent practice of relying
on centralized identity servers for authenticating IoT devices has given rise to a series
of notable challenges, as previously discussed. This thesis represents a significant stride
forward in addressing these challenges and makes distinctive contributions to the field. The
primary contribution of this work introduces an innovative paradigm shift in the conception
and design of identity and access management for IIoT setups. Unlike conventional
approaches, this research advocates for the development of a decentralized framework,
which marks a pioneering step in the domain. Moreover, it delves into the evaluation of
the performance implications associated with such a design. This contribution has been
published in [25].

The core of the contributions manifests in the form of a smart contract-driven, blockchain-
based decentralized life-cycle and access management system. This system leverages the
capabilities of the InterPlanetary system (IPFS) for decentralized data storage, distinguish-
ing it from the incumbent IIoT management frameworks. Furthermore, this framework
boasts inherent decentralization and scalability, addressing a critical gap in the existing
IIoT management landscape, which is largely dominated by centralized models. The
author designed this framework using standard IoT protocols and functionalities, and its
efficacy was evaluated during implementation of crucial component that validated our
initial hypothesis at the inception of this dissertation. This work is presented in Chapter 3
of the dissertation.

A decentralized digital identity framework extended using self-sovereign identity
model

31

1.5 Research Contribution

The idea of having a decentralized identity and access management framework for IIoT
by leveraging a distributed ledger technology was explored in the previous contribution.
However, certain challenges were identified in scaling such a model. Firstly, multiple
smart-contract deployments and growing hierarchy in a multi-stakeholder environment
meant greater latency. Secondly, scaling a multi-smart contract-based identity management
system could also mean a higher cost of deployment. Thirdly, in order to scale this
further and provide stronger security guarantees during authentication and authorization,
substantial management complexities emerged.

In response to these challenges, the present contribution represents a pivotal advance-
ment in the field. While the core principle of decentralized identity management endures,
the innovative model introduces a robust decoupling between the roles of issuer, holder,
and verifier. This strategic evolution seeks to reconcile the decentralized digital identity
concept, introduced in our prior work, with the emerging standard of Self-Sovereign Iden-
tity (SSI). Self-sovereign identity, integrated with the novel utilization of Decentralized
Identifiers (DIDs) and Verifiable Credentials (VCs), transcends the need for a centralized
trust authority to maintain validation evidence. Our proposed model stands as a platform-
agnostic solution, harmoniously integrable with both existing infrastructure and futuristic
technologies like distributed ledger platforms. The practical implementation of this novel
framework was carried out on two prominent blockchain platforms, namely Ethereum and
Hyperledger Indy. This empirical study was instrumental in dissecting and comprehending
the underlying overheads, further affirming the efficacy of our contributions in the domain
of IIoT identity and access management. This has been published in [26]. This work is
presented in Chapter 4 of the dissertation.

A fair, secure and trusted decentralized data marketplace enabled by blockchain
In this thesis, the insights derived from their first two contributions were ingeniously

harnessed in this contribution, leading to the consolidation of their expertise in exploring a
forward-looking application of IoT within the context of recent advances in AI/ML-driven
innovations. A distinctive contribution emerged in the form of a novel decentralized digital
data marketplace, carefully tailored for IoT data. The platform leverages a decentralized
data streaming network to host IoT data in a reliable and fault-tolerant manner. Through
this design, we explore the parameters like trust, fairness and fault tolerance of such a
design pattern. The platform ensures fair trading, data storage and delivery in a privacy-
preserving manner and trust metric calculation for actors in the network. In order to
study the feasibility of the proposed platform, an open-source library is developed using
Hyperledger Fabric and a data network layer built on VerneMQ, the library is deployed
on a real-time Google Cloud platform. The library is tested and results are analysed for
throughput, overheads and scalability. This contribution has been published in [22]. This
work is presented in Chapter 5 of the dissertation.

32

1.6 Structure of the Dissertation

A Privacy-Aware Authentication and Usage-Controlled Access Protocol for IIoT
Decentralized Data Marketplace

While in the last contribution, we focussed on designing a fair, trusted and fault-
tolerant data marketplace, the design lacked an in-depth exploration of authentication and
authorization patterns. Decentralized data marketplaces allow the democratization of rates,
trading terms and fine control to participants. However, in such a marketplace, ensuring
privacy and security is crucial. Existing data exchange schemes depend on a trusted third
party for key management during authentication and rely on a ‘one-time-off’ approach to
authorization. This contribution proposes a user-empowered, privacy-aware, authentication
and usage-controlled access protocol for IIoT data marketplace. The proposed protocol
implements a dynamic user-revocation policy. Usage-controlled based access provides
secure ongoing authorization during data exchange. In order to study the feasibility of the
proposed platform, an open-source library is developed using Hyperledger Indy and Linux
Utility-Cron Job to design a UCON system. The library is tested and results are analysed
for time and storage cost, overheads and scalability. This work is presented in Chapter 6 of
the dissertation and this contribution is published in [27].

1.6 Structure of the Dissertation

The remainder of this dissertation is structured as follows:
Chapter 2 provides the technological background required to understand the building

blocks of this dissertation including IoT architecture, Identity and Access Management
techniques in IoT, Distributed Ledger Technology, Decentralized Storage, Self-Sovereign
Identity and Usage Control. In addition, this chapter also discusses state-of-the-art solutions
and related work from the perspective of the challenges addressed in this work. The
subsequent four chapters summarize the work published in peer-reviewed publications for
this dissertation.

Chapter 3 discusses a decentralized identity management framework for IoT networks
in an industrial context. This chapter is primarily based on the preliminary study of
designing a decentralized identity model for IoT networks. It presents design, findings and
evaluation results for such a framework. This work is presented in Publication I.

Chapter 4 presents a self-sovereign identity-based decentralized digital identity frame-
work for IoT networks. The design, working and data models used in the proposed
framework are discussed and presented in this work. The information in this chapter is
primarily based on Publication II.

Chapter 5 presents a fair, secure and trusted decentralized IoT data marketplace
enabled by blockchain. This chapter builds on the developments of the last two chapters to

33

1.6 Structure of the Dissertation

use their findings and design a holistic data marketplace to ensure trusted, automated and
The information in this chapter primarily describes the findings presented in Publication
III.

Chapter 6 presents a user-empowered, privacy-aware, authentication and usage-
controlled access protocol for IIoT data marketplace presented in the last chapter. Such a
framework ensures real-time access monitoring and instant revocation in case of malicious
or unauthorized behaviour. The information in this chapter is based on Publication IV.

Chapter 7 finally concludes the work presented in this doctoral dissertation. An
overview of the contributions is first provided. Then, how the contributions have been
addressed is described. Finally, the future work that arises from the limitations of the
presented work is discussed.

34

Chapter 2

Technological Foundation

The term Internet-of-Things (IoT) took time to evolve as we know it today. The first
Smart Machine was discussed very early in around 1982 with a modified Coca-Cola
vending machine at Carnegie Mellon University [28] becoming the first Internet-connected
appliance, able to report its inventory and whether newly loaded drinks were cold or not.
Later, the term IoT was coined by Kevin Ashton and David L. Brock back in 1999 at the
MIT Auto-ID Center. The vision to date remains to establish a connected paradigm of
intelligent devices that can collect data from isolated, hazardous and hard-to-reach places
for humans. Analysing the collected data is used to gather valuable insights to make
lives smarter, safer and autonomous. IoT applications are expected to include billions
of everyday objects in various domains, namely: smart homes, smart cities, industrial
applications, wearable, healthcare, and many others.

2.1 IoT Architecture Overview

The vision of IoT is to extend Internet connectivity to a broad range of physical devices.
These devices are embedded with electronics and software that allow intercommunication
among them just like connected computers, the main difference being IoT devices are
resource constraint and are primarily used for collecting data from the environment they are
installed in. IoT as an ecosystem consists of several technologies to enable sensing, data
collection, analysis and insight consumption. It is still a very vendor-specific technology
as vendors can select the components of each layer to suit the use case. However, most
of the researchers and industry specialists break down the architecture into three, four or
five layers [29], [30] as shown in Figure 2.1 depending on the required level of abstraction
suited for the use case. These architectures each describe the ecosystem from a different
perspective, however, a very simplified representation is composed of three main layers:

35

2.1 IoT Architecture Overview

Fig. 2.1 Showing the different layers of 3, 4 and 5 layered architecture of an IoT system

• Perception Layer: This layer mainly consists of physical objects such as smart
sensors and actuators deployed in hard-to-reach places to gather and respond to
raw data such as temperature, oxygen level, soil sensors etc. Therefore, it is the
data-gathering layer of the architecture.

• Network Layer: This layer is responsible for collecting data from the perception
layer and later forwarding to the layer above it for further processing. It consists of
components such as network gateways, edge devices, internet routers etc. It is the
data acquisition and transport layer of the system.

• Application Layer: This layer has the intelligence to process the collected raw data
and gather insights from them. It consists of algorithms and applications to carry out
resource-intensive tasks which are difficult to process for layers below it.

The above-mentioned three layers comprise of a set of protocols to connect IoT
devices with the layers above them. For example, the network layer consists of routers
and gateway devices to connect IoT sensors to the cloud and provide an interface for
sending data to the application layer. This is achieved using various networking protocols;
such as the Constrained Application Protocol (CoAP) [31], Message Queuing Telemetry
Transportation (MQTT) [32], and Lightweight Machine to Machine (LwM2M) [33].

The application layer in classic IoT architectures consists of a front-end application
hosted by either a proprietary server or a cloud-based server. The front-end application acts
as an interface that receives data from sensors, processes the data, performs analytics on it

36

2.2 Identity Management in IoT

and later stores it in different forms of storage for effortless retrieval. In addition to these
functions, this layer also performs device management functions such as device life-cycle
management, authentication, authorization and access control. The device management
functions consist of the creation of identities for each IoT device which will be later used
for device identification in different layers of the architecture. Device identities are a central
component in IoT protocols as they are used in all the layers to enable information routing,
resource delivery, authentication, and authorization of access. Building decentralized IoT
device management relies on recognizing device identities as a foundation layer, thus
the next section discusses the various methods of device identity management and the
challenges associated with them.

2.2 Identity Management in IoT

Digital Identity is the unique information used to identify a user, software entity or device
online. These unique identities are used to perform authentication and authorization to
services and resources present online [34]. Authentication is the process of establishing
the truth of the identity provided by the entity i.e. verifying the entity’s digital identity
[35]. There are three key methods of authenticating an entity:

• something known (password, pincode)

• something assigned (certificate, token)

• something possessed (biometric/digital fingerprint)

While on the other hand, authorization is determining if an entity has permission to
access a certain resource after authentication is complete [34], [35].

Identity Management (IdM), is an administrative domain that deals with identifying,
assigning and managing identities of individual entities. It define the process of binding
digital identity of an entity with its attributes thus allowing authentication followed by
access to resources on the network [36]. The definition also includes identity creation and
management throughout the device life cycle. IdM services and capabilities also allow
users/subscriber entities to control how their identity information is used and disseminated.
IdM is a very broad topic that encompasses various applications, functions and capabilities
and several different types of entities. As shown in Figure 2.2, it can be described as a layer
of entities and their related functions. At the bottom most layer are the various entities in a
network. These can be organizations, users, devices and even some virtual objects. The
layer above them define the process of identity formation and how identifiers are derived
for different entities. There are mainly three types of identity information associated with
an entity as shown in Figure 2.2 which can be grouped as follows:

37

2.2 Identity Management in IoT

Fig. 2.2 Showing the Identity Management general overview along with various components that
form identifiers, attributes and credentials and their functionalities 1

• identifiers: they are unique combinations of digits, characters and symbols used
to identify a subject e.g., UserID, e-mail addresses, telephone numbers. For IoT
devices, the commonly used identifiers are Uniform Resource Identifier (URI), IP
addresses, RFID Tag ID (TID).

• credentials: they are certain claims associated with the identity of an entity that it
receives from an issuing party e.g., for IoT devices, they are digital certificates, and
tokens and for users they also include biometrics.

• attributes: they comprise of a set of data that describes the unique characteristics of a
subject e.g., roles, claims, privileges, patterns and location and for IoT devices, it can
be hardware specification, firmware version, and other physical or logical attributes.

The third layer from bottom is the the IDM functions and capabilities layer. According
to ITU-T NGN (Next Generation Networks) a general IdM framework consists of the
following functions and capabilities as shown in Figure 2.2:

1https://www.itu.int/ITU-T/recommendations/rec.aspx?rec=Y.2720

38

2.2 Identity Management in IoT

• Identity life-cycle management: It describes the functions that define overall
process to create, manage and dispose identities

• Identity Information Correlation and Binding: This function defines the process
of identity formation by establishing correlation between the identity and attribute
of the entity and hence resulting in attribute binding

• Identity information authentication, assurance and assertions: These types of
functions define the means of establishing the authenticity of identity also known as
authentication and performing access control to gauge the assurance level of those
entities

• Discovery and Exchange of Identity Information: These functions defines the
identity registries that enable discovery and protocols that enable exchange of identity
information to allow for authentication in a secure manner.

The topmost layer in any IdM system defines the business and security applications
including the specific identity-based services like Application level access control and
Single Sign On(SSO) etc. These are very application depend functions and will vary
widely depending on the application for which IdM is being designed/deployed.

2.2.1 Classification of Identifiers in IoT networks

As seen in Figure 2.2 in the previous section that in the process of identity formation,
identifiers play a key role. Identifiers are commonly used to uniquely identify different
entities in IoT networks. The most prominent is the thing identifier which identifies the
“IoT devices” themselves, the entities of interest of an IoT application. Other important
entities that are identified include applications and services, users, data, communication
endpoints, protocols and locations. Most of the IoT setups today leverage state-of-the-
art industrial identification techniques such as digital certificate infrastructure, unique
usernames or even IP addresses. Despite that, a common identification scheme is not
available for IoT networks, which is attributed to the political and commercial drivers of
the standard bodies and their sponsors [37].

The availability of various IoT identification schemes has on the one hand allowed
a wide variety of devices to be included on the network irrespective of their hardware
specifications while on the other hand they have lead to interoperability issues. Even
though there are various IoT identification schemes, these schemes are used in vertical
silos among the organizations. There are many different and independent solutions resulting
in the need for interoperability. Therefore, new, enhanced, automated and interoperable
capabilities are necessary. For this reason, ensuring interoperability remains one of the

39

2.2 Identity Management in IoT

primary challenges in IoT. This issue is affecting services and applications that require
device identity recognition prior to commencing any exchange of data [38].

The different classes of identifiers used in IoT networks [39] are discussed in more
detail below:

Thing Identifier: This type of identifier is used to identify beings (humans, cattle, plants),
physical objects (e.g. machines, properties) or digital data (e.g. files, data sets, metadata).
These kinds of identifiers are used in predictive maintenance, asset tracking, provenance
and quality control. E.g. of such identifiers are the Electronic Product Code (EPC) and the
Tag Identifier (TID).

Application and Service Identifier: Application and Service identifiers identify software
applications and related services. It also includes identifiers for methods that interact with
the application or service i.e. Application Programming Interfaces (APIs) and Remote
Procedure Calls (RPCs). An example of such identifier usage is in IoT platforms that
provide various services like communication, application store, device management, and
device registration. Each service can have a unique identifier.

Communication Identifier: Communication identifiers identify communication end-
points (e.g. source, destination) and sessions. These identifiers include Low Power Wide
Area Networks (LPWANs), Ethernet MAC Addresses, IP Addresses, HTTP tokens and
Phone numbers. As defined by ETSI GS LTN 002 [40], LPWANs use uniquely assigned
communication identifiers to identify end devices in the scope of each network’s commu-
nication. Similarly, in Ethernet networks (IEEE 802.3 [41]) the Media Access Control
(MAC) address is an identifier for communication endpoints at the data link (media access)
layer. IPv4 (IETF RFC 791 [42]) and IPv6 addresses (IETF RFC 4291 [43]) are used in
IP networks to identify communication endpoints at the network layer. IPv4 uses 32-bit
and IPv6 128-bit addresses. Phone numbers are assigned to a specific subscriber station in
a phone network. Both global and local unique numbers are used based on the specific
application. Another example of such type of identifier is HTTP Session Token which
keeps track of all user activities for a particular session in a stateless HTTP protocol. It is
usually stored as a cookie.

User Identifier: User identifiers are used to identify users of IoT applications and services.
Users can be humans, enterprises (e.g. legal entities) or lightweight software applications
that access and interact with server-hosted IoT applications on behalf of the users.

40

2.2 Identity Management in IoT

Data Identifier: These identifiers cover both identifications of specific data instances and
data types (e.g. metadata, properties, classes). Examples of data identifiers are digital twins,
time series data sets and property characteristics (weight, dimensions and temperature). A
digital twin is a data set containing the virtual representation of the thing. Note that a thing
may have more than one digital twin and that it may contain different sets of information.
Sensor data from a thing is provided automatically in (constant) intervals. The data is
stored as a time series in the IoT platform for further use.

Location Identifier: This class of identifiers relates to the identification of locations
within a geographic area (e.g. geospatial coordinates, postal addresses, room numbers).
They are used for applications like supply-chain management and real estate management.

Protocol Identifier: Protocol identifiers inform communication protocols of the upper
layer protocol they are transporting data to. These identifiers also include applications
about the protocol they have to use in order to establish a specific communication exchange.
Examples of usage of these types of identifiers are Ethertype, IPv6 Next Header, URI
scheme. These identifiers are used extensively in IoT networks by different independent
frameworks to keep these identifiers isolated. For example, an RFID tag that carries an
EPC code is not identifiable in a LoraWAN network that is based solely on UUID or vice
versa.

2.2.2 Identity and Access Management

Identity and Access Management (IAM) is a broader term for Identity Management (IdM)
as it also includes authentication and authorization flow along with the management
of identities. IAM addresses the crucial requirement of ensuring appropriate access to
resources across increasingly heterogeneous technology environments, and to meet highly
rigorous compliance needs. Access to resources is defined through a set of roles according
to the entity’s credentials and attributes.

Specifically in IIoT, IAM remains a dynamic task due to heterogeneous elements,
frequent change of ownership and intermittent connections. For IIoT, the IAM frameworks
need to be designed in such a manner that they can account for such factors. IIoT requires
a globally accessible IAM framework which is not restricted by geography and the transfer
of ownership can be achieved with less impact on its identification and optimally with no
loss of track of the historical records.

OAuth 2.0 and OpenID Connect [44], [45] are the two most widely used standard
frameworks for authentication and authorization in the industry. However, the main
challenge in using OAuth and OpenID Connect for IoT devices is that these standards are

41

2.3 Evolution of Identity Management Models

mainly bound to HTTP protocol, which limits their use in the case of IoT devices due to
the constraints in power and memory as they do not run on HTTP.

The quest to find a lightweight solution to authentication and authorization solutions
for IoT resulted in the Authentication and Authorization for Constrained Environments
(ACE) standard. It is one of the few standardized approaches that focus on authorization
and authentication for constrained devices to ensure that minimum resource-capable IoT
devices can still maintain the required level of security [46].

The unique features of IoT networks such as heterogeneity, sheer number of devices,
resource constraint nature, mobility and requirement of interoperability render general
standards impractical. These requirements have a greater impact on identity and access
management designs from the point of view of privacy and secrecy. Some solutions
choose to shift those functionalities to gateway devices [47], [48], which does not satisfy
the requirement of ensuring a secure framework. The vulnerabilities associated with
gateway devices have been a topic of many studies which indicate that gateways can act
as a single point of attack [49]. “UDP hole punching” vulnerability, which is inherited
in many IoT gateway and routers using the in-built feature of Universal Plug and Play
(UPnP) specification is a well-known vulnerability [50]. The vulnerability allowed an
attacker to launch a man-in-the-middle attack on IoT devices by listening to the connection
between devices, where the attacker utilized basic plain text-based factory-default password
authentication and identification techniques. The attack affected more than 2 million
devices connected using p2p gateways [50]. Mirai attack [14] proved this conclusively,
where it rapidly spread to millions of devices using nothing more than default credentials
for IoT device authentication.

Additionally, the concentration of authorization rules at the gateways results in the
usage of coarse-grained access control rules, which can result in relaxed security measures
and a widened attack surface. For example, the IBM Watson platform defines two coarse-
grained gateway access roles that govern the gateway’s ability to register devices on the
Watson IoT platform service, standard and privileged [20].

2.3 Evolution of Identity Management Models

Over the years identity management models have also evolved as shown in Figure 2.3.
The first model comprised of centralized authorities acting as issuers and authenticators
of digital identity. Organizations like ICANN determined validity of domain names and
later certificate authorities (CAs) created and stored identities for entities. This led to
excessive authority vested in a few corporations with little control left to the users. The
second model known as federated identity allowed multiple service providers forming a

42

2.4 Self Sovereign Identity Model

Fig. 2.3 Showing the evolution of Identity Management models in terms of how identities are
created, managed and controlled over their lifecycle

federation with one of the identity provider, allowing the user to use same credential across
these platforms. This led to great control of technology giants like Google, Facebook etc.
There have been multiple cases of identity breaches where identity of a large number of
users’ was compromised [50], [14], [5].

The third model known as user-centric identity focused on two major elements: user
consent and interoperability. User was kept at the center of IDMS, and was free to decide
with whom and when to share their identity. Standards like OpenID (2005), OAuth
(2010), FIDO (2013), OpenID Connect (2015) and CTAP 2.0 (2018) were introduced for
creating user/device authentication. However, these standards use OpenID servers to store
passwords/credentials. The most recent model called Self-Sovereign Identity (SSI) gives
complete autonomy of its identity to the subject itself. SSI build on ten core principles,
namely: existence, control, access, transparency, persistence, portability, interoperability,
consent, minimization and protection. These principles are drafted by Christopher Allen,
and are influenced by Kim Cameron’s laws of identity [51].

2.4 Self Sovereign Identity Model

Self-Sovereign Identity is a new form of digital identity model that gives individuals
control over the information they wish to use to prove who they are to websites, services,
and applications across the web. It is a more decentralized approach to identity where no
single entity controls a majority of user information. The decision about when and what
information to share with the verifier lies with the user/identity owner themselves [52].

In this model of digital identity, there are three main actors: identity Issuer, Holder
and Verifier. Issuer attests and issues credentials (a set of issued attributes) about the
holder and signs it digitally. When a credential is presented to a verifier, it can verify
the attributes/claims about the holder. For example, lets consider a scenario, where
Alice recently graduated from her University and now she wants to apply for a job at a
Corporation. In order to verify her educational credentials if she chooses to use SSI model,
she can collect her digital educational credentials from university and present them to
various potential organizations she want to apply for job as shown in Figure 2.4.

43

2.4 Self Sovereign Identity Model

Fig. 2.4 Showing the workflow of interaction between actors to create DID and VC

2.4.1 Decentralized Identifier (DID)

DIDs are a new type of digital identifiers proposed by W3C that identifies a subject (person,
thing, abstract entity etc.). No central authority is involved in issuing or maintaining a DID
which gives the holder complete control and ownership over their IDs. A holder can create
different DIDs for interaction with different parties to ensure unlinkability by correlation
of their online activities. Any decentralized network, such as blockchain can be used to
resolve a unique key to a unique value. DIDs are underpinned by asymmetric cryptography
that uses a public-private keypair. The private keys are used to sign messages by DID
owner while public key is available to verify signed messages. The

DID has the following syntax: “did:example:abcdefgh01234567”. The did prefix,
method name and method-specific-id are separated by colon [53]. DID Methods are a
set of specifications by which a particular DID and its associated DID Documents are
created, resolved, updated and deactivated using verifiable data registry. A unique identity
for that network is defined by method-specific-id. Various components of DID ecosystem
are shown in Figure 2.5. A full list of did-methods are available for public access and
submission [53].

{

"@context": "https://www.w3.org/ns/did/v1",

"id": "did:example:123456789abcd",

"authentication": [{ //to authenticate

"id": "did:example:123456789abcd#keys-1",

"type": "Ed25519VerificationKey2018",

"controller": "did:example:123456789abcd",

"publicKeyBase58": "H3C2AVvLMv6gmMNam3uVAjZpfkcJCwDwnZn6z3wXmqPV"

}],

2https://www.w3.org/TR/did-core/

44

2.4 Self Sovereign Identity Model

Fig. 2.5 Showing the Overview of DID architecture and the relationship of the basic DID compo-
nents[Source:W3.org] 2

"service": [{ //to retrieve VCs

"id":"did:example:123456789abcdefghi#vcs",

"type": "VerifiableCredentialService",

"serviceEndpoint": "https://example.com/vc/"

}]

}

Listing 2.1 DID Document Syntax

A DID resolves into a DID Document using a DID Resolver and this process of
mapping a DID to its DID Document shown in Listing 1, is called resolution. A DID
support four common operations: ‘Create’, ‘Read’, ‘Update’ and ‘Deactivate’. The ‘Read’
operation is the most frequently used operation and is used by the DID Resolver to resolve
a DID to its DID Document. DID Doc can contain set of public keys, authentication
methods and service-endpoints. The best part about DID Doc is that they do not contain
any Personally Identifiable Information (PII) that can compromise the privacy of the
subject. The service endpoints provide means of communicating with the subject that
owns the DID. DID Docs can be stored directly on blockchain like Bitcoin (did:btcr) [54],
Sovrin (did:sovrin) [55] or they can be stored elsewhere such as relational databases or in
a decentralized content-addressable store such as IPFS (did:uport) [56].

2.4.2 Verifiable Credentials (VC)

A VC is a set of claims that are machine readable, tamper-proof and cryptographically
verifiable using techniques such as digital signatures [57]. The VC can be used to assert the

45

2.4 Self Sovereign Identity Model

Fig. 2.6 VCs issued to two types of IoT devices (a stationary robotic arm and a mobile autonomous
bot) by two separate issuers.

claims of one party to another party. Verifiable credentials are portable, tamper-proof and
cryptographically digital claims made about a subject. The claims are issued by a issuer
after verification of the asserted claims to the holder. The claims are requested and verified
by verifier. For instance, an autonomous car at a charging station can present it’s claim
that it belongs to the verified owner of the car. The format of a VC is shown in Figure 2.6.

Verifiable Presentation (VP) enables the holder to present claims from one or more
VCs. A trusted Issuer issues a signed VC to the holder and bind it to their DID after
verifying their identity. To access a service/resource held by a Verifier, the user reveals
their DID and the issued VC to the Verifier. The verifier verifies the claims in the VC
presented by the holder using Issuer’s public key.

VC provides an inter-operable digital format of proving claims that can be stored,
cryptographically signed and are under full control of the subject and shared only when
necessary. Another major advantage of using VC is privacy-preserving verification of the
claims between the subject and verifier. VCs can be stored in several locations, some of
the proposed locations being on-chain in smart contracts and off-chain in claim registries.

2.4.3 Limitations and areas of improvement in SSI

Areas of improvement in SSI
Self-Sovereign Identity (SSI) represents a paradigm shift in digital identity management,
empowering individuals to own and control their identities. However, despite its potential,
SSI has limitations and areas where improvements are needed:

• Adoption Challenges: While there are emerging standards, SSI frameworks are still
fragmented, with various platforms implementing different protocols. This can lead
to interoperability issues and hinder widespread adoption.

46

2.4 Self Sovereign Identity Model

• Entry barrier: Transitioning to an SSI system often requires significant changes to
existing processes and infrastructure, which can be costly and time-consuming for
organizations.

• Data Correlation Risks: Even though SSI aims to protect user privacy, there is
still a risk of data correlation across different services if not implemented carefully.
Multiple interactions using the same identity could reveal patterns that compromise
privacy.

• Challenges with Revocation: Managing the revocation of credentials in a decen-
tralized manner is complex and often lacks a standard approach, which could lead to
security risks if credentials are compromised.

• Key Management:The security of SSI systems relies heavily on the secure man-
agement of cryptographic keys by users. Loss or theft of these keys can lead to
permanent loss of access to one’s identity, making robust key recovery solutions
critical. Implementing secure and user-friendly key recovery solutions, such as
social recovery mechanisms or multi-signature wallets, can help mitigate the risks
associated with lost or stolen keys.

SSI holds great promise for enhancing digital identity management, but it faces several
limitations in terms of adoption, scalability, legal recognition, and security. Addressing
these challenges through improved standards, user experience, scalability solutions, privacy
protections, regulatory frameworks, and security enhancements will be key to realizing the
full potential of SSI in various domains, including IoT.
Relevance of SSI in the context of KYC:
In traditional settings, we often come across the process of KYC(Know Your Customer),
which is used to establish the identity of a user who is transacting with an establishment
for a service or product. The primary goal of KYC is to prevent fraudulent activities,
such as money laundering, identity theft, and financing of terrorism, by ensuring that
entities know who their customers are. Key aspects of KYC include (i) identity verification:
establishing the identity of the individual wishing to transact with the service provider
(ii) due diligence: performing background checks and monitoring customer transactions
to assess and mitigate potential risks and (iii) compliance: a regulatory requirement to
comply with regulations such as AML.

Self-Sovereign Identity (SSI) and KYC are increasingly interconnected as SSI provides
a decentralized approach to identity verification, which can significantly streamline the
KYC process. SSI enhances KYC by offering a decentralized, secure, and privacy-
preserving approach to identity verification. Through SSI, individuals can manage their
own identity data and share verifiable credentials with service providers, simplifying the

47

2.5 Distributed Ledger Technology Overview

KYC process while ensuring regulatory compliance and data protection. This integration
of SSI and KYC represents a significant advancement in the way identity verification is
conducted, with potential benefits for both users and organizations. SSI can also enable
reusable-KYC hence bringing down the cost and time spent by a subject to authenticate
with different service providers.

KYC can play a significant role in the digital realm of IoT too. In this dissertation,
the concept of KYC is leveraged to convey the significance of secure ID verification on a
decentralized platform like a data marketplace too. Just like in the traditional settings, a
digital KYC can help in establishing the identity of the user engaging with the platform
and over time it can help perform due diligence using the user’s activity on the platform.
In this work, the emphasis is on performing due diligence while maintaining the privacy of
the users and the security of the platform.

2.5 Distributed Ledger Technology Overview

Fig. 2.7 Showing the difference in the models for: Centralized - Decentralized - Distributed types
of networks [Source: Medium] 3

Distributed ledger technology (DLT) is an immutable database that is shared, replicated,
and synchronized among the members of a decentralized network. Participants in the
network govern and agree by consensus on the updates to the records in the ledger. It is
argued that such a technology can help to maintain a distributed view of the IoT network
access control policies [58]. There a number of implementations for a DLT such as

48

2.5 Distributed Ledger Technology Overview

Blockchain (Bitcoin, Ethereum, Hyperledger Fabric) [59], [60], [61], Directed Acyclic
Graph (IOTA) [62], Hashgraph (Hedera) [63]. The most widely used is the blockchain
technology. Blockchain technology has gained immense popularity in the past decade in
various industries. Blockchain is a decentralized, peer-to-peer technology which consists
of cryptographically linked blocks of data storing transactions in the network. The design
features of blockchain such as transparency, immutability, non-repudiation and provenance
provide a platform to draft a framework that eliminates the requirement of a trusted third
party. These stated guarantees are important for authentication and authorization of IoT
devices in a network.

Blockchain gained immense popularity due to its decentralized nature. While the
earliest application of Blockchain technology was cryptocurrencies, the first one being
Bitcoin in 2008, over the past few years, an entire ecosystem of institutions and companies
has developed different applications and services around blockchain technology. These
applications enable completely new decentralized solutions to some well-known existing
issues of centralized network topology in various domains such as health-care, postal
service, IoT, supply chain, and others [64]. Figure 2.7 represents the difference in the
three major types of architecture topology i.e. centralized, decentralized and distributed.
The primary difference is where the major decisions are made and how the information is
propagated throughout the control nodes in the system. While in a centralized architecture,
there is a single source of decision-making and trust, in a decentralized model the decision-
making is distributed among the participants. Distributed means that the processing is
shared across multiple nodes, but the decisions may still be centralized and use complete
system knowledge.

2.5.1 Blockchain Architecture

Blockchain technology is a decentralized, peer-to-peer technology which consists of
cryptographically linked blocks of data storing transactions in the network [65]. These
transactions represent the exchange of information among peers and to ensure authenticity,
each transaction is added to the blockchain after a rigorous consensus mechanism [58][66].
This ensures a transparent, non-repudiable trail of records which can be verified by all
the participants [67]. A blockchain is different from any other ledger in the sense that a
transaction is not merely updated/added in the ledger but it is added to a block of transaction
only after validation according to a consensus algorithm [68] among the peer nodes. A
blockchain consists of the following components:
Nodes
A blockchain consists of several nodes which maintain the integrity of the network and

3https://berty.tech/blog/decentralized-distributed-centralized/

49

2.5 Distributed Ledger Technology Overview

perform various functions. Each node maintains an independent copy of the ledger. The
nodes together act like a comprehensive database storing all the information in a distributed
manner, thereby eliminating the need for a central authority. Depending on the roles, nodes
can have different functionalities. Full Nodes maintain a full list of all the transactions
that ever happened on the blockchain network whereas light nodes only store a subset
of the transaction and remain connected to full nodes to fetch transactions as and when
required. Nodes that verify and validate transactions according to a consensus mechanism
are referred to as miners/validators. These nodes collect the incoming transaction, form a
data structure called block and validate these transactions in the block to be next appended
in the blockchain.
Transactions
Transactions are the fundamental unit as they represent an exchange of assets/information
between two parties on the blockchain network. It consists of the sender’s address,
receiver’s address and a value. In most cases, a transaction also includes a fee that is
transferred to the miner/validator as an incentive to successfully validate that transaction
and include it in a block.

Fig. 2.8 Showing the structure of a blockchain represented by cryptographically linked data blocks
and the fields that constitute a block [Source: Data Analytics] 4

Blocks
A blockchain consists of a series of cryptographically linked blocks of transactions. Blocks
are created by miners/validators in the network after verifying the transactions and once
verified they are broadcast to all the nodes in the network. When a node receives a new
block, it stores it together with other blocks. A genesis block is the first block of the chain
of blocks. Figure 2.8 further illustrates the structure of a blockchain. This mechanism of

4https://vitalflux.com/blockchain-linked-list-like-data-structure/

50

2.5 Distributed Ledger Technology Overview

linking blocks using the hashing technique provides the important feature of immutability
in blockchains since it is computationally challenging to modify a block added to the
blockchain. Once a block is added, over time it is joined by other blocks and it becomes
increasingly difficult to go back and modify a block. A block generally consists of the
following fields: block number, hash of the previous block, time-stamp, a nonce and a
transaction representation that comprises a Merkel root and the transactions. The block
number and hash together determine the position of that block in the chain. The time stamp
denotes when the block was created in the network.
Consensus Mechanism
Consensus mechanisms are a stack of ideas, protocols and incentives that enable a dis-
tributed set of nodes to agree on the state of a blockchain. Since blockchain nodes are
decentralized with no central authority, the consensus mechanism helps them to agree on
the order of blocks in the chain. Blockchain is governed and maintained by its participants
making it truly a decentralized technology. Therefore, achieving reliable agreement be-
tween its participant nodes is of utmost importance for its proper functioning. Essentially,
the consensus mechanism ensures the right ordering of blocks in the chain with agreement
from the members of the network, rewards the miners/validators for their work and helps
in resolving the forks that may appear in case of disagreement.

One of the key properties of the consensus mechanism is its resiliency and fault
tolerance in case of an attack or failure of nodes participating in the consensus. There are
two major types of faults that can occur in a distributed network like blockchain. And
based on these faults there are two major families of consensus algorithms being used
in blockchain projects. The first type of fault is when nodes participating in consensus
go down due to failure/crash and this type of fault is easy to recover from. The family
of algorithms that solve the problem of nodes crashing simply are called Crash Fault
Tolerant (CFT) Algorithms. Raft [69] is an example of CFT algorithm. The second
type of faults refers to the Byzantine faults. The term Byzantine fault takes its name
from the Byzantine Generals’ problem [70]. In this type of fault, the nodes have been
compromised by a malicious actor and can provide inconsistent information to other
nodes in the network. The algorithms used to solve such faults are known as Byzantine
Fault Tolerant (BFT) Algorithms. Proof-of-Work (PoW) [61], Proof-of-stake (PoS) [71],
Practical Byzantine Fault Tolerance (PBFT) Algorithm [72] are some of the consensus
algorithms that belong to the family of BFT type of algorithms. Today, with various types
of blockchain implementations being designed, several consensus mechanisms have been
proposed. A summary of the chief characteristics of widely-used consensus algorithms
has been outlined in Table 2.1. A full discussion of all the different types of consensus
mechanism is out of scope of this thesis.

51

2.5 Distributed Ledger Technology Overview

Table 2.1 A comparison of BFT based Consensus Algorithms

Characteristics PoW PoS PBFT
BFT < 51% < 51% < 1/3 faulty

computing power stake replicas
Energy Saving No Partial Yes
Scalability High High Low
Participation Cost Yes Yes No
Structure Decentralized Decentralized Decentralized

2.5.2 Types of Blockchains

Depending on the ability to join the network and participate in the consensus algorithm,
the blockchain networks can be categorized as shown in Table 2.2 and defined as follows:

• Public Blockchain: A public blockchain is a non-restrictive, permission-less dis-
tributed ledger system. Anyone with access to computing resources and accessibility
can download the client package and join the network. Any node in the network can
view and participate in the validation of transactions. Such blockchains are suitable
for applications like digital assets and related trading services. Public blockchains
generally have low transaction throughput and are prone to a wider range of security
threats due to the possibility of malicious nodes joining the network. E.g. of such
blockchains are Bitcoin, Ethereum etc.

• Private Blockchain: A private blockchain is a restrictive blockchain which operates
on permission granted only in a closed network. Private blockchains are usually used
within an organization or enterprise where only selected members are participants
of a blockchain network. These are typically used in private organizations to store
sensitive information about the organization. The level of security, authorizations,
permissions, accessibility are enabled by the controlling organization. Thus, the
throughput of such blockchains is better than the public blockchains. E.g. of such
blockchains are Hyperledger Sawtooth, Corda etc.

• Consortium Blockchain: A consortium blockchain as the name suggests is managed
by a consortium of organizations. Such platforms are mostly suited for government,
banks and organizational projects that have more than one stakeholder. More than
one organization hosts blockchain nodes and participates in the process of approving
transactions in the network. E.g. of such blockchains are Hyperledger Fabric, R3
etc.

52

2.5 Distributed Ledger Technology Overview

Table 2.2 Comparison between different blockchain architectures : Public, Private and
Consortium (R: Read, W: Write, C: Consensus)

Public Private Consortium
Access R: Open R: Open/Permissioned R: Open/Permissioned

W: Open W: Permissioned W: Permissioned
C: Open C: Permissioned C: Permissioned

Security PoW, PoS PBFT, Raft, PBFT, Raft,
other consensus legal contracts, legal contracts,
protocols proof-of-authority proof-of-authority

Privacy Medium High High
Environment Untrusted Trusted Trusted
Speed Slow Fast Fast
Cost High Medium Low
Architecture Decentralized Partially Partially decentralized

decentralized or centralized
Transaction Slower Faster Fastest
Membership Anonymous/ Known Known

pseudonymous Identity Identity
Platforms Bitcoin, Ethereum, Hyperledger, Hyperledger,

Litecoin R3 Corda R3 Corda

2.5.3 Blockchain Platforms suitable for IoT environments

As of today, several blockchain platforms cater to various needs of the industry. All
blockchain platforms share similar underlying properties such as having a decentralized
database that is synced using a consensus mechanism among participating nodes. However,
several differentiating factors make each blockchain platform unique. These differentiating
features include the capability to host and process smart contracts, incentive mechanism,
type of consensus mechanism, ability to control access control, size of block size, having
more than one settlement layer etc. It is worth noting that this is not an exhaustive list
and they are also not mutually exclusive to each other. It means that the performance of
one feature can affect the others. To understand the applicability of a blockchain network
one needs to carefully analyse what features the design requires. Some blockchains are
also purpose-built for a certain application. Following are some of the general-purpose
blockchains that are relevant in an IoT context :

• IOTA: IOTA is a lightweight distributed ledger that uses a directed acyclic graph
to store transactions on its ledger. This allows transactions to be added in parallel.
IOTA’s Tangle architecture eliminates transaction fees, making it ideal for IoT
applications involving micro-transactions. Theoretically, the Tangle becomes more

53

2.5 Distributed Ledger Technology Overview

efficient as the number of users increases, apparently improving scalability as more
devices join the network. However, IOTA is still evolving, and its adoption is lower
compared to more established blockchains like Ethereum. The Tangle architecture
is less straightforward than traditional blockchains, which might make it harder
for developers unfamiliar with the concept. There have been security issues in the
past [62], and its unique architecture has not been as extensively tested as more
established blockchains.

• Ethereum: It is a well-known blockchain platform that is being used for various
applications in the industry. Ethereum’s robust smart contract functionality allows
for automation and can enable complex interactions between IoT devices. Extensive
developer support and documentation make it easier to build and deploy IoT solutions.
Ethereum is a widely adopted blockchain platform, offering better interoperability
with other systems and services. Although the current cost of transactions on
Ethereum can be prohibitive, especially for IoT applications involving frequent
micro-transactions, Ethereum 2.0 and Layer 2 solutions aim to improve scalability
and reduce costs.

• IoTeX: IoTeX is touted as purpose-built for IoT environments, offering features like
decentralized identity and secure data exchange tailored for IoT use cases. It focuses
on privacy and security, incorporating features like ring signatures and lightweight
cryptography, which are essential for IoT. However, IoTeX is newer and less tested
in large-scale environments compared to more established platforms like Ethereum.
Consequently, it has less market adoption and fewer real-world use cases compared
to more established platforms. The developer community and ecosystem are smaller,
potentially limiting available resources, tools, and integration options.

• Hedera Hashgraph: Hedera also uses a directed acyclic graph like IOTA, allow-
ing it to process transactions more quickly and reliably. Hedera’s gossip protocol
is used to spread information quickly amongst nodes. Hedera can handle a large
number of transactions per second, making it suitable for high-frequency IoT envi-
ronments. While generally lower than Ethereum, Hedera’s transaction fees are not
fee-less, which can be a consideration for IoT applications with a high volume of
micro-transactions. Hedera’s governance model is more centralized compared to
traditional blockchains, which could be a concern for applications requiring high
decentralization. Additionally, the developer and user ecosystem around Hedera is
smaller than Ethereum’s, potentially limiting available tools and community support.

• Polkadot: Polkadot is an innovative blockchain platform designed to enable in-
teroperability between different blockchains, making it a promising candidate for

54

2.5 Distributed Ledger Technology Overview

IoT applications. It offers strong interoperability, scalability, and security features
that make it a compelling option for IoT environments, especially those requiring
integration across multiple blockchain networks. However, the platform’s complex-
ity, resource requirements, and ongoing costs could be challenges, particularly for
smaller IoT projects. As Polkadot continues to mature and develop its ecosystem,
it could become a more attractive and viable option for IoT applications, provided
these factors are carefully managed.

Other purpose-built blockchains for specific use cases such as identity are also being
extensively explored in the IoT ecosystem. Two major blockchain projects in this space
are Hyperledger Indy and Polygon ID (now known as Privado ID).

Indy is specifically designed for decentralized identity management, making it ideal for
IoT environments that require secure, verifiable, and decentralized identities for devices.
It supports zero-knowledge proofs, allowing IoT devices to share only the necessary
information without revealing full credentials, enhancing privacy. Since Indy adheres to
open standards for DIDs and VCs, it is easier to integrate with other systems and platforms
within IoT ecosystems. It can be easily integrated with other Hyperledger projects like
Hyperledger Fabric and Hyperledger Aries, providing flexibility in building IoT solutions.
Additionally, Indy benefits from a strong community and support network, with extensive
documentation and enterprise-level backing.

Formerly Polygon ID is also an upcoming popular platform for digital ID. Polygon
ID also supports SSI and VCs, allowing IoT devices to manage their identities and share
credentials securely. It is compatible with the Ethereum ecosystem, allowing IoT applica-
tions to integrate with a wide range of Ethereum-based dApps and services. As a newer
technology compared to more established identity solutions, Polygon ID is still evolving,
and its long-term security and robustness are less proven. Additionally, deploying and
managing decentralized identities on Polygon ID requires an understanding of both Layer
2 solutions and identity management, which may present a learning curve for some.
Choice of blockchain platforms: In this dissertation, three prominent blockchain plat-
forms have been selected to implement PoC in the chapters that follow. Hyperledger
Fabric and Ethereum platforms were selected as general-purpose blockchains. These two
platforms were selected due to their large developer community, presence of extensive
documentation and ease of development. A lot of the blockchain projects discussed above
are in their initial phases and hence they often lack the ease of development. A strong
developer community helps overcome inevitable roadblocks during development phases.
Another reason for selecting these platforms was their ability to host complex smart con-
tracts required for the development of DApps. Since in the proposed dissertation, the
capability to embed complex business logic was required Fabric and Ethereum are the best

55

2.6 Blockchain Projects used in this dissertation

Fig. 2.9 Showing the Ethereum Blockchain Architecture which consists of the base blockchain
network, the smart contract layer and the top most decentralized application layer

available platforms for it. The third is the option of adopting each of these blockchain
platforms as public or private depending on the use case. Some solutions may require
strong enterprise access controls. Therefore, being able to control various levels of access
permissions might be a very useful feature.

Similarly, Indy was selected as it is currently a predominantly development-friendly
available solution for decentralized identity. It is a mature project with extensive de-
velopment support and demonstrates various security and privacy features like selective
disclosure, separation of concern etc.

2.6 Blockchain Projects used in this dissertation

2.6.1 Ethereum Blockchain

Ethereum [59] is one of the most popular and widely adopted blockchains and the most
successful platforms after Bitcoin. They were one of the first platforms to introduce
the concept of self-executing machine codes called Smart Contracts. A smart contract
encapsulates an agreement for transacting in the network and can be deployed by any user.
It provides a function-based interface or Application Binary Interface ABI for interacting
with the blockchain and performing transactions. Once deployed, the smart contract
can be referenced by its address, which is a cryptographic identifier. A user or even an
application can interact with the smart contract by sending transactions to the address of
the contract and the data payload of the transaction contains the function signature and
input parameters. A smart contract can hold and transfer the native coin of the Ethereum
blockchain called Ether. It can also call functions of other smart contracts. The Ethereum

56

2.6 Blockchain Projects used in this dissertation

architecture is shown in Figure 2.9 Ethereum blockchain consists of a “Turing complete”
coding system, where the Ethereum Smart Contract can be coded with logic that will be
run by the Ethereum Virtual Machine (EVM). The computational capabilities of EVM are
prevented from abuse, by charging a fee called Gas against each computation. The Smart
Contract can be written in supported languages, Solidity, Vyper, Serpent etc[73].

2.6.2 Hyperledger Fabric

Hyperledger Fabric [60] is a permissioned blockchain framework, with a modular architec-
ture. It is a blockchain platform for distributed ledger solutions underpinned by a modular
architecture delivering high degrees of confidentiality, resiliency, flexibility, and scalability.
It leverages container technology to host smart contract (called Chaincode in Fabric) which
contains application logic.

Fig. 2.10 Showing the transaction flow in the Hyperledger Fabric network right from the point it is
created by the client to the transaction getting included in the world state

In Fabric, when clients submit the transaction proposal through the Fabric SDK, this
proposal is sent to all Endorsing Peers. The endorsing peers check the transaction, verify
and execute and generate the Read and Write set as output. Now, this response is again
sent to the client. The client collects all responses from all endorsing peers and sends
them to Orderer. The Orderer node verifies all transactions and orders them in ascending
order to form a block. The verified block is dispatched to all committers which checks the
transaction and adds a new block in their own copy of the ledger. The basic transaction
flow for fabric is as shown in Figure 2.10. Hyperledger Fabric consists of below major
components:
Clients: Clients are applications that act on behalf of a person to propose transactions to
the network. These client applications use Fabric SDK to communicate with the blockchain

57

2.6 Blockchain Projects used in this dissertation

in order to Read or Write the data in the Fabric blockchain and in-state DB. Each client is
issued with a certificate from the CA authority in order to make sure that a valid client has
initiated the transaction over the network.
Membership Service Provider(MSP): MSP defines the rules in which, identities are
validated, authenticated, and allowed access to a network. The MSP manages user IDs and
authenticates clients who want to join the network. This includes providing credentials for
these clients to propose transactions. The MSP makes use of a Certificate Authority, which
is a pluggable interface that verifies and revokes user certificates upon confirmed identity.
The default interface used for the MSP is the Fabric-CA API. However, organizations can
implement an External Certificate Authority of their choice. There are two types of MSPs.

• Local MSP: It defines users(Clients) and nodes(peers, orderers). It defines who has
administrative or participatory rights at that level.

• Channel MSP: It defines administrative and participatory rights at the channel level.

Nodes: A “Node” is only a logical function in the sense that multiple nodes of different
types can run on the same physical server. There are three types of nodes:

• Client: A client submits an actual transaction-invocation to the endorsers, and
broadcasts transaction-proposals to ordering service. Thus, clients communicate
with both peers and the ordering service

• Peer: A node that commits transactions and maintains the state and a copy of the
ledger. A peer receives ordered state updates in the form of blocks from the ordering
service. Besides, peers can also have a special endorser role that allows them to
endorse a transaction before it is committed.

• Ordering-service-node or Orderer: a node running the communication service that
implements a delivery guarantee, such as atomic or total order broadcast.

Orderers: In a Blockchain network, transactions have to be written to the shared ledger
in a consistent order. The order of transactions has to be established to ensure that the
updates to the world state are valid when they are committed to the network. Unlike the
Bitcoin blockchain, where ordering occurs through the solving of a cryptographic puzzle.
Hyperledger Fabric allows the organizations running the network to choose the ordering
mechanism that best suits that network. This modularity and flexibility make Hyperledger
Fabric incredibly advantageous for enterprise applications. Hyperledger Fabric provides
three ordering mechanisms: SOLO, Kafka, and Simplified Byzantine Fault Tolerance
(SBFT).

58

2.6 Blockchain Projects used in this dissertation

Fig. 2.11 Components of a Ledger in Hyperledger Fabric: A Ledger L comprises blockchain B and
world state W, where blockchain B determines world state W

Channels: A fabric network can have multiple channels. Channels allow organizations to
utilize the same network while maintaining separation between multiple blockchains. Only
members(peers) of the channels are allowed to see the transaction created by any member
in a channel. In other words, channels partition the network in order to allow transaction
visibility for stakeholders only. Only the members of the channel are involved in consensus,
while other members of the network do not see the transactions on the channel. The peer
can maintain multiple ledgers. And peer can be connected to multiple channels.
Ledger: A ledger contains the current state of a business as a journal of transactions. A
ledger consists of two different parts, a world state, and a blockchain as shown in Figure
2.11. The world state holds the current value of the attributes of a business object as a
unique ledger state. That’s useful because programs usually require the current value of an
object; it would be cumbersome to traverse the entire blockchain to calculate an object’s
current value. Whereas a blockchain is a transaction log that records all the changes that
have resulted in the current world state. Its data structure is different as once written cannot
be removed. It is immutable.
Smart Contract: A smart contract defines the executable logic that generates new facts
that are added to the ledger. A smart contract defines the transaction logic that controls
the lifecycle of a business object contained in the world state. It is then packaged into the
chaincode which is deployed to the blockchain network. Smart contracts are defined within
chaincode. Multiple smart contracts can be defined within a single chaincode. When a
chaincode is deployed, all smart contracts available within the chaincode is made available
to the application. Every chaincode has an endorsement policy attached to it, which applies
to every smart contract defined within it. This identifies which organization must sign a
transaction generated by Smart contract, in order to consider it valid.

59

2.6 Blockchain Projects used in this dissertation

Fig. 2.12 Showing the Hyperledger Indy Architecture

2.6.3 Hyperledger Indy

Hyperledger Indy [74] is one of the projects developed by the Linux Hyperledger Founda-
tion along with a series of blockchain-based projects each for a specific purpose. It is an
open-source distributed ledger platform purpose-built for a decentralized, Self-Sovereign
Identity system. It is designed to support the creation and management of digital identi-
ties that are independently verifiable, and can be used for a variety of use cases such as
authentication, authorization, and secure sharing of personal data.

Hyperledger Indy architecture is built upon a distributed ledger platform, which is
composed of several key components as shown in Figure 2.12:
Identity Ledger: The ledger is the foundation of the Hyperledger Indy architecture. It
acts like a distributed database that stores data of all users on the network, including their
public keys, and records of attributes and credentials in a decentralized manner. The ledger
is hosted by a set of nodes of the network. Each participating node in the ledger acts like
a steward in the network and maintains a copy of the ledger and also participates in the
consensus protocol to ensure the integrity of the data.
Identity Wallet: The identity wallet or agent is a user-controlled software component that
allows the identity holders to interact with the ledger and manage the interaction of their
identity information with other parties. With this digital wallet, the identity holders can
create, store and manage their verifiable credentials (VCs), private keys and personal data,
which can be used to prove their identity to other parties.
Identity Issuer: A software component acting on behalf of an issuer that issues and
manages digital credentials, such as degrees, certifications, and licenses. The issuers use
their keys to sign the credentials issued by them, and log the event on ledger for future
verification purposes.
Identity Prover/Holder: A software component acting on behalf of an identity holder that
shares their identity credentials and attributes for verification purposes.

60

2.7 Decentralized Storage

Identity Verifier: A software component acting on behalf of a verifier that verifies the
authenticity of digital credentials and attributes presented to them.
Identity Resolver: The identity resolver is a component that helps to map a DID (Decen-
tralized Identifier) to a specific identity holder.
Protocols and Libraries: Hyperledger Indy consists of a set of protocols and libraries that
enable interoperability between different identity systems, and support for self-sovereign
identity.

2.7 Decentralized Storage

A centralized storage facility such as a proprietary on-premise storage solution or cloud-
based storage solution is effectively owned by a single organization/entity. Unlike these a
decentralized storage system consists of a peer-to-peer (P2P) network of user-operators
who hold a portion of overall data, thereby creating a resilient crash fault-tolerant storage
sharing system. Such a decentralized system can be blockchain-based or any P2P-based
network [75].

When selecting a decentralized storage system, the following factors should be consid-
ered:
Persistence mechanism/Incentive structure: In order to make sure that data persists over
time, a persistence mechanism is used. It can be blockchain-based or contract-based. In
a blockchain-based persistence mechanism, the whole chain is accounted and each node
adds new data at the end of the chain. This leads to chain bloating and is not a sustainable
way of designing such systems in the long run. The blockchain must also include some
type of incentive structure to make payments to the validators to add data to the chain.
Platforms with blockchain-based persistence are Ethereum and Arweave.

In contract-based persistence, the idea is that data cannot be replicated and stored
forever by every node and therefore, it should be maintained with contract agreement. In
this case, multiple nodes make an agreement to hold a piece of data for a period of time.
For this service, they must be refunded or renewed in case they run out to keep the data
persisting. For most cases, instead of storing all data on-chain, the hash of location of
data is stored. In this way, the complete chain doesn’t need to scale to store all the data.
Platforms that support contract-based persistence are Filecoin, Storj, 0Chain, Skynet.
Data retention: To prove data retention, the system must have some sort of mechanism to
make sure data is retained. One of the most well-known methods is to use a cryptographic
challenge that is issued to the nodes to make sure they still hold the data. For example,
Arweave’s uses proof-of-access to prove data retention. They issue a challenge to the
participating nodes to check if they have the data at both the most recent block and a

61

2.7 Decentralized Storage

random block in the past. If the node can’t solve the presented challenge, they are penalized.
The examples of some known decentralized storage systems with a challenge mechanism
are 0Chain, Skynet, Filecoin, Arweave and Crust Network.
Decentrality: Estimating the level of decentralization of such platforms is a difficult
problem. There are not many tools available to measure it, but in general, we want to use
tools that don’t have some form of KYC to provide evidence they are not centralized [75].
Decentralized tools without KYC: 0Chain (implementing a non-KYC edition), Skynet,
Arweave, Filecoin, IPFS, Ethereum, Crust Network.
Consensus: Most of these decentralized storage platforms have their own version of a
consensus mechanism but generally they are based on either proof-of-work (PoW) or
proof-of-stake (PoS). Some of them based on PoW are Skynet and Arweave. And the ones
based on PoS are Ethereum, Filecoin, 0Chain, Crust Network.

In this thesis, we use IPFS [76] (InterPlanetary File System) as decentralized storage
solution in specific chapters. IPFS represents data as content-addressed blocks, and
operates on those data blocks using the following subsystems:

• Content Identifier (CID)

In IPFS, data is divided into blocks, that are assigned a unique identifier called a
Content Identifier (CID). The CID is generally computed by combining the hash of
the data with it’s codec. CIDs are unique to the data from which they were computed,
which provides IPFS with the following benefits: Data can be fetched based on it’s
content, rather than it’s location. The CID of the data received can be computed and
compared to the CID requested, to verify that the data is what was requested.

• InterPlanetary Linked Data (IPLD)

IPFS uses InterPlanetary Linked Data (IPLD), a type of data model to work with
CIDs and content-addressed data. IPFS uses IPLD to represent relationships between
content-addressed data, such as file directories and other hierarchical structures,
using a Directed Acyclic Graph (DAG) called a Merkle DAG.

• Content Addressable aRchive (CAR) files

IPFS uses Content Addressable aRchive (CAR) files to store and transfer a serialized
archive of IPLD content-addressed data. CAR files are similar to TAR files, in that
they that are designed for storing collections of content addressed data.

A detailed subsystems and architectural discussion of IPFS is out of scope of this thesis
but can be found at [76].

62

2.8 Usage Control

Fig. 2.13 Showing the different stages of UCON system: pre, ongoing and post the usage of the
resource requested

2.8 Usage Control

Usage Control (UCON) [21] is a contemporary access control model that extends traditional
access control models like Role-Based Access Control (RBAC) and Attribute-Based Access
Control (ABAC) to provide more dynamic and fine-grained control over access to resources.
UCON focuses on controlling how resources are used once access is granted, rather than
just determining who can access what resources. It’s designed to address the limitations of
traditional access control models in contexts where continuous monitoring and dynamic
decision-making are crucial, such as in cloud computing, IoT (Internet of Things), and
data sharing environments [13].

Usage-Controlled Access: Usage Control (UCON) (i.e., control the ‘intended purpose’
or ‘expected use’ of data) is an extension to traditional forms of access control such
as RBAC or ABAC. It is widely used in data control technologies to implement data
sovereignty and control data flow between applications [13].

A traditional access control mechanism only authorizes the user once before access is
allowed (pre), however, a usage-controlled access system monitors the usage of resources
and user attributes on a continuous (ongoing) basis. Such an access control is instrumental
for applications that are relatively long-lived and where immediate revocation is required;
features required for a real-time IoT data service.

UCON defines three major actors i.e. User (Subject), Resource (Object) and Rights.
It defines two types of attributes for both User and Resource: mutable and immutable
attributes. Attributes are ‘features’ of an entity that uniquely identifies it. Mutable attributes
are user/resource attributes that undergo change as a result of access and immutable
attributes do not change during the course of access. UCON defines an access control
decision to be an ongoing process and defines three stages of access pre, ongoing and
post. For instance, some mutable attributes change their values because the policy includes

63

2.9 Cryptographic Primitives

attribute update statements that are executed before (pre-update), during (on-update), or
after (post-update) the execution of the access as shown in Figure 2.13.

While a traditional access model only bases its decision-making on authorization(A) as
a pre-requisite, the UCON decision process defines two more elements to consider when
defining access policies Obligations(O) and Conditions(C) too. Therefore, the UCON
decision process is based on three factors: authorizations, conditions and obligations.

Authorizations (A) are the predicates that evaluate the attributes of the subject and
object and the requested right to decide whether the subject is allowed to access the
object. The evaluation of authorisation predicates can be performed before executing the
action (pre-authorisations), or continuously while the action is in progress (ongoing- or
on-authorisations) in order to promptly detect policy violations [?].

Obligations (O) are decision factors that verify whether a subject has satisfied some
mandatory requirements before performing an action (pre-obligations), or whether a subject
should continuously satisfy these requirements while performing access (on-obligation).
Obligations enforced after access (post-obligations) do not affect the execution of action in
any way. For e.g., making a mandatory one-time fee to access the system.

Conditions (C) are system-oriented decision factors and environmental factors; there-
fore they do not depend on the subjects or objects. The evaluation of conditions involves
attributes of the environment such as system load, system temperature etc. It can be
executed before (pre-conditions) or during (on-conditions) the execution of the action.

Taking into account the above three factors, a UCON-enabled system provides extended
monitoring and control of resources being consumed by a subject in the network.

2.9 Cryptographic Primitives

Asymmetric Cryptography and EdDSA: Asymmetric cryptography is the field of cryp-
tography system that uses a pair of related keys called public-private keypair. The system is
used to encrypt or sign data using this keypair to provide security and integrity guarantees
that can be verified cryptographically. In this keypair, the secret key is known only to the
owner, while others have access to the public key. Elliptic-Curve Cryptography (ECC) is
one of the asymmetric cryptography techniques. EdDSA (Edwards-curve Digital Signature
Algorithm) [77] is a digital signature scheme based on ECC. In the proposed protocol we
use EdDSA, particularly Ed25519 that is based on performance-optimized elliptic curve,
Curve25519. Cryptosystems based on ECC have an advantage of using small key and
signature sizes. Hence, they have low memory and computational resource requirement.

Due to these properties, they are ideal for resource-constraint devices such as IoT
devices. EdDSA signature generation and verification algorithms are shown in Algorithm

64

2.9 Cryptographic Primitives

Algorithm 1: EdDSA Signature Generation, SignEdDSA (m,privKey) Ñ (R,s)
Generate a secret integer r = hashphashpprivKeyq + m) mod q
Calculate R = r * G
Calculate h = hashpR` pubKey`mq mod q
Calculate s = pr`h˚ privKeyq mod q
Sign is pR,sq

Algorithm 2: EdDSA Signature Verification, Veri f yEdDSA(m, pubKey,
Sign)Ñ(Valid,Invalid)

Calculate h “ hashpR` pubKey`mq mod q
Calculate P1 = s * G
Calculate P2 = R + h * pubKey
Return P1 == P2

1 and 2, respectively. In Algorithm 1, a message m is signed with privKey to get the
signature pR,sq. In Algorithm 2, the message m, the signature and the public key are the
inputs. The signature is accepted or rejected based on its validity.

ECC is considered secure due to the difficulty of Elliptic Curve Discrete Logarithm
Problem (ECDLP) and Elliptic Curve Decisional Diffie-hellman Problem.

Elliptic-Curve Discrete Logarithmic Problem (ECDLP): In this problem, one is
given an elliptic curve E defined over a finite field EpFqq, a point P of order n on E, and a
point Q that is a multiple of P, and one has to find the integer a P [0, n´1] such that Q “

aP.
Elliptic-Curve Decisional Diffie-Hellman Problem (ECDDHP): Let E be an elliptic

curve defined over Fq, let P be a point of order n at E. The ECDDHP is the problem, given
aP, bP and cP, of deciding whether or not c ” ab(mod n). For Ed25519 the private key
is 32 bytes. For Ed25519 the public key is 32 bytes. EdDSA (Edwards-curve Digital
Signature Algorithm) [77] is a digital signature scheme based on ECC using a variant of
Schnorr signature based on twisted Edwards curves, a type of Elliptic Curve.

The private key (privKey) is generated from a random integer, known as seed (which
should have similar bit length, like the curve order). The public key (pubKey) is a point
on the elliptic curve, calculated by the EC point multiplication: pubKey = privKey * G,
where G is the generator point for the curve.

Zero-Knowledge Proof(ZKP): The ZKP is a cryptographic way of presenting a knowl-
edge that a Prover wants to prove to the Verifier without revealing the knowledge itself. The
Zero-Knowledge Succinct Non-Interactive Argument of Knowledge(zk-SNARK) is a ZKP
construct using which a Prover can prove knowledge of information to the Verifier without
revealing the information and without any interaction between them. The zk-SNARK
system presented in [78] is the most efficient and widely accepted, therefore, we use this in

65

2.9 Cryptographic Primitives

Table 2.3 ZKP Algorithms

Algorithm Description

(crs,t)Ð SetuppRq
For relation R, crs and t

are generated.

π Ð ProvepR,crs,st,wqq
This algorithm takes crs and pst,wq P R

as input and return π .

0/1 Ð Veri f ypR,crs,st,πq
crs, st and π are the inputs for this algorithm and 0(reject)

or 1(accept), is the output.
π Ð SimpR, t,stq The simulator takes t and st as inputs and returns π .

proposed protocol. A common reference string is shared between the Prover and Verifier to
achieve ZKP [78]. In the algorithms presented in Table 2.3, a relation generator R returns a
binary relation R for a security parameter λ . For pairs(st,w) P R, st is the ‘statement’ and w
is the ‘witness’. crs is the common reference string and t indicates the simulation trapdoor.
An efficient prover publicly verifiable non-interactive argument for R is a quadruple of
probabilistic polynomial algorithms (Setup, Prove, Verify, Sim) as shown in Table 2.3 such
that:

• pcrs, tq Ð SetuppRq: The setup produces a common reference string crs and a
simulation trapdoor t for the relation R.

• π Ð ProvepR,crs,st,wq: The prover algorithm takes as input a common reference
string crs and pst,wq P R and returns an argument π .

• 0{1 Ð Veri f ypR,crs,st,πq: The Verification algorithm takes as input a common
reference string crs, a statement st and an argument π and returns 0 (reject) or 1
(accept).

• π Ð SimpR, t,stq: The simulator takes as input a simulation trapdoor and statement
st and returns an argument π .

There are three properties of ZKP [78]: completeness, zero-knowledge and soundness .
Completeness: An honest prover can convince a true statement to an honest verifier:

Prrpcrs, tq Ð SetuppRq;π Ð ProvepR,crs,st,wq :

Veri f ypR,crs,st.πq “ 1s “ 1.

Zero-Knowledge: The proof does not reveal anything other than the truthfulness of
the statement. For all λ P N, pR,zq Ð Rp1λ q,pst,wq P R and adversary A, we can write:

66

2.9 Cryptographic Primitives

Prrpcrs, tq Ð SetuppRq;π Ð ProvepR,crs,st,wq :

ApR,z,crs, tπq “ 1s

“ Prrpcrs, tq Ð SetuppRq;π Ð SimpR, t,stqs

: ApR,z,crs, t,πq “ 1.

Soundness: A prover cannot prove a false statement to the verifier:

PrrpR,zq Ð Rp1λ
q;pcrs, tq Ð SetuppRq;

pst,πq Ð ApR,z,crsq :

st R LR ^Veri f ypR,crs,st,πq “ 1s « 0.

Dynamic Cryptography Accumulator: An accumulator is a short binding commit-
ment to a set of elements and allows for a short (non)membership proof for any element
in the set or not in the set. These proofs, also called witnesses (witness to element being
accumulated in the accumulator), can be verified against the commitment [79]. A dynamic
accumulator that allows addition/removal of values dynamically is proposed in [80]. The
proposed protocol implements a revocation policy using dynamic universal accumulator to
remove dishonest or malicious buyers from the marketplace platform. A buyer needs to
provide a non-membership witness that they are not in the accumulator before requesting
data stream purchase. The properties of such an accumulator are as follows:

Generating an Accumulator: A secret key kAcc is generated. The accumulator genera-
tion function GAccpq takes kAcc and the revocation list L as inputs ad returns an accumulator
U . The function is U Ð GAccpkAcc,Lq

Updating an Accumulator: To add a new value vnew to the accumulator, function
U pdAcc takes current accumulator U , kAcc and vnew to output updated accumulator Unew Ð

U pdAccpU,kAcc,vnewq

Generation of a Non-membership Witness: The non-membership witness generation
function Gw is implemented as w Ð GwpU,kAcc,L,aq where a is a value not in L.

Verification of a Non-membership Witness: The non-membership witness verification
function Vwpq is implemented as 0/1 Ð VwpU,w,aq. It returns 0 if a is in L, else 1.

67

2.10 Summary

2.10 Summary

The primary goal of this chapter is to introduce the essential background knowledge
necessary to understand the research areas investigated and problems formulated for this
dissertation. This chapter begins with a brief description of IoT network fundamentals and
introduces the challenges of managing the life-cycle of a large number of devices while
ensuring security and privacy. The IoT architectural layers with IAM frameworks and
classification of identifiers in IoT networks are discussed. The IAM concepts in IoT are
highlighted with elaboration on the commonly used identification schemes. Thereafter,
the common forms of identification used in the traditional IoT ecosystem are discussed.
The chapter later discusses the leading technologies and frameworks proposed in the
domain of decentralization, including blockchain, smart contracts, decentralized identifiers,
continuous authentication, Zero Trust framework and Usage Control Policy.

The context discussed in this chapter is relevant to Publications I - IV and therefore
form the foundation of the work carried out in this dissertation.

68

Chapter 3

Decentralized Identity Management
Framework for Industry 4.0

This chapter is the first of four chapters describing the core research contribution of this
dissertation. The key information in this chapter is based on work published in Publication
I. To this end, it presents a decentralized identity management framework for Industrial
IoT for managing identity and access management policies. The objective of this chapter
is to propose a novel smart-contract-based decentralized identity management framework
that can improve the handling/communication of IoT devices.

Industry 4.0 heavily uses the connected machine paradigm to automate, track and
maintain processes. However, a major challenge in Industrial Internet-of-Things (IIoT)
remains managing the burgeoning number of sensors. The centralized framework for
managing these devices raises concerns. In this work, a novel proof-of-concept framework
for managing identity and access management policies for IIoT is proposed. The proposed
framework is a smart contract-enabled and blockchain-based decentralized life-cycle
and access management system. It is backed by decentralized storage technology IPFS.
The proposed framework is decentralized and scalable unlike the state-of-the-art IIoT
management frameworks designed using legacy cloud infrastructure which are by default
centralized in nature.

3.1 Introduction

With increased automation in industrial processes, machine-to-machine communication is
becoming pervasive. Since IoT provides a connected paradigm of intelligent devices that
can sense the manufacturing processes closely, it is being widely exploited in industries
like manufacturing, supply chain management and predictive maintenance [81]. This wide
use of IoT devices brings with it a number of management challenges. Whilst there are

69

3.1 Introduction

Fig. 3.1 Showing the architectural difference between Client-Server network model and Decentral-
ized network model

several traditional identity management(IdM) solutions available in the market, they are not
suited for an Industrial Internet-of-Things (IIoT) setup. Most of the solutions are heavily
centralized around cloud architecture which creates a bottleneck in real-time data access
and enables access control policies for smart devices [82]. When identities are stored in a
centralized location they become a potential attack vector, the confidential information is
prone to data breach and manipulation. A single breach not only has digital fatality but can
have serious repercussions in a physical environment [83].

Industrial facilities are dynamic environments as compared to home or office workspaces.
They have several mobile entities and access control of these devices is shared among
various management parties, unlike the home environment which has a single controller.
Sensors installed in such industrial facilities gather highly sensitive data and this initiates
the need for secure management practices of such devices. In a conventional IIoT environ-
ment, the security of such sensitive data is at high risk due to the possibility of a single
point of failure. To overcome this problem there is a need to develop a framework based
around a decentralized architecture [84].

The blockchain technology has gained immense popularity in recent times. It is a
decentralized, peer-to-peer technology which consists of cryptographically linked blocks of
data [65]. These blocks of data represents transactions or exchange of information among
peers and in order to ensure authenticity, each transaction is added to the blockchain after
a rigorous consensus mechanism thus making it a suitable decentralized solution [58][66].
Decentralized systems promote trust and integrity in a system where many key coordinators
are managing a set of resources. Figure 3.1 illustrates the difference in data/command
propagation in both models. In a client-server model, the flow of information is always
towards or away from a central server which stores all the information in the system.
Whereas, in a decentralized system, each device in the network is a node hosting and

70

3.2 Blockchain-Based Identity and Access Management Systems: A look at
state-of-the-art

consuming data simultaneously. Even if a number of nodes fail, the network keeps
functioning, unlike a centralized system where server failure means the network comes to
a halt.

Although blockchain as a distributed ledger is capable of storing a certain number of
transactions, its efficiency impedes as the volume of data stored on the ledger increases.
Increased data storage on the blockchain increases the synchronization time among the
peers and negatively affects scalability. Currently, the chain is growing at a rate of 1MB
per block every 10 min in Bitcoin [85]. In the Ethereum size of the block is measured
in two ways: gas usage and block size [86]. Currently as it stands after PoS update it
stands at 15 million gases (roughly 1.7 MB) and it is generated every 12 sec. Similarly,
in Algorand the block size is 5MB [87]. Therefore, it is not viable technically to store a
large amount of data on the blockchain ledger. This becomes an even bigger issue when
dealing with IIoT devices which tend to produce large volumes of data in a very short
amount of time. The amount of data increases exponentially and the sensitivity of the data
dictates that this information needs to be disseminated at the earliest. To overcome this
issue, our proposed architecture is built using blockchain in conjunction with IPFS. IPFS
is a content-addressed peer-to-peer distributed file system [88]. A file stored in IPFS has a
unique hash that is derived from its content. This makes the file secure from tampering
by an unknown entity. IPFS eliminates the need for a centralized storage entity in our
architecture.

3.2 Blockchain-Based Identity and Access Management
Systems: A look at state-of-the-art

Researchers across the world are exploring new technologies to make the IoT scalable,
secure and autonomous. The goal is to develop techniques so that the devices can communi-
cate securely with minimum human intervention. A secure IdM framework is fundamental
to achieving device-to-device communication for authentication and access management
purposes with the least human intervention. Hurrow et al. [89] describe an identity man-
agement technique for cloud-based IoT. In this work, the identity manager is a component
of cloud infrastructure that creates and stores digital identities associated with each device
in a cloud database, retrieving it during the device authentication process. Identity creation
for new devices and removing existing devices is also managed via identity manager.

The state-of-the-art technology for authentication and access management primarily
uses cloud-based IdM infrastructures [90]. The major processing tasks and storage are
delegated to the cloud network. In these frameworks, there are two main methods of
creating identities for IoT devices, first by giving a username-password for devices and by

71

3.2 Blockchain-Based Identity and Access Management Systems: A look at
state-of-the-art

using PKI (Public Key Infrastructure) to create digital certificates corresponding to each
device. In both methods, device identities are stored in a central server and the task of
authentication is entrusted to a centralized entity. Often the authentication information
is stored in plain text in databases. This led to a large-scale attack launched using the
collective power of IoT devices acting as Mirai botnet that infected up to 600k devices to
take down many online services [5]. The reason for the attack was simple, using default
username passwords, attackers formed a large army of IoT devices to launch one of the
largest DDoS attacks. Hence, public-key cryptography can be useful to create identities
and bind these identities to the physical attributes of devices.

Some work related to distributed identity and access management of IoT devices
has been proposed by researchers. Novo [91] describes a generalized framework for
access management in IoT using smart contracts as an enabler for defining access policies.
This work mainly describes managing access policies for IoT devices by an intermediary
interface. However, no identity creation and management is described in this work. Also,
resource access policies are stored on the blockchain platform which can impact the
performance of the framework. Omar et al. [92] focuses on identity management in a
general scenario specifically ownership management and transfer of IoT devices. They
present a framework for identity creation and ownership transfer for IoT devices using
blockchain. This work relies on a global registry for storing identities created for IoT
devices. Hammi et al. [93] propose a scheme for decentralized authentication in IoT
networks. In this work, secure virtual zones containing a few IoT devices are proposed
and the devices in these zones trust each other. The inter-zone communication requires
authentication which is achieved using smart contracts. However, these trust bubbles
create a siloed framework for sensor communication, in which authentication requests are
directed to one manager node in the bubble.

Using smart contracts, Papadodimas et al. [94] demonstrate an implementation of DApp
for providing data monetization. The devices can buy and sell data by leveraging the smart
contract functionality. Li et al. [95] introduce the idea of using multiple satellite chains that
form interconnected but independent sub-chains of a single blockchain network. These
chains interact with each other with the help of a specific validator node. Each satellite
chain implements a business logic. Mell et al. [96] propose a federated authentication of
the user to a relying party without a third-party authenticated service. Authentication is
achieved between the relying party and the user through a smart contract logic.

The above-discussed works present approaches taken to decentralize the IoT infrastruc-
ture using the upcoming blockchain technology. However, most of them rely on blockchain
ledger for data storage which can impede the scalability of the system with an increased
volume of IoT devices in the network. Additionally, while the above-discussed work offers
identity management solutions and some showcase access management too, the procedure

72

3.3 Case Study: Factory Floor Automation

of device authentication remains unexplored in most cases. As discussed, achieving reli-
able device authentication is an important feature for achieving secure device-to-device
communication.

3.3 Case Study: Factory Floor Automation

To understand the functionality of the proposed architecture for identity and access manage-
ment, a use case from the manufacturing sector is demonstrated. Boeing, a leading aviation
equipment manufacturing company is using IoT technology on factory floors to optimize
production operations by improving predictive maintenance of the manufacturing sites
[97]. The efficiency of such industrial organizations depends on managing downtime and
shipment delays. And IoT plays a key role in monitoring the processes closely. However,
the company today relies on third-party cloud services to store operational and sensor data
[98]. While using cloud infrastructure may seem an efficient tool in these scenarios, the
problems associated cannot be ignored. The facility’s operational data and sensor data are
confidential and must be protected against attacks to maintain accountability of critical
components in the aviation industry. The identity and access control in such third-party
cloud services are usually managed using digital certificates which again rely on another
provider. These certificates are not interoperable and susceptible to attacks as they are a
single point of failure.

There are several reasons for using the IPFS-backed blockchain solution for designing
IdM in the IIoT scenario. Firstly, there is a need for a decentralized IdM architecture given
the large number of sensors. The IoT devices try to connect simultaneously to the server
for access control permissions, sending multiple requests at a given point in time to the
central server. These servers are often physically hosted in far-off geographical locations,
affecting the response rate, hence resulting in potential degradation of performance. Sec-
ondly, security risk and trust management issues are reduced by storing identity-related
information and access control policies in a decentralized framework instead of using a
centralized architecture or distributed one where the owner still remains a single entity.
Therefore, in the proposed work, a framework for decentralized identity and access control
management is proposed.

3.3.1 Contributions

In this work, a novel architecture based on decentralized technologies namely, blockchain
and IPFS is proposed. The proposed architecture uses blockchain technology to manage
identities and access control to these smart devices in the network. The main contributions
of this work are:

73

3.4 Proposed Architecture Overview

• A novel proof-of-concept decentralized IdM framework is proposed which is based
on a smart contract-enabled blockchain architecture that is supported by distributed
storage, IPFS.

• It is observed that the framework’s performance is at par with current state-of-art
architecture and yet provide identity management and security in an industrial setting.
It completely forgoes centralization and associated risks.

• It is demonstrated that the proposed decentralized framework can achieve a stable
throughput and can be easily scaled up in an enterprise setting which demands
security and scalability.

3.4 Proposed Architecture Overview

In the proposed work, blockchain acts as a decentralized identity management authority that
maintains the mapping of identities to respective public keys. The smart contract provides
the necessary logic to help in the provisioning and revocation of keys of the IoT devices.
The majority of policies and relevant metadata is stored on the IPFS while the blockchain
only stores corresponding file hash as immutable transactions in the ledger. Every identity
creation, deletion and policy update is logged on the blockchain as a transaction. Access
control policies defined in the network are retrieved from the local copy of the ledger. IoT
devices are inherently resource-constrained and hence they cannot act as a blockchain node.
Therefore, in our architecture, the Wireless Sensor Network (WSN) formed by sensors is
not included in the blockchain network and interacts with the latter through a protocol
translator gateway (PTG).

3.4.1 System architecture

Figure 3.2 shows the components of the proposed framework. The framework consists of
the following entities:

1. Blockchain Network: The blockchain network in the proposed architecture is a
consortium blockchain as it closely mimics the real-world industrial scenario. In
this network, the participating parties agree on a set of logical business operations,
recorded in the smart contract. Hence, it allows fair participation of the parties as
compared to a private blockchain. It also promotes traceability. Furthermore, it
has better transaction throughput and low setup costs when compared to a public
blockchain. As a result, it offers advantages of both types of blockchain and still
achieves decentralization. Each node stores the ledger and accesses global IPFS
storage to access the identity and access-related policies for IoT devices.

74

3.4 Proposed Architecture Overview

Fig. 3.2 Decentralized framework for Industrial IoT. Each industrial facility hosts a blockchain
ledger and IPFS file system as a local copy.

2. Administrator Node: The administrator node is a special node that initiates the
blockchain network and invites other nodes to be a part of the network. This node
deploys the smart contract that defines the functionalities of the entire system. Since
this node deploys the smart contract in the blockchain, it receives the address of this
contract on the network. Later, this node shares the address with supervisor nodes in
the network which allows them to interact with the smart contract.

It must be noted that as explained above, the framework establishes a consortium
blockchain network in which the identities of nodes are known (unlike a public
blockchain where the nodes are anonymous and the real identity behind an accoun-
t/node operator is unknown) as it usually consists of known entities/organizations
coming together to jointly host a blockchain network. Therefore, an Admin node
in such a setting is an identified blockchain node from either member of that con-
sortium. Depending on the governance structure of the consortium network, a node
from any member group can become an Admin node and can be tasked to carry
out the network and smart contracts setup after a business/legal level agreement is
achieved between the consortium members. It does not necessarily mean that such a
network becomes centralized but rather this is how the governance structure of this
consortium network might be defined. The consensus in such a blockchain network
is still achieved in a decentralized manner.

75

3.4 Proposed Architecture Overview

Table 3.1 A table summarizing all the symbols used in the algorithm for this chapter

Symbol Explanation
KS

pub Public Key of the Supervisor
KS

pri Private Key of the Supervisor
KD

pub Public Key of the Device
KD

pri Private Key of the Device
τS Supervisor ID
τD Device ID

SigKS
pri

(τSq Digitally Signed Supervisor ID

SigKD
pri

(τD) Digitally Signed Device ID

ℑ Ticket with device metadata stored in IPFS

3. Smart Contract: The smart contract contains the core logic of the architecture as
its functions. A set of operations that allows entities in the network to provision
identities to IoT devices, manage their access control and later revoke identities
are defined in the smart contract. These operations can be triggered by the smart
contract transactions sent by participating nodes in the network. A security feature
is introduced in the contract function that authorizes only the registered supervisor
nodes to send transactions to those functions. This feature restricts unauthorized
access request load on the smart contract.

4. Supervisor Nodes: Any trusted peer node in the network can register itself as a
supervisor node. Once these nodes are registered as supervisor nodes with the smart
contract, they can now register IoT devices in the blockchain platform. Supervisor
nodes have higher computational and storage power and hence they can choose to
host a copy of the blockchain. However, if these nodes are some lightweight node in
the system they can choose otherwise. Each IoT device should register itself with
one registered supervisor node. It can also be registered under multiple supervisor
nodes. That will ensure robustness in case of any faulty supervisor node.

5. Wireless Sensor Network (WSN): The IoT sensors installed in the facility form a
WSN that interacts with the blockchain network through the gateway in the architec-
ture. These sensors have limitations in terms of memory, power and computational
capabilities. Each IoT device in the network is uniquely identified by its SensorID.

6. Protocol Translator Gateway: Since IoT sensors are resource-constrained devices
they use low-power communication protocols like MQTT (Message Queuing Teleme-
try Transport) and CoAP (Constrained Application Protocol) within WSN. However,

76

3.4 Proposed Architecture Overview

blockchain network uses RPC protocol among their peers. In order to provide inter-
operability between the blockchain network and IoT sensor network PTGs are used.
They convert incoming MQTT requests from sensors to JSON-RPC message format
before sending it to a supervisor node and vice-versa.

7. IPFS File System: IPFS file system is a content-addressable peer-to-peer file system.
On uploading a file to IPFS, a hash of the content of the file is returned. Using IPFS
in our architecture provides two benefits, first, it removes the need for centralized
storage and second the content of the file is cryptographically secured using the
hashing mechanism. Any tampering with a file stored on IPFS can be detected and
traced back.

3.4.2 Smart Contract Methods

The methods/programming functions defined in the smart contract are as follows. The
symbols used in the explanation are defined in Table 3.2.

• RegisterSupervisor(KS
pub, τS): to register any node S with Supervisor_ID τS as

supervisor.

• RegisterDevice(KD
pub, τD, KS

pub): to register a device D with help of a supervisor S .

• AuthenticateSupervisor(KS
pub, SigKS

pri
(τS)): before a supervisor S can register/deregis-

ter a device, it needs to authenticate itself.

• AuthenticateDevice(KD
pub, SigKD

pri
(τD)): before a device can request/access a resource

or even give a command to other IoT device, it needs to authenticate itself.

• AddResourceControl(ResourceList): to add access control for a resource list of a
device.

• PermitResourceAccess(D1, D2, R): permit a device D1 to access a resource R hosted
by device D2.

• RemoveSupervisor(KS
pub, τS): to deregister a node S as supervisor.

• RemoveDevice(KS
pub, τS, τD): to deregister a device D from the network by the

supervisor S.

77

3.4 Proposed Architecture Overview

Fig. 3.3 Showing the process of Supervisor Registration as part of network setup

3.4.3 System Interaction and WorkFlow

Network Setup

In this phase, the blockchain network is set up. Trusted peer nodes are added in this phase
to help maintain the distributed ledger and participate in voting. Some of the trusted peer
nodes will register as supervisors. These peer nodes also host file systems for IPFS since
they have high computational and storage capabilities. The administrator node in the
network deploys the smart contract on the blockchain. It receives the blockchain address of
this smart contract which it stores in a Setup file in IPFS and the hash of this file is stored
on the blockchain. The address of this smart contract can be queried by any valid node
from the IPFS which will allow them to send transactions to the smart contract.

Registration of the entities

Any trusted node in the network added by the consortium can register itself as a supervisor.
To register, the node generates a public-private key pair (KS

pri,K
S
pub) using ECDSA algorithm

which identifies it uniquely in the network. The Keccak hash function [99] is used to
generate a 20-byte supervisor ID, τS from the public key. As shown in Figure 3.3, the
supervisor sends a transaction to function RegisterSupervisor defined in the smart contract.

78

3.4 Proposed Architecture Overview

This function deploys a smart contract for the registered supervisor and obtains the address
of the deployed smart contract. The deployed supervisor’s smart contract contains the
supervisor’s metadata which includes the supervisor’s public key, ID and an array of
devices registered under the supervisor. The parent smart contract will contain a mapping
of every registered supervisor’s public key to the address of their respective deployed smart
contract. This completes the registration of the Supervisor node.

Figure 3.4 shows the process of device registration. For device registration, the device
will possess a public-private key pair (KD

pri,K
D
pub) and device ID, τD derived from it. The

device will send a registration request to the nearest supervisor, with its public key and
τD. The supervisor will first invoke function RegisterDevice in the parent smart contract,
this function calls another function AuthenticateSupervisor which takes as input KS

pub

and signature of supervisor over τS. From the received public key, the supervisor’s smart
contract will be retrieved taking the address from the parent smart contract mapping.
The received signature will be validated against the τS stored in the supervisor’s smart
contract. Only a registered supervisor can add the device to the network. Once validated,
the supervisor will be allowed to create a device ticket, ℑ that will be stored in IPFS as
shown in Figure 3.5. The ℑ contains all the metadata related to the device which includes
KD

pub, τD, hashed device attributes HpAq and resource list associated with this device.

Fig. 3.4 Showing the process of IoT Device Registration as part of network setup

Device attributes Ai where i represents parameters like manufacturer details, firmware
version, hardware version, etc. A “ A1||A2||A3.....An, are hashed together to give a unique
fingerprint of the device HpAq “UniqueDeviceFingerprint. The Unique Device Finger-
print prevents any tampering with the device. On uploading the ℑ in IPFS, a hash string

79

3.4 Proposed Architecture Overview

Fig. 3.5 Illustrating the format of a device ticket ℑ that contains a unique fingerprint of each device

is returned. This ticket hash is stored in a mapping in parent smart contract along with
KD

pub and a dictionary of supervisors under which this device is registered. This marks the
complete registration of a device in the system.

It must be noted here that taking into account the device firmware to calculate the
device fingerprint is a choice that owners of device can make. Having firmware versioning
as part of the device’s unique fingerprint can help ensure tamper-resistant firmware updates.
Hence, only the device owner will be able to update the device fingerprint after a secure
firmware update. However, it would also mean that the device would have to re-register
every time its firmware is updated if this attribute is kept intact as part of the device’s
fingerprint, resulting in additional steps each time. So, it’s a design feature which can be
selected depending on the level of security expected.

Add Resource policies

Supervisors can add resource access policies for IoT devices registered under them. After
a device is registered under a supervisor, the access policies can be defined for that device.
These policies can be defined in several ways. In our work, all the resources of a device are
listed in their respective ℑ. To set the access permissions, the supervisor first authenticates
itself as explained in the device registration process. After successful authentication, the
supervisor is given access to ℑ location in IPFS to set the resource access policies of the
device. The new hash of the ticket is updated in parent smart contract mapping which
contains the device public key mapped to ℑ hash in IPFS. This creates a distributed registry
of device resources which can be accessed by any trusted node of the network to grant
access to the devices.

80

3.5 Implementation and results

Fig. 3.6 Showing the steps involved in granting access to a device for a requested resource hosted
by another IoT device

Permit Resource Access

When a device D1 wants to access a resource R hosted by device D2, D1 sends a re-
quest containing its signature over τD, SigKD

pri
(τDq and public key to a PT G in the form

of an MQTT message requesting the resource. The PT G transforms MQTT message
to RPC-JSON request and forwards it to the nearest blockchain node. The node calls
PermitResourceAccess function defined in the parent smart contract. This function first
authenticates device D1 and if authenticated, allows the node to query the resource access
policy for D1 stored in ℑ of device D2 in the IPFS file system as shown in Figure 3.6. If
D1 has an access policy defined for resource R it sends the permission to PT G which sends
it to D1. This allows device D1 to connect to MQTT broker hosting resource of device D2.
Since the query is made to the copy of IPFS hosted on the node, the process is completed
immediately. In this case, there is no reliance to receive the information from a centralized
storage.

3.5 Implementation and results

3.5.1 Experimental setup

The experiment was set up on a Linux machine installed with the following hardware
specifications: Intel® Core™ i5-7200U CPU@2.50GHz and 8 GiB RAM. A private

81

3.5 Implementation and results

Ethereum blockchain was setup. Such a private or consortium network can be deployed
by a single organization or a group of legal entities coming together on agreement in a
real-world scenario. Later smart contracts explained in Section 3.4.2 are developed using
Solidity programming language. As explained in Section 3.4.2, each function performs a
specific task in the protocol. The developed smart contract is deployed by the admin node
in the network. Once the smart contract deployed, it is ready for accept transactions for
various functions.

Later, an IPFS network using Go v1.12.0 was installed on the system. In a real
world scenario such a network can be an IPFS cluster hosted in an industrial zone if a
single party is deploying the framework or just like the blockchain network a group of
entities/organizations can host multiple nodes of IPFS network. Once the blockchain
network and IPFS network is setup, IoT devices were onboarded in a facility by sending
transaction request to PTGs which then send it to the supervisor nodes.

IoT devices are mostly sensors that collect data and this data needs to be hosted for
feeding it in various pipelines. This data is the resource that is later requested by another
device, an application or even a user. In order to host this data in a distributed fashion,
a Mosquitto MQTT message broker v1.6.9 from Eclipse Foundation is installed on the
testing machine. MQTT protocol works in a publish-subscribe model where the clients (IoT
devices) publish to a topic, another term for a specific data stream from sensors. Publishers
are clients that publish the data to the broker in specific topics and subscribers are the
clients that subscribe to the topics the application is interested in. This way a continuous
stream of sensor data can be published by IoT devices and it can be consumed by other
devices or applications. MQTT protocol also provides the ability add an authentication
and access control layer on top of the publish-subscribe communication to make it secure.
This capability of the protocol is leveraged to add the devised identity framework.

MQTT protocol is selected to implement the IoT devices’ communication as it is a
lightweight protocol and closely resembles the communication requirement of a real-world
industrial setup where real-time data is used to drive machines and make decisions. In
order to analyze the performance of the setup, an MQTT benchmark tool written in Python
3.6 called PyMQTTBench from Python Packages is used. The tool was modified to
incorporate an authentication process via blockchain and IPFS. This benchmark tool has
ability to create several virtual IoT clients concurrently and simultaneously spur resource
access request in the network once the devices are onboarded. Such a concurrent set of
IoT devices were spurred using the testing framework to replicate the real-world industrial
setup where multiple devices are simultaneously communicating with each other or other
applications.

82

3.5 Implementation and results

(a) Throughput performed on subscribers requesting access control for a resource hosted by a
device in the network through PTG

(b) Latency experienced in resource access message delivery for the tests performed in Fig-
ure 3.7(a)

Fig. 3.7 Performance Results illustrating the Throughput and Message Transmission Latency
varying with the number of concurrent client requests. Q = Quality of Service (QoS)

83

3.5 Implementation and results

3.5.2 Performance Evaluation

The test is executed as a sequence of three steps. In the first step, the network is set
up, a smart contract is deployed, the IPFS node is initialized and keys are generated for
supervisors and devices. In the second step, the supervisors are registered followed by the
registration of devices. In the third step, MQTT broker is set up and virtual publishers start
publishing data concurrently to a topic like “/resource/temperature/D1”. A large number
of subscribers send resource access requests simultaneously to the PTG for connecting
to MQTT broker for topic subscription. Once the authentication is obtained from the
blockchain network with the help of device metadata on IPFS, the subscriber can connect
to the broker and subscribe to the topic to start receiving the requested data. Each test was
run ten times and average values were taken.

The goal of the benchmark is to evaluate the impact of a number of concurrent client
requests on the network in terms of first, delivered throughput i.e. message rate on the
subscriber side and second, message transmission latency i.e. time required to transmit
a message to the client. In order to evaluate both these parameters, a parameter intrinsic
to MQTT protocol is leveraged and their performance against this parameter is observed
as shown in Figure 3.7. This parameter is known as Quality of Service (Q/QoS). MQTT
Quality of Service (Q) is an agreement between the message sender and receiver that
defines the level of delivery guarantee for a specific message [100]. Q is crucial in MQTT
due to its role in providing the client with the ability to select a service level that aligns
with both the network reliability and the application’s requirements. MQTT’s inherent
capability to handle message re-transmission and ensure delivery, even in unreliable
network conditions, makes Q essential for facilitating seamless communication in such
challenging environments. By offering different Q levels, MQTT empowers clients to
optimize their network usage and achieve the desired balance between reliability and
efficiency. An analysis of the result against parameter Q helps us understand how the
system will perform in various level of guarantees.

MQTT provides three levels of Q: At most once (Q=0), at least once (Q=1) and exactly
once (Q=2). At the lowest level, Q=0 in MQTT offers a best-effort delivery mechanism
where the sender does not expect an acknowledgment or guarantee of message delivery; it
means that the message may be delivered once or not at all. In Q=1 of MQTT, the focus
is on ensuring message delivery at least once to the receiver. This is achieved through an
acknowledgement exchange between the subscriber and the broker. In the proposed work,
the results are evaluated for first two level of delivery reliability to gauge the performance
of the framework.

Figure 3.7(a) shows the results for throughput. The throughput for client requests
steadily increases from 750 requests served per second until it achieves a throughput

84

3.5 Implementation and results

of 1000 requests per second for approximately 600 client requests in the case of Q = 0.
Similarly, for Q = 1, the throughput increases from 720 requests to 930 requests per second.
However, the overall throughput for Q = 1 remains smaller than Q = 0 due to the fact that
after each message delivery, the broker waits for acknowledgement in Q = 1 resulting in
lower throughput values. The decrease in the performance is directly related to the increase
in message transmission latency as shown in Figure 3.7(b). The latency for Q = 1 is always
greater than that for case Q = 0 due to the acknowledgement that takes place after each
message exchange and authentication process completion in the blockchain network. The
latency in both cases remains well below 4 msec when the number of requests is below
600 but it increases with an increase in the number of requests.

A PTG in the proposed protocol is acting like a protocol translator. IoT devices cannot
be part of a blockchain network due to a number of reasons like lacking in capability to
host blockchain ledger and constraints regarding participating in the consensus mechanism.
Hence, it is not possible for IoT devices to communicate directly with a blockchain
network in order to register itself with the supervisor nodes. Therefore, IoT devices need
an intermediary to communication with the blockchain network. PTGs perform this role
and handle the two way communication between IoT devices and supervisor/peer nodes.
In the test bed setup only one PTG is considered to generate results and its effect can be
observed. A greater throughput and better latency can be achieved with a higher number
of PTGs in the network and faster authentication processing in blockchain and IPFS
networks. Nevertheless, the performance of the overall setup performs well with up to
1000 requests served per second for 600 clients. It is possible to forgo PTGs if the IoT
devices directly wish to communicate with the blockchain network, in which case these
devices should be able to act as nodes in the blockchain network which would require
them to be significantly computationally competent. Therefore the inclusion of PTGs
(an intermediary) in the design provides a tradeoff between efficiency while keeping an
intermediary or a computationally intensive design pattern.

The reliability of any data set is very important to gauge the authenticity and repro-
ducibility of results. Therefore, the dependence of subscriber mean duration on an increase
in total requests made by clients is tested. Figure 3.8 is plotted with respective standard
deviations in the form of error bars over each set. The average subscriber duration is
the mean time taken by the subscribers to receive the resource requested. The observed
behaviour shows in Figure 3.8(a) that for Q = 0, the mean subscriber duration is lowest
between 200-700 and the standard deviation is also relatively small for this range. Hence-
forth, the system performance will be better for this range and this can be confirmed with
Figure 3.7(a). A similar pattern is observed for Q = 1 in Figure 3.8(b). However, the mean
value of subscriber duration remains on the lower side for Q = 0 as that of Q = 1. This
directly affects the throughput of the system as seen in Figure 3.7. However, the standard

85

3.5 Implementation and results

(a)

(b)

Fig. 3.8 Statistical Results illustrating the Mean and Standard Deviation(SD) of subscriber duration
against the number of concurrent client requests

86

3.6 Security Analysis

Table 3.2 A table summarizing susceptibility of each component to a set of threats under
STRIDE model

S T R I D E
IoT Devices X
PTGs X X X X
Supervisor Nodes
IPFS nodes

deviation for Q = 1, is always less for a particular number of requests as compared to Q =
0, which means that the mean values for Q = 1 are more clustered around the mean as that
in Q = 0. The smaller the standard deviation, the more reliable the data. Hence, the results
are in accordance with statistics.

The overall performance of the system can be considered acceptable considering that
with the increase in PTGs the performance will improve. And a WSN will have several
PTGs interacting with supervisors.

3.6 Security Analysis

Security is a prominent feature of any architecture and our proposed architecture should
be no exception to this. Even though the aim of our design is to facilitate access control
in constrained scenarios, the solution should provide a satisfying level of security. In
this section, the main possible threats in the architecture are identified and solutions are
provided to achieve the best level of security. To identify the threats in our system, the
STRIDE [101] model is used by asking whether one or more threat types apply. STRIDE
classifies the threat into six categories, and its acronym derives from it: spoofing, tempering,
repudiation, information disclosure, denial of service and elevation of privileges. In our
architecture, there are four main entities: IoT devices, PTGs, Supervisor nodes and IPFS
nodes. The susceptibility of each to the above threats is identified.

Spoofing attack takes place when a malicious entity tries to impersonate another device
in the network. The IoT devices and supervisor nodes are not susceptible to this attack
as they possess a public-private key pair, which they use in all the interactions with the
blockchain. However, since IoT devices are not a part of the blockchain network and their
communication with Supervisor nodes depends on PTGs, a malicious PTG can change the
information to and from IoT devices. To overcome this issue, the PTGs can be assigned
signed certificates by a trusted authority in the network. Each IPFS node has its unique
identity created at the time of installation and hence can prevent spoofing.

87

3.7 Conclusion

Tampering of access control information can be done by a malicious entity posing as
PTG, but as proposed earlier, signed certificates can help mitigate the attack. Tampering of
device metadata in IPFS and transaction records in blockchain is difficult because both are
cryptographically protected. In IPFS, each change to the device ticket ℑ is stored on the
blockchain as a hash of the file and any tampering with the data will result in a different
hash. Similarly, in blockchain, each block is cryptographically linked to the previous block
making tampering highly difficult.

Repudiation refers to threat action aimed at performing prohibited operations in the
system that lacks the ability to trace the operations. Non-repudiation property is a prime
feature of blockchain technology as the sequence of events is logged in the form of
transactions in the blocks. In our architecture, direct interaction between IoT devices is
not encouraged, and this will prevent any spoofing attack by one device on another. A
malicious PTG can repudiate (can be claiming to have not performed an action) and signed
certificates can solve this issue.

Denial-of-service (DoS) attack is possible on IoT devices and to avoid it, the devices
must be non-reachable from an open network. To ensure this, firewalls can be installed in
the network to prevent any malicious entity from outside the network from launching DoS
attack. Also, the unique identity of devices can help mitigate DoS attacks on the network.
If devices do not have unique identities and are bootstrapped with default usernames-
passwords, they can become an easy target of malicious attackers trying to flood the
network with fake connection requests. The blockchain network in general provides a
certain level of security against malicious nodes. Moreover, since the blockchain in our
architecture is a permissioned network, only trusted nodes are added to the network.

3.7 Conclusion

This chapter presents the design, implementation and evaluation of a novel decentralized
identity and access management framework. The chapter addressed the issues in current
Industry 4.0 implementation where IoT technology is completely based on a centralized
ecosystem hence causing scalability issues on horizontal and vertical scales. In this chapter
a novel identity management solution is proposed which is decentralized and based on
decentralized technologies like blockchain and IPFS. Due to the resource-constrained
nature of the IoT device, it is not made a part of a blockchain network and communication
with it is achieved using PTG. This makes the integration of IoT technology and blockchain
technology adaptable with no major changes to the existing infrastructure.

To facilitate the discussion of the proposed analysis, first the recent state-of-the-art
models in IoT is presented and their limitation is discussed. The implementation of a

88

3.7 Conclusion

proof-of-concept prototype and its thorough evaluation have proved the feasibility of
our approach. In particular, the solution performs as expected in terms of throughput
and latency, along with the ability to provide a small code footprint while handling high
loads. The goal of this work was to provide a decentralized and secure architecture for
managing the identities of IoT devices in the network with no single point of failure. Such
an architecture has been proposed in this work with results.

89

Chapter 4

A Decentralized IoT Identity
Framework based on Self-Sovereign
Identity and Blockchain

This chapter constitutes the second contribution of this dissertation. The key information in
this chapter is based on the work published in Publication II. The state-of-the-art analysis in
Chapter 2 of the thesis outlines the several types of identifiers used for IoT devices. While
each of these identifiers is unique, interoperability among devices using such identifiers
cannot be guaranteed. Such identifiers are also purpose-limited and vertically as well as
horizontally siloed. This essentially means that for each layer in IoT architecture, a new
identifier is defined which is not interoperable among these layers or with other outside
networks. This chapter presents a new standard of managing and implementing digital
identity, the self-sovereign identity standard (SSI). This marks an improvement over the
last chapter that formulates the hypothesis of a decentralized digital identity framework.
This chapter proposes a novel framework to adopt such a model in the IoT ecosystem. The
framework is designed to be independent with regard to the underlying IoT protocols, and
its performance has been assessed to study the underlying overheads.

4.1 Background and Motivation

The fundamental requirement for interaction between digital entities is a secure and
privacy-preserving digital identity infrastructure. Traditional approaches usually rely on
centralized architectural components such as Certificate Authorities (CAs) and credential
storage databases that have drawbacks like a single point of failure, attack-prone honeypot
databases and poor scalability. Cross-domain interaction between smart devices in different
industrial settings also remains a challenge. Siloed communication channels and secure

90

4.1 Background and Motivation

exchange of credentials are some of the existing challenges in machine-to-machine (M2M)
communication. Self-sovereign identity (SSI) is a novel decentralized digital identity
model that uses Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs). Such
a model does not require a centralized trust authority to hold validation evidence. In
this work, a novel decentralized identity framework is proposed for Industrial Internet-
of-Things (IIoT) based on the SSI model. The proposed framework is implemented
on two well-known blockchain platforms Ethereum and Hyperledger Indy to study the
underlying overheads. These platforms were selected for implementation as they have a
large development community and a mature code base to test various functionalities.

With an increase in automation, machine-to-machine (M2M) communication has
become pervasive in various sectors. However, in complex IIoT settings, interactions are
not limited to intra-device or intra-user communication but extend to many heterogeneous
forms. Hence, with these evolving interaction paradigms, the idea of digital identity for
human and non-human entities needs to broaden too. In the case of users, a common
method to assign identities is to create password-protected digital accounts, with the former
stored on a centralized web server. So, when smart IoT devices started making their way
into markets they were also assigned with default weak passwords which led to large-scale
attacks like Mirai botnet [14]. In today’s scenario where humans and machines interact
seamlessly unlike never before, the idea of a centralized identity infrastructure poses a
challenge.

Since devices are largely unattended in IoT scenarios, password-based manual ap-
proaches are unsuitable for inter-device communication. In fact, around 80% of IoT
devices fail to implement passwords securely [102]. Hence, an automated solution like
Public Key Certificates (PKC), which binds the identity of an entity to its public key
became popular among IoT vendors. However, certificate standards like PGP and X.509
were not designed with privacy in mind, as is evident with the use of subject names in their
certificates. With PKC, lack of privacy is an inherent challenge. Another disadvantage
is the high level of dependency on centralized architectures to maintain the root of trust.
Therefore, there is a need for a decentralized approach to digital identity for smart devices,
such that, devices from multiple stakeholders can interact seamlessly with other devices,
users and organizations in a collaborative environment.

A new model of identity management is shaping in the community termed “Self-
Sovereign Identity” (SSI) [103]. The key concept behind SSI is that subjects (identity
owners) can fully create, build and control their identity and associated credentials rather
than relying on a third party to manage them. It has advantages like better subject privacy
and control of when and how their identities are shared. To realize SSI, new standards
have been proposed by W3C [104], namely, Decentralized Identifiers (DID) and Verifiable
Credentials (VCs). For example, in the case of individuals, their passport is a physical

91

4.1 Background and Motivation

national identity and provides them with a claim to secure travel permissions off-shore.
Similarly, DIDs allow subjects to own online identities and VCs are online representation
formats of cryptographically verifiable digital credentials. DIDs in most cases leverage
the decentralized blockchain technology as distributed public key infrastructure (DPKI),
although other options are open for adoption.

There are four major design principles of Industry 4.0 [105] namely, interconnection
that enables machines, sensors and people to communicate with each other, transparency
in decision making by using comprehensive collected data to take an informed decision,
decentralized decision that will allow cyber-physical systems to act on their own and take
autonomous decisions as much as possible and technical assistance to assist humans in
informed decision making to ensure safe industries. These principles clearly imply that
IoT technology requires a decentralized and autonomous framework.

In this chapter, a decentralized digital identity framework is described using the prin-
ciples of Self-Sovereign Identity to securely bootstrap IoT devices in the network. The
proposed model facilitates faster on-boarding of a large fleet of devices in a secure, scalable,
privacy-preserving and easily verifiable manner. The focus of this work is to decentralize
the way in which machine/smart device identities are created, provisioned and managed.
Blockchain technology is used as a DPKI and a decentralized storage platform is used to
store large files off-chain and put immutable, permanent links in transactions time-stamping
and securing content without having to put the data itself on-chain which can impede its
performance. The key contributions of this work are:

• A novel proof-of-concept solution is proposed for IoT devices bootstrapping that
supports digital identity creation as DIDs, issuing of VCs, verification of VCs,
revocation of DIDs and revocation of VCs all in a decentralized manner by leveraging
an innovative combination of blockchain and a decentralized data storage layer.

• The proposed model presents a systematic way of applying DIDs and VCs to IIoT
for its identity lifecycle management as it extends the capabilities of machines to
function autonomously in complex real-case operations.

• The usability of such a system is demonstrated by explaining a use-case scenario i.e.
to establish secure remote connections for M2M communication in IIoT.

• A proof-of-concept (PoC) is implemented to test the feasibility of such a solution.
The testing on two different blockchain platforms is performed for a realistic com-
parison. These platforms are Ethereum [59] and Hyperledger Indy [106]. IPFS [76]
is leveraged as the decentralized off-chain data storage layer.

92

4.2 Current Practices and State-of-the-art Identity Management Models

• The proposed framework is modular and can be easily embedded in current systems.
The performance is studied to present computational and storage overhead incurred
for the proposed methodology.

4.2 Current Practices and State-of-the-art Identity Man-
agement Models

Today, PKI certificates are predominantly used in IoT devices for registration to assign
unique identities that are later used for encryption and authentication purposes [107]. They
enable devices to perform data transfer, remote communication, firmware updates etc.
There are numerous types of certificates [108]. SSL certificate authenticate servers to de-
vices/machines. Code-signing certificate are used to sign software and prove the legitimacy
of widely distributed software packages. Client Certificate identify users/devices/gateways
over intranet/extranet and access resources like databases. These certificates proved scal-
able for small and medium-sized deployments but for large-scale IoT deployments they
face issues [109] like high cost and performance bottleneck. Certificate expiration and
certificate revocation is another major drawback that stems from the fact that certificates
are firstly derived from a single trust anchor called root certificate and secondly, they are
stored in a centralized location. When these certificates expire a CA can revoke the device
certificates by putting them in the Certificate Revocation List (CRL) without informing the
applications they are interacting with. In case of incorrect revocation or a malicious act,
the devices will be abandoned, where the enterprise will have no control over them [110].
Since IoT devices are mostly deployed in physically inaccessible and remote locations,
frequent re-installation of such certificates on revocation is an expensive task. And for
critical infrastructures like safety and surveillance, this can prove fatal and cause massive
losses.

In the early years, online entities were primarily created for individuals, however,
in recent years there has been a paradigm shift towards M2M communication. Such
transformation in communication topology has kindled the quest for practical, secure and
privacy-preserving digital identity infrastructure. Over the years identity management
models have also evolved. The first model comprised centralized authorities acting as
issuers and authenticators of digital identity. Organizations like ICANN determined the
validity of domain names and later CAs created and stored identities for entities. This led
to excessive authority vested in a few corporations with little control left to the users.

The second model known as federated identity allowed multiple service providers to
form a federation with one of the identity providers, allowing the user to use the same
credential across these platforms. This led to great control and usage of data tracking by

93

4.2 Current Practices and State-of-the-art Identity Management Models

technology giants. There have been multiple cases of identity breaches where data of a
large number of users was compromised [17], [15].

The third model known as user-centric identity focused on two major elements: user
consent and interoperability. The user was kept at the centre of Identity Management
Standards (IDMS), and was free to decide with whom and when to share their identity.
Standards like OpenID (2005), OAuth (2010), FIDO (2013), OpenID Connect (2015) and
CTAP 2.0 (2018) were introduced for creating user/device authentication. However, these
standards use OpenID servers to store passwords/credentials. The most recent model called
Self-Sovereign Identity (SSI) [111] gives complete autonomy of its identity to the subject
itself. SSI is built on ten core principles, namely: existence, control, access, transparency,
persistence, portability, interoperability, consent, minimization and protection. These
principles are drafted by Christopher Allen and are influenced by Kim Cameron's laws of
identity [51].

4.2.1 Use of DIDs for IoT Devices Identity

Even though SSI is a relatively new digital identity standard still under development, the
feasibility and advantages of using SSI have become a topic of research in various contexts.
Soltani et al. in [112] propose a client onboarding and KYC (Know Your Customer)
process using SSI and distributed ledger technology. They make use of Hyperledger
Indy to propose a KYC framework and evaluate their framework against SSI and GDPR
principles. Othman et al. [113] present a Horcrux protocol that combines DID with
Biometric Open Protocol Standard (BOPS). It enables the SSI subjects to control the
process of accessing their identities by giving consent to this verification process via
biometric authentication. It is claimed that the protocol helps in the secure exchange of
user-controlled biometric credentials.

In IoT, several use cases for SSI have been proposed by researchers for instance
facilitating interaction between users/devices, automated authentication and authorization
between users and devices, part life-cycle management etc.[114]. Lagutin et al. [115]
propose the use of DIDs in an IoT scenario through a use-case of a trusted printing
service in a university, that needs to be accessed by authorised users without leaking any
confidential information. In the proposed work they use a proxy approach and delegate
the processing of DIDs from IoT devices to the OAuth Authorization server by extending
the ACE OAuth flow. In [116], the authors present a comparative study for using SSI
for IoT environments against standards such as PGP (Pretty-Good Privacy) Keys and
X.509 certificates. The comparison is made in terms of the types of identifiers used, the
uniqueness of the identifier, endorsement policy, privacy-preserving techniques and any
dedicated service points available.

94

4.3 Proposed Model

The use of DID for IoT applications was discussed in [117].The work indicates the
feasibility of DID even on devices with limited resources. IoT-as-a-Service (IoTaaS)
concept to offer IoT device services using DID and VC on a demand basis has been
proposed by [118]. A solution based on DID and VC that enables a distributed V2X
(Vehicle to everything) access authorization mechanism to allow a vehicle owner to prove
its identity without compromising privacy was proposed in [119]. While DID enables
authentication and user identification, VC can verify a set of claims that can be verified
against access policy to allow secure and granular authorization [120]. The authors in
[121] present a privacy-sensitive information protection and management scheme to allow
the automated distribution of information.

The above discussed works clearly establish the merits of use of DIDs and VCs for
IoT devices identity lifecycle management. SSI via use of DID and VC offers several
advantages in a multi-stakeholder environment where parties inherently do not trust each
other and wish to achieve transparency, and non-repudiation and avoid siloed identity
vertical. This theme and several aspects of SSI have been explored in the above discussed
works. It has been used in conjunction with biometrics and other identifiers to allow
seamless integration of IoT devices for human facing applications. The authentication flow
of DIDs and VCs is also explored with traditional protocols like OAuth. Although the above
discussed works try to address different issues related to IoT device authentication they
are mostly focused around device to user authentication and vice-versa. Device to device
authentication in a remote setting is not explored in depth in these works. Additionally,
a majority of these works perform computation on a single blockchain platform and do
not present any comparison among different decentralized identity supporting blockchain.
The concept of wallets and DID methods and its importance is also not discussed in these
works. In some of these studies, lack of evaluation and simulation results does not allow
for critical comparison of work with other similar approaches.

4.3 Proposed Model

This section describes the proposed approach and discusses it in detail. Figure 4.1
illustrates the reference architecture. The idea behind our scheme is to move away from a
centralized PKI for interconnected device identity life-cycle and provide a decentralized
digital identity model leveraging SSI standards. Such a model is described to illustrate
remote M2M communication.

4.3.1 System Actors

The primary actors with their respective roles in the system are as follows:

95

4.3 Proposed Model

Fig. 4.1 Reference Architecture for proposed framework showing M2M communication carried out
by IoT device agent

1. Subject/Holder (S) can be a machine (including sensors, mobile machines, manufac-
turing units, network gateways etc.), a user or even an enterprise that holds a unique
identity in the network. These heterogeneous actors will henceforth be called by a
common term, subject (S). These actors connect to each other in order to exchange
messages/data, authenticate to prove their identity, gain authorization to access re-
stricted services, remotely log in to applications/devices in isolated environments
etc.

2. Issuers (I) are trusted actor in the system that issues unique identities i.e. DIDs to
the subjects. I also holds the authority to issue digitally verifiable claims, VCs to the
subjects, which can be used to prove their access rights in the network. The issuer
can be a government agency, a manufacturing unit, an OEM (Original Equipment
Manufacturer) etc. and each issue statement is logged in a verifiable data registry
(VDR) as a transaction.

3. Verifier (V) are software actors that form the interface of a resource and verify the
VCs presented by S to grant them access. It can be a cloud or edge application that
performs verification with the help of VDR.

96

4.3 Proposed Model

4.3.2 Components of the architecture

This section discusses the role of each component in the architecture:

Agent

Each subject hosts an agent. An agent is a software process that acts on behalf of the
subjects. It offers persistent addressable service endpoints to securely communicate with
the subjects. The agent also processes subject’s request to the distributed ledger. The
agent’s capabilities and structure will depend on various factors like where it is deployed,
how many endpoints it needs to serve, how many VCs it needs to store and process for
presentation and other such operational features. While the term agent generally represents
a process that initiates and handles all the communication for a subject, a “wallet” has
better operational inference. Hence the term “wallet” has been used interchangeably with
“agent” henceforth and they both refer to same underlying process in the context of this
work.

Verifiable Data Registry (VDR)

A verifiable data registry stores references to the DIDs and VCs issued by I to S. Depending
on VDR implementation, it can include some or all of the following data: DID, credential
schema, credential definition and a revocation registry. In some VDR implementations,
issuers may put a schema on the VDR that says in effect, “When I issue a credential,
it’s going to have these fields in it”. Similarly depending on VDR, before an issuer can
issue a credential using a schema, they must put a credential definition on the VDR which
says “I am going to use this schema for my credentials and here are the public keys that I
am going to sign the claims when I issue a credential” [122]. In this work, two different
VDRs are used for a comparative study. One is Ethereum blockchain [59] and the other is
Hyperledger Indy blockchain platform [106].

Smart Contracts

These are automated computer programs or a transaction protocol embedded in blockchain
which triggers when a transaction is sent to them. They can execute, control and legally
automate events defined in them according to the terms of an agreement between transacting
parties. For the Ethereum blockchain implementation, the Ethereum DID Registry contract
is used as shown in Listing 2 that acts as a registry for key and attribute management
of lightweight blockchain identities. The Verifiable Claims Registry contract as shown
in Listing 3 is a secure place to hold VCs issued to subjects. In order to implement this
system, ERC1056 (Ethereum Lightweight Identity) [123] and ERC780 (Ethereum Claims

97

4.3 Proposed Model

Registry) [124], two standards proposed by the Ethereum community for SSI are leveraged.
As shown in Listing 4.1 ERC1056 describes a standard for creating and updating identities
with limited blockchain resources. As shown in Listing 4.2, ERC780 allows persons, smart
contracts and machines to issue claims about each other, as well as self-issued claims.

Hyperledger Indy does not host smart contracts. Rather than storing data in the ledger
and then providing access to that data using smart contracts, Indy enables subjects to own
the data and share it in a way that preserves their privacy. Hyperledger Indy identities can
be referenced in smart contracts from other systems which enhances its interoperability
with other decentralized identity system [106].

Distributed Storage Layer

This is a layer of peer-to-peer connected nodes that form a decentralized system for storing,
linking and transporting data. In the proposed model IPFS is as the distributed storage
layer.

contract EthereumDIDRegistry{

% add owner of the DID holder

function addOwner(address owner, bytes32 ipfsHash)

% returns owner of the identity holder

function identityOwner(address identity)

% change the owner of DID

function changeOwner(address identity, address newOwner)

% check signature of identity holder

function checkSignature(address identity, bytes32 signature, bytes32

hash)

}

Listing 4.1 Ethereum DID Registry

contract VerifiableClaimsRegistry{

% add claim to subject, key = type of claim, its value

function setClaim(address subject, bytes32 key, bytes32 value)

% retrieve claim for a subject

function getClaim(address issuer, address subject, bytes32 key)

% remove claims for a subject

function removeClaim(address issues, address subject, bytes32 key)

}

Listing 4.2 Verifiable Claims Registry

98

4.3 Proposed Model

4.3.3 Framework Explained

Let us analyze our use case to understand the working of the proposed model in an IIoT
setting. A high-end surveillance IP camera is deployed in a remote location and it uploads
location-sensitive images to a server in a secure facility. There can be a network of
such cameras that interact with the server to upload the data. There are two primary
functionalities served by a camera in such a setting. First, an authorized device/application
can remotely access this camera to make changes to its firmware or tune setting parameters.
Second, it is important to make sure that only a verified camera uploads images to the
server, as this data will further be used for critical decision-making on the server end.

At the time of provisioning, sub jects create a unique identifier, DID in their wallet,
creating an immutable record of the operation on the blockchain. Every time a DID is
generated by the subject, a corresponding public-private key pair is generated. After this, a
DID is registered with a chosen DID method as explained in Section 2.4. The methods
with which a DID is registered defines a set of specifications by which a particular DID and
its associated DID Document is created. Consequently, a DID Document is next generated
by the subject. This document enlists an array of public key records containing public keys
used for authenticating, authorizing updates to the DID Document, or establishing secure
communication with service endpoints as and when they are generated. The respective
DID Document for each DID is created and stored on IPFS. It is to be noted that in order
generate and process DIDs and VCs, an IoT device need to have a firmware capable of
handling related operations. An IoT device must be equipped with storage, computational
ability and capability to establish connectivity with other network entities. Additional
security capabilities like secure boot, key management (creating and storing private keys)
using HSM and TPM/SE will allow secure functioning of the devices.

In Ethereum, IoT devices and users (or any subject) create their DIDs in the form
of Ethereum Externally Owned Accounts (EOA). The created DIDs are registered on
EthereumDIDRegistry with the hash of DID Doc content returned by IPFS using the
addOwner function. The hash provides integrity of DID Docs and cryptographic bind-
ings to the identifier defined by the smart contract. This smart contract also provides a
means to change the identity owner and verify the identity owner. In Hyperledger Indy,
sub ject creates a new DID record in the wallet and then sends an NY M transaction to the
blockchain to make a record of this identity creation. NY M transactions are special types
of transactions in Indy for the creation of new DIDs, setting and rotation of verification
key, and setting and changing of roles.

Once, the sub jects in the network are equipped with unique identities, VCs can be
issued to the devices and applications attesting to its legitimacy, access privileges and roles.
Claims are issued by an issuer signed with their private keys, to a sub jects with a key that

99

4.3 Proposed Model

Fig. 4.2 Flow Diagram illustrating the interaction between the different components of framework

indicates the type of claim. The claims are portable and reusable enhancing interoperability.
The same process is repeated for other sub jects. These steps are performed during the
first time provisioning of the sub jects in the operator’s network and before the device
leaves the operator’s premises. Different blockchains have different mechanisms to issue
claims. For Ethereum, the claims are registered on the Veri f iableClaimsRegistry contract
using the setClaim function. This contract has an interface to add, get and remove claims
and all of these tasks are performed automatically unlike a digital certificate ecosystem.
Whereas in Indy, the VCs are issued by TrustAnchors or trusted issuers in the form of
NY M transactions recorded on the ledger.

Once the device is deployed in a remote location, it’s an essential part of device
management to remotely communicate with the device for tasks like data access, device

100

4.4 Evaluation and Discussion

parameter tuning, firmware upgrades etc. For a sub ject, in order to access an IoT device
remotely, it executes the processes as listed below, also shown in Figure 4.2:

1. The sub ject first resolves the DID of the IoT device it wants to remotely communi-
cate to, through the Universal Resolver. The DID Doc of the IoT device is returned
to the sub ject by the IPFS. The list of device DIDs can be maintained in the form of
a directory by the provisioning party.

2. The sub ject sends a request to the IoT device for establishing a secure connection on
the endpoint described in DID Doc of the IoT device under the “Service Endpoint”
list. The sub ject sends its DID in the request.

3. The IoT device resolves the received DID of the sub ject through the Universal
Resolver and verifies the identity of the sub ject. Until now, the device only knows
that this sub ject is a part of the operator network as they share a similar DID method.

4. The IoT device and subject request each other to share their verifiable claims i.e.
VCs for mutual authorization. The VCs are shared and both the subject and IoT
device verify them through the underlying VDR.

5. The IoT device verifies if the sub ject possesses the authority to make any changes
to device settings and sub ject verifies if the device is what it claims to be.

6. If shared claims are legitimate, the IoT device sends another endpoint to the sub ject
on which it can communicate securely with the device.

Through this series of interactions using DID and VC, two discussed functionalities
for secure remote communication can be achieved by a remote camera. Firstly, it can
verify any incoming communication in order to make changes in its firmware. A new VC
can also be assigned to the remote camera using these steps by the owner of the device.
Secondly, using its VC, the camera can verify its authenticity each time it tries to upload
an image on a remote server. In the second case, the subject is the server and it can skip
the steps to fetch the DID document each time a camera tries to upload data.

4.4 Evaluation and Discussion

4.4.1 Evaluation Results

Extensive experiments have been performed on the proposed framework to understand the
feasibility and robustness of the network. The experiment was set up on a Linux machine
installed with the following hardware specifications: Intel Core i5-7200U CPU@2.50GHz

101

4.4 Evaluation and Discussion

Table 4.1 A table to summarize the architectural difference between the blockchain projects
used to conduct tests for the proposed scheme

Features Ethereum Hyperledger Indy
Access Type Public Public

Validation Type Permissionless Permissioned
Smart Contract Applicable Not-applicable

Mining Applicable Not-applicable
Consensus Mechanism PoW RBFT
Wallet/Agent Support No Yes

and 8 GiB RAM. For Ethereum, a private Ethereum blockchain was used to deploy smart
contracts, perform transactions and run tests. Ethereum has the functionality of smart
contract execution on an Ethereum Virtual Machine (EVM). The smart contract was
developed in Solidity v0.5.16. For Hyperledger Indy, a test network of Indy Pool Nodes
was deployed that has three TrustAnchor that act as issuer to issue claims and act as
veri f ier to verify each other’s claims. There is a holder that gets VCs issued from an
issuer and tries to verify it at a veri f ier. An IPFS node written in Go v1.12.0 was installed
on the system. The performance of these two separate platforms is now discussed. One
thing to note here is that while Ethereum is mostly a permissionless public blockchain
network, Indy is a permissioned public blockchain network.
Ethereum: Three parameters are compited to understand the performance of the frame-
work namely, GasCost, Con f irmationTime and StorageCost. GasCost refers to the fee
required to successfully execute transactions and smart contracts on the EVM and is
calculated as shown in equation 4.1. It’s unit is denoted as Gwei, equation 4.2. The gas is
used to allocate resources of the EVM so that smart contracts can be executed in a secure
manner. GasPrice is the maximum price the user is willing to pay in the network. The
gas cost is calculated with an average gas price of 15 Gwei. Con f irmationTime shows
the time required for a transaction or smart contract to be mined in the network, only after
which it will be valid in the network. StorageCost will represent overhead incurred on
EVM for contract storage and IPFS for DID Doc storage. Table 4.2 and Table 6.2 show
the results.

GasCostpGweiq “ GasUsed ˚GasPrice (4.1)

1Ether “ 109Gwei (4.2)

102

4.4 Evaluation and Discussion

Table 4.2 A table showing results of simulation for the parameters: Gas Used, Gas Cost
and Confirmation Time

Txn/Contract Deploy Gas Used Gas Cost(Gwei) Time(sec)
Identity Creation 0 0 0
DID Doc creation 32918 493770 31

EthereumDIDRegistry 1923852 28857780 172
VerifiableClaimsRegistry 410148 6152220 121

DID Registration 42800 642000 31
Issue Claim 44765 671475 31

Table 4.3 A table showing results of simulation for the parameter: Storage Overhead for
Smart Contracts and DIDDocs

Txn/Smart Contract Storage Cost (KB) Stored At
EthereumDIDRegistry Contract 950 EVM

VerifiableClaimsRegistry Contract 350 EVM
DID Doc for each subject (approx.) 10-20 IPFS

Table 4.4 Framework Performance on Hyperledger Indy

Transaction Time(sec)
Network Node Pool Setup 1.983

Steward Setup 2.607
Create wallet and DID for OEM 2.668

Create wallet and DID for Organization 1, O1 3.086
Create wallet and DID for Organization 2, O2 3.0197

Creating wallet and DID for D1 3.015
Creating wallet and DID for D1 3.392

OEM creates 2 schema definition on VDR 6.085
O1 to D1 Credential Issue 0.299
O2 to D2 Credential Issue 0.252

Time taken by D2 to verify D1 credential 0.2039
Time taken by D1 to verify D2 credential 0.331

103

4.4 Evaluation and Discussion

Note that Identity creation has no associated cost and takes no time as it only involves
creating an EOA account on the blockchain and the keypair. These identities are unique
and lightweight. DID Doc creation is a relatively less computationally expensive task. The
contract deployment takes the maximum computational resource on EVM and hence has
greater Gascost and respective confirmation time. However, these are one-time costs and
therefore practically feasible. DID registration and issuing claims are also less resource
and time-consuming transactions in the network. As far as storage cost is concerned, the
overhead is relatively inexpensive, particularly DID Doc storage on IPFS is realistic as
indicated by data.
Hyperledger Indy: For the Indy setup, a pool of 4 nodes is deployed in the network that
form the underlying VDR. They store the transactions related to DID creation and VC
issued by TrustAnchors and later enable verification of DIDs and VCs. First, a Steward
is created in the network, these entities have the authority to write transactions to the
ledger. Later, the steward on-boards three TrustAnchors, an OEM manufacturer and two
organizations participating in business. These organizations may share an IoT device or the
devices of two organizations may interact with each other over M2M communication. Then
two IoT devices are on-boarded and issued with DIDs and VCs. Device D1 was issued a
credential with 5 claims and D2 with 7 claims. When these devices try to communicate
with each other, they exchange a verifiable presentation of these credentials to authenticate
each other as explained in section 4.3.3. The time taken for each of these transactions is
shown in Table 4.4. It’s important to note that while one-time transactions like network
setup, Steward setup, wallet and DID creation for TrustAnchors take practically feasible
time, the time taken to verify VCs is practically negligible, as it only involves verifier
querying the ledger for sub ject 1s entities.

4.4.2 Discussion and Analysis

After performing the above discussed simulation, there are a few key takeaways from this
study. In general using DID and VC for identity management in IoT devices can offer
several benefits. It provides separation of concern between the issuer, holder and verifier
of the credentials. This helps in decoupling the dependability of the verifier on issuer for
verification and vice-versa and hence reduces the perimeter of harm in case of a security
breach. Using DIDs, devices can be issued credentials that can be verified with public
keys controlled though the DID, called VCs. Additionally, several advanced features of
VCs like selective disclosure and zero-knowledge based proofs can help achieve privacy
without compromising security.

A decentralized identity infrastructure can be designed with or without blockchain.
There are some key advantages of using a blockchain based distributed public key infras-

104

4.5 Security of the proposed framework

tructure (DPKI). These benefits include tamper-resistance, user control and privacy, better
interoperability and elimination of intermediaries. A blockchain based DPKI strengthens
the principle of data minimization and provides granular access control using VCs. The
choice of the blockchain platform will depend on requirements of any project as each of
them offer various security features. For example the two blockchain platforms used in
this chapter i.e. Ethereum and Indy are both renowned projects in the community. How-
ever, Indy has a modular architecture which allows for quick adoption. It offers various
developments tools and boilerplate code to tweak and adapt the platform to specific user
needs. Hyperledger Indy is also actively being developed to be interoperable with other
identity based blockchain projects. Hence, interoperability of also a key selection factor
for large enterprise projects and Indy supports it.

4.5 Security of the proposed framework

The security of our identity framework relies on some underlying practical assumptions: (a)
the channel used for message transmission is secure, and (b) the underlying permissioned
blockchain network is secure. Blockchains provide security advantages to a variety of appli-
cations by removing/reducing the need for trusted third parties. Table 4.5 further describes
how various malicious entities can affect the network accompanied by corresponding
prevention.

Table 4.5 A table showing Malicious Entities, Threats and Inbuilt Prevention for blockhain
peer and IPFS node

Malicious
Entity Explanation Inbuilt Prevention

Blockchain
Peer

• Modify/Delete Subject data

• Approve a false transaction

• Consensus Algorithm

• Voting policy

IPFS Node
Tampering of uploaded sub-
ject’s DID docs

Hash of DID document
is maintained in registry

In the past, DDoS attacks on IoT devices have been prevalent among hackers. This was
possible due to weak passwords and theft of device certificates from certificate servers. The
proposed framework is resistant to such an attack as device identity is stored on its wallet
and is not stored anyplace centrally. This work has no centralized subject identity storage
that can jeopardize devices. Identity Theft is motivated by the fact that identity stores
exist where substantial device identifiers are stored. Malicious actors have a considerable
incentive to hack such servers. In the proposed work, the lack of a central device identity

105

4.6 Conclusion

server makes it less appealing for malicious actors to resort to a single device identity
theft. Moreover, the DID alone is a pseudo identifier, the control of its corresponding
private key proves its legitimacy by a device. Social Engineering attacks are possible in
IoT scenarios when personally identifiable information (PII) is disclosed by devices in
their communication. The proposed work is resilient to such attacks as no PII is disclosed
in either DID Doc or VC. Ransomware attacks are targeted on IoT devices to gain control
of device functioning and ask for some benefit in return for giving device control back to
the legitimate owner. As shown in our use case a device first verifies the identity of the
subject and only if verified through the VC, allows it to access device resources. Hence,
the proposed framework is safe from ransomware attacks. Private Data Leak remains a
constant challenge for IdMS. This can be minimized by minimal disclosure mechanisms
like zero-knowledge protocols. Metadata Tracking by applying pattern analysis of on-chain
metadata through possible interception of parties may be applied. This correlation can
be minimized by decoupling devices from persistent identifiers and they may use session
pseudonymous identifiers. Oracles and top-layer protocol compromises are possible when
blockchain IdMS are integrated with off-chain data, logic and processes in the form of
oracles. As researchers say a system is as secure as its weakest link. An overall check and
balance should be in place when designing such systems. Detailed security analysis is
beyond the scope of this chapter, and will be part of the extended work.

4.6 Conclusion

This work discusses the issues faced by the current IoT identity ecosystem due to a large
number of deployed devices and the devices trying to communicate asynchronously and
heterogeneously with each other to achieve autonomous, faster communication. The
centralization and use of PII in digital certificates and its drawbacks are analysed in
this work. This chapter proposed a novel distributed-ledger-based M2M digital identity
framework for implementing autonomous remote device-to-device communication. With
the new forms of digital identifiers centralized identity databases can be eliminated and
interoperability will improve promoting cross-silo communication between devices for
innovative use cases. Experiments conducted demonstrate the feasibility of such an
architecture that deploys lightweight smart contracts and uses distributed storage services.
The device meta-data on IPFS can be further encrypted to provide better security.

106

Chapter 5

A Fair, Secure and Trusted
Decentralized IoT Data Marketplace
enabled by Blockchain

This chapter constitutes the third contribution of this dissertation. The key information in
this chapter is based on the work published in Publication III. In the previous two chapters
the notion of decentralized identity for IIoT is proposed, designed and implemented as
stand alone solutions using two different approaches: smart-contract based decentralized
identity and self-sovereign identity. The various aspects of decentralized identity are
discussed including how it can be leveraged to design a secure, interoperable and scalable
decentralized identity management infrastructure with fewer points of failure and less
reliance on a centralized ID controller. In this chapter, the concept of decentralized identity
has been adapted to apply to a real-life challenge such as an IIoT data marketplace. The
objective of this piece of work is to apply the concept of decentralized identity to an “IIoT
data marketplace” to ensure fairness, security and a trusted setup. In this chapter, design
for a fair, secure and trusted data marketplace is proposed in which data buyers and sellers
interact on a blockchain-based, smart-contract-enabled framework. The idea of identity is
central to this work, as it is used to derive trust and reputation in the network. Therefore,
this chapter explores the concept of decentralized identity using a proof-of-concept of
application.

5.1 Background and Motivation

Sensing-as-a-Service has emerged as a rapidly growing industry that has spurred the interest
of firms and enterprises that invested heavily in the installation of IoT infrastructure for
the past few decades. They have realized that the data being generated in their siloed

107

5.1 Background and Motivation

environment is a tradeable commodity with resale value and it can provide an additional
monetary benefit. On the other hand, there are companies that are not inclined to invest in
setting up IoT infrastructure but are willing to pay for reliable data streams. Occasionally,
these companies require data from heterogeneous domains like weather, population density,
soil type etc. In such a scenario it is more profitable to buy this data from corporations
who already have such sensors installed. These use cases demand a platform which makes
it possible to sell and purchase data seamlessly. However, wide-scale adoption of this
idea still remains a challenge due to uncertainties around trust, cross-domain trading
facility, fair transactions and security. Vendors coming together to exchange data as
a commodity are looking for assurance on the validity of IoT devices and enterprises
engaged in business. Siloed identity verticals, unauthorized malicious entities posing as
data producers, centralized control of the platform and fear around equitable payment
settlement are challenges that require a new approach to make IoT data trading a reality.
It is essential to ensure that, unlike any marketplace, the platform is not controlled by a
powerful organization.

In this work, a model is presented that is based on the principle of data sovereignty
in which independent IoT business ventures can sell and purchase data reliably and in a
trustworthy manner with undisputed compensation to all the parties. Such an effort requires
a platform that disintermediates the central storage operator. To achieve transparency,
accountability and fairness it is necessary to forgo centralized control from a trusted third
party (TTP) in terms of fair listing and seller discovery, identity validation and payment
settlement. Therefore, the proposed digital marketplace uses a blockchain platform as a
decentralized trusted party that facilitates fair listing of data streams, identity verification
and payment settlement using smart contracts. According to GDPR Articles 16 & 17
(Right to Rectification and Erasure), data modification/erasure must be possible to comply
with legal requirements. Hence, critical data should not be stored on an immutable
storage such as blockchain, which does not allow for modification of data, to ensure data
integrity and trust. Therefore, in the proposed framework no private data is stored on the
blockchain. Moreover, blockchain is not a viable option for bulk data storage. Hence, the
proposed platform leverages a decentralized data storage layer which is replicated across
participating nodes to provide data delivery in a fault-tolerant manner. The authentication
of actors is executed using Self-Sovereign Identity (SSI) concept, wherein each entity
holds a unique Decentralized Identifier (DID) [125] to authenticate on the platform.

The key idea of this work is to present the feasibility of a decentralized IoT data
marketplace that employs a system of peers to collectively provide services ranging from
data listing to data delivery. The proposed digital marketplace uses blockchain as a
decentralized trusted party that facilitates fair listing of data streams giving preference to
trusted sources and settlement of compensation using automated smart contracts.

108

5.2 Related Work and State-of-the-Art

Several blockchain based solutions are present in the market today for various industry
verticals such as finance [126], healthcare [127], energy [128], automotive [129] etc.
While data sharing marketplace has been proposed by startups [130], [11], significant
contributions have been made in the trust and fairness guarantees in the proposed platform.
It is estimated that the value of the IoT data marketplace will reach 3.6 trillion USD by
the year 2030 [130]. Eliminating data sharing friction will serve industries like healthcare,
smart city and advanced mobility infrastructure, agriculture, smart-grid and electricity,
research etc and promote interoperability.

5.2 Related Work and State-of-the-Art

Digital Marketplaces: A range of tangible and non-tangible goods are part of digital
marketplaces today including commodities, e-books, music, images and videos. These
marketplaces termed eCommerce are not bound by physical boundaries and provide
ease and competitive rates to consumers [131]. Such platforms have encouraged trading
ecosystems like Software-as-a-Service (SaaS) and Infrastructure-as-a-Service (IaaS) [132].
However, since most of these digital platforms lack in listing and pricing transparency,
the seller has minimum to no right to determine the terms of the licensing agreement.
Moreover, these platforms are owned and regulated by a centralized authority which
dominates the decision-making process [133].
Peer-to-peer (p2p) data sharing network: P2P exchange of information has emerged as
a growing fraction of the world’s digital economy [134]. This form of value exchange has
expanded dramatically to include services, information trading and P2P lending. However,
such networks suffer from regulatory challenges and building a marketplace using these
platforms alone is challenging. Platforms such as BitTorrent [135] scale well yet building a
marketplace on them is infeasible due to a lack of properties like fairness, trust guarantees
and payment settlements among network users.
Decentralized and Distributed Storage: As opposed to the centralized cloud servers,
owned and regulated by a single organization, decentralized storage solutions consist of
a P2P network, hosting and sharing data in a resilient and fault-tolerant manner. Such a
form of storage has garnered attention both from the research community and commercial
organizations due to the advantages such as fault tolerance, collusion resistance and attack
resistance. Decentralized storage solutions like IPFS [136] have inspired projects like
Filecoin [137] and OrbitDB [138]. IPFS is a content addressable storage which prevents
duplication and provides high availability of content. Storage platforms like IPFS when
used along with a technology like blockchain can help in creating holistic solutions like
Storj [139], Filecoin [137], Sia [140]. Although these solutions have an incentivization

109

5.3 Case Study

mechanism for participants, they lack business logic, trust and fairness guarantees that are
pivotal for a digital marketplace.
Decentralized IoT Marketplaces: The state-of-the-art marketplaces are based on cen-
tralized cloud infrastructure owned by a single organization [141], [142]. Due to research
interest around decentralized marketplaces, there have been attempts to design market-
places for data sharing [143], [144], [145]. However, IoT data marketplaces remain a
relatively untapped ecosystem. Xu et al. [146] explore the use case of blockchain market-
place in the electricity and smart grid domain. They present a theoretical business model
archetype for the energy market in accordance with EU's Smart Grid Architecture Model
(SGAM). However, their work lacks a concrete architecture design involving incentive
mechanisms and security features. Missier et al [147] propose a decentralized infrastruc-
ture for trading IoT data between producers and consumers exchanging a data unit “cube”
with the help of trusted edge gateways. They analyse the feasibility using cost for “cube”
settlement. However, it is difficult to establish the scalability and trust metric of the system.
Ramchandaran et. al [148] present a simple smart contract-based implementation of a
decentralized registry for IoT data trading for smart cities. However, their work largely
overlooks the analysis and illustration of essential elements of a data marketplace like
payment schemes, trust and privacy. Niavis et. al [149] present a decentralized data-sharing
infrastructure for off-grid networking using a blockchain network and a distributed file
system. While their work takes into consideration a great deal of factors like identity
management and private data exchange, elements like payment settlement, trust among
trading entities and fairness remain unexplored. Drawing motivation and understanding
from the limitations of discussed works, an attempt is made to design a fair, transparent,
reliable and trust-less system for IoT data trading in a decentralized manner.

5.3 Case Study

Sensing-as-a-Service is about creating new revenue streams from existing assets in the
IoT world and many commercial ventures are already investing [130] [11] [129] due to its
promising future prospects. It is estimated that the value of the IoT data marketplace will
reach 3.6 trillion USD by the year 2030 [130]. Eliminating data-sharing friction will serve
industries like healthcare, smart cities and advanced mobility infrastructure, agriculture,
smart grid and electricity, research etc. and promote interoperability. FlashLabs Inc.
[150], a partner of Hyundai group is developing autonomous vehicular technology and
is exploring traffic patterns, road markings, environmental parameters, charging stations,
and geographical data for an area. However, it does not want to invest in installing such
heterogeneous sensing infrastructure. In such a case, it can turn to government agencies,

110

5.4 System Elements and Design Features

Fig. 5.1 Showing the high-level view of sub-components of the proposed digital marketplace

organizations that installed smart electricity poles, and open data collection agencies for
all its myriad data needs. There are numerous such use cases that form the motivation for
developing a marketplace for IoT data trading. While there are certain solutions focusing
on centralized architectures using cloud infrastructure [151], this work attempts to design
and analyse decentralized solutions for IoT data marketplaces.

5.3.1 Contributions

The key contributions of this work are as follows:

• A novel proof-of-concept in presented as a decentralized solution to the IoT data
marketplace that supports actor verification, managed trust metric and a secure and
transparent transactional model for paying the sellers all in a decentralized manner
by leveraging an innovative combination of blockchain, DIDs, p2p data stream
storage and end-to-end encryption.

• The proposal guarantee (i) fair settlement of compensation to all the involved parties,
(ii) unbiased content listing using calculated trust metric, (iii) security of the content
from peers hosting and delivering data streams (iv) fault tolerance and assured data
delivery in case of faulty peers.

• A proof-of-concept implementation is developed with distributed applications (DApp)
and blockchain layer using Hyperledger Fabric, and the decentralized real-time
stream data storage layer using Apache Kafka. The performance of the system is
discussed and it demonstrate that the system scales well with rational overheads.

5.4 System Elements and Design Features

5.4.1 System Actors

The actors of the system as shown in Figure 5.1 are discussed with their respective roles in
detail below:

111

5.4 System Elements and Design Features

1. Seller (S) wants to use the marketplace to trade the IoT data generated in its facility.
It may not be able to host the data itself and create an infrastructure around it. Hence,
it uses the service of the digital marketplace to monetize its otherwise siloed machine
data. S wants the buyers to discover its offers and pay fairly for the data. S is willing
to pay the broker nodes in exchange for their data hosting and processing service.

2. Broker (B) are data facilitators of the system. They are a cluster of decentralized
p2p nodes that host data in the form of data streams and are incentivised for their
service. The independent server providers with a stake in the system can choose to
act as broker nodes and provide storage services in the system at competitive rates.
These nodes are modelled in publish-subscribe topology. Brokers facilitate hosting
and managing important security infrastructure that is required to oversee such a
service. Each seller in the marketplace may not have the potential to manage such an
infrastructure. They can also perform services like authentication and authorization
to allow access to their data stores on behalf of sellers.

3. Client (C) comes to the marketplace platform to browse, purchase and get access
to a myriad range of on-demand data sets which otherwise is difficult for them to
procure in a trusted manner.

5.4.2 Design Features

In the proposed model, the broker nodes are synchronized with each other to serve data
under various topics. Each topic is replicated to multiple partitions to avoid centralization
and ensure fault tolerance and scalability. Given the above actors in the system, several
questions arise with regard to how the funds will flow in the system, the payment scheme
and intervals of payment. While there are many variants possible, two broad variants are
discussed here:

• Batch Mode: In this mode of trading, the client wants to access IoT data in batches
at regular intervals for a stipulated period of time. For example: once every fortnight,
for a period of a few months. The agreement in this mode involves payment of a flat
fee periodically before delivery of each batch of data. This mode is called “batch”
mode as data is not served in real-time but rather as small packets of information.

• Stream mode: This mode is meant to serve data as real-time streams subscribed
by the client. The client pays the seller and broker periodically for the subscribed
streams. This payment is made in advance by the client before the streaming of data
can be initiated. Stream mode is an important mode when a client wants to build a
real-time application by consuming the data generated continuously.

112

5.4 System Elements and Design Features

In both the above-discussed modes, it is expected that the seller will upload the data on
the broker network in real-time. The proposed solution works with both variants. In both
cases, a smart contract ensures fair and smooth data trading. It achieves a reliable trading
flow in which the seller and broker are paid for data and service respectively whereas the
client is assured of data delivery without losing any deposited payment. In case of failure
to deliver data, the smart contract refunds the remaining funds back to the client. All the
data exchanges happen in a publish-subscribe data model. Such a model is well suited to
this design pattern, as a large number of sellers and clients will access the data streams
simultaneously.
Identity: Identity verification plays an important role in the design. It is assumed that the
participating entities in the network are adopters of decentralized identity in the format of
the Self-Sovereign Identity (SSI) framework. Each participating entity holds Decentralized
Identifiers (DIDs) [125], short identifiers resolvable to a DID Document containing more
information about the holder. It is assumed that the actors be they individuals, organizations,
agencies or research groups, interested in trading on the marketplace have their identities
verified on one of the decentralized platforms. There are several such examples of online
digital identity initiatives like Microsoft ION, IBM Trusted Identity, Evernym, Sovrin
[152] etc. It is similar to an eKYC process done by an organization to onboard customers.
This ensures that each seller on the platform is a verified organization/agency/facility. An
identity verification step is mandatory for the seller in the proposed work. However, a client
can opt to undergo DID verification. If a client chooses to undergo the DID verification,
it will have a wider range of data streams to purchase as some sellers might want to give
access to their data to legitimate clients only.
Data Security: Security by design is a vital aspect of any secure system. In this work, it is
ensured that data originating from a seller is encrypted before it is outsourced to a broker
and later decryption keys are only available to a client who has made upfront payment. No
middle party should be able to decrypt it in transit or at rest. For this reason, an end-to-end
encryption (E2EE) is applied on IoT data in this design. All the communications are
TLS/SSL encrypted.
Trust: Trust is emerging as a critical influencer of consumer behaviour on digital platforms
such as marketplaces [153]. It infuses network effects into the system, which further drives
the participating parties to act fair. The marketplace maintains a TRUST SCORE (TS)
metric for every actor in the network. TS is derived from two primary factors, reputation
and credibility. No centralized authority is involved in trust score calculation.

113

5.5 System Components and Roles

Fig. 5.2 Showing the architectural layer diagram outlining the various layers of the framework and
their respective roles

5.5 System Components and Roles

In this section, the role of each layer of the proposed architecture is broadly discussed.
Figure 5.2 shows the layers discussed below:

5.5.1 Data Marketplace

The data marketplace is a listing portal implemented as a DApp. A DApp is an application
which runs on a decentralized peer-to-peer network like the blockchain. It is a decentralized
portal/website that interacts with the blockchain back-end through smart contracts. Data
Marketplace DApp enables listing and discovery of data offers pDOq from the sellers. Data
is offered as data streams and they can be subscribed in the following modes 1) Batch
Mode 2) Stream Mode. A data offer as shown in equation 5.1, consists of the data topic,
payment mode (batch/stream), price for the data topic in selected mode and related terms
of data purchase. Data is offered in a publish-subscribe data model as it is suited for the IoT
domain since both the sellers and buyers are potentially large and are constantly changing.

Data_O f f er “ Topic`PaymentMode`Price`Terms (5.1)

In the marketplace, the listing will be available from potential sellers accompanied by
their respective TS and payment offers for modes of subscriptions.

114

5.5 System Components and Roles

5.5.2 Event Processing Engine

Events are an important component of any software architecture as they give useful insights
into the process state. Events are generated from various sources e.g. at the origin of data
streams, from DApps, from client applications, execution of Smart Contract functions etc.
Events are recorded in a separate “event storage” location on the broker nodes cluster. Since
this storage is hosted on the broker nodes, it provides a distributed service to read/write
events on the marketplace. Engine listens to the events on the network, processes them
for consumption by DApps/Smart Contracts and takes real-time actions on them. It also
registers events related to TS metric, processes them and updates the TS for participating
entities in the marketplace.

5.5.3 Security Manager

This layer in the system ensures that data exchange takes place in a secure manner. It
envelops the broker nodes and monitors all the communication made by an entity with
them. The seller encrypts the data stream and uploads it to brokers through this DApp.
Later, when a client wants to download the data, it first verifies its identity with the smart
contract, makes payment and obtains an access token. This layer verifies the token with
the blockchain and allows the client to access the data stream for the allotted time frame.

5.5.4 Network Layer

It is the primary data transport layer of the architecture. It is composed of a collection of a
p2p network of broker nodes that facilitate data streams and decentralized management of
events. These nodes are compensated for their service in the network. In order to handle
the decentralized messaging taking place in the system, this layer uses policies defined
in the smart contract for its functioning. Policies and permissions defined in the smart
contract are the guiding principles for this layer. Consensus and coordination among the
nodes are achieved using the underlying blockchain ledger.

• Data Streams: Data streams are hosted by verified sellers on the broker nodes. The
seller encrypts the data using the end-to-end encryption (E2EE) technique before
uploading it to brokers to ensure the security and privacy of the data. A single stream
is replicated across multiple brokers to ensure fault tolerance. When a stream is
hosted by a seller, it makes a data offer on the DApp that is registered on a smart
contract against the seller’s public key. When a client wants to access a stream, it
enters into an agreement with the seller, the terms of which are detailed in the form
of a license. The fields of the data stream are streamID, streamName, topic/type,
owner/seller, permissions, conditions.

115

5.6 Problem Definition

• Broker Nodes: Brokers are the fundamental enablers of the proposed decentralized
architecture. They host data streams, deliver encrypted data to clients, forward event
streams to the processing layer and communicate with the security manager DApp
to securely process the authorization of clients requesting data stream access. Broker
nodes will expose all these functionalities via APIs. Broker nodes provide storage
and computation services in lieu of monetary benefits in the proposed architecture.

5.5.5 ChainCode

ChainCode or “Smart Contracts” are self-executing computer programs that enforce
and govern the terms of agreement in a blockchain. In the proposed data marketplace
architecture, smart contracts support autonomous operation. The network uses smart
contracts for coordination between sellers and buyers, identity verification (using SSI),
payments, incentivization and permissioning. These contracts generate events to alert the
system on the completion of transactions.

5.6 Problem Definition

The problem addressed in this work is to ensure fair, secure, and trusted delivery of IoT
data from a seller to a client in a decentralized manner. Let Π be a protocol executed by a
cluster of broker nodes B, with each node Bi P B hosting data for multiple topics T and a
client downloading a batch d of data stream of a topic Ti P T and paying price p.
Fair Trade: Protocol Π is fair if the following hold:

1. Client Fairness: If C pays p according to Π, it is assured of receiving the subscribed
batch d of data stream of topic Ti for the agreed mode and time period before
termination of Π.

2. Seller Fairness: If C pays p according to Π to purchase a batch d of data stream of
topic Ti published by P, then P is assured of getting their share of payments.

3. Broker Fairness: For all i P |S| , if Si gives access to d of Ti according to Π, it is
assured to receive payment.

Privacy: Protocol Π is considered secure if the execution of Π does not disclose the data
on the marketplace to any broker. The access of data should be given only to a client
who has purchased it by making payment p. It is important to note that without a privacy
guarantee, fairness cannot be assured, as any broker that gains access to data without prior
payment is a violation of the Π.

116

5.7 Solution

Fig. 5.3 A detailed diagram illustrating all the system components of the architecture

Trusted Exchange: Protocol Π is considered secure if it allows only verified sellers to host
data on the platform. After verification, an honest seller should be rewarded with a higher
Trust Score (TS) based on transaction history and feedback from trading parties. Sellers
can place restrictions on certain data streams to be available only for verified clients.

5.7 Solution

In this section, the proposed protocol flow is described in detail. The system features and
provided guarantees are also analysed.

5.7.1 System Architecture Overview

A data marketplace with no central authority can encounter critical challenges like ensuring
fair trade settlement, privacy and security guarantees [154]. A decentralized blockchain
network of consensus-abiding peer nodes can supplant the trusted third party, enforce equi-
table trading rules and manage autonomous payments. In addition, it ensures transparency,
non-repudiability and shared participation in the network. However, using blockchain for
storing IoT data is not feasible and would impede performance and scalability. Therefore,

117

5.7 Solution

a data storage layer is needed to host data and supplement the blockchain layer in the
marketplace. The two layers can be managed independently by different entities as long as
the broker nodes in the storage layer can query a peer in the blockchain layer.

The storage layer lacks intelligence and needs additional services to monitor security
and privacy policies. The Security Manager DApp regulates the authorized access to stored
data on this layer. It allows seller S and client C to interact with the storage layer only after
authorization. Seller S and client C will communicate with the blockchain through Data
Marketplace DApp to invoke the ledger to make queries and later transactions.

The storage layer cannot be trusted with unencrypted data as it will violate data
storage compliance like GDPR, HIPAA etc. Even though a decentralized network may
be collectively honest, any individual broker node acts maliciously. Therefore, before
uploading data to a broker node, the seller S encrypts the data.

The progress in the blockchain ecosystem offers a wide range of blockchain platforms
with various functionalities. The use of blockchain in the proposed architecture remains
very generic and most systems with support for smart contracts can be used. However, a
permissioned blockchain with robust support for identity and access control is better suited
for the proposed work. In this work, Hyperledger Fabric is used as the blockchain platform.
Figure 5.3 shows a detailed architectural diagram with all the system components.

5.7.2 Notations and Preliminaries

The blockchain ledger hosting smart contracts is denoted as L. All the transacting parties
will register with L before any trading takes place on the platform. KeyGen (1λ) → psk, pkq
is a generator algorithm that generates a private key sk and its corresponding public key pk
given a security parameter λ . Each actor will possess a public-secret key pair. Each party
will send signed transactions to L and the peers in the network will verify the signatures
before including transactions in L.

Data streams are identified by their respective unique streamID which includes seller’s
name (S), stream name and time-stamp of origination. Let GenerateID(.) be the procedure
that returns a streamID given a batch d of data stream,

streamIDd Ð GenerateIDpS||streamName||timestampq

HMAC-SHA256(k,P) is a keyed-hash message authentication code where k is the secret
cryptographic key and P is the plain text for which MAC, σ needs to be generated. This
cryptographic primitive is used to verify both the data integrity and authenticity of the
message as compared to the hash H(P) that only guarantees message integrity. The receiver

118

5.7 Solution

with the key when receiving data (encrypted or not) along with the corresponding σ ,
regenerates σ on its side and matches it with the received one to ensure integrity.

SskpmqÑ φ is a signature algorithm that generates the signature φ of the message m
with the private key sk, and Vpkpφ ,mqÑ {0,1} is a verification algorithm that verifies
whether the signature φ on message m is valid or not using the public key pk and returns 1
if φ is a valid signature or 0, otherwise. Let pEnc,Decq be a secure symmetric encryption
scheme. AES(k,P) in CBC mode is a widely used encryption scheme which is faster than
its asymmetric counterparts. This scheme will be used by the sellers to encrypt the data
stream ’d’ before uploading the encrypted data stream ’e’ it on broker nodes. This helps in
protecting the privacy of data at rest from a possibly malicious broker node.

5.7.3 Smart Contract Functions

There are two DApps in the architecture through which smart contract functions are
invoked. These functions are categorized as follows:

1. Data Marketplace DApp

• RegisterAndVerifySeller(didS, pkS): seller S sends its DID and public key.

• RegisterAndVerifyClient(didC, pkC): client C sends its DID and public key.

• RequestUploadToken(DO, pkS): S requests authentication token to upload DO
on broker nodes.

• RecordStreamDetails(streamID, DO , km, ke, σd) : record stream details on
blockchain.

• RequestDownloadToken(p, DO, pkC): C makes payment p and requests ex-
change token.

2. Security Manager DApp

• UploadDataStream(φS, pkS, e): S send encrypted data e with signed authenti-
cation token.

• DownloadDataStream(φC, pkC): C sends signed exchange token to receive
data from broker nodes.

119

5.7 Solution

5.7.4 Protocol Flow

The protocol is divided into three phases. The onboarding phase deals with verifying the
identities of the actors in the network using did and registering them in the marketplace.
The data upload phase will allow the sellers to complete all the necessary steps to get their
data up in the market for sale. The data purchase phase will explain the steps involved from
the time a client picks a data offer to the settlement of payments. The complete protocol
flow is illustrated in Figure 5.4.
1. Onboarding Phase: In this phase, the entity seller/buyer makes an account, verifies its
identity and registers itself for trading activities on the blockchain through marketplace
DApp. Each entity uses key generator algorithm KeyGen (1λ) → psk, pkq to obtain a
key-set. The generated key set is used to obtain a DID (did). The actor sends the did
associated with its identity to the DApp, which is forwarded to the blockchain. The
blockchain resolves the did through the underlying decentralized network/blockchain
which was initially used to issue it to the entity. If the did is successfully verified, an
account is created for the actor and its TS is incremented on the DApp. Later, the seller
registers the data offers DO it wants to make in the marketplace. These offers along with
payment details and terms are recorded on the blockchain.

Algorithm 3: Onboarding/Actor

1 func VerifyandRegister(did, pk){
2 Send did, pk to Data marketplace DApp
3 If blockchain successfully verifies with issuing blockchain, register on L
4 S uploads DO on Data Marketplace DApp
5 }

Algorithm 4: Data Upload/Seller (S)

1 func DataUpload(d,DO, km, ke,S,streamNamepsNq, timestampptsq) {
2 Generate a unique stream ID for data stream streamIDd Ð

GenerateIDpS||sN||tsq
3 Generate km and create MAC of data stream MAC(d, km) Ñ σd
4 Encrypt the data stream using the encryption key Enc(d, ke) Ñ e
5 Upload request sent for listed DO , receive token Upload Request (DO) Ø ω

6 S signs the received token using its secret key SskpωqÑ φs
7 Verify signed token with Security manager DApp, Vpkpφs,mq Ñ {0,1} and

upload the data stream e to the broker node B
8 Record details on blockchain by calling L.

DataAdded(streamIDd,DO,km,ke,σd)
9 }

120

5.7 Solution

Fig. 5.4 Showing the protocol flow outlining interactions between all the components of the data
marketplace

121

5.7 Solution

Algorithm 5: Data Purchase/Client (C)
1 func DataPurchase(DO,streamIDd) {
2 Retrieve price p for streamIDd by calling L
3 Generate a request ID, reqID
4 Send the payment p to L along with reqID. Payment(streamIDd,reqID, p)
5 Get Km,Ke,σd from L for streamIDd .
6 Receive authenticating token δ from L for retrieving data from B
7 C signs the received token using it’s secret key Sskpδ qÑ φc
8 Authenticate at Security Manager DApp through API proxy Vpkpφc,ωq Ñ

{0,1}
9 If verified, receive e from B

10 d
1

Ð Dec(e, ke) , σ
1

d Ð MAC(d
1

, km). If σ
1

d == σd , d
1

== d, data verified.
11 }

2. Data Upload Phase: The seller S wants to monetize a batch d of IoT data and needs to
upload the data to a broker node B. First, it generates streamIDd which uniquely identifies
d. Then, S generates a key Km for obtaining the message authentication code of the data,
MAC(d, km) Ñ σd , so that any potential client can verify the integrity of purchased data.
Later, S generates a secret key Ke and encrypts data batch Enc(d, ke) Ñ e. Once the data is
ready, it initiates data upload by sending a request to the marketplace DApp. The DApp
sends the request to the blockchain which responds by sending a token ω to S. The token
is used to uniquely identify an upload request by the S, therefore, it signs ω with its secret
key sk to generate φS. Using this signed token, S verifies with the Security Manager DApp
through API Proxy layer, a service to help clients interact securely with the storage layer.
The encrypted data e along with related metadata is stored on B, and secret keys, σd ,
streamIDd and corresponding DO are recorded on the ledger.
3. Data Purchase Phase: In this phase, C browses through the listing of available DO
on the DApp. It selects a batch d of data with unique streamIDd on the marketplace. It
generates a request identifier reqID and sends it to the blockchain with the payment p for
the requested data stream through marketplace DApp. The ledger will first verify if the
owner S has placed any restriction on the client it wants to sell data to, for example, the
client C needs to be a verified client. If the terms specified in the DO are met and payment
p is received successfully, the process to establish data transfer is initiated. C receives two
secret keys from the ledger, encrypted by its pk, one for verifying data integrity and the
other for decrypting the data. Later, the blockchain sends an exchange token δ to C. The δ

is signed by C using its sk to generate signature φC. C approaches the Security Manager
DApp through API Proxy service with φC. Upon successful authentication, it receives the
data. It decrypts the data, and creates a MAC from recovered data, if the generated MAC
matches with the received one, the client can be assured of the integrity of the data.

122

5.7 Solution

At every stage of the above-described phases, event generation takes place in the
network. These events are continually sent to the Event processing Engine for processing.
They will further help in settling payments and managing a common view of DApps for all
the parties in the system. Another point to note is that after a client successfully completes
a transaction, it is prompted for submission of rating for S and B. This rating will be later
used to calculate TS.
Payment: In section 5.6, the term fairness from a seller, client and broker perspective is
defined. In the proposed design, the client can fetch the requested data stream only after
making payment to the blockchain. Since, the interaction between the client and a broker
contains an intermediary layer, Security Manager DApp, ascertaining that a broker has
served the data is easy. This layer keeps a check on the malicious brokers who otherwise
can claim to have served the data without doing so to maximize profit. Similarly, in our
design, it is difficult for a malicious client to claim that they have not received the data,
while they have already downloaded it.

5.7.5 Design Analysis

In this section, it is demonstrated that the proposed design satisfies the goals outlined in
section 5.6. The assumed model allows adversaries to keep a check on malicious parties
together. It is to be noted that since a broker B is randomly assigned to S, collusion among
the client C and broker Bi is unlikely. Also, there is no direct interaction between S and
C in the proposed protocol, hence their collusion cases reduce to individual malicious
behaviour rather than a group phenomenon.
Fair Trade
Client Fairness: The proposed protocol Π ensures that an honest client who has made
payment p to L should receive access to data stream d for agreed time frame. Specifically,
it should be able to access the data stream d and its respective decryption and integrity-
check keys. Under the assumption that blockchain is tamper-proof and broker nodes do
not have direct access to unencrypted data, honest broker nodes will follow the protocol
and keep serving the data stream. Since, the execution of smart contracts is autonomous,
tamper-resistant and unbiased, therefore, malicious parties cannot affect the key release by
L after a successful payment made by C. Thus, Π guarantees client fairness.
Seller Fairness: For every successful data exchange, the respective payment is made to
L. As the smart contract holds logic to directly pay S, execution of Π guarantees seller
fairness under the assumption that smart contract execution cannot be tampered with.
Broker Fairness: In the proposed protocol, each broker Bi when delivers a data stream
d for an agreed time frame, an event is generated and it receives the payment from L
corresponding to it. Under the assumption that the smart contract execution is tamper-

123

5.7 Solution

resistant, the payment to all broker nodes is guaranteed as it is controlled by L, only when
they served C. Thus, the protocol Π guarantees broker fairness.
Privacy: According to Π, no broker can look up the data stored on broker p2p network.
This is due to two reasons, first, due to end-to-end encryption scheme nodes being oblivious
to the content of the data, and secondly, because keys are not available to any broker node.
Therefore, a disconnect is maintained between the data and key set, which can only be
simultaneously obtained by a client C who has made an upfront payment to the smart
contract. Under the assumption that a smart contract is fairly deployed, an adversary
will not be able to obtain the data. In this way, the privacy and security of the data are
maintained by Π.
Trusted Exchange: Trust management in a decentralized setting with no central authority
is a critical and at the same time a challenging design problem. When multiple unknown
parties transact with each other, there should be a metric to ascertain their honesty and
integrity. In the proposed system, TRUST SCORE (TS), a metric associated with each
seller and client on the platform to assess their trustworthiness is used.

The trust metric of PeerTrust’s in [155] is modified to suit the proposed platform’s
functionality. Reputation and credibility values are used to compute the trust values. In
this work, reputation is derived from the verification status of the entity’s identity which is
denoted by decentralized identifiers (DIDs). Credibility represents the confidence an entity
has garnered from its transacting parties. Its value is derived from ratings and feedback an
entity received after the completion of each transaction in the past. Given a recent time
window, let Ipu,vq denote the total number of transactions performed by an actor u with v
and I(u) denote the total number of transactions performed by actor u with all other actors,
apu, iq denote the other participating actor in actor u1s ith transaction, Spu, iq denote the
normalized amount of satisfaction actor u receives from apu, iq in its ith transaction, Crpvq
denotes the credibility of the feedback submitted by v, T Rpu, iq denote the transaction
rating v gives to u for ith transaction. For an actor v, actor u’s credibility at a given time
can be computed using the following equation:

Crpuq “
Ipuq
ÿ

i“1

pSpu, iqq ˚Crpapu, iqq`T Rpu, iq (5.2)

The actor u’s TS at a given time can be calculated as:

T Spuq “
V pnq
ÿ

i“1

V Ipk,uq ˚Crpuq (5.3)

124

5.8 Implementation and Result Evaluation

where V pnq is the total number of identifiers submitted by actor u, V Ipk,uq is the reputation
value derived from the identifier organization k issues to u, and Crpuq is actor u’s credibility
as calculated in equation 6.1.
Availability Availability is synonymous with reliability in a marketplace and it applies
all the more to a data marketplace. To ensure the availability of the data in case of faulty
broker nodes, the data streams are replicated into multiple partitions across the broker
nodes.
External Sharing: In cases where the seller has no objection to reselling the data, they will
define terms of reselling in Data Stream Licenses as defined in Section IV-B-4. However,
when Seller does not want to resell the data, a game-theory-based pricing model needs to
be developed to make external data sharing economically unattractive. Such a practice will
be discouraged as in order to make a profit, the party will quote a higher price for reselling
data. Whereas, the marketplace always offers a wide variety of data at competitive prices.
Yet another inhibiting factor is that IoT data, unlike other formats of data (videos, software,
images) derives its value from real-time generation and consumption. Therefore, for a
malicious party, it will be increasingly difficult to get hold of a constant stream of IoT data
at profitable prices from a party externally sharing data without delay.

5.8 Implementation and Result Evaluation

5.8.1 System Components

For the development of the working prototype, Hyperledger Fabric was selected as the
blockchain layer and VerneMQ cluster nodes as the storage and transport layer, as they
closely match the intended support features in a digital marketplace. A Storage Operator
may run a VerneMQ broker and/or a Fabric peer with the smart contract as described
below:

Hyperledger Fabric

For the blockchain layer, a permissioned blockchain platform with support for smart
contracts that would scale well in terms of transaction throughput and commit latency
was required. Hyperledger Fabric (henceforth called Fabric), fits the requirement well
and is easy to set up and test, hence Fabric platform was selected for implementing
the PoC. Fabric is an open-source, modular permissioned blockchain platform which is
developed and maintained by the Linux Hyperledger Foundation. Fabric permits pluggable
components for consensus, data storage and membership service management among other
modules.

125

5.8 Implementation and Result Evaluation

Each Fabric peer in the PoC network runs an instance of the data marketplace smart
contract. This contract maintains the listing of data offers (as key-value pairs in the ledger)
including terms and mode of data streams, and client details and provides an interface to
make and verify payments. The security manager smart contract handles the authentication
and access management processes to enable access to data streams from the VerneMQ
broker network.

As a core feature Fabric allows the creation of channels (logical separation of business
groups) to deploy specific smart contracts and make transactions within the channel. This
helps organizations avoid disclosing business sensitive information to all the participants
in a channel. While for the PoC the system has been modelled as a single channel,
it will be relevant to have geographic, category and organization-specific marketplaces
depending on the business use-case. Each stakeholder participating organization, auditors,
and government agencies could be contracted to run the ordering service used to order the
transactions occurring on the Fabric blockchain.

In the PoC implementation, three types of organizations (a private firm, a government
agency and a research lab) have been assumed, each contributing peer nodes as a resource
in the network. For the governance structure, in Fabric there exists a Membership Service
Provider (MSP), that binds the identity of each participant to a root identity provider.
Each of these three types of organizations will also define an admin peer using their MSP
which defines policies and roles in the network. And the network is governed by these
policies including transaction ordering, execution and processing. In the results section,
for blockchain nodes = 3, each organization type contributes one peer each and for nodes
= 6, the contribution consists of two nodes from each organization.

VerneMQ Cluster

VerneMQ [156] is a distributed MQTT(Message Queuing Telemetry Transport) message
broker, that ensures low latency and fault tolerant guarantees. MQTT is a lightweight,
publish-subscribe network protocol deployed to transport messages between devices. The
encrypted data streams are stored on the VerneMQ network nodes that are modelled in a
crash-tolerant fashion. As a whole, VerneMQ provides reliable data hosting capable of
tolerating faults. VerneMQ with some additional security access policies constitute the
data storage layer in the proposed architecture.

Ecosystem Setup and Interaction Details

The experiment was set up on Google Cloud Computing Platform (GCP) running an
instance of Linux Ubuntu-2004-focal-v20210325 configured with 16vCPUs (16 CPU
cores), 64 GB RAM and 100 GB HDD storage. The complete application setup was built

126

5.8 Implementation and Result Evaluation

using Docker containers. This enabled a peer-to-peer setting with each service running
in its dedicated environment with compute and memory resource to depict a distributed
system. A Fabric blockchain network was setup using dockerized containers for each
blockchain node. Similarly, a docker container was used to run VerneMQ cluster. These
docker containers communicate with each other with the help of Docker Swarm, an
orchestration service, in a peer-to-peer fashion as they are on same network. After the
blockchain and MQTT cluster are ready, next the DApp i.e. smart contract are developed.

Data marketplace and Security Manager DApp are implemented as Golang applica-
tions interacting with blockchain networks as smart contracts. Sellers and Buyers are
implemented as Golang application running in docker containers. A large number of
Sellers and Buyers can be generated using docker containers capable of sending simulta-
neous queries and/or transactions to the blockchain network by invoking the respective
API/functions in the DApp. Both these entities can publish and subscribe to IoT data
streams hosted by VerneMQ brokers after authenticating at the security manager DApp.
All the components are run as Docker containers orchestrated using Docker Swarm for the
experiments. Once all the components are ready including the Fabric, VerneMQ cluster,
Smart Contracts/DApps, Seller/Buyer application, a predefined set of calls are made to the
smart contracts according to Algorithm 1 and 2 of the proposed framework to complete
onboarding phase and data upload phase.

To analyse the performance of the experimental setup, a benchmark tool written in Go
v1.15.0 is used. The benchmark tool helps to create several virtual sellers and buyers that
send simultaneous requests to the blockchain network. The IoT data used for the testing
is generated by virtual clients written in Golang. The generated data is uploaded on data
streams hosted by VerneMQ clients using publish service of MQTT client. Depending
on the file size given as input by the user, a script recursively generates bytes of data at
constant intervals to emulate IoT sensor data generation from a hardware sensor. Similarly,
using the subscribe service of an MQTT client a buyer is able to access the data on broker
service. The complete open-source implementation of the data marketplace project is
available online at Github [157].

5.8.2 Evaluation

The evaluation experiments were run by varying several parameters to understand the
dependency on each of them. The parameters are the number of MQTT cluster nodes, the
number of blockchain nodes per organization and the file size to be uploaded and down-
loaded. In each experiment, the values of a single parameter is changed keeping the other
parameters constant, to understand its impact on performance. For the variable parameter
number of blockchain nodes, two cases are considered namely when blockchain nodes = 3

127

5.8 Implementation and Result Evaluation

and blockchain nodes = 6 nodes. It is assumed there are three types of organizations (a
private firm, a government agency and a research group) each contributing peer nodes as
a resource in the network. Hence. when blockchain nodes = 3, it means that each of the
above specified types of organizations contributes one peer node each in the network and
when blockchain nodes = 6, each organization contributes two nodes each in the network.
The Fabric blockchain network was run in the form of Docker containers. This allows each
node to run independently of other nodes. Each experiment is run 5 times and the averaged
observations are reported.

Fig. 5.5 The graph represents the variation of Total Runtime/Seller against no. of sellers when
blockchain peer nodes = 3

Varying load It is marked how latency observed by a Seller varies with overall system
load both for blockchain node count 3 and 6 each for storage cluster (i) count as 1, 3 and 5.
The latency is measured using two parameters i.e. total runtime for each seller as shown
in Figure 5.5, 5.6 and upload runtime as shown in Figure 5.7 and 5.8. The total runtime
includes the time taken by a Seller to register on the blockchain network and add data
offers on the network while upload time is the time taken by a client to authenticate and
upload data on storage operators. With the increase in concurrent sellers, the total runtime
increases however, since this is a one-time process, it is feasible for each seller in the
network. The upload runtime is comparatively low as compared to the total runtime which
is a good practical advantage as data upload will be done more often by the sellers.
Varying Blockchain Nodes It can be seen from Figures 5.5 and 5.6, that with an increase
in the number of blockchain nodes the total runtime and upload runtime do not come down
sharply. This is due to the fact with an increase in the number of blockchain nodes, the
synchronization time among nodes increases. The real bottleneck is transaction processing,

128

5.8 Implementation and Result Evaluation

Fig. 5.6 The graph represents the variation of Total Runtime/Seller against no. of sellers when
blockchain peer nodes = 6

Fig. 5.7 The graph represents the variation of Average Upload Time against no. of sellers when
blockchain peer nodes = 3

129

5.8 Implementation and Result Evaluation

Fig. 5.8 The graph represents the variation of Average Upload Time against no. of sellers when
blockchain peer nodes = 6

not the consensus protocol as elaborately explained in the work [158]. However, this only
comes into play for state-changing transactions and not for query-based queries.
Varying number of storage operators The results for variation in the number of storage
operator clusters can be witnessed for all the results. The upload runtime shows positive
trends for average upload time with an increase in storage operator clusters as shown in
Figure 5.7 and 5.8, which will improve the publishing speed of the sellers hence increasing
the overall throughput as shown in the Figure 5.9 and 5.10. Therefore horizontal scaling
helps in the case of storage operator nodes. For blockchain nodes, vertical scaling along
with sparse peer node that selectively commits transactions as proposed in [158] will be
advantageous.

Upload throughput is the total bandwidth (msgs/sec) processed by the system under
the concurrent load of Sellers. The upload throughput shows similar performance trends as
total runtime/seller. However, the performance increases with an increase in the number of
storage operators.
Varying file upload frequency The impact of data stream sizes is observed on client
latency. Figure 5.11 and 5.12 shows the latency impact for both upload of data streams,
for file sizes ranging from 100 B/sec to 1 MB/sec. As expected, the latency increases
sub-linearly with file size. The overhead is within 10% of the baseline.

130

5.8 Implementation and Result Evaluation

Fig. 5.9 The graph represents the variation of Upload Throughput against no. of sellers when
blockchain peer nodes = 3

Fig. 5.10 The graph represents the variation of Upload Throughput against no. of sellers when
blockchain peer nodes = 6

131

5.9 Security Analysis

Fig. 5.11 The graph represents the Avg Runtime with file size variation when the number of
blockchain peer nodes = 3

5.9 Security Analysis

Security is a prominent feature of any framework and our proposed framework should be
no exception to this. In this section, the proposed architecture is evaluated for the following
security threats: Man-in-the-Middle attacks, DDoS attacks, Sybil attacks, Information
Disclosure and Forking Attacks. These attacks have been specifically chosen as they are
critical from a decentralized architecture point of view.

5.9.1 Man-in-the-Middle (MITM) Attack

In order to prevent MITM attacks, several defence mechanisms have been provided in the
architecture. Firstly, all the communications taking place between architecture components
happen over a secure channel over TLS/SSL. Secondly, all the transactional messages
are digitally signed with the secret key sk of the sender which makes it difficult for an
impersonator to replicate them. Each upload and download request is completed using a
unique one-time token, ω and δ respectively that provides resistance against replay attack.
Besides, since the sellers and clients in the network possess unique did, secured by a
public-private key pair, an attacker cannot inject malicious signed messages.

132

5.9 Security Analysis

Fig. 5.12 The graph represents the Avg Runtime with file size variation when the number of
blockchain peer nodes = 6

5.9.2 Distributed Denial of Service (DDoS) attack

DDoS attack can be mitigated by using unique identities in the network as proposed in our
architecture. The blockchain network in general provides a certain level of security against
malicious nodes. Moreover, since the blockchain in our architecture is a permissioned
network, only trusted nodes are added to the network. In addition, only entities whose
dids have been successfully verified are allowed to make accounts and later query/send
transactions in the network thus, preventing malicious traffic attacks on the network.

5.9.3 Sybil Attack

Sybil attacks are a major challenge in public decentralized networks where the same node
can fake multiple identities. The proposed framework has an advantage over this attack
as the blockchain network is a permissioned network. In this network, the consensus
over a set of transactions is achieved only after receiving endorsements from a number
of verified nodes. Hence, no single node or a set of nodes holds absolute power. In the
Fabric blockchain, identity certificates are issued to each node and hence, identity faking
becomes difficult.

133

5.10 Conclusion

5.9.4 Information Disclosure Attack

In the proposed framework, the information stored on the blockchain can strictly be queried
only by verified actors of the system. For e.g., a client can only request key release once
they have made full payment for the data. In order to query DO which includes price,
metadata and terms of data exchange, an entity needs to verify their did. Similarly, no
suspicious entity can gain access to the data stored on broker nodes until they authenticate
themselves at Security Manager DApp using an authentication token.

5.9.5 Forking Attack

Hyperledger Fabric blockchain differs from well-known public blockchains like Bitcoin
and Ethereum in the sense that in Fabric the consensus among nodes is a three-step
process which includes execute-order-validate unlike order-execute. First, the transactions
are checked for correctness and endorsed by endorsing peers. Then, they are ordered
via a consensus protocol and lastly, they are validated according to application-specific
endorsement policy before committing transactions to the ledger. Hence, the proposed
architecture can prevent forking attacks.

5.10 Conclusion

In this chapter, a decentralized and fair marketplace for IoT data trading is proposed.
Such a marketplace supports two different type of trading models: a pay-per-purchase and
subscription model for compensating the data owners/producers is presented. By leveraging
an innovative combination of blockchain, peer-to-peer storage and smart contracts, the
system guarantees fairness to all participants, the privacy of content from peers involved
in delivering data, and a configurable level of fault tolerance and availability, all without
reliance on a central facilitator.

The design, implementation and analysis of such a decentralized data marketplace is
performed. The design implementation of the proposed solution was thoroughly evaluated
to gain insight into the scalability and performance of such a system. The evaluation shows
that the system is scalable with low overheads.

134

Chapter 6

A Privacy-Aware Authentication and
Usage-Controlled Access Protocol for
IIoT Decentralized Data Marketplace

This chapter is the fourth and final chapter describing the research contribution of this dis-
sertation. The content of this chapter, which covers aspects widely described in Publication
IV, focuses on the related challenges.

Data is ubiquitous, powerful and valuable today. With vast instalments of Industrial
Internet-of-Things (IIoT) infrastructure, data is in abundance albeit sitting in organizational
silos. Data Marketplaces have emerged to allow monetization of data by trading it with
interested buyers. While centralized marketplaces are common, they are controlled by
few and are non-transparent. Decentralized data marketplaces allow the democratization
of rates, trading terms and fine control to participants. However, in such a marketplace,
ensuring privacy and security is crucial. Existing data exchange schemes depend on a
trusted third party for key management during authentication and rely on a ‘one-time-
off’ approach to authorization. This work proposes a user-empowered, privacy-aware,
authentication and usage-controlled access protocol for the IIoT data marketplace. The
proposed protocol leverages the concept of Self-Sovereign Identity (SSI) and is based on the
standards of Decentralized Identifier (DID) and Verifiable Credential (VC). DIDs empower
buyers and give them complete control over their identities. The buyers authenticate and
prove claims to access data securely using VC. The proposed protocol also implements a
dynamic user revocation policy. Usage-controlled-based access provides secure ongoing
authorization during data exchange. An open-source library is developed to test the
proposed protocol for a decentralized IIoT data marketplace.

135

6.1 Background and Motivation

6.1 Background and Motivation

Sensing-as-a-service is a concept that allows data owners to sell and/or exchange sensor
data with consumers interested in large open markets. Data owners with the capability
to generate vast amounts of sensor/IoT data engage in such a data exchange primarily
for monetization purposes. A data marketplace is an open platform that allows buyers
to look up, browse and purchase the most suitable data according to their needs from a
vast array of heterogeneous data hosted on it by various sellers in domains like health,
automotive, manufacturing, agriculture [9] etc. Unlike centralized data marketplaces [142]
which are governed and managed by a handful of central authorities, a decentralized data
marketplace leveraging distributed ledger technology (DLT) like blockchains is more
transparent, enabling sellers to set their rates and terms of data exchange. Aiming to
explore these benefits, multiple studies such as [159] and [160] have attempted to design
such marketplaces for data sharing. A decentralized data marketplace based on DLT is
essentially a trading portal implemented as a DApp with the help of blockchain smart
contracts and a decentralized data streaming network to host IoT data in a reliable and
fault-tolerant manner. DApp is a decentralized software application that interacts with
the blockchain back-end using smart contracts. The smart contracts perform functions
such as listing, onboarding actors, enabling data upload and other business logic related
to the trading of data. The data streaming network is hosted by a cluster of decentralized
peer-to-peer (p2p) nodes i.e. storage operator nodes that host IoT data on behalf of sellers
as they may not have the infrastructure or will to do so. Storage operator nodes host the
data in the form of data streams and are incentivised for their service. It is worth noting
that while the work in [159] focuses on aspects of IoT data marketplace like defining
architecture and processes that assure fair settlement of compensation between all the
parties, enabling unbiased content listing using calculated trust metric, converting business
logic into an automated set of transaction rules for trading and fault tolerant and assured
data delivery; it does not focus on other aspects of a data marketplace like security and
privacy of users in such a marketplace, secure authentication and authorization related
flows that provide granular monitoring of resources being accessed on the marketplace.
The latter is the focus of the work presented in this work.

While decentralized IoT data marketplaces have enabled sellers and buyers to interact
and engage in data trading in a fair and transparent manner, security and privacy con-
cerns exist. To highlight the first concern, the conventional state-of-the-art marketplaces
deploy a centralized identity infrastructure which gives them unrestricted view to user’s
activities on their platform. While centralized identity systems are easy to maintain and
deploy, they have serious security challenges like a single point of failure, lack of user
control, data breaches, linkability and eventually privacy threats. Additionally, a malicious

136

6.1 Background and Motivation

storage operator can easily trace the activity of buyer and gather personal details while
transacting on the marketplace. Tracking the activities of a buyer allows the attacker
to obtain their digital footprints and understand their purchase patterns. Marketing and
advertising companies can target the buyer to send unsolicited advertisements or even
influencing their choice when browsing the marketplace. This is a familiar trend in central-
ized data marketplace where the marketplace operator has full knowledge of the activities
of every seller and buyer on their platform.

The second security concern lies in the fact that the existing data marketplace authenti-
cation protocols do not consider the importance of buyer empowerment; the user is not
at the centre of such designs. Traditional designs deploy a trusted party in a centralized
system to manage the identities and associated keys of sellers and buyers which leads to
the risk of information leakage. In such systems, the exposure of hundreds of user data is
only a hack away.

In a data marketplace buyer i.e. the user needs to be authenticated and authorized in a
secure manner by the storage operator to establish their claims and rights to access data.
The third security concern in a data marketplace is that a malicious buyer can eavesdrop on
the communication and use the obtained credential to get authorization that works in a ‘one-
time-off’. ‘One-time-off’ format is witnessed in traditional authorization schemes such as
Role-Based Access Control (RBAC) or Attribute-Based Access Control (ABAC). Such
access control models are tightly coupled to the user’s identity to perform authorization
only once before the access is allowed and do not continuously monitor the usage of its
hosted resource or evaluate change in the user's attributes during resource usage. While
traditional access schemes work well for static data like video content, files, images, etc.,
IoT generates real-time data that draws its value from its freshness. Thus, in a real-time
data access scheme for a data marketplace, continuous usage-based monitoring is required.
In addition, a dishonest buyer who failed to complete previous payments should be barred
from accessing any more data streams. Therefore, ensuring the security and privacy of all
the parties in the marketplace is essential.

The proposed work focuses on the above-discussed issues of an IoT data marketplace.
The discussed challenges in a data marketplace need a new approach to how identities
are established and claims are presented and verified between the user and verifier. The
concept of decentralized identity is employed in this work to solve these challenges.
While the overall security of the system is crucial, maintaining the privacy of the users is
paramount too. DIDs and derived pseudo identifiers in the proposed framework ensure the
credibility of the user without disclosing any PII related to them. When these DIDs are
bound with the issued VCs from an authorised issuer, they can convey the user's claims
in a privacy-preserving way to the verifier. Hence, data minimization is ensured in all
the communications between the issuer, holder and verifier. ZKP-enabled VC will allow

137

6.1 Background and Motivation

the holder to share only the proof of their claims with the verifier. Hence, the privacy
of the user is maintained and the digital footprint is reduced. Dynamic revocation in a
marketplace is crucial so that malicious actors cannot continue to operate and cause any
harm to the rest of the users/services. Finally, continuous monitoring of the data streams
being accessed is crucial for two main reasons, (i) to ensure fair compensation to the seller
and storage operator for the data and (ii) to lock out malicious actors from further accessing
the data streams.

This work proposes a user-empowered, privacy-aware, authentication and usage-
controlled access protocol for a decentralized IoT data marketplace. The proposed protocol
leverages the concept of SSI to enable user empowerment. To tackle the challenge of
privacy preservation, remove reliance on a centralized key-managing system, and establish
trust among involved parties, the concept of DID [161] and VC [162], two main standards
of SSI are employed. Though DID and VC have emerged as promising technologies to
enable decentralization and user empowerment, they have not addressed user revocation.
Dishonest buyers should be removed from the system, thus the proposed protocol imple-
ments a dynamic buyer revocation. An efficient Zero-Knowledge Succinct Non-Interactive
Argument of Knowledge (zk-SNARK) proof is also provided, which is a privacy-preserving
way to present and verify VC. After secure authentication, the Buyer1s claims to access the
data stream is evaluated against its associated policies and on successful evaluation, access
is allotted. Thereafter, usage of resources is monitored on an ongoing basis and policies
are continuously evaluated until the data consumption is completed. In the proposed work,
after successfully establishing the legitimacy of the Buyer, the storage operator runs a
usage-controlled access protocol until the completion of data consumption by the buyer.
The proposed work is an extension of our earlier work [159] that presented a fair, secure
and trusted IIoT data marketplace. The key contributions of this work are the following:

• A novel buyer-empowerment based privacy-aware authentication protocol
based on DID and VC: The proposed protocol enables buyers’ autonomy and
eliminates reliance on a centralized identity infrastructure. The buyers present
Zero-Knowledge proof (ZKP) of their VCs to storage operator to access data.

• A usage-controlled access protocol to monitor usage and buyer attributes on an
ongoing evaluation basis: The proposed protocol evaluates access control decisions
based on continuous monitoring of IoT data resource usage to provide efficient and
secure control. Storage operator nodes run this protocol on their end to control
access to hosted IoT data resources to buyers.

• A dynamic buyer revocation policy: Buyers on the platform who are dishonest,
have non-payment dues or violated terms of data exchange are put on the revocation

138

6.2 Related Work

list. A Buyer must prove to the storage operator that they are not on the revocation
list to request data stream access. This is achieved in a privacy-aware manner.

• Proof-of-concept (PoC) implementation and Evaluation: A PoC is implemented
with wallets using Hyperledger Indy Blockchain and a decentralized real-time usage-
controlled access policy is implemented using Linux utility: Cronjob. The work
includes a discussion of performance and security analysis.

6.2 Related Work

Blockchain-enabled data sharing: Data exchange facilitated by blockchain has garnered
significant attention due to inherent benefits like non-repudiation, and providing a trusted
sharing service, where information is reliable and can be traced [163]. In [164], authors
present a blockchain-based cloud storage protocol for sensors in IIoT using a group
signature scheme. Smart contracts and proxy re-encryption is used to realize data sharing
in an industrial facility. A blockchain-enabled dynamic and traceable data-sharing scheme
for the smart factory is proposed in [165]. Blockchain performs the authentication and
stores the ciphertext index and public keys to avoid tampering. The tracking algorithm
tracks malicious users and adds them to a revocation list. The authors in [166] propose a
private data-sharing framework using blockchain for applications such as tracking products
for counterfeit detection, product recall and compliance with regulations. A blockchain-
based hierarchical data-sharing framework to provide fine-grained access control and
retrieval over encrypted personal health records between multiple stakeholders is presented
in [10]. The authors in [167] propose a monitor-based usage control model to enforce data
usage policies on the user side using blockchain and SGX (Software Guard Extensions).
Though the above-discussed schemes ensure the secure exchange of IoT data and while
some of them also focus on the privacy of the sensors, most of them use a centralized model
for data exchange and do not consider a multi-stakeholder environment. Some of them
store the data on blockchain and most of them use complex key-distribution mechanisms.
In some of these schemes, the system master secret key was generated in a centralized
manner by a trusted party. If a trusted party is compromised by an adversary, there is
the risk of leakage of the system master key. Further, most of them have considered a
‘one-time-off’ access control technique that does not protect against insider attacks during
resource usage.
IoT Data Trading: On the other hand, literature on IoT data trading or Data-as-a-Service
model for monetization has also seen progress [168],[169]. Such systems mostly involve
p2p data sharing model where data owner can decide the rates, terms and policies for
data trading [170], [159]. Figueredo et al. in [171] discuss one such practical IoT data

139

6.2 Related Work

marketplace framework ‘oneTRANSPORT’ implemented between various public bodies in
the UK. A blockchain-based solution for resource-constrained IoT streaming devices that
allows data chunks to be transferred in a decentralized, traceable and secure manner has
been proposed in [172]. [160] present a ‘Databox-based’ delivery service via blockchain
to provide data consumers with secure and controlled access to the requested data source
of interest. Trading of IoT data in other domains like health [173] and energy data [174]
has also witnessed interest. Though the above-mentioned works try to address different
issues related to an IoT data trading marketplace, they lack details on users’ privacy,
use empowerment and most importantly monitoring IoT data usage when it is traded on
such decentralized platforms. User authentication, identity verification and usage-control
layer are missing from the above-mentioned proposals. Proving the access rights and
user’s claims in a privacy-preserving manner remains unaddressed in the state-of-the-art
decentralized data marketplaces.
Use of DID in IoT: The concept of DID and VC has recently gained popularity as a
viable privacy-preserving method to enable identity empowerment in IoT [175], [176].
The use of DID for IoT applications was discussed in [117]. The work indicates the
feasibility of DID even on devices with limited resources. IoT-as-a-Service (IoTaaS)
concept to offer IoT device services using DID and VC on a demand basis has been
proposed by [118]. A solution based on DID and VC that enables a distributed V2X
(Vehicle to everything) access authorization mechanism to allow a vehicle owner to prove
their identity without compromising privacy was proposed in [119]. While DID enables
authentication and user identification, VC can verify a set of claims that can be verified
against access policy to allow secure and granular authorization [120]. [121] present a
privacy-sensitive information protection and management scheme to allow automated
distribution of information. Though the above-discussed schemes employed DID and VC
to allow users to control their identity, they have not considered key issues like dynamic
user revocation. The schemes in [120] and [121] have not considered the critical issue of
continuous resource usage monitoring in an access control scheme.

The above-discussed works clearly outline the importance of IoT data trading and the
use of blockchain technology for such data exchange/trading applications. Blockchain
offers several advantages in a multi-stakeholder environment where parties inherently do
not trust each other and wish to achieve transparency, and non-repudiation and avoid siloed
views of transactions. A few of these data trading applications also propose the introduction
of DID and VC as identity pillars to remove the centralization of identity management.
To fulfil the above-identified research gaps, a privacy-aware, authentication and usage-
controlled access protocol is proposed for IIoT data marketplaces. The proposed work
not only leverages the use of DIDs and VCs for providing mutual authentication between
the parties coming together to trade on such a platform but it’s also done in a privacy-

140

6.3 Proposed Protocol

Table 6.1 Comparison of Blockchain Marketplace Solutions based on design features [P =
Proposed work]

Design Features [174] [172] [168] [121] [160] [166] [169] [177] P

Privacy of User - - + + - + + + +
User empowerment - - - + - - - + +
Mutual Auth - - - - - - - - +
Decentralized ID - - - + - - - + +
Dynamic Revocation - - - - - - - - +
Non-Repudiation + + - + + + + + +
Unlinkability - - - + - - - + +
Multi-Stakeholders + + + - + + + + +
Access-Policy - - - + + + - - +
Usage-Control - - - - - - - - +

enhancing way so that tracking of engaging parties is not feasible for the marketplace
service provider. This inhibits behaviour such as exhibiting biased search results, targeted
ads or correlation of a user’s activities on the marketplace. The traceability is sufficiently
difficult to achieve with the help of DIDs. Our solution also provides anonymity for trading
parties in case they wish to do so using ZKP-enabled VC. Our protocol makes dynamic
revocation of dishonest parties from the marketplace so that they can no longer engage
in trading activities. Once mutual authentication between trading parties is achieved, our
protocol continuously monitors user and resource attributes to achieve a more secure
transaction using usage control. A feature-wise comparison of the most closely related
works discussed above is presented in Table 6.1.

6.3 Proposed Protocol

6.3.1 Overview

A privacy-aware, authentication and usage-controlled access protocol for IIoT data market-
place is presented in this section. The primary actors in this protocol are the SellerpSLq,
the Buyer and the StorageOperatorpSOq nodes as shown in Figure 6.1. These system
actors in our proposed protocol can be mapped to the VC ecosystem actors presented in the
previous section. In the proposed work, the SL acts as an issuer as it issues VC to both SO
and the buyer signed by its private key K pr

SL. SO and Buyer both are holder as they collect
VC from SL. While it’s certain that since an SO can verify any verifiable presentations
from any holder, containing proofs of claims from any issuer, consequently it is a veri f ier
[57]. However, each buyer may or may not have that capability and it will depend if it can
act as a verifier for each type of verifiable presentation from every issuer. The proposed

141

6.3 Proposed Protocol

protocol, assumes that both SO and buyer will act as verifiers and will perform mutual
authentication based on issued VCs.

Fig. 6.1 System Actors in the Proposed Protocol

The data marketplace provides a range of services including data listing, registration,
payment for data etc. Identity Blockchain provides a decentralized identity infrastructure
to log registration of actors and issuance of VCs. The phases in the proposed protocol are
system setup and registration, authentication and UCON phase. The high-level workflow
is illustrated in Figure 6.2. The system setup and registration phase is only performed once.
In the setup phase, all the participants register themselves by creating DID and associated
keys on the blockchain. After this step, the Buyer can browse the listed data streams on
the marketplace advertised by several SL with their rates, purchase mode (batchMode or
streamMode) [159] and terms etc. The purchase mode defines the frequency of payment
made by the Buyer. In registration phase, the Buyer interested in purchasing a data stream
from SL presents a signed digital identity to the SL for verification. If the digital identity
verification along with requested payment is successful, the SL generates a VC with
claims including the paymentID. SL signs the VC with its private key and issues it to the
Buyer. Similarly, SO j also receives VC from SL after identity verification. In the proposed
protocol, EdDSA (Edwards-curve Digital Signature Algorithm) [77] scheme based on
elliptic curve cryptography (ECC) is used for VC signing and verification.

Fig. 6.2 Overview of proposed protocol with detailed flow of interactions between actors

142

6.3 Proposed Protocol

Table 6.2 Notations
Symbol Description

G Generator point
DIDx DID of x
PDIDi Pseudo-identifier of Buyeri

K pr
x Private key of x

K pu
x Public key of x

Ki Secret key between SL and Buyeri
KDB j Secret key between SL and DO j

paymentID Payment ID given to Buyer after payment
rVCisK pr

SL
VC of Buyeri issued by SL

rVCSOsK pr
SL

VC of SO j issued by SL
rVCDigIDisK pr

MC
VC of Buyeri issued by market consortium

‘ XOR Operation
hpXq Hash of X
φid streamID of IoT data
wi Non-membership witness of revocation List L

After registration phase, the Buyer goes through authentication followed by usage-
controlled access phase with the SO hosting the purchased data stream on behalf of SL.
To authenticate, Buyer sends the data access request to the SO. It then generates the
ZKP of the VC and sends it to the SO. The SO j verifies the received proof to confirm
the Buyer1s right to access a data stream during the authentication part of the protocol.
Thereafter, the usage-controlled access protocol evaluates the Buyer1s attributes presented
in VC to authorize it. From thereon, the buyer and resource attributes are monitored on an
ongoing bases until the data consumption is completed/terminated. The notations used in
the proposed protocol are presented in Table 6.2.

6.3.2 System Setup and Registration Phase

System Setup

Step 1: The DID document corresponding to the SL’s DID, DIDSL, is stored on the
blockchain. SL generates a private key K pr

SL. The public key is generated through EdDSA
key generation function. Let G be the generator point. The public key K pu

SL is a point on
the elliptic curve, calculated by EC point multiplication as K pu

SL = K pr
SL * G. Thereafter, K pu

SL

is stored in the SL’s DID document.
Step 2: Buyeri generates a DID, DIDi and stores the corresponding DID document on

the blockchain. Then, Buyeri generates a pair of private (K pr
i) and public (K pu

i) keys using

143

6.3 Proposed Protocol

the EdDSA key generation function similar as discussed in Step 1. The Buyer stores K pr
i

in its digital wallet. K pu
i is stored in Buyer’s DID document.

After this step, the Buyer is onboarded on the data marketplace platform and can start
browsing the listed data offers from various sellers. Once the Buyer decides to purchase
a data stream with ID, φid , it enters into an agreement with its SL using the registration
phase.

Step 3: The Storage Operator, SO j also generates its DID (DIDSO j) and stores its
public key immutably in its DID document on the blockchain.

Step 4: SL generates an accumulator, a revocation list L and a secret key kAcc. Initially,
L does not have any elements. As discussed in Section ??, SL generates an accumulator U
from kAcc and L using GAcc function.

Step 5: The SO j hosts data streams with associated usage-controlled access policies as
defined by SL in order to provide access to legitimate Buyers only on providing valid set
of attributes.

Registration Phase:

In this phase, the registration of the Buyeri with a SL on the marketplace takes place to
initiate data trading. The SO j also register on the marketplace as it agrees to host data for
SL.

Buyer Registration: consists of the following steps:
Step 1: The Buyer holds rVCDigIDisK pr

MC
, the VC of their digital identity issued by a

trusted party (e.g., marketplace consortium) after KYC verification. The process is very
similar to an e-Know Your Customer (eKYC) process done by an organization to onboard
customers. Next, Buyeri generates a pseudo-identity PDIDi. The buyer can generate a
new pseudo-identity for trading with each new seller. In this way the activity of buyer on
the marketplace cannot be tracked and linked. The Buyer decides to purchase the data
stream with ID φid using mode mdpbatch{streamq from SL. If the mode selected is batch,
the Buyer will need to pay only once for a burst mode of data, whereas in stream mode,
payment needs to be made periodically to receive real-time IoT data [159]. Then, the buyer
generates a message MREG1 with a registration request, streamID φid , mode md, DIDi,
PDIDi and rVCDigIDisK pr

MC
and sends it to SL.

Step 2: The SL verifies the Buyer1s digital identity using the EdDSA’s signature
verification. After that, SL generates a nonce n and a key Ki for future communication with
Buyeri. A nonce is a random number used only once to provide various types of security
guarantees. At this stage the nonce n prevents against reflection attack as explained later.
Then, SL generates a payment request Payreq for requested stream ID φid to be consumed
in the mode md. Then, the payment request, Ki and n are concatenated and its hash value

144

6.3 Proposed Protocol

Algorithm 6: Buyer REGISTRATION PHASE
1: Buyer :

Generate: DIDi, PDIDi

Generate: Ki
pr, Ki

pu pair
Select: data stream ID (φid) & md(stream/batch)
MREG1 :
{Reqid , φid , md, rVCDigIDisK pr

MC
, DIDi, PDIDi}

Buyer Ñ SL: MREG1
2: SL:

Veri f yEdDSA: rVCDigIDisK pr
MC

Generate: Ki, nonce n
Generate: Payment Req for (φid) in mode md
hV = h (Payreq}Ki}n)
MREG2 : {hV,Payreq,Ki,n}
SL Ñ Buyer: MREG2

3: Buyer makes payment and receives paymentID

Generate: Ni

hV 2 = h (paymentID}Ki}n}Ni)
MREG3 : {hV 2, paymentID,Ni}
Buyer Ñ SL: MREG3

4: SL:
Generate: nnew, credential cred
hVcred = h (cred}K pu

i }nnew)
Sign hV 3 with K pr

SL
i.e., rVCisK pr

SL
= SignEdDSAphV 3q

n˚new = Ki ‘ nnew

wi = GwpU,kAcc,L,PDIDiq

MREG4 : {rVCisK pr
SL
,cred,n˚new, wi}

Store: DIDi,PDIDi,n˚new,wi,Ki

SL Ñ Buyer: MREG4
5: Buyer: Store: rVCisK pr

SL
,cred,Ki,win˚new

145

6.3 Proposed Protocol

hV is computed. After that, the SL generates a message MREG2 with hV,Payreq,Ki and n
and sends it to the buyer.

Step 3: Buyeri receives MREG2 from SL. Buyeri makes payment on the marketplace to
receive paymentID for this transaction. Then Buyeri generates a nonce Ni. The nonce Ni

will prevent the replay attack by a malicious entity as explained later. Then, paymentID,Ki,
n and Ni are concatenated and its hash value hV 2 is computed. Then, Buyeri generates a
message MREG3 with hV 2, paymentID, and Ni and sends it to the SL.

Step 4: After SL has successfully verified the payment details, it generates a nonce
nnew and a credential cred. The newly generated nonce nnew will act as a shared secret
between buyer and seller for next round of interaction to enhance security as explained
later. The generated credential is a set of claims that the Buyeri can assert by presenting
it to the right verifier. After that, cred,K pu

i and nnew are concatenated and its hash value
hVcred is computed. Then the SL signs the credential with its private key using EdDSA’s
signature generation algorithm.

For that the SL generates a secret integer r and a random point is generated as:

r “ hashphashpKSL
pr q`mqmod q;R “ r ˚G (6.1)

Then the SL calculates the signature as:

h “ hashpR`KSL
pu `mqmod q (6.2)

s “ pr`h ˚KSL
pr qmod q (6.3)

The VC, rVCisK pr
SL

of Buyeri indicates that the Buyeri is a valid registered user who
has made payment for requested data stream. It can be verified using the corresponding
public key KSL

pu of the SL. The SL also generates a non-membership witness wi for Buyeri

by calling Gwpq function with inputs U , kAcc, L, and PDIDi as mentioned in Section ??.
The new nonce nnew is XORed with Ki to produce n˚new. This operation ensures that the
shared secret nnew is only decipherable by the intended recipient with the shared secret key
Ki i.e. buyeri. The SL stores DIDi, PDIDi, nnew and Ki for future communications with
the Buyeri. After that, SL generates a message MREG4 with rVCisK pr

SL
,cred, n˚new and wi

and sends it to the buyer.
Step 5: Buyeri receives MREG4 from the SL. It stores rVCisK pr

SL
,cred,Ki,wi and nnew in

its digital wallet.
SO Registration: The steps are as follows:
Step 1: Similar to Buyer registration, SO j registers with SL and receives a VC, VCSO j

signed by SL with K pr
SP. However, it skips the steps for payment as done by the buyer. It

146

6.3 Proposed Protocol

Algorithm 7: AUTHENTICATION PHASE
1: Buyer Ñ SO : MA1 : {PDIDi,Usagereq,VCreq}
2: SO Ñ Buyer : MA2

MA2 : tDIDSO j, rVCSO jsK pr
SP
,Proo frequ

3: Buyer :
Veri f yEdDSA: rVCSO jsK pr

SP

Calculate: hVcred = h (cred}K pu
i }nnew)

Store: hVcred
π = ProveprVCisK pr

SP
q

MA3 : tπ,PDIDi,wiu

Buyer Ñ SO: MA3
4: SO : Verify: π

VwpU,wi,PDIDiq “ ?1

sends a request for VC to the SL to attest to its legitimacy of hosting data streams for that
SL. It stores received VCSO j.

Step 2: SL produces key KSO j and sends it to SO j. SO stores KSO j for future commu-
nication with SL.

6.3.3 Authentication and UCON Phase

Authentication Phase

Buyeri must be authenticated by SO j to access the data stream hosted by SO j on its storage
network on behalf of SL. Buyeri must also authenticate SO j.

Step 1: After successful registration with SL and receiving valid VC that will help it
to access the data stream it purchased on the marketplace, Buyeri authenticates with SO j.
Buyeri generates MA1 with PDIDi, requests to access stream φi and requests for the SO’s
VC. Then, MA1 is sent to SO j.

Step 2: SO j composes and sends a message MA2 to Buyeri with DIDSO j, rVCSO jsK pr
SP

and a request of proof of Buyer’s VC to validate its claim to access the data stream.
Step 3: Buyeri receives MA2 from SO j. Then, Buyeri verifies SO j’s VC by using the

EdDSA signature verification algorithm using K pu
SP . After that, credential cred, Ki and

nonce nnew are concatenated and the resultant hash value is computed and stored. Next,
the Buyeri produces a ZKP of the VC using the Prove algorithm with an output π as
mentioned in Table 2.3. This is ZKP of the VC and Buyeri presents it to SO j to prove in
Zero Knowledge that it holds a valid VC. Then, Buyeri generates MA3 using π and wi and
sends it to the SO j.

Step 4: When SO j receives MA3, it verifies π using the Veri f y algorithm as mentioned
in Table 2.3. The SO can only know that Buyeri holds a valid credential and some metadata

147

6.3 Proposed Protocol

about the data stream. It cannot learn anything about its identity. Then the SO j verifies the
non-membership witness wi of the Buyer by calling Vw function as explained in Section ??
to confirm that the buyer is not revoked during this session. Once the Buyeri and SO j are
mutually authenticated and the SO is assured of the buyer’s claims and revocation status, it
passes the Buyer1s metadata to the policy evaluation engine that manages access of data
streams on the network.

It is worth noting that during the complete process of registration and authentication, all
the communications are P2P between the interacting parties i.e., there is no centralized party
involved to acquire keys etc to authenticate or authorize users. It enables the decoupling of
issuers and verifiers and they can function independently. For e.g. if for any reason the
issuer goes offline, the verifier can still verify the authenticity and claims of the buyer.

Usage-Controlled Access Policy Evaluation

This evaluation takes place at SO j node. After authentication is completed, buyer1s
metadata is passed to the policy evaluation engine in the UCON module. Policy Engine
parses the metadata (PDIDi, mode of access, φid etc.) received from buyer1s VC to evaluate
the policy against its attributes. The usage-controlled access components are presented in
Table 6.3. As observed the metadata along with verified VC make up the User Attributes
(UA) set. The resource in this case is the data stream that would be accessed by the
buyer hence; Resource Attributes (RA) can be represented as a set of attributes like the
seller ID who owns this data stream(SLID), name of the stream, time of upload/creation
etc. UA and RA are sets of attributes that uniquely identify a user or resource. Rights
defines how the resources can be used by the user and in this case they are represented
by the mode of access and whether they can be read, downloaded or computed upon.
Pre-obligation(preOB) checks are defined and they define that a user must provide a
non-membership proof and must have completed the payment and provide a paymentID
as proof. Similarly, Ongoing-Obligations (onOB) define that during ongoing access, the
non-membership proof must hold true along with allotted time and if pre-paid balance
and stream mode are opted it should be available to charge payments. In the proposed
work, preOB would be pre-payment and proving non-membership of the revocation list.
onOB would be evaluated on an ongoing basis until the completion of data access and
it includes rechecking revocation status on an ongoing basis and/or decreasing buyer1s
prepaid balance. Finally, Condition are system-oriented decision factors, hence these will
be based on factors such as system load and IoT data stream real-time generation.

Since pre-payment is completed, Buyeri is verified and since it has provided a witness
of non-membership (wi) of the revocation list, it passes the authorization and pre-obligation
phase. The data usage begins after this point and hence the ongoing obligation check

148

6.3 Proposed Protocol

begins. The UCON module continuously monitors the Buyer1s (UA) and Data stream’s
(RA) attributes to record any change against defined ongoing obligations. Access is
terminated based on the termination of the allotted access period or in case of any of the
ongoing obligation violations, whichever happens first. In short, a Usage Policy is defined
as Policy“ tUA^RA^RightuA,OB,C i.e., evaluate policy using elements of set UA, RA and
R under defined A, OB (both pre and on) and C. The allow(UA, RA,R) predicate indicates
that a user with attributes UA is allowed to access a resource with attributes RA with rights
R only if the indicated preOB conditions are fulfilled. The Fulfilled(preOB) predicate tells
us if each of the required obligations is true to start the access. It is worth noting that the
UCON policy evaluation takes place before the start of every new access request by a
buyer to the storageOperator node and each session is continuously monitored until it is
terminated or completed. The usage-controlled access components defined in Table 6.3
stand true for the proposed protocol and it is a business-logic dependent implementation,
hence it can vary with various implementations.

Table 6.3 Usage-Controlled Access Components

Elements Explanation

User/Buyer Attribute(UA)
PDIDi, paymentID

prepaidBalance, duration=X

Resource/Data Stream Attribute(RA)
SLID, φID, streamName,

Time(DDMMYY)

Rights(R)
mode(batch/stream)

(Read, Download, Compute)

Pre-Obligation(preOB)
wi,

paymentID ! “ 0

Ongoing-Obligation(onOB)
wi, allotedTime ą 0

& prepaidBalance ą 0

UCON Policy (λ)
allow (UA, RA, R) ñ λ (UA, RA, R)

^ Ful f illed (preOB)

UserAttributes “ tPDID,DIDu

ResourceAttribute “ tSellerID,φID,name, timeu

Right “ tmodepbatch{streamq,read,downloadu

Policy “ tUA^RA^RightuA,OB,C

Usage Control defines two types of attributes for both User and Resource: mutable
and immutable attributes. Mutable attributes are user/resource attributes that change as

149

6.3 Proposed Protocol

a result of access and immutable attributes do not change during access. E.g., a buyer1s
prepaid balance has to be decreased as it consumes or accesses the data stream hosted on
storage operator node and hence it is a mutable attribute. PDID is an immutable attribute
in this context. UCON monitors the mutable attributes during access to evaluate policies
on an ongoing basis.

6.3.4 Design Analysis: Dynamics of SSI in a data marketplace

In a traditional marketplace setting, the identity infrastructure deployed by the marketplace
provider would usually be a centralized system. In such an identity infrastructure, the
identity database is instantiated and maintained by the marketplace provider. This gives a
lot of visibility, power and tracking capability to the marketplace provider. Other concern
with such a centralized infrastructure are challenges like a single point of failure, lack
of user control, data breaches and likability. While marketplace providers would like
to ensure fair, trusted and secure way of enabling data exchange they must do so in a
privacy-enhancing manner. In the proposed framework, SSI is leveraged to achieve a new
approach in the way identities are established and claims supported by those identities are
presented and verified.

The proposed framework establishes the identity of both buyer and seller with the help
of decentralized ID (DID) after satisfying the regulatory obligation such as eKYC in a
given jurisdiction. This ensures onboarding of genuine users and corporations. Later the
interacting seller issues the VCs to the buyer to define their rights and access permissions
for a given IoT data stream that they paid for. These VCs can be time-bound or count-bound
to define the access limit of a certain data-stream. It is also possible for a seller to revoke a
given VC at any time if an actor is behaving maliciously or lapses on payment.

While SSI can bring several advantages to a decentralized data marketplace, there
may be certain limitations to it. SSI or decentralization in broader sense is a spectrum
rather than an absolute value. It means that there can be several implementations along
that decentralization spectrum. Hence, every aspect of implementation will require careful
consideration. For example, in the proposed framework, if the buyer can create several
pseudo-identities PDIDi against its DIDx and default on payments to seller using a new
pseudo-identity each time, it can lead to losses to the sellers. Similarly, if the seller acts
maliciously and tries to revoke VC of a buyer without valid reason, it can impact the
reputation of the platform. Therefore, monitoring the behaviour of both seller and buyer is
crucial for the marketplace provider. With verified onboarding, maintaining and monitoring
a TRUST SCORE and maintaining a competitive incentive model as explained in 5.4.2 can
help to maintain trust in the marketplace. Therefore, right design patters and supporting
incentive model is crucial along with security and privacy.

150

6.4 Implementation and Evaluation

6.4 Implementation and Evaluation

6.4.1 System Components

1. Hyperledger Indy: The proposed framework is blockchain platform agnostic as
long as it supports the digital identities rooted in blockchain. Hyperledger Indy
(henceforth called Indy), an open-source project of the Linus Hyperledger foundation
provides a decentralized identity implementation including support for a ledger,
DID's implementation and all features related to VCs. It supports the building of
applications that interact with the ledger for decentralized identity management. It is
an open source, identity blockchain platform that permits pluggable components for
the wallet (also referred to as an agent), DID resolver and Indy nodes among other
cryptographic modules.

2. System Actors and Roles: The system includes the agents (henceforth called ’wal-
lets’) of each subject i.e., SL, SO and Buyer. The agents are represented as separate
docker containers for each actor. In the proposed case, the seller acts as the issuer of
VCs to both the buyer and storage operator, while buyer and storage operators both
perform mutual verification of credentials before data exchange. The authentication
module and usage control module within the Storage operator node as shown in
Figure 6.2 are emulated as services within the same docker container.

3. Interaction Details: During system setup, each actor SL, Buyeri and SO j create a
DID and associated key pair using their Indy wallets and register themselves on the
blockchain. This only requires one call for each wallet to the ledger. Later in order
for the SL to issue VC to the Buyeri and SO j, it has to perform some setup. Before
SL can issue VC, it requires completing two VC setup steps after registration on
the blockchain: VC Schema generation and VC Definition generation. VC Schema
generation involves the creation of the schema by SL and sending it to the ledger.
VC definition generation is completed after two interactions with the ledger, first
to get the schema of the VC and later to store the generated VC definition on the
ledger. Now VC creation for issuing can take place and this comprises two calls to
the ledger from the issuer’s (SL) agent.

6.4.2 Evaluation

The experiment was set up on Google Cloud Computing Platform (GCP) running an in-
stance of Linux Ubuntu configured with 16vCPUs, 64 GB RAM and 100 GB HDD storage.
The experiments were performed by varying the number of parameters to understand the
dependency on each of them. The parameters used are the number of blockchain nodes i.e.

151

6.4 Implementation and Evaluation

(N), the number of claims (C) in a VC issued to a buyer and the number of obligations(both
pre and ongoing) imposed in access policy check. The setup is tested by varying the num-
ber of claims in each VC and later by varying the number of blockchain nodes in the Indy
ledger. The wallets are written in Python 3.2. To perform usage-based access control, a
cronJob scheduler [178] was written which interacts with the underlying Unix operating
system. For VC signing and verification EdDSA, particularly Ed25519 [77] is used which
is based on a performance-optimized elliptic curve, Curve25519. Cryptosystems based
on ECC have the advantage of using small key and signature sizes. Hence, they have
low memory and computational resource requirements. For the ZKP system, the API
implementation given in [179] is used. The implementation of this protocol is available
online at Github [157]. To understand the performance of the protocol, tests on each
stage are executed to see how the system performs with variations in the above-discussed
parameters.

Fig. 6.3 Credential Schema details of the fields of an issued credential and Credential Definition
informs the identity and public keys of the issuer

System Setup and Registration: Figure 6.4 presents the system setup time which can be
divided into three steps: issuer (SL) registration, VC schema generation and VC definition
generation as shown in Figure 6.3. These individual setup time and combined setup time
for each claim and node are shown in this figure.

It can be observed that the time taken for SL (issuer) registration remains approximately
the same with an increase in the number of claims (C) for a specific number of nodes;
however, with an increase in the number of nodes (N), the registration time increases. This
is due to the fact that with an increase in the number of blockchain nodes, the transaction
synchronization time among nodes increases. This effect where the real bottleneck is
transaction processing, and not the consensus protocol as elaborately explained in the
work [158]. The transaction synchronization time can be reduced by vertical scaling of the
system i.e. increasing the processing power of each node. A similar pattern is observed
with time taken for VC Schema generation and VC definition generation. It is worth noting
that since the system setup is a one-time process and therefore, it is a feasible overhead

152

6.4 Implementation and Evaluation

Fig. 6.4 System Setup Time with varying number of Indy Nodes(N) and number of claims(C)

and with vertical scaling, performance can be improved. Here, it is important to note
that, N represents the number of Indy nodes which is part of the decentralized identity
infrastructure and it does not represent other blockchain nodes that may be employed to
perform business logic in a data marketplace [159].

Once the system is set up and the issuer(SL) is ready to issue credentials(VC), the time
taken for VC creation and henceforth verification is observed. As shown in Figure 6.5, the
time for VC creation(C) and verification(V) increases with no. of claims. And it also rises
with the number of nodes for the same reason as described above. However, even with the
number of claims being as high as 20, the value remains considerably low, particularly
for VC verification. It is to be noted that while VC issuance happens once for that VC,
verification will happen multiple times so it is an important parameter to understand the
system speed.

Fig. 6.5 Time taken for VC Creation/Verification

153

6.4 Implementation and Evaluation

Table 6.4 Storage Cost: SL/Buyer Wallet [C = No. of claims]

For SL After C=4 C=8 C=12 C=15 C=20
Wallet Creation(B) 258 258 258 258 258
VC Schema Gen.(B) 580 589 633 633 640
VC Definition Gen.(KB) 6.3 8.2 10.7 12.5 15.6
VC creation(KB) 15.9 20.2 26.2 30.4 34.4
For Buyer After
Wallet Creation(B) 261 230 230 230 230
VC Receive(KB) 22.4 28.4 36.7 42.8 51.7

To understand the storage cost of the SL and Buyeri wallets as the VCs are issued, the
values in Table 6.4 are observed. The table represents the values of the wallet storage cost
of the seller and buyer at each stage of VC computation. It is observed that the storage cost
for SL after VC Schema generation and VC definition increases steadily with an increase
in the number of claims however it remains in the order of bytes and KB respectively.
Similarly, the wallet storage cost for SL, increases with an increase in the number of claims
and remains in the order of KB. The storage cost for buyer on receiving VC grows very
reasonably with the number of atomic claims in VC. Even with 20 claims the storage cost
remains in the order of KB. A small variation in the buyer1s wallet creation cost can be
seen in the first two values as it was averaged over a run of multiple trails and does not
indicate any significant deviation in the result.

Fig. 6.6 Time taken for usage-controlled policy evaluation

Authentication and Usage-Controlled access phase: While the setup and registration
process are executed only once, the authentication and usage-controlled phase will be

154

6.5 Security Analysis

executed each time the Buyeri establishes a new session with SO j. The total Computation
Cost for the authentication phase as calculated during the implementation is shown in
Table 6.5. While the time taken for VC computation during registration are dependent
on number of claims in VC generation, others are constant and depend on the type of
operations. Since the time taken by XOR and concatenation operation is negligible, they
are not considered in evaluating computation cost during authentication. The Buyeri incurs
negligible cost during the registration phase and hence not shown in this table. During the
authentication, the Buyeri’s device executes Veri f yEdDSA + ProveZKP operations which
equals to 18.27 ms. While the SO executes operation Veri f yEdDSA+SignEdDSA during the
registration phase which equals to 24.96 ms. For verification of presented VC, the verifying
party (SL/SO) performs the operation Veri f yZKP and it only incurs 1.1 ms of time.

Figure 6.6 illustrates the computation cost incurred during the usage-controlled access
phase as a function of a number of obligations. Figure 6.6 was plotted by observing
the time taken for resource consumption of a constant file size with varying numbers of
ongoing obligations to check during the access phase. The computation cost observed
during authentication in Table 6.5 and time taken for usage-policy evaluation in Figure
6.6 are in the order of ms and µs and hence feasible in a real-world use case with further
operational optimization.

6.5 Security Analysis

In this section, the proposed protocol is thoroughly analysed in terms of security. A
formal security verification is performed using the broadly accepted automated software
validation tool, known as Scyther tool [180]. A security analysis is also carried out by
intuitive reasoning through the non-mathematical (heuristic) approaches to discuss the
most common security threats and vulnerabilities in authentication and access management
protocols and how the proposed work overcomes them in a decentralized setting such as a
data marketplace.

Table 6.5 Computation Cost Independent of VC setup

Phase Buyer SL/SO

Register -
Veri f yEdDSA+

SignEdDSA = 24.98 ms

Authenticate
Veri f yEdDSA+

ProveZKP = 18.27 ms Veri f yZKP = 1.1 ms

SignEdDSA = 10.28 ms; Veri f yEdDSA = 14.7 ms
ProveZKP = 3.57 ms; Veri f yZKP = 1.1 ms

155

6.5 Security Analysis

Fig. 6.7 Role for Seller Sx in SPDL

6.5.1 Formal Security Verification: A simulation study using Scyther
tool

In this section, the proposed protocol’s resilience to different attack vectors in authenti-
cation protocol is assessed using the widely accepted automated software validation tool,
Scyther tool. Through the simulation study using this tool, it is demonstrated that the
proposed scheme is safe against attacks such as impersonation, passive secret disclosure,
man-in-the-middle and replay attacks and hence provides strong authentication.

Scyther [180] is a security tool which can be used for verification, falsification and
analysis of the security protocols. It uses a pattern refinement algorithm to produce an infi-
nite set of traces. The Scyther framework allows to model adversaries in security protocol
analysis, varying between Dolev-Yao style adversaries to other more powerful adversaries.
Also, it supports security notions such as key compromise, impersonation, weak perfect
forward secrecy and adversaries capable of state-reveal queries [180]. The protocol to be
verified is provided to the scyther tool in the form of protocol description written using the
“Security Protocol Description Language” (SPDL). The protocol description comprises a
set of roles. Each role consists of a sequence of events. The events can be send or receive
of terms (security parameters).

156

6.5 Security Analysis

Fig. 6.8 Role for Buyer Bi in SPDL

157

6.5 Security Analysis

Fig. 6.9 Role for Storage Operator So in SPDL

The actors Seller pSxq, Buyer pBiq and StorageOperator pSoq are communicating with
one another in the proposed protocol. They are modeled as roles pSxq , pBiq and pSoq as
shown in Figures 6.7, 6.8 and 6.9 respectively. A role begins with the declaration of the
sending and receiving terms, then the exchange of such terms followed by the security
claims. The security claims are used to model the protocol’s security properties. These
claims are crucial part of the protocol design without with Scyther tool would not know
what is to be verified. The output Table 6.6 confirms that the roles Sx, Bi and So are
reachable. This ensures that non-reachability does not lead to any obvious weakness in the
protocol description.

Our claims on role Sx include (i) aliveness, (ii) weak agreement, (iii) secrecy of nonce
Ni, (iv) non-injective agreement and (v) non-injective synchronisation. Secondly, our
claims on role Bi comprise (i) aliveness, (ii) weak agreement, (iii) secrecy of key ki, (iv)
secrecy of nonce n, (v) non-injective agreement and (vi) non-injective synchronisation.
Finally, our claims on role So are (i) aliveness, (ii) weak agreement, (iii) secrecy of proof
pi, (iv) non-injective agreement and (v) non-injective synchronisation.

From the scyther verification results in Table 6.7, useful insights can be derived. Firstly,
the protocol guarantees the secrecy of nonce n and secret key ki generated by the seller
to establish secure communication with the buyer to complete its registration. Similarly,
the secrecy of nonce Ni is assured hence verifying the transmission of payment details
from buyer to seller is guaranteed. Since similar steps are used for the storage operator
registration, hence, secrecy of similar protocol elements between SL and SO is assured.

158

6.5 Security Analysis

Table 6.6 Scyther Results: Verification of reachability of the roles for Sx, Bi and So
Scyther results: characterize
Claim Status

Proposed Sx Reachable Ok Verified
Bi Reachable Ok Verified
So Reachable Ok Verified

With these guarantees impersonation and passive secret disclosure attacks are prevented.
The claims (Sx, Running, Bi, nnew, ki) and (Bi, Running, nnew, ki) defined under the roles
of Sx and Bi are used in order to specify data agreement between Sx and Bi. The claim
Weak agreement is essential to check if the authentication is successful. The other two
claims non-injective agreement and non-injective synchronisation claims are used to verify
if our protocol is protected against replay and man-in-the-middle attacks.

6.5.2 Informal Security Analysis

In this section, the proposed protocol is analysed against various attack vectors by intuitive
reasoning. It is worth noticing that the informal (non-mathematical heuristic) security
analysis is performed to show the proposed protocol is secure against other attacks that are
not all covered in the previous subsection.
Credential Theft/Stuffing: Attackers often steal credentials to gain unauthorized access
in traditional centralized systems. They gain access to authentication servers to steal user
credentials [17]. This is possible as identifiers and credentials of users are stored in a
single verifying repository. In the proposed protocol, the concept of DIDs and VCs is
leveraged that enable decentralized identity and credential management. The lifecycle of
DID is pinned in the underlying identity blockchain which is essentially a decentralized
database of these records. It is fault-tolerant, enables efficient revocation and is secure to
credential stuffing. The Buyer create and manage their own IDs and do not depend on the
marketplace to maintain them. The users are empowered by the fact they have complete
control of their IDs. While in the proposed protocol, the credentials are still susceptible to
be stolen/leaked, by not having a centralized repository it becomes less attractive to the
attacker and at times not worthy of amount of the effort required.
Inference Attack: Inference attacks are possible by mining information available about
patterns of a user on any platform. By drawing information from their digital footprint,
user activity can be linked and tracked in a marketplace. This leads to loss of privacy and
unsolicited marketing communications. In the proposed protocol, there are two safeguards
against the possibility of an inference attack. Firstly, the buyer always interacts with other
actors in the marketplace using a pseudo-ID PDIDi. For two successive sessions x and

159

6.5 Security Analysis

Scyther results: verify
Claim Status Comments
datamarketplace Sx Proposed,S1 Alive Ok No attacks.

Proposed,S2 Weakagree Ok No attacks.
Proposed,S3 Secret Ni Ok No attacks.
Proposed,S4 Niagree Ok No attacks.
Proposed,S5 Nisynch Ok No attacks.

(a) Verifying Sx’s claims

Scyther results: verify
Claim Status Comments
datamarketplace Bi Proposed,B1 Alive Ok No attacks.

Proposed,B2 Weakagree Ok No attacks.
Proposed,B3 Secret ki Ok No attacks.
Proposed,B4 Secret n Ok No attacks.
Proposed,B5 Niagree Ok No attacks.
Proposed,B6 Nisynch Ok No attacks.

(b) Verifying Bi’s claims

Scyther results: verify
Claim Status Comments
datamarketplace So Proposed,So1 Alive Ok No attacks.

Proposed,So2 Weakagree Ok No attacks.
Proposed,So3 Secret pi Ok No attacks.
Proposed,So4 Niagree Ok No attacks.
Proposed,So5 Nisynch Ok No attacks.

(c) Verifying So’s claims

Table 6.7 Scyther results: verification of claims

160

6.5 Security Analysis

x`1, PDIDx
i ‰ PDIDx`1

i . thus the identities of the users are unlinkable. Secondly, the
Buyer provides a ZKP of the VC to the SO. The SO cannot learn anything about the Buyeri

from the ZKP, and only know the claims against which policy evaluation has to be done.
Thus, an adversary will be unable to link Buyer1s real identities with their pseudo-IDs or
VC.
Reflection Attack: A reflection attack occurs when an attacker tricks a legitimate user into
performing an action by reflecting the user’s own request back to them. To prevent this
attack SL sends a nonce n in MREG2 : thV,Payreq,Ki,nu to the buyer when requesting to
make payment. Later, after completing the payment, buyer uses the unique nonce n shared
by SL to compute hV 2 “ hppaymentID}Ki}n}Niq in MREG2 .
Reply Attack: An adversary may intercept and retransmit messages exchanged be-
tween sender and receiver to get information(payment/data). To prevent it, during buyer
registration when the buyer shares the completed payment details with SL, in MREG3:
{hV 2, paymentID,Ni}, a nonce Ni is included in the message to ensure that the message
is unique. It will allow the SL to verify whether the nonce has been used before. If the
nonce has already been used, the message is rejected, preventing a malicious actor from
registering with the SL.
Man-in-the-middle Attack: In order to prevent MITM attacks, several defence mecha-
nisms have been provided in the protocol. Firstly, strong authentication guarantees are
provided by the usage of VCs. The SO presents its VC to Buyeri which Buyeri verifies.
Then, the Buyer presents the ZKP of its VC signed and issued by SL to the SO ad the SO
verifies it. Only legitimate buyers and legitimate SOs hold the valid VCs, signed with
the private key of the SL, K pr

SL. Therefore, mutual authentication between actors makes it
difficult for an impersonator to replicate the messages/requests. Secondly, since the sellers
and buyers in the network possess unique DID, secured by a public-private key pair, an
attacker cannot inject malicious signed messages.
Sybil Attack: In Sybil attack, a malicious user creates multiple fake identities to gain
control over a significant portion of the network. To prevent this attack there are two
security guarantees provided in the protocol. Firstly, on the SL level, before a buyer can
register with a seller, it needs to present rVCDigIDisK pr

MC
, the VC of their digital identity

issued by the marketplace consortium after eKYC verification. This provides the first
safeguard against the possibility of creating multiple fake buyer profiles on the marketplace.
Secondly, on the SO level, a dynamic buyer revocation is proposed using a cryptographic
accumulator. The marketplace maintains a revocation list and buyers must prove to SO
before starting access that they are not members of this list by providing a non-membership
witness issued by SL.
Privilege Abuse and Escalation: Excessive privilege in access control systems can lead to
its abuse and escalated threats. Authorizing least-privilege access helps in putting a check

161

6.6 Conclusion

on malicious actors who can harm the system if they get in maliciously. It ensures that users
have only the required level of permissions, for the required duration and under required
conditions in order to perform access. Usage-based access control performs ongoing
along with pre-evaluation to determine the applicability of the right to access a certain
resource. By limiting access under specific authorization policy governed by obligations
and conditions, the attack surface (potential entry points for attackers) is reduced. In the
proposed marketplace protocol, if any malicious actor gains access to a data stream hosted
on a storage operator node, the checks in place on an ongoing basis will ensure to stop
access effectively and efficiently.

6.6 Conclusion

In this work, a user-empowered, privacy-aware, authentication and usage-controlled access
protocol for the IIoT data marketplace is proposed. The proposed protocol addresses the
issue of secure and privacy-aware authentication in real-time decentralized trading of IoT
data which is a future reality owing to the massive progress in advanced AI algorithms.
Along with presenting a secure and privacy-aware mutual authentication using DIDs
and VCs, the protocol also implements usage-controlled access of data streams being
accessed by the buyer from storage operator. The protocol is implemented to test its
feasibility in terms of computation and storage performance. It can be observed that
although the setup of such a protocol can be a bit expensive for the first time, its successive
use for authentication and access control is computationally inexpensive. In addition,
the security guarantees of using decentralized identifiers and credentials that can support
privacy-preserving data trading support such a protocol.

162

Chapter 7

Conclusion and Future Work

This is the final chapter of this dissertation. It presents the conclusion of the work presented
in this dissertation. The novel contribution of this dissertation is summarized with details
on how they were achieved. Finally, this chapter explores the future work directions that
arise as improvements over the work done as part of this dissertation.

In spite of the extensive use of the Internet-of-Things (IoT) and its indisputable ad-
vantages, multiple challenges still remain open. Clearly, some aspects of the IoT require
further research to reach their full potential. One of those aspects is to overcome the
barriers of boundaries, platforms and silos in terms of communication and data exchange.
IoT services are undergoing a massive overhaul in terms of their operational pattern and
real-world use cases. With this appears unique forms of threats that require a new approach
to problem-solving. Without it, the applicability of the IoT for particular scenarios would
remain incomplete.

This dissertation aims to explore the challenges in IoT networks like scalability, inter-
operability, security and ultimately centralized nature of operations in identity and access
management. Due to the large scope of this research area, this dissertation concentrates on
achieving this in four specific categories. The first category relates to understanding and
exploring state-of-the-art solutions in terms of how identities in IoT networks are assigned,
managed, utilised and maintained over their life cycle. Despite the fact that solutions for
these operations already exist in the Internet domain, the limitations of the IoT technology
raise new challenges, making most of the existing solutions not fully compatible with the
IoT scenarios. Having new solutions that consider unique IoT limitations and operation
patterns would increase the connectivity of IoT technologies to the extent that devices
belonging to different infrastructures could communicate indistinguishably with each other.
In accordance with these limitations, we implemented a platform-agnostic mechanism that
enables the communication and connectivity of IoT devices and machines beyond identity
silos.

163

The second category consists of achieving a mechanism to uniquely identify IoT
devices and assign digitally verifiable attributes linked to these identifiers for secure
communication. With current IoT device identifiers, several challenges exist such as
reduplication, repeated IDs, weak passwords etc which result in weak authentication and
authorization mechanisms. Honeypot databases retaining identity data and common root
of trust to derive identifiers impede scalability and are potential attack vectors. Hence,
we design and implement a decentralized identity-managing framework that is capable
of managing a large scale of IoT devices. The framework implements a unique way of
managing identity and attributes to prevent the formation of a single large collection of
data resources.

The third category addresses the issue of fragmented IoT data silos held by individual
organizations barring them from re-using and sharing the data for the fear of security,
privacy, lack of transparency and unfair payment settlement. The majority of data-selling
platforms are under the control of large multinational corporations with no transparency
between buyer and seller in terms of payment details, listing, data discovery and storage.
Siloed identity verticals, unauthorized malicious entities posing as data producers, central-
ized control of the platform and fear around equitable payment settlement are challenges
that have been addressed in this category. To this end, we designed and implemented a
decentralized data marketplace for trading IoT data that relies on blockchain technology to
ensure fairness in trading activities, trust in the network and secure exchange of IoT data
across different silos.

Finally, the fourth category describes the challenges associated with static authenti-
cation techniques and the lack of granularity in access control mechanisms in a multi-
stakeholder environment. Traditional authentication and authorization techniques are
designed for a homogeneous single-owner environment in which subjects from the same
domain trust each other and share resources. Additionally, the traditional authentication
and access control mechanisms are one-time off and only provide security at the point of
entry. Extended resource access monitoring is crucial to provide secure access to shared
IoT resources.

In summary, we provide solutions to all four categories in terms of enhancing the
identity and access management techniques in modern-day IoT use cases that are more
decentralized, and distributed in terms of shared control of resources and demand scalable
solutions. Moreover, all our proposed solutions have been thoroughly evaluated and, in
some cases, compared with the traditional state-of-the-art solutions, thereby showing their
feasibility.

164

7.1 Contributions

7.1 Contributions

In Section 1.5, an overview of the contributions made in this dissertation is presented. In
this Section, we further elaborate on the contributions made and the novel work achieved
through each of them. Therefore, the following contributions have been made to this
dissertation:

• A novel smart-contract enabled framework for identity and access management
of distributed IoT networks [25]: This work describes and implements a novel
decentralized framework for managing identity and access management policies
for IoT. The proposed framework is a new blockchain smart contract-enabled and
decentralized life-cycle and access management system. It leverages the peer-to-
peer, content-addressable distributed file system known as InterPlanatery FileSystem
(IPFS) as a distributed registry of device resources. These concepts enhance the
scalability and throughput of the system. A framework is implemented and experi-
ments are performed. This concept performed significantly well in comparison to the
centralized state-of-the-art solutions, achieving a throughput of 930 requests served
per second by a single PT G with a latency of 3 msec at MQTT Q=1. The effect of
This work is the first to consider a parent-child smart-contract-based cascading call
design for identity and access management in IoT.

• A decentralized digital identity framework extended using self-sovereign iden-
tity model [26]: This work improves the previously proposed scheme. The learning
from previous work is mapped to the recent standard of W3C’s Self-Sovereign
Identity (SSI). In this work, the distributed ledger technology is used as an enabler
of portability, interoperability and secure verification between the subjects. The
standards of decentralized identifiers (DIDs) and verifiable credentials (VCs) in
the context of IoT are introduced in this work as they significantly improve the
management of device identity and its associated credentials. The novel technique of
creating and verifying cryptographically verifiable device identities and credentials
is achieved in the order of 0.2 sec and 0.3 sec respectively. The solution is shown to
overcome state-of-the-art challenges associated with scalability, interoperability and
portability of device credentials.

• A fair, secure and trusted decentralized data marketplace enabled by blockchain
[22]: A novel platform is designed and developed integrating the concepts from the
previous contributions. The proposed scheme designs a decentralized digital IoT
data marketplace that overcomes the challenge of obtaining high-quality data for
novel use cases like research and training AI models etc. The platform leverages a
decentralized data streaming network to host IoT data in a reliable and fault-tolerant

165

7.2 Key Insights

manner. The platform ensures fair trading, data storage and delivery in a privacy-
preserving manner and trust-metric calculation for actors in the network. To study
the feasibility of the proposed platform, an open-source library is developed using
Hyperledger Fabric and a data network layer built on VerneMQ. The concept of
trust in a decentralized marketplace was studied and how it can be quantified for
such a marketplace was explored. The library is tested and results are analysed for
throughput, overheads and scalability.

• A Privacy-Aware Authentication and Usage-Controlled Access Protocol for IIoT
Decentralized Data Marketplace: While working on the previous contribution,
areas of improvement were noted in collaborative IoT operations such as the IoT
data marketplace. This scheme integrates learning from previous schemes to propose
a novel architecture for a context-aware continuous authentication and usage control
system for a collaborative IoT ecosystem. This scheme takes into account the
challenges of legacy security models that are not designed to account for granular
access control levels and fail to detect real-time threats in such collaborative spaces.
The platform ensures real-time access monitoring and instant revocation in case of
malicious or unauthorized behaviour. The platform leverages a decentralized identity
infrastructure for issuing credentials to devices in a decentralized and fault-tolerant
manner. To study the feasibility of the proposed platform, an open-source library is
developed using Hyperledger Indy and Linux Utility-Cron Job to design a UCON
system. The library is tested and results are analysed for time and storage cost,
overheads and scalability. This is the first use of VCs and usage control for the
purpose of continuous authentication.

7.2 Key Insights

At the beginning of this dissertation, we outlined the key problem statements that the
research contribution should target in order to facilitate its easy adoption. All these features
have been implemented by all the solutions defined in this dissertation.
Fragmented Identity Silos plays a crucial motivation in all the proposed solutions. Al-
most all IoT enterprises follow a set nomenclature strategy based on their characteristic
requirement however, this acts as a constraint for cross-domain communication. Since
device identifiers are only valid in their unique environment, it renders them non-useful
in other premises. These fragmented identity silos hold back the overall potential of
the Internet of Things. This challenge is recognized in this dissertation and addressed
specifically in Publication I and Publication IV. Proposed solutions in these publications
address this issue and design solutions that relinquish vertical fragmented identity silos

166

7.2 Key Insights

between communicating parties. As a result, IoT devices have a decentralized root of trust
to exchange and validate communication requests. To the extent possible, the specific
operations related to the constrained nature of such devices have remained unchanged in
our systems.

Along the same lines, the proposed solutions also needed to focus on issues with device
identifiers. This key requirement is linked to the fact that default username-password
combinations, weak passwords and non-standard identifiers for IoT devices are the root
cause of a large proportion of attacks on IoT networks. Globally unique identifiers are
favourable for both scalability issues and security challenges that ultimately lead to stronger
authentication guarantees. Similar to the previous case, the unique identifier characteristic
in our designed systems has been achieved by not modifying IoT devices. Consequently,
the proposed solutions in this dissertation place the minimum possible load on the IoT
devices which has been reflected in the presented results. Publications II and IV specifically
present solutions to this particular challenge in detail.

Honeypot Databases in IDAMS are a result of siloed identity verticals that exist in
IoT industry today. Various IoT solutions hosted on clouds today maintain a centralized
directory of identifiers and other sensitive information related to IoT devices onboarded in
the network. These databases of sensitive device information are lucrative attack targets
for malicious entities. If hacked, these directories can potentially harm the security and
privacy of businesses. With the projected number of IoT devices estimated to be in the
range of billions, there is no doubt that this challenge will only augment. Therefore, this
dissertation pays high importance to design decentralized IoT device identity management
solution that forgo centralized ID databases. With that goal in mind, particular attention
was paid to the design of our solutions to provide an adequate level of decentralization. We
leverage distributed ledger technology and model it for specific IoT scenarios. Along with
that experimental evaluations conducted in this dissertation confirm that our solutions can
support large numbers of IoT devices. The majority of our solutions have been designed to
support decentralization, horizontal along with vertical scaling and scalability to avoid the
formation of honeypot repositories.

Interoperability is the core concept of this dissertation. Right from the first contribu-
tion to the last one, interoperability is demonstrated in each contribution, particularly in
Publication II, Publication III and Publication IV. IoT by nature is a distributed technology
where each element in the system plays a distinct but specific role. Interoperability can
fundamentally support fault tolerance and availability for this technology. Interoperability
can address some of the new challenges that the evolving IoT landscape presents, some of
which have been addressed in this dissertation; communication/coordination methods for
globally managing resources related to identity and access information (addressed in Publi-
cation II), authorization methods performed on a global scale for data trading (Publication

167

7.2 Key Insights

III), and methods to share digital device attributes globally and unambiguously in case
of a shared and continuous monitoring environment (Publication IV). This dissertation
provides solutions to the interoperability-related challenges that we have considered to be
relevant to build up the future of IoT.

Scalability is an advantageous characteristic of IoT networks, particularly in IIoT,
where the scale of instalments is massive as compared to home IoT instalments. With
further growth predicted, there is no doubt about the high importance of creating identity
management solutions that scale well with number of IoT devices. With that as the
motivation, IAM scalability is of particular interest in this work. In a technology like IoT
where ad-hock communications are frequently established, ensuring throughput with rising
connection requests is extremely critical. The most notable case is the solution presented in
Publications I, III and IV. Publication I addresses this in terms of managing simultaneous
access requests of shared resources and studying the behaviour of the framework with an
increase in the load. Publication III extrapolates the previous work on a wider scale with
a platform acting as an intermediary to divert these data access requests. Publication IV
addresses and explores the scalability in a distributed system where granular monitoring of
access requests is carried out in a continuous mode.

A new set of Peer-to-Peer Services in the IoT domain are emerging such as point-to-
point vehicular communication for payments, charging, data exchange and authentication-
based services. New technologies such as IoT relay beacons, robotic machines, and
connected vehicles, which are developed under the umbrella of IoT engage in minimal
but frequent data exchange. Therefore, such services exchange in frequent and often
unbounded (in terms of security boundary) exchange of authentication credentials, thus
portability and interoperability of authentication mechanisms are essential. In Publication
III and Publication IV, such peer-to-peer applications are discussed when IoT devices
interact with other devices or online services to exchange data.

Lastly, Access Control in IoT networks is a critical part of device management and
ensures the safety and security of the network. A heterogeneous IoT system that can handle
a large number of simultaneous requests for resource access is essential. The traditional
access control methodologies originally designed for the Internet made their way to IoT,
hence they were either too verbose or too heavy for IoT devices. Also, one-time access
control techniques like Access Control Lists (ACLs) are susceptible to insider attacks.
Granular access control with continuous monitoring of access rights as a function of usage
performed can vastly enhance the security of the systems by stopping malicious actors
from causing large-scale damage at the first hint of suspicious activity. On this basis,
the solution described in Publication IV takes into account the nature of continuous and
attribute-based access control of resources.

168

7.3 Future Work Directions

In conclusion, this dissertation focuses on building solutions with all these characteris-
tics in mind. In this respect, all of these characteristics have undoubtedly contributed to
creating decentralized and scalable solutions in the four contributions categories described
in this chapter.

7.3 Future Work Directions

After studying and researching about various drawbacks of centralized identity and access
management techniques for resource constrained devices in various setup, this dissertation
explored the prospect of designing a decentralized, p2p architectural framework for such
devices. In the process, we explored the use of distributed ledger technology for identity
and access management for IoT devices. We also expanded the use of Self-Sovereign
Identity (SSI) for IoT devices by integrating them in novel contemporary use-cases. IoT
data ownership has long been a challenge and with IoT data being traded, it has given
new opportunity to device owners to receive economic incentives. Subsequently, this
dissertation explores the access control challenges in a collaborative multi stakeholder IoT
environment. Network boundaries overlap and frequent switching of networks should not
bar secure authentication and access control techniques.

While this dissertation touches on aforementioned areas, there are still topics worth
discussing beyond the focus of this dissertation. In particular, this dissertation mainly
focuses on the following research areas: decentralized identity management, decentralized
and granular access management, a decentralised data trading platform and the scalability
of these proposed solutions. Altogether, these aspects are of vital importance for the
modern development of IoT. Without proper solutions to the challenges represented in
these categories, the IoT would inevitably face hindrance in its adoption rate.

However, there are other major challenges in the IoT landscape. The following de-
scribes the future work that would further enhance the contributions of this thesis:

• Interoperability among various distributed ledger technologies to support a truly
decentralized ecosystem that incorporates various functionalities like payment, de-
velopment of oracle smart-contracts, trust metric calculation and digital identity. For
e.g., a DLT for identity platform can communicate with another that supports a data
marketplace and thus can settle payments after verification of identities.

• Lightweight VCs for IoT devices can be another potential future work. VCs used in
this dissertation are suitable for IoT devices that can support medium code footprint,
however for very resource constraint IoT devices lightweight VCs will be appropriate.
They can ensure that a large range of IoT devices can be included in the network
that can authenticate via VCs issued to them.

169

7.3 Future Work Directions

• Another area that can be taken up as future work is designing equitable payment
methodologies between the two parties in a decentralized data marketplace presented
in this dissertation. The parties can agree to transact in either cryptocurrencies/native
tokens or existing payment methods. Crypto-tokens can also act as an incentive
mechanism for early adopters of the platform. Designing a payment layer over such
a system architecture can be one of the future works. Asset tokenization is a fast
growing field and can see adoption in fabrication and industrial spaces.

• Yet another challenge in a data marketplace is to put a check on the external sharing
of platform IoT data in the long run. For this, game theory approaches can be
taken to design, better pricing models and terms of data exchange. In the proposed
work, we have proposed a basic incentivization mechanism, in future works, more
robust and theoretically tested schemes can be designed to make unfair transactions
economically unattractive.

• In the last piece of work in this dissertation we propose some future work directions.
One challenge that can be taken up as a potential future work is to devise a self-
learning algorithm that can be based on machine learning to better understand the
functionalities of different mutable attributes and how they affect the outcome of
authorization. This will help design better continuous authorization policies. Yet
another direction of work can be developing as a federated continuous authentication
model that takes into account the capabilities of different types of IoT devices and
sensors to authenticate subjects in real-time.

In general, we believe that all these directions represent potential points of improve-
ment for IoT’s further development and will help IoT keep pace with the new emerging
technological challenges. All of them are recommended for future research.

170

References

[1] Energy IoT. https://www.energyiot.co.th. [Online: Accessed 15-March-2021].

[2] Cisco IoT. https://www.cisco.com/c/en_in/solutions/internet-of-things/overview.
html. [Online: Accessed 15-March-2021].

[3] Philips Innovation. https://www.innovationservices.philips.com/looking-expertise/
electronic-systems-iot/. [Online: Accessed 15-March-2021].

[4] Thinger.IO. https://www.thinger.io. [Online: Accessed 15-March-2021].

[5] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Du-
rumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis, D. Kumar, C. Lever, Z. Ma,
J. Mason, D. Menscher, C. Seaman, N. Sullivan, K. Thomas, and Y. Zhou. Un-
derstanding the mirai botnet. In Proceedings of the 26th USENIX Conference on
Security Symposium, page 1093–1110. USENIX Association, 2017.

[6] Eranga Bandara, Xueping Liang, Peter Foytik, Sachin Shetty, and Kasun De Zoysa.
A blockchain and self-sovereign identity empowered digital identity platform. In
2021 International Conference on Computer Communications and Networks (IC-
CCN), pages 1–7, 2021.

[7] Bruno Cremonezi, Alex B. Vieira, José Nacif, Edelberto Franco Silva, and Michele
Nogueira. Identity management for internet of things: Concepts, challenges and
opportunities. Computer Communications, 224:72–94, 2024.

[8] H. Choi, J. Song, and K. Yi. Brightics-iot: Towards effective industrial iot platforms
for connected smart factories. In 2018 IEEE International Conference on Industrial
Internet (ICII), pages 146–152, 2018.

[9] Towards a data economy: An enabling framework. [Online]: https://www.weforum.
org/whitepapers/towards-a-data-economy-an-enabling-framework. [Accessed: Jul-
2023].

[10] J. Zhang, Y. Yang, X. Liu, and J. Ma. An efficient blockchain-based hierarchical
data sharing for healthcare internet of things. IEEE Transactions on Industrial
Informatics, 18(10):7139–7150, 2022.

[11] “to monetize and acquire iot data”. [Online]. Available: https://www.dawex.com/
en/monetization-data-iot/. [Accessed: 04-March-2021].

[12] Data: The New Asset Class. https://oceanprotocol.com/. [Online: Accessed Sept-
2023].

171

https://www.energyiot.co.th
https://www.cisco.com/c/en_in/solutions/internet-of-things/overview.html
https://www.cisco.com/c/en_in/solutions/internet-of-things/overview.html
https://www.innovationservices.philips.com/looking-expertise/electronic-systems-iot/
https://www.innovationservices.philips.com/looking-expertise/electronic-systems-iot/
https://www.thinger.io
https://www.weforum.org/whitepapers/towards-a-data-economy-an-enabling-framework
https://www.weforum.org/whitepapers/towards-a-data-economy-an-enabling-framework
https://www.dawex.com/en/monetization-data-iot/
https://www.dawex.com/en/monetization-data-iot/
https://oceanprotocol.com/

References

[13] M. S. Bargh, M. Vink, and S. Choenni. On using obligations for usage control in
joining of datasets. In Information Systems Security and Privacy, pages 173–196,
Cham, 2018. Springer International Publishing.

[14] “Inside the infamous Mirai IoT Botnet: A retrospec-
tive analysis,” Dec 2017. https://blog.cloudflare.com/
inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/. [Online: Accessed
15-March-2021].

[15] D. Khosrowshahi. ”2016 data security incident“. [Online]. Available: https://www.
uber.com/newsroom/2016-data-incident/. [Accessed: 21-Dec-2021].

[16] Xiaoyang Zhu and Youakim Badr. Identity management systems for the internet of
things: A survey towards blockchain solutions. Sensors, 18(12), 2018.

[17] ”cybersecurity incident - information for uk consumers“. Available: https://www.
equifax.co.uk/incident.html. [Accessed: 21-Dec-2021].

[18] Arne Bröring, Stefan Schmid, Corina-Kim Schindhelm, Abdelmajid Khelil, Se-
bastian Käbisch, Denis Kramer, Danh Le Phuoc, Jelena Mitic, Darko Anicic, and
Ernest Teniente. Enabling iot ecosystems through platform interoperability. IEEE
Software, 34(1):54–61, 2017.

[19] E. Bertin, D. Hussein, C. Sengul, and V. Frey. Access control in the internet of
things: a survey of existing approaches and open research questions. Annals of
Telecommunications, 74(7):375–388, Aug 2019.

[20] Using role-based access control. https://www.ibm.com/docs/en/mapms/1_cloud?
topic=devices-using-role-based-access-control. [Online: Accessed Aug-2023].

[21] J. Park and R. Sandhu. The uconabc usage control model. ACM transactions on
information and system security (TISSEC), 2004.

[22] Akanksha Dixit, Arjun Singh, Yogachandran Rahulamathavan, and Muttukrishnan
Rajarajan. Fast data: A fair, secure and trusted decentralized iiot data marketplace
enabled by blockchain. IEEE Internet of Things Journal, pages 1–1, 2021.

[23] A. Dixit. https://github.com/akankshadixit/.

[24] Gordana Dodig-Crnkovic. Scientific methods in computer science. 2002.

[25] Akanksha Dixit, Waqar Asif, and Muttukrishnan Rajarajan. Smart-contract enabled
decentralized identity management framework for industry 4.0. In IECON 2020
The 46th Annual Conference of the IEEE Industrial Electronics Society, pages
2221–2227, 2020.

[26] Akanksha Dixit, Max Smith-Creasey, and Muttukrishnan Rajarajan. A decentralized
iiot identity framework based on self-sovereign identity using blockchain. In 2022
IEEE 47th Conference on Local Computer Networks (LCN), pages 335–338, 2022.

[27] Akanksha Dixit, Bruno Bogaz Zarpelao, Max Smith-Creasey, and Muttukrishnan
Rajarajan. A privacy-aware authentication and usage-controlled access protocol for
iiot decentralized data marketplace. Computers Security, 146:104050, 2024.

172

https://blog.cloudflare.com/ inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/
https://blog.cloudflare.com/ inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/
https://www.uber.com/newsroom/2016-data-incident/
https://www.uber.com/newsroom/2016-data-incident/
https://www.equifax.co.uk/incident.html
https://www.equifax.co.uk/incident.html
https://www.ibm.com/docs/en/mapms/1_cloud?topic=devices-using-role-based-access-control
https://www.ibm.com/docs/en/mapms/1_cloud?topic=devices-using-role-based-access-control
https://github.com/akankshadixit/

References

[28] The ” Only“ Coke Machine on the Internet. https://www.cs.cmu.edu/~coke/history_
long.txt. [Online: Accessed 15-March-2021].

[29] Jamali M., B. Bahrami, A. Heidari, P. Allahverdizadeh, and F. Norouzi. IoT Archi-
tecture, pages 9–31. Springer International Publishing, Cham, 2020.

[30] N. M. Kumar and P. K. Mallick. The internet of things: Insights into the building
blocks, component interactions, and architecture layers. Procedia Computer Science.
International Conference on Computational Intelligence and Data Science.

[31] Z. Shelby, K. Hartke, and C. Bormann. The Constrained Application Protocol
(CoAP).” RFC 7252, June 2014. https://tools.ietf.org/html/rfc7252. [Online: Ac-
cessed 15-March-2021].

[32] U. Hunkeler, H. L. Truong, and A. Stanford-Clark. Mqtt-s — a publish/subscribe
protocol for wireless sensor networks. In 2008 3rd International Conference on
Communication Systems Software and Middleware and Workshops (COMSWARE
’08), pages 791–798, 2008.

[33] Lightweight machine to machine technical specification: Core v1.1.1,” tech. rep.,
Open Mobile Alliance OMA, June 2019. . [Online: Accessed 15-March-2021].

[34] A. Bhargav-Spantzel, A. C. Squicciarini, and E. Bertino. Establishing and protecting
digital identity in federation systems. In Proceedings of the 2005 Workshop on
Digital Identity Management, DIM ’05, page 11–19, New York, NY, USA, 2005.
Association for Computing Machinery.

[35] M. D. Guel. A framework for choosing your next generation authentication/autho-
rization system. In Information Security Technical Report, volume 7, pages 63–78,
2001.

[36] D. Recordon and D. Reed. Openid 2.0: A platform for user-centric identity manage-
ment. In Proceedings of the Second ACM Workshop on Digital Identity Management,
DIM ’06, page 11–16, New York, NY, USA, 2006. Association for Computing Ma-
chinery.

[37] H.Aftab, K. Gilani, J. Lee, L. Nkenyereye, S. Jeong, and J. Song. Analysis of
identifiers in iot platforms. In Digital Communications and Networks. Elsevier BV,
2019.

[38] M.Abu-Elkheir, M. Hayajneh, and N. Ali. Data management for the internet of
things: Design primitives and solution. page 15582–15612. Sensors, 2013.

[39] Identifiers in Internet of Things (IoT) Version 1.0, AIOTI WG03–loT
Standardisation”. Available:https://euagenda.eu/upload/publications/
identifiers-in-internet-of-things-iot.pdf. [Online: Accessed 15-March-2021].

[40] ETSI, GS LTN 002 V1.1.1. „ Low Throughput Networks (LTN); Functional Archi-
tecture, September 2014. http://www.etsi.org/deliver/etsi_gs/LTN/001_099/002/01.
01.01_60/gs_LTN002v010101p.pdf. [Online: Accessed 15-March-2021].

[41] IEEE, IEEE 802.3, Standard for Ethernet“, 2015. http://ieeexplore.ieee.org/
document/7428776/. [Online: Accessed 15-March-2021].

173

https://www.cs.cmu.edu/~coke/history_long.txt
https://www.cs.cmu.edu/~coke/history_long.txt
https://tools.ietf.org/html/rfc7252
 Available: https://euagenda.eu/upload/publications/identifiers-in-internet-of-things-iot.pdf
 Available: https://euagenda.eu/upload/publications/identifiers-in-internet-of-things-iot.pdf
http://www.etsi.org/deliver/etsi_gs/LTN/001_099/002/01.01.01_60/ gs_LTN002v010101p.pdf
http://www.etsi.org/deliver/etsi_gs/LTN/001_099/002/01.01.01_60/ gs_LTN002v010101p.pdf
 http://ieeexplore.ieee.org/document/7428776/
 http://ieeexplore.ieee.org/document/7428776/

References

[42] IETF, RFC 791, Internet Protocol - DARPA Internet Program Protocol Specifica-
tion“, 1981. https://tools.ietf.org/html/rfc791. [Online: Accessed 15-March-2021].

[43] IETF, RFC 4291, IP Version 6 Addressing Architecture”. Available:https://tools.
ietf.org/html/rfc4291. [Online: Accessed 15-March-2021].

[44] D. Hardt. “The OAuth 2.0 Authorization Framework.” RFC 6749, Oct. 2012.
Available:https://rfc-editor.org/rfc/rfc6749.txt. [Online: Accessed 15-March-2021].

[45] V. Mladenov, C. Mainka, J. Krautwald, F. Feldmann, and J. Schwenk. “On the secu-
rity of modern single sign-on protocols: Openid connect 1.0,” CoRR abs/1508.04324,
2015.

[46] L. Seitz, S. Gerdes, G. Selander, M. Mani, and S. Kumar. “Use Cases for Authen-
tication and Authorization in Constrained Environments.” RFC 7744, Jan. 2016.
Available:https://rfc-editor.org/rfc/rfc7744.txt. [Online: Accessed 15-March-2021].

[47] S. R. Moosavi, T. N. Gia, E. Nigussie A. M. Rahmani, S. Virtanen, J. Isoaho,
and H. Tenhunen. Sea : A secure and efficient authentication and authorization
architecture for iot-based healthcare using smart gateways. In Procedia Computer
Science, volume 52, page 452–459, 2015.

[48] C.-Y. Chang, J.-C. Chen C.-H. Kuo, and T.-C. Wang. Design and implementation of
an iot access point for smart home. In Applied Sciencese, volume 5, page 1882–1903,
2015.

[49] Mobasshir M. Progressive researches on iot security: An exhaustive analysis from
the perspective of protocols, vulnerabilities, and preemptive architectonics. Journal
of Network and Computer Applications, 168:102761, 2020.

[50] P2P Weakness Exposes Millions of IoT Devices. https://krebsonsecurity.com/2019/
04/p2p-weakness-exposes-millions-of-iot-devices/. [Online: Accessed Aug-2023].

[51] K. Cameron. The laws of identity. [Available]: https://www.identityblog.com/
stories/2005/05/13/TheLawsOfIdentity.pdf. [Accessed: 21-Dec-2021].

[52] Frederico Schardong and Ricardo Felipe Custódio. Self-sovereign identity: A
systematic map and review. CoRR, abs/2108.08338, 2021.

[53] Did specification registries. [Available]: https://w3c.github.io/did-spec-registries/
#did-methods. [Accessed: 24-Sept-2020].

[54] BTCR DID Method. https://w3c-ccg.github.io/didm-btcr/#continuation. [Online:
Accessed Aug-2023].

[55] Sovrin DID Method Specification. https://sovrin-foundation.github.io/sovrin/spec/
did-method-spec-template.html. [Online: Accessed Aug-2023].

[56] Decentralized Identity Document (DID Document). https://developer.uport.me/pki/
diddocument. [Online: Accessed Aug-2023].

[57] Verifiable credentials use cases. [Online]. Available: https://www.w3.org/TR/
vc-use-cases/. [Accessed: 21-Dec-2021].

174

 https://tools.ietf.org/html/rfc791
 Available: https://tools.ietf.org/html/rfc4291
 Available: https://tools.ietf.org/html/rfc4291
 Available: https://rfc-editor.org/rfc/rfc6749.txt.
 Available: https://rfc-editor.org/rfc/rfc7744.txt
https://krebsonsecurity.com/2019/04/p2p-weakness-exposes-millions-of-iot-devices/
https://krebsonsecurity.com/2019/04/p2p-weakness-exposes-millions-of-iot-devices/
https://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf
https://www.identityblog.com/stories/2005/05/13/TheLawsOfIdentity.pdf
https://w3c.github.io/did-spec-registries/#did-methods
https://w3c.github.io/did-spec-registries/#did-methods
https://w3c-ccg.github.io/didm-btcr/#continuation
https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-template.html
https://sovrin-foundation.github.io/sovrin/spec/did-method-spec-template.html
https://developer.uport.me/pki/diddocument
https://developer.uport.me/pki/diddocument
https://www.w3.org/TR/vc-use-cases/
https://www.w3.org/TR/vc-use-cases/

References

[58] K. Christidis and M. Devetsikiotis. Blockchains and smart contracts for the internet
of things. IEEE Access, 4:2292–2303, 2016.

[59] ”ethereum“. [Available]: https://ethereum.org/en/. [Accessed: 21-Dec-2021].

[60] Hyperledger Fabric. https://www.hyperledger.org/projects/fabric. [Online: Accessed
Aug-2023].

[61] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. Available:
http://www.bitcoin.org/bitcoin.pdf,2009. [Online: Accessed 10-Nov-2021].

[62] M. Conti, G. Kumar, P. Nerurkar, R. Saha, and L. Vigneri. A survey on security
challenges and solutions in the iota. Journal of Network and Computer Applications,
203:103383, 2022.

[63] Hedera. [Available]: https://hedera.com. [Accessed: 21-Dec-2021].

[64] B. K. Mohanta, S. S. Panda, and D. Jena. An overview of smart contract and use
cases in blockchain technology. In 2018 9th International Conference on Computing,
Communication and Networking Technologies (ICCCNT), pages 1–4, 2018.

[65] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.

[66] T. M. Fernández-Caramés and P. Fraga-Lamas. A review on the use of blockchain
for the internet of things. IEEE Access, 6:32979–33001, 2018.

[67] V. Buterin. “ethereum: A next-generation smart contract and decentralized appli-
cation platform,” tech. rep. ethereum foundation, jan 2014. [Accessed: 04-March-
2021].

[68] X. Fu, H. Wang, and P. Shi. A survey of blockchain consensus algorithms: mech-
anism, design and applications. In Sci. China Inf. Sci., volume 64, pages 1–4,
2021.

[69] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of
faults. J. ACM, 27(2):228–234, apr 1980.

[70] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, jul 1982.

[71] PROOF-OF-STAKE (POS). https://ethereum.org/en/developers/docs/
consensus-mechanisms/pos/. [Online: Accessed Aug-2023].

[72] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OsDI,
volume 99, pages 173–186, 1999.

[73] G. Wood. “ethereum: A secure decentralised generalised transactionledger,” tech.
rep., ethereum foundation, 2014. [Accessed: 04-March-2021].

[74] ”hyperledger indy“. [Available: https://www.hyperledger.org/use/hyperledger-indy.
[Accessed: 21-Jan-2022].

[75] Decentralized Storage. https://ethereum.org/en/developers/docs/storage/. [Online:
Accessed 25-Nov-2022].

175

https://ethereum.org/en/
https://www.hyperledger.org/projects/fabric
 Available: http://www.bitcoin.org/bitcoin.pdf, 2009
 Available: http://www.bitcoin.org/bitcoin.pdf, 2009
https://hedera.com
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://www.hyperledger.org/use/hyperledger-indy
https://ethereum.org/en/developers/docs/storage/

References

[76] Ipfs powers the distributed web. [Available]: https://docs.ipfs.tech/concepts/. [Ac-
cessed: 14-Oct-2020].

[77] ”eddsa and ed25519“. [Online]: https://cryptobook.nakov.com/digital-signatures/
eddsa-and-ed25519. [Accessed: Jul-2023].

[78] J. Groth. On the size of pairing-based non-interactive arguments. In Advances in
Cryptology – EUROCRYPT 2016, pages 305–326, 2016.

[79] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to effi-
cient revocation of anonymous credentials. In Advances in Cryptology — CRYPTO
2002, pages 61–76, 2002.

[80] J. Li, N. Li, and R. Xue. Universal accumulators with efficient nonmembership
proofs. In Proceedings of the 5th International Conference on Applied Cryptography
and Network Security, page 253–269, 2007.

[81] L. D. Xu, W. He, and S. Li. Internet of things in industries: A survey. IEEE
Transactions on Industrial Informatics, 10(4):2233–2243, 2014.

[82] H. Choi, J. Song, and K. Yi. Brightics-iot: Towards effective industrial iot platforms
for connected smart factories. In 2018 IEEE International Conference on Industrial
Internet (ICII), pages 146–152, 2018.

[83] B. Bencsáth, G. Pék, L. Buttyán, and M. Félegyházi. Duqu: Analysis, detection,
and lessons learned. ACM European Workshop on System Security (EuroSec), 2012.

[84] P. Mahalle, S. Babar, R.N. Prasad, and R. Prasad. Identity management framework
towards internet of things (iot): Roadmap and key challenges. In Re- cent Trends in
Network Security and Applications. 2010, pages 430–439, 2010.

[85] A. Reyna, C. Martín, J. Chen, E. Soler, and M. Díaz. On blockchain and its
integration with iot. challenges and opportunities. Future Generation Computer
Systems, 88:173 – 190, 2018.

[86] “block”. [Online]. Available: https://ethereum.org/en/developers/docs/blocks/. [Ac-
cessed: 30-July-2024].

[87] “algorand parameter tables”. [Online]. Available: https://developer.algorand.org/
docs/get-details/parameter_tables/. [Accessed: 30-July-2024].

[88] J. Benet. IPFS - content addressed, versioned, P2P file system. CoRR, abs/1407.3561,
2014.

[89] S. Horrow and A. Sardana. Identity management framework for cloud based internet
of things. Association for Computing Machinery, 2012.

[90] U. Habiba, R Masood, M. A. Shibli, and M. A. Niazi. Cloud identity management
security issues & solutions: a taxonomy. Complex Adaptive Systems Modeling,
2(1):5, 2014.

[91] O. Novo. Blockchain meets iot: An architecture for scalable access management in
iot. IEEE Internet of Things Journal, 5(2):1184–1195, April 2018.

176

https://docs.ipfs.tech/concepts/
https://cryptobook.nakov.com/digital-signatures/eddsa-and-ed25519
https://cryptobook.nakov.com/digital-signatures/eddsa-and-ed25519
https://ethereum.org/en/developers/docs/blocks/
https://developer.algorand.org/docs/get-details/parameter_tables/
https://developer.algorand.org/docs/get-details/parameter_tables/

References

[92] A. S. Omar and O. Basir. Identity management in iot networks using blockchain
and smart contracts. In 2018 IEEE International Conference on Internet of Things
(iThings), pages 994–1000, 2018.

[93] Bubbles of trust: A decentralized blockchain-based authentication system for iot.
Computers Security, 78:126 – 142, 2018.

[94] G. Papadodimas, G. Palaiokrasas, A. Litke, and T. Varvarigou. Implementation of
smart contracts for blockchain based iot applications. In 2018 9th International
Conference on the Network of the Future (NOF), pages 60–67, Nov 2018.

[95] W. Li, A. Sforzin, S. Fedorov, and G. O. Karame. Towards scalable and private
industrial blockchains. Association for Computing Machinery, 2017.

[96] Smart contract federated identity management without third party authentication
services.

[97] M. Castillo. Honeywell Is Now Tracking $1 Billion In Boeing Parts
On A Blockchain. https://www.forbes.com/sites/michaeldelcastillo/2020/03/07/
honeywell-is-now-tracking-1-billion-in-boeing-parts-on-a-blockchain/. [Online;
accessed 23-March-2020s].

[98] C. Gutierrez. Boeing Improves Operations with Blockchain
and the Internet of Things. https://www.altoros.com/blog/
boeing-improves-operations-with-blockchain-and-the-internet-of-things/.
[Online; accessed 23-March-2020s].

[99] G Bertoni, J Daemen, M Peeters, and G. V. Assche. The keccak sha-3. In “Proceed-
ings Eurocrypt 2013-32nd Annual International Conference Theory Applications
Cryptograph, volume 7881, page 313–314.

[100] “what is mqtt quality of service (qos)”. [Online]. Available: https://www.hivemq.
com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/. [Accessed: 30-
July-2024].

[101] “owasp threat modelling process: Stride”. [Online]. Available: https://owasp.
org/www-community/Threat_Modeling_Process#stride. [Accessed: 15-December-
2023].

[102] E. Bertino. Data privacy for iot systems: Concepts, approaches, and research
directions. In 2016 IEEE International Conference on Big Data (Big Data), pages
3645–3647, 2016.

[103] C. Allen. ”the path to self-sovereign identity“. [Online]. Available: http://www.
lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html. [Accessed:
1-Aug-2020].

[104] ”world wide web consortium“. Available: https://decentralized-id.com/
web-standards/w3c/. [Accessed: 21-Dec-2021].

[105] M. Hermann, T. Pentek, and B. Otto. Design principles for industrie 4.0 scenarios.
In 2016 49th Hawaii International Conference on System Sciences (HICSS), pages
3928–3937, 2016.

177

https://www.forbes.com/sites/michaeldelcastillo/2020/03/07/honeywell-is-now-tracking-1-billion-in-boeing-parts-on-a-blockchain/
https://www.forbes.com/sites/michaeldelcastillo/2020/03/07/honeywell-is-now-tracking-1-billion-in-boeing-parts-on-a-blockchain/
https://www.altoros.com/blog/boeing-improves-operations-with-blockchain-and-the-internet-of-things/
https://www.altoros.com/blog/boeing-improves-operations-with-blockchain-and-the-internet-of-things/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://owasp.org/www-community/Threat_Modeling_Process#stride
https://owasp.org/www-community/Threat_Modeling_Process#stride
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://decentralized-id.com/web-standards/w3c/
https://decentralized-id.com/web-standards/w3c/

References

[106] Hyperledger architecture, volume ii. [Available]: https://www.hyperledger.org/
wp-content/uploads/2018/04/Hyperledger_Arch_WG_Paper_2_SmartContracts.
pdf. [Accessed: 21-Dec-2021].

[107] M. Malik, M. Dutta, and J. Granjal. A survey of key bootstrapping protocols based
on public key cryptography in internet of things. IEEE Access, 7:27443–27464,
2019.

[108] Types of digital certificates. [Available]: https://www.ibm.com/support/
knowledgecenter/en/ssw_ibm_i_72/rzahu/rzahutypesofcerts.htm. [Accessed: 24-
Sept-2020].

[109] R. Ansey, J. Kempf, O. Berzin, C. Xi, and I. Sheikh. Gnomon: Decentralized
identifiers for securing 5g iot device registration and software update. In 2019 IEEE
Globecom Workshops (GC Wkshps), pages 1–6.

[110] S. Helme. Revocation is broken. [Available]: https://scotthelme.co.uk/
revocation-is-broken/. [Accessed: 23-Sept-2020].

[111] ”what is self-sovereign identity?“. [Available: https://sovrin.org/faq/
what-is-self-sovereign-identity/. [Accessed: 21-Jan-2022].

[112] R. Soltani, U.T. Nguyen, and A. An. A new approach to client onboarding using self-
sovereign identity and distributed ledger. In 2018 IEEE International Conference
on Internet of Things (iThings), 2018.

[113] A. Othman and J. Callahan. The horcrux protocol: A method for decentralized
biometric-based self-sovereign identity. In 2018 International Joint Conference on
Neural Networks (IJCNN), pages 1–7, 2018.

[114] P. C. Bartolomeu, E. Vieira, S. M. Hosseini, and J. Ferreira. Self-sovereign identity:
Use-cases, technologies, and challenges for industrial iot. In 2019 24th IEEE Inter-
national Conference on Emerging Technologies and Factory Automation (ETFA),
pages 1173–1180.

[115] D. Lagutin, Y. Kortesniemi, and N. Fotiou. Enabling decentralised identifiers and
verifiable credentials for constrained internet-of-things devices using oauth-based
delegation. In Workshop on Decentralized IoT Systems and Security, San Diego,
CA., 2019.

[116] G. Fedrecheski, J. M. Rabaey, L. Costa, P. C. Calcina Ccori, W. T. Pereira, and
M. K. Zuffo. Self-sovereign identity for iot environments: A perspective. In 2020
Global Internet of Things Summit (GIoTS), pages 1–6, 2020.

[117] Y. Kortesniemi, D. Lagutin, T. Elo, N. Fotiou, and R. Nardone. Improving the
privacy of iot with decentralised identifiers (dids). J. Comput. Netw. Commun., 2019,
jan 2019.

[118] S. de Diego, C. Regueiro, and G. Macia-Fernandez. Enabling identity for the
iot-as-a-service business model. IEEE Access, 9:159965–159975, 2021.

[119] J. Lim, H. Oh, K. Sim, S. Kim, and K. Kim. A v2x access authorization mechanism
based on decentralized id (did) and verifiable credentials (vc). In 2023 International
Conference on Information Networking (ICOIN), pages 801–805, 2023.

178

https://www.hyperledger.org/wp-content/uploads/2018/04/Hyperledger_Arch_WG_Paper_2_SmartContracts.pdf
https://www.hyperledger.org/wp-content/uploads/2018/04/Hyperledger_Arch_WG_Paper_2_SmartContracts.pdf
https://www.hyperledger.org/wp-content/uploads/2018/04/Hyperledger_Arch_WG_Paper_2_SmartContracts.pdf
https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_72/rzahu/rzahutypesofcerts.htm
https://www.ibm.com/support/knowledgecenter/en/ssw_ibm_i_72/rzahu/rzahutypesofcerts.htm
https://scotthelme.co.uk/revocation-is-broken/
https://scotthelme.co.uk/revocation-is-broken/
https://sovrin.org/faq/what-is-self-sovereign-identity/
https://sovrin.org/faq/what-is-self-sovereign-identity/

References

[120] H. Saidi, N. Labraoui, A. Abba Ari, L. A. Maglaras, and J. Emati. Dsmac: Privacy-
aware decentralized self-management of data access control based on blockchain
for health data. IEEE Access, 10:101011–101028, 2022.

[121] R. Oku, K. Shiomoto, and Y. Ohba. Decentralized identifier and access control
based architecture for privacy-sensitive data distribution service. In 2022 IEEE 8th
World Forum on Internet of Things (WF-IoT).

[122] Introduction to hyperledger sovereign identity blockchain solu-
tions: Indy, aries ursa. [Available]: https://www.edx.org/course/
identity-in-hyperledger-aries-indy-and-ursa. [Accessed: 21-Dec-2021].

[123] Eip-1056: Ethereum lightweight identity. [Available]: https://eips.ethereum.org/
EIPS/eip-1056. [Accessed: 28-Sept-2020].

[124] Erc: Ethereum claims registry. [Available]: https://github.com/ethereum/EIPs/issues/
780. [Accessed: 28-Sept-2020].

[125] “decentralized identifiers”. [Online]. Available: https://www.w3.org/TR/did-core/.
[Accessed: 15-Feb-2021].

[126] A. Hertig. What Is DeFi? https://www.coindesk.com/what-is-defi. [Online: Ac-
cessed 11-Feb-2021].

[127] Medicalchain. https://medicalchain.com/en/. [Accessed: 11-Feb-2021].

[128] Electron. https://electron.net. [Accessed: 11-Feb-2021].

[129] “the data exchange for advanced mobility and infrastructure”. [Online]. Available:
https://terbine.com. [Accessed: 04-March-2021].

[130] A. Bröring, S. Schmid, C. Schindhelm, A. Khelil, S. Käbisch, D. Kramer, D. Le
Phuoc, J. Mitic, D. Anicic, and E. Teniente. Enabling iot ecosystems through
platform interoperability. IEEE Software, 34(1):54–61, 2017.

[131] S. J. Liebowitz. Re-thinking the Network Economy: The True Forces that Drive the
Digital Marketplace. AMACOM, 2002.

[132] P. Banerjee, R. Friedrich, C. Bash, P. Goldsack, B. Huberman, J. Manley, C. Pa-
tel, P. Ranganathan, and A. Veitch. Everything as a service: Powering the new
information economy. Computer, 44(3):36–43, 2011.

[133] J. Li, A. Grintsvayg, J. Kauffman, and C. Fleming. Lbry: A blockchain-based
decentralized digital content marketplace. In 2020 IEEE International Conference
on Decentralized Applications and Infrastructures (DAPPS), pages 42–51, 2020.

[134] M. Cohen and A. Sundararajan. Self-regulation and innovation in the peer-to-peer
sharing economy. University of Chicago Law Review Online, 82(1), 2015.

[135] B. Cohen. Incentives build robustness in bittorrent, 2003.

[136] J. Benet. IPFS - content addressed, versioned, P2P file system. CoRR, abs/1407.3561,
2014.

[137] Protocol Labs. Filecoin. https://filecoin.io. [Online: Accessed 11-Feb-2021].

179

https://www.edx.org/course/identity-in-hyperledger-aries-indy-and-ursa
https://www.edx.org/course/identity-in-hyperledger-aries-indy-and-ursa
https://eips.ethereum.org/EIPS/eip-1056
https://eips.ethereum.org/EIPS/eip-1056
https://github.com/ethereum/EIPs/issues/780
https://github.com/ethereum/EIPs/issues/780
https://www.w3.org/TR/did-core/
https://www.coindesk.com/what-is-defi
https://medicalchain.com/en/
https://electron.net
https://terbine.com
https://filecoin.io

References

[138] OrbitDB. https://orbitdb.org. [Online: Accessed 11-Feb-2021].

[139] Storj. https://storj.io. [Online: Accessed 11-Feb-2021].

[140] Sia. https://sia.tech. [Online: Accessed 11-Feb-2021].

[141] U. Habiba, R Masood, M. A. Shibli, and M. A. Niazi. Cloud identity management
security issues & solutions: a taxonomy. Complex Adaptive Systems Modeling,
2(1):5, 2014.

[142] Oracle data marketplace. [Online]: https://docs.oracle.com/en/cloud/
saas/data-cloud/data-cloud-help-center/AudienceDataMarketplace/
AudienceDataMarketplace.html. [Accessed: Jul-2023].

[143] Open Bazar. https://openbazaar.org. [Online: Accessed 12-Feb-2021].

[144] LBRY. https://lbry.com. [Online: Accessed 12-Feb-2021].

[145] Origin. https://www.originprotocol.com/en. [Online: Accessed 12-Feb-2021].

[146] Y. Xu, P. Ahokangas, S. Yrjölä, and T. Koivumäki. The fifth archetype of electricity
market: the blockchain marketplace. Wireless Networks, Jul 2019.

[147] P. Missier, S. Bajoudah, A. Capossele, A. Gaglione, and M. Nati. Mind my value:
A decentralized infrastructure for fair and trusted iot data trading. In Proceedings of
the Seventh International Conference on the Internet of Things, IoT ’17, 2017.

[148] G. S. Ramachandran, R. Radhakrishnan, and B. Krishnamachari. Towards a decen-
tralized data marketplace for smart cities. In 2018 IEEE International Smart Cities
Conference (ISC2), pages 1–8, 2018.

[149] H. Niavis, N. Papadis, V. Reddy, H. Rao, and L. Tassiulas. A blockchain-based
decentralized data sharing infrastructure for off-grid networking. In IEEE Inter-
national Conference on Blockchain and Cryptocurrency (ICBC), pages 994–1000,
2020.

[150] “terbine and flash labs partner to bring distributed security to
smart cities transactions”. [Online]. Available: https://terbine.com/
terbine-and-flash-labs-partner-to-bring-distributed-security-to-smart-cities-transactions/.
[Accessed: 04-March-2021].

[151] “internet of things (iot) solutions ”. [Online]. Available: https://aws.amazon.com/
marketplace/solutions/IoT. [Accessed: 04-March-2021].

[152] “evernym”. [Online]. Available: https://www.evernym.com. [Accessed: 15-Feb-
2021].

[153] K. W. Khong, N. C. Onyemeh, and A. Y. Chong. Bsem estimation of network
effect and customer orientation empowerment on trust in social media and network
environment. In Expert Systems with Applications, volume 40, pages 4858–4870,
2013.

[154] R. Schollmeier. A definition of peer-to-peer networking for the classification of
peer-to-peer architectures and applications. In Proceedings First International
Conference on Peer-to-Peer Computing, pages 101–102, 2001.

180

https://orbitdb.org
https://storj.io
https://sia.tech
 https://docs.oracle.com/en/cloud/saas/data-cloud/data-cloud-help-center/AudienceDataMarketplace/AudienceDataMarketplace.html
 https://docs.oracle.com/en/cloud/saas/data-cloud/data-cloud-help-center/AudienceDataMarketplace/AudienceDataMarketplace.html
 https://docs.oracle.com/en/cloud/saas/data-cloud/data-cloud-help-center/AudienceDataMarketplace/AudienceDataMarketplace.html
https://openbazaar.org
https://lbry.com
https://www.originprotocol.com/en
https://terbine.com/terbine-and-flash-labs-partner-to-bring-distributed-security-to-smart-cities-transactions/
https://terbine.com/terbine-and-flash-labs-partner-to-bring-distributed-security-to-smart-cities-transactions/
https://aws.amazon.com/marketplace/solutions/IoT
https://aws.amazon.com/marketplace/solutions/IoT
https://www.evernym.com

References

[155] L. Xiong and L. Liu. Peertrust: supporting reputation-based trust for peer-to-peer
electronic communities. IEEE Transactions on Knowledge and Data Engineering,
16(7):843–857, 2004.

[156] M. Bender, E. Kirdan, M.O. Pahl, and G. Carle. Open-source mqtt evaluation.
In 2021 IEEE 18th Annual Consumer Communications Networking Conference
(CCNC), pages 1–4, 2021.

[157] A. Dixit and V. S. Jadon. Supply chain. https://github.com/akankshadixit/
SupplyChain, 2022.

[158] P. Thakkar and S. Natarajan. Scaling hyperledger fabric using pipelined execution
and sparse peers, 2021.

[159] A. Dixit, A. Singh, Y. Rahulamathavan, and M. Rajarajan. Fast data: A fair, secure,
and trusted decentralized iiot data marketplace enabled by blockchain. IEEE Internet
of Things Journal, 10(4):2934–2944, 2023.

[160] M. Qi, Z. Xu, Z. Wang, S. Chen, and Y. Xiang. Databox-based delivery service via
blockchain. In 2022 IEEE International Conference on Web Services.

[161] Decentralized identifiers (dids) v1.0. [Online]: https://www.w3.org/TR/did-core/.
[Accessed: Jul-2023].

[162] Verifiable credentials data model. [Online]: https://www.w3.org/TR/vc-data-model/.
[Accessed: May-22].

[163] A. Reyna, C. Martin, J. Chen, E. Soler, and M. Diaz. On blockchain and its
integration with iot. challenges and opportunities. Future Generation Computer
Systems, 88:173–190, 2018.

[164] J. Lu, J. Shen, P. Vijayakumar, and B. B. Gupta. Blockchain-based secure data
storage protocol for sensors in the industrial internet of things. IEEE Transactions
on Industrial Informatics, 18(8), 2022.

[165] R. Ma, L. Zhang, Q. Wu, Y. Mu, and F. Rezaeibagha. Be-trdss: Blockchain-enabled
secure and efficient traceable-revocable data-sharing scheme in industrial internet
of things. IEEE Transactions on Industrial Informatics, pages 1–10, 2023.

[166] S. Qi, Y. Lu, Y. Zheng, Y. Li, and X. Chen. Cpds: Enabling compressed and private
data sharing for industrial internet of things over blockchain. IEEE Transactions on
Industrial Informatics, 17(4), 2021.

[167] X. Zhang, X. Li, Y. Miao, X. Luo, Y. Wang, S. Ma, and J. Weng. A data trading
scheme with efficient data usage control for industrial iot. IEEE Transactions on
Industrial Informatics, 18(7), 2022.

[168] H. Oh, S. Park, G. M. Lee, J. K. Choi, and S. Noh. Competitive data trading model
with privacy valuation for multiple stakeholders in iot data markets. IEEE Internet
of Things Journal, 7(4), 2020.

[169] L. Tian, J. Li, W. Li, B. Ramesh, and Z. Cai. Optimal contract-based mechanisms
for online data trading markets. IEEE Internet of Things Journal, 6(5):7800–7810,
2019.

181

https://github.com/akankshadixit/SupplyChain
https://github.com/akankshadixit/SupplyChain
https://www.w3.org/TR/did-core/
https://www.w3.org/TR/vc-data-model/

References

[170] P. Banerjee, C. Govindarajan, P. Jayachandran, and S. Ruj. Reliable, fair and
decentralized marketplace for content sharing using blockchain. In 2020 IEEE
International Conference on Blockchain (Blockchain).

[171] K. Figueredo, D. Seed, and C. Wang. A scalable, standards-based approach for
iot data sharing and ecosystem monetization. IEEE Internet of Things Journal,
9(8):5645–5652, 2022.

[172] H. R. Hasan, K. Salah, I. Yaqoob, R. Jayaraman, S. Pesic, and M. Omar. Trustworthy
iot data streaming using blockchain and ipfs. IEEE Access, 10:17707–17721, 2022.

[173] C. Agbo, Q. Mahmoud, and J. Eklund. Blockchain technology in healthcare: A
systematic review. Healthcare, 7(2):56, Apr 2019.

[174] J. Cui, N. Gu, and C. Wu. Blockchain enabled data transmission for energy imbal-
ance market. IEEE Transactions on Sustainable Energy, 13(2), 2022.

[175] Nassar Kyriakidou, C. D., A. M. Papathanasiou, and G. C. Polyzos. (decentral-
ized identity with applications to security and privacy for the internet of things.).
Computer Networks and Communications, 1(2), 2023.

[176] Afjal H Sarower and Md Maruf Hassan. Necessity of reliable self-sovereign identity
management framework for resource constrained iot devices. In AIP Conference
Proceedings, volume 2579. AIP Publishing, 2023.

[177] Santiago de Diego, Cristina Regueiro, and Gabriel Maciá-Fernández. Enabling
identity for the iot-as-a-service business model. IEEE Access, 9:159965–159975,
2021.

[178] How to monitor cron jobs. [Online]: https://www.airplane.dev/blog/
how-to-monitor-cron-jobs. [Accessed: Jul-2023].

[179] Zpie: Zero-knowledge proofs in embedded systems. https://github.com/xevisalle/
zpie. [Accessed: Jul-2023].

[180] Cas J. F. Cremers. The scyther tool: Verification, falsification, and analysis of
security protocols. In Aarti Gupta and Sharad Malik, editors, Computer Aided
Verification, pages 414–418, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

182

https://www.airplane.dev/blog/how-to-monitor-cron-jobs
https://www.airplane.dev/blog/how-to-monitor-cron-jobs
https://github.com/xevisalle/zpie
https://github.com/xevisalle/zpie

	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Research Challenges
	1.3 Research Objectives
	1.4 Research Methodology
	1.5 Research Contribution
	1.6 Structure of the Dissertation

	2 Technological Foundation
	2.1 IoT Architecture Overview
	2.2 Identity Management in IoT
	2.2.1 Classification of Identifiers in IoT networks
	2.2.2 Identity and Access Management

	2.3 Evolution of Identity Management Models
	2.4 Self Sovereign Identity Model
	2.4.1 Decentralized Identifier (DID)
	2.4.2 Verifiable Credentials (VC)
	2.4.3 Limitations and areas of improvement in SSI

	2.5 Distributed Ledger Technology Overview
	2.5.1 Blockchain Architecture
	2.5.2 Types of Blockchains
	2.5.3 Blockchain Platforms suitable for IoT environments

	2.6 Blockchain Projects used in this dissertation
	2.6.1 Ethereum Blockchain
	2.6.2 Hyperledger Fabric
	2.6.3 Hyperledger Indy

	2.7 Decentralized Storage
	2.8 Usage Control
	2.9 Cryptographic Primitives
	2.10 Summary

	3 Decentralized Identity Management Framework for Industry 4.0
	3.1 Introduction
	3.2 Blockchain-Based Identity and Access Management Systems: A look at state-of-the-art
	3.3 Case Study: Factory Floor Automation
	3.3.1 Contributions

	3.4 Proposed Architecture Overview
	3.4.1 System architecture
	3.4.2 Smart Contract Methods
	3.4.3 System Interaction and WorkFlow

	3.5 Implementation and results
	3.5.1 Experimental setup
	3.5.2 Performance Evaluation

	3.6 Security Analysis
	3.7 Conclusion

	4 A Decentralized IoT Identity Framework based on Self-Sovereign Identity and Blockchain
	4.1 Background and Motivation
	4.2 Current Practices and State-of-the-art Identity Management Models
	4.2.1 Use of DIDs for IoT Devices Identity

	4.3 Proposed Model
	4.3.1 System Actors
	4.3.2 Components of the architecture
	4.3.3 Framework Explained

	4.4 Evaluation and Discussion
	4.4.1 Evaluation Results
	4.4.2 Discussion and Analysis

	4.5 Security of the proposed framework
	4.6 Conclusion

	5 A Fair, Secure and Trusted Decentralized IoT Data Marketplace enabled by Blockchain
	5.1 Background and Motivation
	5.2 Related Work and State-of-the-Art
	5.3 Case Study
	5.3.1 Contributions

	5.4 System Elements and Design Features
	5.4.1 System Actors
	5.4.2 Design Features

	5.5 System Components and Roles
	5.5.1 Data Marketplace
	5.5.2 Event Processing Engine
	5.5.3 Security Manager
	5.5.4 Network Layer
	5.5.5 ChainCode

	5.6 Problem Definition
	5.7 Solution
	5.7.1 System Architecture Overview
	5.7.2 Notations and Preliminaries
	5.7.3 Smart Contract Functions
	5.7.4 Protocol Flow
	5.7.5 Design Analysis

	5.8 Implementation and Result Evaluation
	5.8.1 System Components
	5.8.2 Evaluation

	5.9 Security Analysis
	5.9.1 Man-in-the-Middle (MITM) Attack
	5.9.2 Distributed Denial of Service (DDoS) attack
	5.9.3 Sybil Attack
	5.9.4 Information Disclosure Attack
	5.9.5 Forking Attack

	5.10 Conclusion

	6 A Privacy-Aware Authentication and Usage-Controlled Access Protocol for IIoT Decentralized Data Marketplace
	6.1 Background and Motivation
	6.2 Related Work
	6.3 Proposed Protocol
	6.3.1 Overview
	6.3.2 System Setup and Registration Phase
	6.3.3 Authentication and UCON Phase
	6.3.4 Design Analysis: Dynamics of SSI in a data marketplace

	6.4 Implementation and Evaluation
	6.4.1 System Components
	6.4.2 Evaluation

	6.5 Security Analysis
	6.5.1 Formal Security Verification: A simulation study using Scyther tool
	6.5.2 Informal Security Analysis

	6.6 Conclusion

	7 Conclusion and Future Work
	7.1 Contributions
	7.2 Key Insights
	7.3 Future Work Directions

	References

