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Abstract: In recent years, the application of free-form surface spatial grid structures in large public
buildings has become increasingly common. The layouts of grids are important factors that affect both
the mechanical performance and aesthetic appeal of such structures. To achieve a triangular grid with
good mechanical performance and uniformity on free-form surfaces, this study proposes a new method
called the “strain energy gradient optimization method”. The grid topology is optimized to maximize the
overall stiffness, by analyzing the sensitivity of nodal coordinates to the overall strain energy. The results
indicate that the overall strain energy of the optimized grid has decreased, indicating an improvement in
the structural stiffness. Specifically, compared to the initial grid, the optimized grid has a 30% decrease in
strain energy and a 43.3% decrease in maximum nodal displacement. To optimize the smoothness of the
grid, the study further applies the Laplacian grid smoothing method. Compared to the mechanically
adjusted grid, the structural mechanical performance does not significantly change after smoothing, while
the geometric indicators are noticeably improved, with smoother lines and regular shapes. On the other
hand, compared to the initial grid, the smoothed grid has a 21.4% decrease in strain energy and a 28.3%
decrease in maximum nodal displacement.

Keywords: free-form surface; spatial grid structure; grid layout; strain energy gradient; grid optimization

1. Introduction

Free-form surface spatial grid structure, as the name implies, includes two parts:
surface and grid. The freedom of the curved surface form highlights its elegant and lively
shape and interprets the beauty of the building, while the grid is its skeleton part, and its
architectural charm is finally reflected through a reasonable grid layout.

The grid division of free-form surfaces needs to consider the uniformity and smooth-
ness of the architectural grid, as well as the regularity of grid shapes. Generally, the methods
for dividing grids on free-form surfaces can be broadly classified into two types: one is
the indirect grid division method based on the principles of traditional mapping method;
the other is a direct grid partition method that directly takes the building surface as the
operating object and generates the surface grid through different optimization algorithms.

The mapping method is one of the most widely used indirect grid generation techniques
in the current application of free-form surface spatial grid structures. It has the advantages of
simple principles, ease of implementation, high efficiency, and strong grid controllability [1].
Based on the mapping method, Cen [2] proposed an approximate arc-length parameterization
method, utilizing bicubic B-spline interpolation on curved surface value points (original data
points) to reconstruct free-form surfaces to avoid the mapping distortion caused by traditional
mapping methods. Based on the tensor product characteristics of the B-spline surface, Ding [3]
proposed an isoparametric line segmentation method for free-form reticulated shell structures.
Wei et al. [4], combining the principles of the traditional mapping method and surface equal
area expansion technology, established a bi-directional mapping relationship between spatial
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surfaces and planes, which reduces the errors caused by mapping [5,6]. Cuilliere et al. [7] estab-
lished a mapping metric mechanism based on the consideration of grid mapping deformation,
proposed a meshing method suitable for free-form surfaces, and proposed an evaluation index
of grid quality. Zheleznyakova et al. [8,9] proposed a quasi-molecular motion method based on
a mapping technique and physical simulation method, which can adjust the size of the plane
grid according to the difference of intermolecular forces, so as to reduce the grid distortion
after mapping back to the space surface.

The direct grid generation techniques can be roughly summarized into the follow-
ing methods: surface subdivision algorithms [10–12], compass method, physics analog-
ical methods (such as bubble method), surface stress line method, and so on. Lina and
Lefevre [13,14] developed a compass grid generation method to obtain uniform quadrilat-
eral grids on free-form surfaces, which can generate curved quadrilateral grids on surfaces
with completely equal rod lengths. Shimada and Zhou [15,16] analogized the grid division
of parameterized surfaces to finding equilibrium positions in densely packed bubbles and
proposed the bubble packing method.

Wang et al. [17] referred to the bubble generation method and directly generated
bubbles on the space surface to avoid mapping distortion, which is called the space bubble
method. Similarly, Pottmann et al. [18] developed the CP-mesh method (circle packing
method) suitable for spatial surfaces based on the tangential relationship between spheres
on surfaces. This method can generate joints without twisting and has been extensively
applied in curtain wall structures. Based on the advancing front method, Su [19] proposed
an improved advancing front method aimed at improving the mechanical performance of
grids, which takes the structural stress trajectory line as the guideline to make the grid ad-
vance in the direction of the guideline, avoiding blindness and disorder of grid propulsion.

Using the above methods, architectural grids with smooth lines, uniform rod length,
and rich styles can be obtained, but most of the research still stays at the geometric level and
does not investigate the final structural mechanical properties [20]. Zhang [21] proposed
a polygon mesh partitioning method and a mesh optimization method based on force,
further enriching the content of free-form surface mesh design. Actually, for the free-form
surface spatial grid structure, the topological form of the grid often affects the mechanical
properties of the structure more than the material and component size [22]. The distribution
of the joint position and the topological form of the bar not only highlight the architectural
beauty of the structure but also bear the soul of structural stress, which is an important
factor affecting the bearing capacity of the spatial grid structure. Therefore, it is necessary
to study the grid optimization method based on the mechanical properties of the structure.

To seek a layout of structural elements with superior mechanical properties within
predetermined constraints of architectural surfaces, it is necessary to optimize the surface
according to its stress characteristics. In order to obtain a grid arrangement with both good
mechanical properties and smooth lines on free-form surfaces, this paper proposes a new
method called the “strain energy gradient optimization method” based on the sensitivity
of strain energy to the change of the nodal coordinates. With the overall strain energy of
the structure as the objective and the free-form surface as the constraint, the gradient of
strain energy on nodal coordinates is derived, and then the grid optimization is carried out
to obtain the grid topology with the highest stiffness.

2. Strain Energy Gradient and Joint Adjustment Strategy

In the morphological optimization of spatial grid structures on free-form surfaces, the
structural strain energy is often chosen as the objective to attain a structure with higher
rigidity [23]. Similarly, when seeking a grid layout with increased rigidity under given
surface constraints, the structural strain energy can also be used as the objective function. If
the overall structural strain energy is viewed as a function C(X) of grid nodal coordinates,
the task of seeking a reasonable grid layout on a given surface becomes an optimization
problem of minimizing the strain energy C(X). The optimization mathematical model can
be expressed as minC(X). In the formula, X represents the set of nodal coordinates. As the
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exploration involves seeking a rational grid layout on a predefined surface, the structural
form remains unchanged throughout the optimization process. Therefore, in this study,
vertical changes in nodal coordinates (the z-direction) are neglected, considering only the
movement of joints along the x and y directions.

The fundamental approach for node adjustment can be summarized as follows: First,
the initial structural details, including information about the spatial surface, initial nodal
coordinates, initial topological connections between nodes, loadings, and support nodes
information, are provided. Second, a finite element analysis is conducted on the initial
structure to obtain nodal displacements, internal forces in members, and other relevant data.
The circular steel tube with a diameter of 100 mm and a thickness of 4 mm was used, with
Young’s modulus and yield strength of 2.06 × 105 and 345 MPa, respectively. Subject to a dead
load and a distributed live load, the strain energy gradient of the structure is calculated and
nodal positions are adjusted aiming to minimize strain energy, updating relevant information
after structural changes. Finally, it is assessed whether the updated structure meets the
convergence criteria; if so, the optimization proceeds. If not, repeating the process of structural
analysis, nodal position adjustment, and updating structural topological information until
convergence criteria are met or the specified iteration limit is reached.

Assuming the set of grid nodal coordinates {X} as the sole influencing factor on the
structural strain energy, if the number of joints in the spatial grid structure is N and the
structural strain energy is a function of nodal coordinates, denoted as C(X), its Taylor
expansion at joint X is expressed as shown in Formula (2):

C(X + ∆Xi) = C(X) +
N

∑
i=1

∂C(X)

∂Xi
∆Xi + ϕ (1)

In the formula, ϕ represents a higher-order infinitesimal, which is disregarded and
omitted here. By introducing an adjustment step size λ, the change in nodal coordinates
can be expressed as follows:

∆Xi = −λ
∂C(X)

∂Xi
= −λαi (2)

αi represents the strain energy gradient. Then, Formula (1) can be written as follows:

C(X + ∆Xi) = C(X)− λ
N

∑
i=1

(
∂C(X)

∂Xi
)

2

= C(X)− λ
N

∑
i=1

α2
i ≤ C(X) (3)

By adjusting the node coordinates according to Formula (3), the structural strain energy
will gradually decrease after the node coordinates change, and a reasonable grid layout scheme
with smaller structural strain energy will be obtained. If αi equals zero, it indicates that the strain
energy has reached its minimum value. At this point, the change in strain energy is independent
of the change in node coordinates and remains unchanged. However, this scenario is rather
ideal and is often challenging to achieve. To attain a grid layout with lower strain energy, the
nodal coordinate adjustment strategy can be implemented as outlined in Formula (4).

Pk+1
i = Pk

i − λαk
i (4)

In the formula, Pk+1
i represents the coordinates of joint i at the (k+1)th step. αk

i stands
for the strain energy gradient of the ith joint in the structure at the kth step, also serving as
the direction for joint updates. Actually, updating the nodal coordinates in the direction of
the negative gradient is the fastest way to decrease structural strain energy. λ denotes the
adjustment step size, which is an empirical parameter. If set too large, it may fail to meet
the requirement in Formula (3); if set too small, it may reduce the optimization efficiency.
Typically, a value around 1/(5α0

max) is advisable.

2.1. The Derivation of the Strain Energy Gradient

The strain energy gradient can also be referred to as strain energy sensitivity, which
illustrates how the overall structural strain energy changes with variations in design
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variables. As shown in Formula (5), the gradient of structural strain energy at joint i can be
expressed as follows:

αi =
∂C(Xi)

∂Xi
(5)

The general derivation process is briefly introduced as follows. Firstly, under external
loading, the fundamental finite element formulas for the spatial grid structure on free-form
surfaces can be expressed as follows:

K(X)U(X) = P(X) (6)

The formula components include K as the total stiffness matrix of the spatial grid
structure; U as the total displacement vector matrix of the grid structure; P as the vector
representing the applied nodal loads on the grid structure; and X as the collection of nodal
coordinates for the grid structure. The overall strain energy of the grid structure can be
represented as follows:

C(X) =
1
2

P(X)TU(X) (7)

The differentiation of the structural joint coordinate components in Formulas (6) and (7)
leads to the following two formulas:

∂C
∂x

=
1
2

PT ∂U
∂x

(8)

∂K
∂x

U + K
∂U
∂x

= 0 (9)

Next, by simply integrating Formulas (8) and (9), we arrive at the strain energy
gradient with respect to the nodal x-direction coordinate, as illustrated in Formula (10).

∂C
∂x

= −1
2

UT ∂K
∂x

U (10)

The similar strain energy gradients with respect to the y- and z-direction coordinates
can be expressed as follows:

∂C
∂y

= −1
2

UT ∂K
∂y

U (11)

∂C
∂z

= −1
2

UT ∂K
∂z

U (12)

2.2. The Differentiation of the Element Stiffness Matrix in the Local Coordinate System

This paper illustrates the derivation process of the differential of the beam element
stiffness matrix with respect to nodal coordinates, using a planar structure as an example.
For the one-dimensional planar beam element, as depicted in Figure 1, the global coordinate
system is xyz, where the x and y axes lie within the plane of the beam element and the
z-axis is perpendicular to the element plane. The global coordinate system intersects with
the local coordinate system x*y* at an α angle. Then, the element stiffness matrix for beam
element i in the local coordinate system is expressed as Formula (13).

k∗e
i =



Ei Ai
li

0 0 − Ei Ai
li

0 0

0 12Ei Ii
li

3
6Ei Ii

li
2 0 − 12Ei Ii

li
3

6Ei Ii
li

2

0 6Ei Ii
li

2
4Ei Ii

li
0 − 6Ei Ii

li
2

2Ei Ii
li

− Ei Ai
li

0 − 6Ei Ii
li

2
Ei Ai

li
0 0

0 − 12Ei Ii
li

3 − 6Ei Ii
li

2 0 12Ei Ii
li

3 − 6Ei Ii
li

2

0 6Ei Ii
li

2
2Ei Ii

li
0 − 6Ei Ii

li
2

4Ei Ii
li


(13)
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In the formula, Ei, Ai, Ii, and li, respectively, represent the material’s elastic modulus,
cross-sectional area, moment of inertia, and the geometric length of the element i. From
Formula (13), it is evident that when the section of the rod remains unchanged, the stiffness
matrix of element i in the local coordinate system is solely a function of the element length l,
which is related to the coordinates of its two end joints. If the two end joints of element i
are denoted as k and j, the element length can be expressed as follows:

li =
√
(xj − xk)

2 + (yj − yk)
2 (14)

Next, in the above Formula (14), the two end joints j and k of element i, respectively,
are differentiated. And the j end is differentiated firstly, as shown in Formula (15).

dli =
xj − xk

li
dxj +

yj − yk

li
dyj (15)

The expression for the differentiation of the element length with respect to the j end
can be obtained.

dli
dxj

=
xj − xk

li
(16)

dli
dyj

=
yj − yk

li
(17)

Then, the corresponding differential expression is obtained by deriving the k-terminal
derivative.

dli
dxk

=
xk − xj

li
(18)

dli
dyk

=
yk − yj

li
(19)

Thus, according to the chain rule of differentiation, the differential of the stiffness
matrix of structural element i concerning changes in the coordinates of element m in the
local coordinate system is derived, as shown in Formulas (20) and (21). In Formula (20),
the parameter γ represents the position-related parameter within the rod element unit,
indicating whether the joint is located at the beginning or end of the element. If the joint is
at the end of the rod element, it takes the value γ = (xj − xk)/li; if it is at the beginning,
it takes the value γ = −(xj − xk)/li. Similarly, if differentiating with respect to the joint’s
y-coordinate, it is only necessary to replace the variable x with y in γ.

∂k∗e
i

∂xm
=



−γ Ei Ai
li

2 0 0 γ Ei Ai
li

2 0 0

0 − 36γEi Ii
li

4 − 12γEi Ii
li

3 0 36γEi Ii
li

4
12γEi Ii

li
3

0 − 12γEi Ii
li

3 − 4γEi Ii
li

2 0 12γEi Ii
li

3 − 2γEi Ii
li

2

γ Ei Ai
li

2 0 0 − γ Ei Ai
li

2 0 0

0 36γEi Ii
li

4
12γEi Ii

li
3 0 − 36γEi Ii

li
4

12γEi Ii
li

3

0 12γEi Ii
li

3 − 2γEi Ii
li

2 0 12γEi Ii
li

3 − 4γEi Ii
li

2


(i = m) (20)
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Or
∂k∗e

i
∂xm

= 0 (i ̸= m) (21)

2.3. The Differentiation of the Coordinate Transformation Matrix

In the global coordinate system, there exists a relationship between the stiffness matrix
ke

i of beam element i and the stiffness matrix k∗e
i in the local coordinate system, as illustrated

in Formula (22).

ke
i = RTk∗e

i R (22)

The symbol R represents the coordinate transformation matrix for the plane problem,
as depicted in Formula (23).

R =

[
R1 0
0 R1

]
(23)

where

R1 =

 cos α − sinα 0
sin α cosα 0
0 0 1

 (24)

In the formula, cos α =
xj−xk

li
, sin α =

yj−yk
li

, α represents the angles between the length
direction of element i and the x-axis of the global coordinate system, while li denotes the
length of the element.

The coordinate transformation matrix differentiates the node coordinates. It should be
noted that the differentiation of the node at which the end of the element is differentiated.
As shown in Formulas (25)–(28), it is the differential of each component in the transforma-
tion matrix R to the end node j of the element i. The differentiation concerning the starting
joint k is similar, and it will not be explicitly outlined here.

∂ cos α

∂xj
dxj =

(
1
li
−

(xj − xk)
2

l3
i

)
dxj (25)

∂ cos α

∂yj
dyj =

(
−
(xj − xk)

l2
i

(yj − yk)

li

)
dyj (26)

∂ sin α

∂xj
dxj =

(
−
(yj − yk)

l2
i

(xj − xk)

li

)
dxj (27)

∂ sin α

∂yj
dyj =

(
1
li
−

(yj − yk)
2

l3
i

)
dyj (28)

By substituting the aforementioned Formulas (25)–(28) into the expression for the
transformation matrix, the differential form of the transformation matrix with respect to
nodal coordinates can be obtained.

2.4. The Differentiation of the Stiffness Matrix of the Beam Element in the Global Coordinate System

According to Formula (22), the relationship between the stiffness matrix ke
i of beam

element i in the global coordinate system and the stiffness matrix k∗e
i in the local coordinate

system, the differential of the stiffness matrix of beam element i in the global coordinate
system with respect to nodal coordinates x can be obtained, as shown in Formula (29):

∂ki
e

∂x
=

∂RT

∂x
k∗e

i R + RT ∂k∗e
i

∂x
R + RTk∗e

i
∂R
∂x

(29)
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Then, utilizing the method of assembling finite element stiffness, the differential of
the structural total stiffness matrix in the global coordinate system with respect to nodal
coordinates can be obtained, as illustrated in Formula (30):

∂K
∂X

=
NE

∑
i=1

∂ke
i

∂X
(30)

where ke
i represents the stiffness matrix of element i in the global coordinate system, and

NE is the total number of elements in the structure. Subsequently, employing the afore-
mentioned Formulas (10)–(12), the corresponding strain energy gradient can be obtained.
The derivation process for the strain energy gradient of spatial beam elements is similar to
that of planar beam elements and can be obtained using analogous methods. This will not
be expanded in detail here. Once the strain energy gradient is obtained, combined with
Formula (4), an iterative process utilizing the gradient method for the nodal coordinates
can be employed. This process maintains the grid topology unchanged while seeking an
optimized grid layout on the surface, accomplishing grid optimization.

3. Grid Adjustment of Conventional Analytical Surfaces

In typical spherical shells, Kiewitt grid shell exhibits favorable mechanical properties,
garnering extensive attention from scholars worldwide [24,25]. This section employs the
K6 single-layer spherical grid shell as an example to explore the impact of varying nodal
positions on the structural mechanical performance while maintaining the grid topology
unchanged. As depicted in Figure 2a, the shell has a span of 30 m, and a rise of 6 m, both
with radial and circumferential frequencies set at 6. The members have circular steel tube
sections with a diameter of 100 mm and a wall thickness of 4 mm. The load applied is
q = 10 kN/m2, with constraints set as hinged support around the bottom perimeter. Q235
was used and the FEM calculation was based on ANSYS 16.0 software. The static analysis
type adopts linear analysis and the load is directly applied to all nodes except for the
support nodes. The maximum von Mises stress of the rod is 71 MPa.
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As illustrated in Figure 2b, after the optimization, the structural grid has undergone
significant changes. The grid tends to cluster toward the edge supports, exhibiting a
slight divergence within the internal grid. The lines approximate a parallel distribution
along three ribs of the Kiewitt spherical shell, gradually transitioning into a tri-directional
grid pattern. The lines become more continuous, facilitating a smoother transmission of
forces. This grid layout allows for a more direct transfer of structural loads to the supports.
Numerical analysis, as depicted in Figure 3, shows the variation in strain energy. Following
the optimization, the structural grid’s strain energy was reduced from 3.87 kJ to 3.36 kJ,
marking a 13.2% decrease. Regarding the maximum nodal displacement, it decreased from
the original 0.73 cm to 0.6 cm, signifying a reduction of 17.8%. Regarding the maximum
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stress, it decreased from the original 71 MPa to 66 MPa. This indicates that the adjusted
grid has, to a certain extent, enhanced the structural stiffness.
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4. Grid Smoothing

Oftentimes, architectural grids need to possess an aesthetic appeal that highlights
the beauty of curves, primarily showcased in the uniformity and smoothness of gridlines.
However, after grid adjustment, as depicted in Figure 2b, although the overall strain
energy of the structure becomes smaller, the stiffness increases, and the lines become more
continuous in topology compared with the initial model, the mesh smoothness is obviously
insufficient from the visual point of view, and the mesh is slightly messy, which affects its
visual beauty. Therefore, it is necessary to optimize the mesh smoothness after adjustment.
In the pursuit of grid smoothing, the Laplacian smoothing method stands out as one of
the most typical and commonly used approaches. Its principle is relatively simple, and
the algorithm is straightforward to implement. Illustrated in Figure 4, its fundamental
principle involves utilizing linear interpolation, where the coordinates of joint i are replaced
with the average of coordinates of neighboring joints. This process is expressed through
the following computational formula:

Xi =
1
Ni

Ni

∑
n=1

Xni (31)
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The formula contains variables: Xi represents the coordinate of joint (xi , yi , zi), and
Ni and Xni denote the nodal quantity and coordinates of neighboring joints adjacent to
joint i, respectively.
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Laplacian grid smoothing is practical and efficient, yielding favorable outcomes as long
as the initial grid does not contain significant sharp angles. However, it does have a critical
flaw: With an increasing number of iterations, the grid gradually contracts. This leads to a
deviation between the smoothed grid and the initial one, with a more pronounced deviation
occurring with higher iteration counts. As illustrated in Figure 5, the red thin solid lines
represent the initial grid, while the green thick solid lines represent the grid after smoothing.
As the iteration count increases, the grid becomes more uniformly smoothed. However, the
extent of contraction also amplifies significantly deviating from the initial grid.
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Figure 5. Grid contraction phenomenon.

This paper adopts a relatively simple method to prevent grid contraction. After
each grid-smoothing adjustment, the contracted grid is remapped back to the original
surface. Given that the deviation between the grid after a single smoothing operation
and the original grid is already minimal, remapping the smoothed grid to the surface
does not introduce significant errors. This approach effectively meets the requirements of
architectural grids, simultaneously smoothing the grid while preventing contraction. Joints
along the boundaries remain unchanged and are not adjusted.

Using the aforementioned method to perform grid smoothing on the grid obtained
from the strain energy gradient adjustment method, the joints along the boundary lines
remain fixed while the internal joints are designated as adjustment points. Each internal
joint corresponds to six rods, theoretically achieving an optimal equilateral triangular grid.
As depicted in Figure 6, it is the result of grid smoothing. It can be seen that the lines
appear noticeably smoother, and the regularity of the grid shape has improved. Upon
numerical analysis, the overall strain energy of the smoothed grid structure became 3.43 kJ,
approximately 2% higher compared to before smoothing, while the maximum displacement
of the structure is at around 0.61 cm and the maximum stress is about 63 MPa. Comparison
with the three-directional grid spherical shell, having the same span, aspect ratio, and
frequency, shows that even after smoothing, the overall strain energy is still approximately
12% lower, and the maximum displacement is about 20.8% lower compared to the three-
directional grid spherical shell. This indicates that after grid smoothing, not only does
the geometry of the grid become regular and the lines smoother, but also the structure
maintains relatively superior mechanical performance.
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5. Grid Geometric Quality Evaluation Metrics

How to evaluate the quality of a grid has different evaluation criteria in different fields.
In the grid division of architectural structures, to consider the aesthetics and economy of
the structure, it is usually desired that the divided grid has a regular shape, and the types
of grid units should be unified as much as possible. The grid size and the length of the rod
are as far as possible to achieve the desired design value.

5.1. Quality of Rod Lengths

The rod is the most basic element of the spatial grid structure, and the length of the
rod is directly related to the size of the grid. This paper employs the mean square deviation
of rod length α′, denoted as the parameter, as an indicator for assessing the quality of rod
length. For triangular grids, the smaller the mean square deviation of the rod length, the
more uniform the grid size.

The mean square deviation of rod length can be expressed as follows:

αl =

√
∑ (li − l)

2

n − 1
(32)

In the formula, li represents the length of the ith rod, l denotes the mean length of the
rod, and n stands for the number of rods. As it possesses dimensions, the same mean square
deviation representing rod uniformity may differ significantly for structures with different
grid sizes. Therefore, this paper makes a dimensionless treatment of it and uses the ratio
of mean square deviation to the mean length of the rod as the index of the uniformity of
the rod length, which is called the equivalent mean square deviation of the rod length, as
shown in Formula (33).

α′ = αl

l
(33)

5.2. Grid Shape Quality

Generally speaking, when dividing the mesh, it is necessary to avoid producing too
narrow and long elements. For the triangular mesh, the ideal triangle shape is an equilateral
triangle. For reference to the quality criterion of triangular units in the finite element field, the
quality evaluation index of triangular units in the building grid can be expressed as follows:

β = 4
√

3
SA

l2
1 + l2

2 + l2
3

(34)

In the formula, SA is the area of the triangle, and l1, l2, l3 are the lengths of the triangle’s
sides, respectively.

If all the triangular element shape quality indicators in a grid are taken as a sample
(β1, β2, β3, · · · · · · βn), where the sample size is denoted as m representing the number of
triangular elements in a grid, then the mean of the sample is denoted as β, and the sample
variance is denoted as Q.

β =
1
m

m

∑
i=1

βi (35)

Q =

√
∑ (βi − β)

2

m − 1
(36)

The closer the sample mean is to 1, the better the shape quality of the triangular mesh,
and the closer it is to the equilateral triangle, the more regular the mesh shape will be.
A smaller sample variance Q implies lesser differences in the quality of triangular grid
shapes, indicating more uniformity among the triangular elements in the grid.
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5.3. Overall Regularity of the Grid

Considering the grid regularity, for a given grid M, the grid regularity coefficient can
be defined as follows:

R(M) =
N

∑
k=1

(dk − Dk)
2/N =

N

∑
k=1

(d∗k − 6)2/N (37)

In the formula, dk represents the actual value of the joint, Dk stands for the ideal value
of the joint, d∗k indicates the virtual value of the joint, k is the serial number of the joint, and
N is the number of joints in the grid. The geometric interpretation of the grid regularity
coefficient signifies the deviation between the actual and ideal shapes of the grid, reflecting
the degree of regularity. It serves as an indicator to assess the regularity of the grid. If
R(M) equals 0, the grid shape is considered regular; otherwise, the larger the R(M) value,
the poorer the regularity of the grid. Conversely, a smaller value indicates a more regular
shape and better topology.

The calculation of the grid regularity coefficient for the mentioned spherical shell
revealed that although the three-way grid spherical shell displays regular only internal
grid structures, its edge grid quality is poor. The overall regularity coefficient R(M)
is 0.12, whereas, after the smoothing process, the regularity coefficient R(M) drops signifi-
cantly to 0.047. Consequently, the smoothed grid demonstrates higher quality. Visually, it
is apparent that the edge grid of the three-way grid spherical shell is irregular and contains
several singular points, as shown in Figure 7. This results in that the force transmission
path is not continuous near the boundary, and the force cannot be transmitted more directly
to the support, so the structural performance is lower than that of the smoothed mesh.
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6. Adjustment of Free-Form Spatial Grid Structure

Through the adjustment of the grid of the Kiewitt spherical shell, the feasibility and
effectiveness of the grid optimization method based on strain energy gradient were verified;
an improved grid layout with enhanced mechanical performance was obtained. While there
exist six typical grid layout forms for spherical shells due to their analytical surfaces and the
increasing maturity of spatial structure technology and theory, the meshing scheme of analytical
surfaces such as spherical reticulated shells is also becoming more and more perfect. However,
for free-form surfaces, their surface forms are different and flexible. So far, there is no general
meshing division method. The author of this paper proposed an efficient meshing division
method for free-form surfaces based on Coulomb’s law [26]. However, its goal is to obtain a
uniform mesh layout on the existing surface, and its focus is still limited to geometric objectives.
For the divided mesh structure, its mechanical properties are not considered. Therefore, a
free-form surface is taken as an example in this paper to discuss the mesh optimization method
of a free-form surface based on strain energy gradient.

A free-form surface resembling continuous mountain ranges is shown in Figure 8,
with a longitudinal span of 25.6 m, a larger short span of 15.3 m, a minor short span of 6.5 m,
a larger sagittal height of 5 m, and a minor sagittal height of 1.9 m. The material parameters
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are identical to those of the Kiewitt spherical shell. As depicted in Figure 9, a relatively
uniform topological grid is achieved based on geometric objectives. Among these, Grid-a1
represents the grid obtained by the mapping rod adaptive method. Initially, a reasonable
topological grid is arranged in the planar domain and then mapped to the spatial surface,
followed by adjustments to the rod lengths using the adaptive rod method to achieve a
relatively uniform grid topology. Grid-b1 is obtained using the grid generation method
based on Coulomb’s law and proposed by the authors. Due to the lack of control over the
smoothness of grid lines, some singular points appear within the grid interior. However, its
grid quality is still good, as shown in Table 1, with a shape quality mean value of 0.97 and
a rod length quality of only 0.08.
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Table 1. Performance comparison of different grid layout schemes.

Grid Type Displacement
(cm)

Strain Energy
(kJ)

The Mean Value of
Shape Quality β

Rod Length
Quality α′

Grid-a1 1.16 1.54 0.96 0.12
Grid-a2 0.71 1.16 0.89 0.23
Grid-a3 0.85 1.21 0.94 0.19
Grid-b1 1.13 1.60 0.97 0.08
Grid-b2 0.64 1.12 0.91 0.21
Grid-b3 0.81 1.24 0.94 0.16

Targeting structural strain energy, adjustments were made separately to the Grid-a1
and Grid-b1 grids, resulting in the grid configurations Grid-a2 and Grid-b2 as shown in
Figure 10. It is noticeable that the uniformity of the grids deteriorated: The grids became
sparse at the mountain peaks and displayed a contraction trend in the valleys, with lines
becoming elongated. Both grids exhibited a similar trend in sparseness. Analyzing their
grid quality, the shape quality of the grids decreased by approximately 7%, which is
not significant. However, the equivalent rod length means square deviation decreased
significantly, indicating poorer grid uniformity. Analyzing their mechanical performance,
it was observed that after grid adjustments, the maximum nodal displacement in Grid-a1
decreased by 38.8%, and the structural strain energy decreased by 24.7%. In Grid-b2,
the maximum nodal displacement decreased by 43.3%, and the structural strain energy
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decreased by 30%. This suggests that although the geometric indicators declined after
adjusting the uniform grid, its mechanical performance significantly improved.
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To balance both geometric and mechanical criteria, the adjusted grids Grid-a2 and Grid-b2
were smoothed individually, resulting in corresponding grids Grid-a3 and Grid-b3, as shown in
Figure 11. Visually, the smoothed grids appear relatively regular in shape, with smoother lines,
and an overall sparse with regularity. Numerically, as shown in Table 1, the quality indicators
for shape and rod length have improved compared to the adjusted grids. Both types of grids
show a shape quality mean value of over 0.94, while the rod length quality remains below 0.19,
indicating acceptable geometric properties. Concerning structural mechanical performance,
the overall strain energy slightly increased after smoothing for both grids, yet still reduced
compared to the initial uniform grid, at 78.57% and 77.50%, respectively. Additionally, the
maximum nodal displacement decreased by 26.7% and 28.3%, respectively, compared to the
initial grid. This suggests that grid layouts predominantly focused on geometric objectives
have room for improvement in terms of mechanical performance.
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7. Conclusions

To improve the static performance of the free-form surface spatial grid structure, while
ensuring the uniformity of its structural grid and not reducing the grid quality, a free-form
surface grid optimization method is proposed in this paper based on the strain energy
gradient. The gradient of the overall strain energy of the structure to the nodal coordinates
is first derived. Then, based on the sensitivity of the overall strain energy of the structure
to the change of the nodal coordinates, the overall strain energy of the structure is taken
as the target. The architectural surface is the constraint to adjust the nodal coordinates,
complete the grid optimization, and obtain the grid topology with the largest stiffness.

Finally, some results are as follows:

1. The final grid layout obtained using the optimization method proposed in this paper,
the overall strain energy is reduced, and the overall stiffness of the structure is increased,
which indicates that the static performance of the optimized structure is improved. In the
example of a conventional spherical surface, the strain energy of the structure obtained
by this method is 13.2% lower than that of the initial structure, and the maximum nodal
displacement of the structure is 17.8% lower than that of the initial structure.
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2. In the example of a free-form surface spatial grid structure, compared with the ini-
tial structure, the overall strain energy of the grid structure obtained by the method
proposed in this paper is reduced by more than 25%, and the maximum nodal dis-
placement is reduced by more than 38%, which shows the effectiveness of this method
for a free-form surface structure.

3. The static performance of the grid obtained by the method proposed in this paper
has been improved, but its grid quality has declined, and the grid smoothness is
slightly insufficient. Furthermore, after the Laplacian grid smoothing, the grid quality
is effectively improved, and the static performance of the structure does not change
much. Compared with the initial grid, the strain energy of the grid structure after
smoothing is reduced by about 22%, and the maximum nodal displacement is reduced
by about 25%.
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