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Abstract
The law of one price (LOP) broadly asserts that identical financial flows should
command the same price. We show that when properly formulated, the LOP is the
minimal condition for a well-defined mean–variance portfolio allocation framework
without degeneracy. Crucially, the paper identifies a new mechanism through which
the LOP can fail in a continuous-time L2-setting without frictions, namely “trading
from just before a predictable stopping time”, which surprisingly identifies LOP vi-
olations even for continuous price processes. Closing this loophole allows us to give
a version of the “fundamental theorem of asset pricing” appropriate in the quadratic
context, establishing the equivalence of the economic concept of the LOP with the
probabilistic property of the existence of a local E -martingale state price density.
The latter provides unique prices for all square-integrable contingent claims in an ex-
tended market and subsequently plays an important role in mean–variance portfolio
selection and quadratic hedging. Mathematically, we formulate a novel variant of the
uniform boundedness principle for conditionally linear functionals on the L0-module
of conditionally square-integrable random variables. We then study the representation
of time-consistent families of such functionals in terms of stochastic exponentials of
a fixed local martingale.
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1 Introduction

In this paper, we take a fresh look at the mathematical foundations of quadratic hedg-
ing. For a fixed time horizon T > 0, a locally square-integrable semimartingale price
process S, and a square-integrable contingent claim H , the goal of quadratic hedging
is to

minimise E

[(
v +

∫
(0,T ]

ϑudSu − H

)2]
(1.1)

over initial wealth v ∈ R and all reasonable trading strategies ϑ ; see Pham [27]
and Schweizer [32, 33] for literature overviews. The task (1.1), first formulated and
analysed in the seminal paper of Schweizer [30], was abstracted from an early work
on mean–variance hedging by Duffie and Richardson [17]; it is thus intimately related
to efficient portfolio allocation in the sense of Markowitz [24].

Our point of departure is the mean–variance hedging framework of Černý and
Kallsen [4], or rather its extension by Czichowsky and Schweizer [11] to settings
that admit some arbitrage opportunities, properly formulated as “L2 free lunches”
(Schachermayer [29, Definition 1.3]). The aim is to obtain minimal conditions on S

and ϑ under which the solution of (1.1) exists and retains the form reported in [4,
11]. This leads us to study an appropriate version of the law of one price (LOP)
and its implication for the existence of suitably modified state price densities in an
L2-setting.

Our analysis adds an important qualifier to the classical textbook folklore asserting
that the existence of a state price density is sufficient for the LOP in continuous-time
models; cf. Cochrane [9, Sect. 4.3]. We show that it is not enough to consider signed
conditional state price densities as in the seminal paper of Hansen and Richard [19],
but one must also require certain limiting properties at predictable stopping times.
Our main result (Theorem 3.2) provides a version of the “fundamental theorem of
asset pricing” appropriate in the quadratic context, establishing the equivalence of
the economic concept of the LOP with the probabilistic property of the existence of
a local E -martingale state price density (stemming from the notion of E -martingales
introduced by Choulli et al. [8], which we slightly extend here). The latter gives
unique prices for all square-integrable contingent claims in an extended market and
can be chosen such that the passage to the extended market does not alter the efficient
frontier (Remark 3.17). Mathematically, we formulate a novel variant of the uniform
boundedness principle for conditionally linear functionals on the L0-module of con-
ditionally square-integrable random variables (Proposition 4.1). We then study the
representation of time-consistent families of such functionals in terms of stochastic
exponentials of a fixed local martingale (Proposition 4.2).

There are very few theoretical studies of the law of one price in frictionless markets
and none specifically in the context of quadratic hedging. On closer reading, the exist-
ing studies are also limited in scope. Courtault et al. [10] examine finite-discrete-time
models, observing in Sect. 3 that

. . . [the discrete-time] results have no natural counterparts for continuous-time
models. “Natural” here means “for the standard concept of admissibility”. The
latter requires that the value process is bounded from below.
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Bättig and Jarrow [2] study wealth transfers between two fixed dates in a complete
market setting. Their assumption of a signed pricing measure in [2, Theorem 1] im-
plicitly invokes the law of one price on L∞ with proximity given by the weak-star
topology. One should observe that the space L∞(P ) depends on P only through the
null sets, while L2(P ) lacks such an invariance property. This paper provides, for
the first time in the literature, a complete analysis of the LOP in a continuous-time
L2-setting without frictions. The repercussion of our findings for arbitrage theory
on L∞ are left for future work. For continuous price processes, we show that the
LOP is equivalent to the existence of an equivalent local martingale measure with
square-integrable density (Proposition 3.4) and hence to the condition of no “L2 free
lunch” as shown in Stricker [34, Theorems 2 and 3]. In Example 3.5, we illustrate
that the LOP, which we consider here only in the L2-sense, can fail for continu-
ous price processes that satisfy the no-arbitrage (NA) condition (Schachermayer [29,
Definition 1.1]) both in the L2- and L∞-sense.

The paper is organised as follows. In Sect. 2, after establishing notation (Sect. 2.1),
market dynamics and admissible strategies (Sect. 2.2), we introduce alternative de-
scriptions of the law of one price by means of (i) the price process S; (ii) pricing
functionals; and (iii) state price densities (Sects. 2.3–2.5). We conclude Sect. 2 with
a review of E -densities and E -martingales (Sect. 2.6). Section 3 contains the main
results of the paper. In Sect. 3.1, we pull the various notions of the LOP together to
demonstrate their equivalence (Theorem 3.2). Section 3.2 illustrates several phenom-
ena that arise when the law of one price fails. In Sect. 3.3, we offer some intuition for
the LOP and interpret Theorem 3.2 as a market extension theorem. We next examine
the consequences of the LOP for quadratic hedging (Sect. 3.4), extend its applicability
to the conditional framework of Hansen and Richard [19] (Sect. 3.5), and study the
resulting mean–variance portfolio allocation in the presence of a contingent claim
(Sect. 3.6). Section 4 contains the proof of the main theorem presented via several
partial statements of independent interest.

2 Problem formulation

2.1 Preliminaries

We work on a filtered probability space (Ω,F , (Ft )0≤t≤T , P ) with FT = F , satis-
fying the usual conditions of right-continuity and completeness. For p ∈ [0,∞], we
frequently write Lp(P ) or just Lp as a shorthand for Lp(FT , P ). The L2-closure of
an arbitrary A ⊆ L2 is denoted by clA.

Throughout the paper, we consider generalised conditional expectations as de-
fined for example in Jacod and Shiryaev [21, I.1.1]. That is, for a random variable X

and G ⊆ F , the conditional expectation E[X|G ] is finite if and only if there ex-
ists a G -measurable random variable K > 0 such that KX is integrable (He et
al. [20, Theorem 1.16]), in which case one has E[X|G ] = E[KX|G ]

K
, where the right-

hand side now features the standard conditional expectation. In particular, X may
have finite conditional expectation without being integrable. We call X conditionally
square-integrable and write X ∈ L2(P |G ) if E[X2|G ] < ∞ P -a.s.



A. Černý, C. Czichowsky

The set of all [0, T ]-valued stopping times is denoted by T . An increasing se-
quence (τn)n∈N in T is called a localising sequence if it converges stationarily
to T , i.e., if P [τn < T ] → 0; see Dellacherie and Meyer [15, VII.99]. For a
class of stochastic processes C , we say with [15, Definition VI.27] that X belongs
to C locally, writing X ∈ Cloc, if there is a localising sequence (τn)n∈N such that
Xτn1{τn>0} ∈ C for each n ∈ N. This notion of localisation is slightly broader than
that in Jacod and Shiryaev [21, I.1.34].

For a semimartingale X, we denote by L(X) the space of all X-integrable pre-
dictable processes ϑ = (ϑt )0≤t≤T and write

ϑ ·Xt :=
∫

(0,t]
ϑudXu

for their stochastic integral up to time t ∈ [0, T ]. The symbol E (N) denotes the
stochastic exponential of a semimartingale N , i.e., the unique strong solution of the
stochastic differential equation E (N) = 1 + E (N)− ·N ; see Doléans-Dade [16].

Using the convention that inf ∅ = ∞, we say that a semimartingale X does not
reach zero continuously and is absorbed in zero if for σX := inf{t > 0 : Xt = 0}∧T ,
one has

X− 	= 0 on �0, σX� and X = 0 on �σX, T � on the event {σX < T }. (2.1)

For such X, the stochastic logarithm L(X) is well defined by L(X) = 1�0,σX�

X− ·X and
has the property X = X0E (L(X)); see [8, Proposition 2.2].

For a special semimartingale X, we write

X = X0 + MX + BX

for the canonical decomposition of X into its local martingale component MX and its
finite-variation predictable component BX, both null at zero. We denote by H2 the
class of all special semimartingales X with E[[MX,MX]T ]+E[(∫ T

0 |dBX
u |)2] < ∞;

see Protter [28, Chap. IV].

2.2 Asset prices and trading strategies

Consider a financial market consisting of one riskless asset with constant value 1
and d risky assets described by an R

d -valued locally square-integrable semimartin-
gale S. Denote the running supremum of |S| by S∗.

Definition 2.1 A trading strategy ϑ is called simple if it is of the form

ϑ =
m−1∑
i=1

ξi1�σi ,σi+1�

with stopping times 0 ≤ σ1 ≤ · · · ≤ σm ≤ τn for some n ∈ N, some bounded R
d -val-

ued Fσi
-measurable random variables ξi for i = 1, . . . , m−1 and some localising se-

quence (τn)n∈N such that S∗
τn

∈ L2. The set of all simple trading strategies is denoted
by Θ.
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We further introduce strategies that trade from a stopping time τ or from just
before a predictable stopping time τ by setting, respectively,

Θτ := {ϑ ∈ Θ : ϑ1�0,τ� = 0},
Θτ− := {ϑ ∈ Θ : ϑ1�0,τ� = 0}.

As is well known, the set of terminal wealths generated by simple strategies need
not be L2-closed; see Monat and Stricker [26], Delbaen et al. [12] and Choulli et
al. [8]. The next definition taken from [11] and building upon [4] offers a way out.

Definition 2.2 A trading strategy ϑ ∈ L(S) is called admissible if there exists a se-
quence (ϑn)n∈N of simple trading strategies ϑn = (ϑn

t )0≤t≤T , called approximating
sequence for ϑ , such that

(1) ϑn · ST → ϑ · ST in L2;
(2) ϑn · Sτ → ϑ · Sτ in L0 for all τ ∈ T .

The set of all admissible trading strategies is denoted by Θ, and we further let

Θτ := {ϑ ∈ Θ : ϑ1�0,τ� = 0} for τ ∈ T ,

Θτ− := {ϑ ∈ Θ : ϑ1�0,τ� = 0} for predictable τ ∈ T .

2.3 The law of one price for the price process S

In layperson’s terms, the law of one price states that portfolios generating the same
terminal payoff by trading in the market S should have the same value at all earlier
times, thus eliminating the most conspicuous arbitrage opportunities. Then by the
linearity of portfolio formation, all portfolios generating a zero payoff at maturity T

should have price zero at all earlier times. Since we wish to consider pricing rules
that are continuous in the L2-space of payoffs, the law of one price must be true also
approximately in L2. This yields the requirement (1) below for trading between an
arbitrary stopping time τ and the terminal date T .

For fixed τ , this line of reasoning is very natural and appears, for example, in
Hansen and Richard [19] in the context of static trading with infinitely many assets.
Observe that in a finite-discrete-time setup, the continuity requirement is unnecessary
since the set of terminal wealth distributions attainable by trading is closed in L0,
hence also in L2.

The crucial step in this paper is a deeper analysis of predictable times. For a pre-
dictable time, say σ , it is possible to start trading immediately before σ , at time σ−
so to say. Requirement (2) below formulates the law of one price for such trades.
Here it becomes important that the approximation that was previously static takes on
a temporal dimension over a sequence of announcing times.

Definition 2.3 We say that the price process S = (St )0≤t≤T satisfies the law of one
price if the following conditions hold:

(1) For all stopping times τ ∈ T , all Fτ -measurable endowments xτ and all
sequences (ϑn)n∈N of simple trading strategies such that xτ + ϑn1�τ,T � · ST → 0

in L2, we have xτ = 0.



A. Černý, C. Czichowsky

(2) Let σ ∈ T be a predictable stopping time and (σn)n∈N any announcing se-
quence of stopping times for σ . Then for all sequences of Fσn-measurable endow-
ments (xn

σn
)n∈N and (ϑn)n∈N of simple trading strategies such that

xn
σn

+ ϑn1�σn,T � · ST → 0 in L2 and xn
σn

→ xσ− in L0

for some random variable xσ−, we have xσ− = 0.

Remark 2.4 The law of one price for S has the following easy consequences:
– Since simple strategies approximate admissible strategies in L2 at maturity and

in L0 at intermediate times, the LOP for S extends to admissible strategies by a
diagonal argument.

– The wealth process of an admissible strategy is uniquely determined by its ter-
minal value, i.e., if one has ϑ · ST = ϑ̃ · ST for ϑ , ϑ̃ ∈ Θ, then ϑ · S and ϑ̃ · S are
indistinguishable.

– In the setting of (2) in Definition 2.3, the L0-limit of the sequence (ϑn · Sσn),
should it exist for a given sequence of strategies ϑn ∈ Θ, does not depend on the
announcing sequence (σn)n∈N of stopping times.

2.4 Price systems

Definition 2.5 A family (pτ )τ∈T of operators pτ : L2(FT , P ) → L0(Fτ , P ) is a
price system satisfying the law of one price if the following properties hold for every
τ ∈ T :

(1) Correct pricing of the riskless asset. One has pτ (1) = 1.
(2) Time-consistency. For all σ ≤ τ in T , one has pσ (pτ (H)) = pσ (H) for each

H ∈ L2(FT , P ) such that pτ (H) ∈ L2(Fτ , P ).
(3a) Conditional linearity. One has pτ (a1H1 + a2H2) = a1pτ (H1) + a2pτ (H2)

for all H1,H2 ∈ L2(FT , P ) and a1, a2 ∈ L∞(Fτ , P ).
(3b) Conditional continuity. Let (Hn)n∈N be a sequence in L2(FT , P ) that con-

verges to some H in L2(FT , P ). Then pτ (Hn) converges to pτ (H) in L0(Fτ , P ).
(4) Left limits at predictable stopping times. For predictable τ ∈ T , any announc-

ing sequence (τn)n∈N for τ and any H ∈ L2(FT , P ), we have that pτn(H) converges
to some random variable in L0(FT , P ).
Furthermore, a family (pτ )τ∈T of operators pτ : L2(FT , P ) → L0(Fτ , P ) is said
to be compatible with S if pτ (Sτn) = Sτn∧τ for all n ∈ N, all τ ∈ T and any localising
sequence (τn)n∈N such that S∗

τn
∈ L2(FT , P ) for all n ∈ N.

Definition 2.5 does not require that pτ (H) is positive for every positive payoff
H ∈ L2(FT , P ). Instead, it imposes the law of one price along the following lines.
Observe that pτ (H) is the terminal wealth obtained by investing the time-τ price
of H into the risk-free asset. To uphold the LOP, the prices of H and pτ (H) must
therefore be the same at time τ . This indeed follows from conditions (1) and (3a)
of Definition 2.5. Time-consistency (2) further asserts that the two portfolios pτ (H)

and H have the same value at all earlier stopping times σ ≤ τ . This natural LOP
condition does not follow from (1) and (3a). Conditions (1), (2), (3a) and (3b) jointly
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yield that the limiting variable in condition (4) does not depend on the announcing se-
quence of stopping times. Denoting this limit by pτ−(H), one has pσ− = pσ− ◦pτ−
for all predictable σ, τ ∈ T with σ ≤ τ .

Conditions (3a), (3b) and (4) reflect, in this order, increasing generality of mod-
elling frameworks. Combined with (1) and (2), the conditional linearity (3a) gives
the LOP on finite probability spaces (see e.g. Koch-Medina and Munari [22, Propo-
sition 15.2.2]) and also in finite-discrete-time models with finitely many assets (see
e.g. Courtault et al. [10]). Finite discrete time with infinitely many assets needs also
continuity (3b) (see e.g. Hansen and Richard [19]); continuity at predictable times (4)
has not been studied previously.

2.5 State price densities

Fix τ ∈ T . An operator pτ : L2(FT , P ) → L0(Fτ , P ) that is conditionally lin-
ear and conditionally continuous in the sense of (3a) and (3b) in Definition 2.5
can naturally be represented as a conditional expectation involving a conditionally
square-integrable random variable. Namely, by a conditional version of the Riesz
representation theorem for Hilbert spaces in Hansen and Richard [19, Theorem 2.1],
there is an FT -measurable random variable τZT such that E[τZ2

T |Fτ ] < ∞ and
pτ (H) = E[τZT H |Fτ ] for all contingent claims H ∈ L2(FT , P ). This τZT is
commonly known as a state price density.

Henceforth, “state price density” refers to any FT -measurable random variable
which is Fτ -conditionally square-integrable for some τ ∈ T . Let us now rephrase
the notion of a “price system satisfying the law of one price” in terms of the cor-
responding family of state price densities (τZT )τ∈T . Since the pricing functionals
we consider are not necessarily positive, the next definition allows the state price
densities to take negative values.

Definition 2.6 We say that a family (τZT )τ∈T is a family of state price densities
satisfying the law of one price if for each τ ∈ T , the random variable τZT is
FT -measurable and the following conditions hold:

(1) Correct pricing of the risk-free asset. One has τZτ := E[τZT |Fτ ] = 1.
(2) Time-consistency. For all σ ≤ τ in T , one has σ ZT = σ Zτ

τZT with

σ Zτ := E[σ ZT |Fτ ].
(3) Conditional square-integrability. One has E[τZ2

T |Fτ ] < ∞.
(4) Bounded conditional second moments before predictable stopping times. For

any predictable τ and any announcing sequence (τn)n∈N for τ , the Fτ−-measurable
random variable C := supn∈N E[τnZ2

T |Fτn ] is finite.
Furthermore, we say that a family of state price densities (τZT )τ∈T is compatible
with S if E[Sτn

τZT |Fτ ] = Sτn∧τ for all n ∈ N, all τ ∈ T and any localising
sequence (τn)n∈N such that S∗

τn
∈ L2(FT , P ) for all n ∈ N.

Remark 2.7 The process τZ = (τZt )0≤t≤T that arises in (1) and (2) of Definition 2.6
by setting

τZt = E[τZT |Ft ]



A. Černý, C. Czichowsky

need not be a martingale. However, for K := E[|τZT ||Fτ ] ∨ 1, the adapted process
τ Z
K
1�τ,T � coincides on �τ, T � with the uniformly integrable martingale closed by

τ ZT

K
.

This also shows that τZ is a semimartingale.

2.6 E -densities and E -martingales

We next recall and slightly adapt the concept of E -martingales introduced by Choulli
et al. [8]. For any stopping time τ ∈ T , we denote the process Y stopped at τ by Y τ

and, for a semimartingale N , we set τE (N) = E (N − Nτ ). The stochastic expo-
nential τE (N) therefore denotes a multiplicative restarting of E (N) in the sense that
E (N) = E (N)τ τE (N). We now study the family of processes (τE (N))τ∈T .

Definition 2.8 We say that the family (τE (N))τ∈T is an E -density if for all τ ∈ T ,
one has E[τE (N)T |Fτ ] = 1. An E -density (τE (N))τ∈T is called square-integrable
if for all τ ∈ T , one has E[τE (N)2

T |Fτ ] < ∞.

Definition 2.9 An adapted RCLL process Y is an E (N)-martingale if for all τ ∈ T ,
one has Yτ = E[τE (N)T YT |Fτ ]. We say Y is an E (N)-local martingale if there is
a localising sequence (τn)n∈N of stopping times such that Y τn is an E (N)-martingale
for each n ∈ N.

Remark 2.10 We have slightly generalised the original definition of E -martingales
(see [8, Definition 3.11]) by imposing milder integrability conditions. To see this,
observe that by [8, Sect. 1], for each semimartingale N , the sequence of stopping
times given by T0 = 0 and Tm+1 = inf{t > Tm : TmE (N)t = 0} ∧ T for m ∈ N0
increases stationarily to T . The following are then equivalent:

(i) Y is an E (N)-martingale in the sense of Definition 2.9.
(ii) There is a sequence of strictly positive, FTm-measurable random variables

Km with

E[|YTmKm
TmE (N)Tm+1 |] < ∞

and such that (Y − YTm)Km
TmE (N) is a P -martingale for all m ∈ N0.

In [8], the random variables (Km)m∈N0 are not needed since the combination of the
assumptions that Y is square-integrable and (τE (N))τ∈T satisfies a reverse Hölder
inequality permits taking Km ≡ 1 for all m ∈ N0.

The next two results, which mirror [8, Proposition 3.15, Corollaries 3.16 and 3.17],
are reminiscent of the Girsanov theorem for absolutely continuous measure changes;
the original proofs in [8] still work for our generalisations.

Proposition 2.11 For a semimartingale Y and an E -density (τE (N))τ∈T , the follow-
ing are equivalent:

(i) Y is an E (N)-local martingale.
(ii) Y + [Y,N ] is a P -local martingale.

Furthermore, if either of the conditions holds and Y is special (with local martingale
part MY ), then Y = Y0 + MY − 〈MY ,N〉.
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Proposition 2.12 Assume (τE (N))τ∈T is an E -density and Y is an E (N)-local mar-
tingale. Consider the sequence (Tm)m∈N0 of stopping times from Remark 2.10. If there
is a sequence of positive FTm-measurable random variables (Km)m∈N0 such that

E
[
KmY ∗

T

(
TmE (N)

)∗
T

]
< ∞ for all m ∈ N0,

then Y is an E (N)-martingale.

To assist the reader, we conclude this section by linking E -martingales and E -den-
sities to equivalent measures and their densities.

Remark 2.13 For a positive E -density (τE (N))τ∈T , the following are equivalent:
(i) Y is a Q-martingale for the equivalent measure Q given by dQ

dP
= E (N)T .

(ii) Y is an E (N)-martingale and Y0 is integrable.
Thus for an E -density (τE (N))τ∈T with E (N) > 0, an E (N)-martingale coin-
cides with the notion of “generalised Q-martingale” in Dellacherie and Meyer [15,
Remark V.2(d)].

3 Main results and counterexamples

3.1 Equivalent characterisations of the law of one price

We first recall an important concept from the quadratic hedging literature.

Definition 3.1 The process L = (Lt )0≤t≤T given by

Lt := ess inf
ϑ∈Θt

E[(1 − ϑ · ST )2|Ft ] (3.1)

is called the opportunity process.

Theorem 3.2 For a locally square-integrable semimartingale S, the following are
equivalent:

(i) The law of one price holds for the price process S (Definition 2.3).
(ii) The semimartingale S admits a compatible price system satisfying the LOP

(Definition 2.5).
(iii) The semimartingale S admits a compatible family of state price densities

satisfying the LOP (Definition 2.6).
(iv) There exists a semimartingale N such that S is an E (N)-local martingale

and (τE (N))τ∈T is a square-integrable E -density (Definitions 2.8 and 2.9).
(v) The opportunity process L and its left limit L− are strictly positive (Defini-

tion 3.1).
Furthermore, if any of the above conditions holds, then:

(vi) The subspace {ϑ · ST : ϑ ∈ Θ} is closed in L2. Hence a unique (up to a null
strategy) solution of (1.1) exists in Θ.

(vii) For every τ ∈ T , the set {ϑ · ST : ϑ ∈ Θτ } is closed in L2.
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(viii) For every predictable stopping time σ ∈ T with announcing sequence
(σn)n∈N, one has {ϑ · ST : ϑ ∈ Θσ−} = ⋂

n∈N{ϑ · ST : ϑ ∈ Θσn}.

In practice, the criterion (iv) is easily verified if there is an equivalent martingale
measure with a square-integrable density (Remark 2.13). Failing that, the easiest cri-
terion to check is the strict positivity of the opportunity process and its left limit in (v).
Theorem 3.9 below simplifies the verification procedure further in concrete models
by dispensing with the need to find the actual opportunity process in favour of the
easier task of identifying just a candidate opportunity process.

Apart from the novel definition of the LOP and its link to E -martingales, the
key improvement in Theorem 3.2 compared to Czichowsky and Schweizer [11,
Theorem 6.2] is that a priori one does not need the solutions of

min
W∈cl{ϑ·ST :ϑ∈Θτ } E[(1 − W)2|Fτ ] (3.2)

with τ ∈ T to be realised by trading strategies in Θτ . Instead, with a further argument,
one obtains that the set {ϑ ·ST : ϑ ∈ Θτ } is closed a posteriori purely on the strength
of any of the items (i)–(v). Observe that the conditions (i)–(v) of Theorem 3.2 are
not necessary for the L2-closedness of {ϑ · ST : ϑ ∈ Θτ }. This can be seen in finite
discrete time from the results of Melnikov and Nechaev [25]. In continuous time, a
further counterexample appears in Delbaen et al. [12, Example 6.4]. In this example,
{ϑ · ST : ϑ ∈ Θ} = L2 and F0 is trivial. Therefore 1 ∈ {ϑ · ST : ϑ ∈ Θ} and hence
L0 = 0. Thus if (i)–(v) of Theorem 3.2 fail, no firm conclusions on the closedness of
{ϑ · ST : ϑ ∈ Θτ } can be drawn.

Remark 3.3 Because the law of one price for wealth transfers between 0 and T does
not imply the LOP on subintervals (e.g. L0 > 0 does not automatically yield Lt > 0
for t > 0), the proof of Theorem 3.2 is not based, unlike other variants of “fundamen-
tal theorems of asset pricing”, on an application of a separating hyperplane theorem.
Rather, the proof constructs via Lemma 4.6 a specific family of state price densi-
ties (τ ẐT )τ∈T compatible with S whose elements τ ẐT are characterised by having
the smallest conditional second moment. Because one has E[τZT |Fτ ] = 1 for all
τ ∈ T and all families (τZT )τ∈T satisfying the LOP by Definition 2.6(1), the ele-
ments of the minimal family (τ ẐT )τ∈T then also have the smallest conditional vari-
ance Var[τ ẐT |Fτ ] among all compatible families of state price densities satisfying
the LOP. The family (τ ẐT )τ∈T is in this sense variance-optimal; cf. Schweizer [31,
Sect. 1]. In the same vein, for N such that τ ẐT = τE (N)T , τ ∈ T , one may speak of
the variance-optimal E -density.

It is shown in 2) of Theorem 3.6 and (4.15) below that under the LOP for S, the
variance-optimal E -density has the form

τ Ẑ =
τE (−a · S)L

Lτ
= τE

( − a · S + L(L) − [a · S,L(L)])

for some a ∈ L(S). For continuous S, this yields 0Ẑ > 0 and hence that S admits
an equivalent local martingale measure with square-integrable density. Thus for con-
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tinuous S, the LOP for S is equivalent to the condition of no “L2 free lunch” by
Stricker [34, Theorems 2 and 3].

Proposition 3.4 For a continuous price process S, the following are equivalent:
(i) The process S satisfies the law of one price.
(ii) The process S admits an equivalent local martingale measure with square-

integrable density.
(iii) The variance-optimal (signed) local martingale measure for S exists and is

positive.
(iv) There is no “L2 free lunch”, i.e.,

cl({ϑ · ST : ϑ ∈ Θ} − L2+) ∩ L2+ = {0}.
(v) There is no arbitrage in the L2-closure of simple strategies, i.e.,

cl{ϑ · ST : ϑ ∈ Θ} ∩ L2+ = {0}.
This recovers and extends the celebrated result of Delbaen and Schachermay-

er [14], i.e., the equivalence of (ii) and (iii). Observe that in [14], (ii) is assumed,
while here (ii) and (iii) follow from the generally weaker LOP assumption (i). In con-
trast to Proposition 3.4, Theorem 3.2 applies also in situations where the LOP holds,
but there is no equivalent martingale measure with a square-integrable density.

3.2 Counterexample

Example 3.5 below illustrates various phenomena that arise when L− > 0 does not
hold, hence the law of one price fails. It is striking that the example operates with a
continuous price process.

(A) For σ = inf{t > 0 : Lt− = 0}, the event F := {Lσ− = 0} ∈ Fσ− occurs
with positive probability, while Lt > 0 for all t ∈ [0, T ].

(B) There is a family (τ ẐT )τ∈T of state price densities compatible with S that
satisfies properties (1)–(3) of Definition 2.6. Furthermore, this family of random
variables can be chosen such that E[(τ ẐT )2|Fτ ] = 1

Lτ
for all τ ∈ T . However,

(τ ẐT )τ∈T does not have bounded conditional second moments before predictable
stopping times, that is, property (4) of Definition 2.6 fails.

(C) The price process satisfies the no-arbitrage (NA) condition on the whole time
interval [0, T ] for L∞-admissible as well as for L2-admissible strategies, that is,

{ϑ · ST : ϑ ∈ Θ∞} ∩ L0+ = {0} and {ϑ · ST : ϑ ∈ Θ} ∩ L2+ = {0},
where Θ∞ = {ϑ ∈ L(S) : inft∈[0,T ] ϑ · St ∈ L∞}.

(D) The subspace {ϑ · ST : ϑ ∈ Θ} fails to be closed in L2, even though Lt > 0
for all t ∈ [0, T ].

(E) There is an announcing sequence (σn)n∈N for the predictable stopping time σ

in (A) such that

{ϑ · ST : ϑ ∈ Θσ−} 	=
⋂
n∈N

cl{ϑ · ST : ϑ ∈ Θσn}.
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(F) The price process admits an absolutely continuous local martingale mea-
sure Q with square-integrable density, but no equivalent martingale measure. In par-
ticular, Q[F ] = 0 for the non-null event F ∈ Fσ− defined in (A). Indeed, S starts
at 1 and terminates at 0 on F .

(G) In contrast to (C), there is a “free lunch with vanishing risk”, i.e., a sequence
of zero-cost trading strategies with wealth bounded below by − 1

n
such that the wealth

of each strategy is 1 on F . Likewise, there is an “L2 free lunch”, i.e., a sequence
of simple zero-cost strategies which after disposal of an L2-integrable nonnegative
amount converges in L2 to a nonzero element of L2+, i.e.,

cl({ϑ · ST : ϑ ∈ Θ} − L2+) ∩ L2+ 	= {0}.
Example 3.5 Let W be a Brownian motion in its natural filtration. For T := 1 and
t ∈ [0, T ], we set Xt = (T − t)E (W)t . Let τ be an independent stopping time such
that P [τ = T ] = p ∈ (0, 1) and τ is uniformly distributed on [0, T ) with probability
1 − p. Define the stock price by S = Xτ . Then

dSt

St

= μtdt + dWt for t ∈ [0, T ),

where μt = − 1
T −t

1�0,τ� and we used that T − t = elog(T −t) = e− ∫ t
0

1
T −s

ds for
t ∈ [0, T ).

Let us highlight the key points in the construction of the example. The continuous
process X starts at 1, is positive on [0, T ), and equals 0 at T . It is constructed to
admit an equivalent local martingale measure with square-integrable density on each
closed subinterval of [0, T ). Hence trading in X fails the (NA) condition on [0, T ],
but satisfies it on [0, s] for every s < T . The stopping time τ is chosen to satisfy
P [t < τ < T |Ft ] > 0 for every t ∈ [0, T ), which yields that the stopped process
S = Xτ satisfies (NA) on the whole time interval [0, T ]. Intuitively, in order to realise
an arbitrage opportunity, the trading must start at some stopping time � that satisfies
P [� < τ ] > 0. However, because τ is totally inaccessible on [0, T ), such a strategy
is active also on the smaller non-null event {� < τ < T }, where the trading gains
take both signs as X is independent of τ . A rigorous proof is supplied in item (C).

The situation changes as soon as one considers the concept of a “free lunch with
vanishing risk” (FLVR). While an (NA) violation is realised by a single strategy,
FLVR allows one to choose an entire sequence of strategies that get increasingly
closer to an arbitrage opportunity. In this example, it is significant that an arbitrar-
ily small strictly positive initial capital can be turned into 1 at maturity on the event
{τ = T } by an admissible strategy whose wealth never drops below zero. The FLVR
strategy borrows 1

n
at the risk-free rate at time zero and places this amount into a

closed-end fund whose policy is to have proportion − 1
T −t

1�0,τ� invested in the risky
asset S. The increasingly larger short position in the risky asset exploits the fact that
S is drifting strongly towards zero on the predictable set {τ = T } as t → T , while
the conditional probability P [τ = T |τ > t] increases to 1. The fund is liquidated if
it ever reaches the value of 1, which is guaranteed to happen on the event {τ = T }.
We now dispose of the fund value built up on the complement {τ < T }. After re-
paying the risk-free borrowing, this yields the FLVR sequence of terminal wealths
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(1{τ=T } − 1
n
)n∈N. The strategy earns 1 − 1

n
with probability P [τ = T ] ≡ 1 − p > 0

and loses no more than 1
n

with probability of no more than p > 0. The details are
found in item (G).

(A): Let ϕn = −E (−(
μ
S
1�0,T − 1

n
�) · S)

μ
S
1�0,T − 1

n
� so that

1 + ϕn · ST = E

(
−

(μ

S
1�0,T − 1

n
�

)
· S

)
T

= E

(
− μ

S
· S

)
T − 1

n

.

Observe that ϕn · S is an H2-semimartingale (Protter [28, Chap. IV]) and therefore
can be approximated in H2 by stochastic integrals of simple strategies so that each
ϕn ∈ Θ by [28, Theorem IV.2]. The opportunity process L = (Lt )0≤t≤T is given by

Lt = lim
n→∞ E

[
tE

(
− μ

S
· S

)2

T − 1
n

∣∣∣∣Ft

]

= lim
n→∞ E[e− ∫ τ∧(T −1/n)

τ∧t μ2
s ds |Ft ]

= E[e− ∫ τ
τ∧t μ2

s ds1{τ<T }|Ft ]

= 1{τ≤t} + 1{τ>t}(1 − p)e(T −t)−1
∫

[t,T )

e−(T −u)−1
du

≤ 1{τ≤t} + 1{τ>t}(1 − p)(T − t),

yielding Lt > 0 for all t ∈ [0, T ] and LT − = limt↑T Lt = 0 on {τ = T } with

P [τ = T ] = p > 0.

(B): Note that μ
S
1�0,T − 1

n
� is the standard adjustment process on [0, T − 1

n
] for

any n ∈ N, but μ
S

itself is not in L(S). Nonetheless, since E (−μ
S

· S)
T − 1

n
→ 0

on {τ = T }, one can define ϕ := −μ
S
E (−μ

S
· S)1�0,T � = limn→∞ ϕn, which gives

an integrand in L(S) such that 1+ϕ ·ST = limn→∞ E (−μ
S

·S)
T − 1

n
. See also Liptser

and Shiryaev [23, Sect. 6.1.4] for details about stochastic exponentials of stochastic
integrals of Brownian motion hitting zero. Because of the independence of W and τ ,
we have

E[(1+ϕ ·ST )2] = E

[
exp

(
−

∫ τ

0
μ2

s ds

)]
= E

[
exp

(
−

∫ τ

0
μ2

s ds

)
1{τ<T }

]
= L0.

This yields 1 + ϕn · ST = E (−μ
S

· S)
T − 1

n
→ 1 + ϕ · ST in L2 and therefore ϕ ∈ Θ

by approximating ϕn with simple strategies and extracting a diagonal sequence.
Property (B) follows directly from Lemma 4.6 below and the fact that

P [Lσ− = 0] = P [τ = T ] = p > 0

by (A), because L > 0. This also yields that Q defined via

dQ

dP
= 1 + ϕ · ST

E[1 + ϕ · ST ] = 0ẐT ≥ 0
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is an absolutely continuous local martingale measure (ACLMM) for S with square-
integrable density process 0Ẑ = (0Ẑt )0≤t≤T and

{
dQ

dP
= 0

}
= {Lσ− = 0} = {τ = T }.

(C): We begin by showing the L∞-(NA) property, that is,

{ϑ · ST : ϑ ∈ Θ∞} ∩ L0+ = {0}.
For a proof by contradiction, suppose that this property fails, that is, there is ψ ∈ Θ∞
such that ψ · ST ∈ L0+ \ {0}. Denote by 0Ẑ the square-integrable density process of
the ACLMM Q from (B). Since ψ ·S has a uniform lower bound, the local martingale
0Ẑ(ψ · S) is a supermartingale. Non-negativity of 0ẐT and ψ · ST together with the
supermartingale property yield 0Ẑ(ψ ·S) = 0 on [0, T ]. This in turn gives ψ ·St = 0
for all t ∈ [0, T ) since 0Ẑ > 0 on [0, T ). By the continuity of S, one has ψ ·ST = 0,
which contradicts P [ψ · ST > 0] > 0.

The proof of the L2-(NA) property, that is, {ϑ ·ST : ϑ ∈ Θ}∩L2+ = {0}, proceeds
similarly. Indeed, suppose again, for a proof by contradiction, that the property fails
and there is ψ ∈ Θ such that ψ ·ST = f ∈ L2+ \ {0}. Then 0Ẑ(ψ ·S) is a martingale
by Lemma 4.6 below and hence E[0ẐT (ψ ·ST )] = 0. As before, the latter contradicts
the assumption that P [ψ · ST > 0] > 0.

(D) and (E): Recall that ϕ = −μ
S
E (−μ

S
· S)1�0,T � is in Θ and that

1 + ϕ · S = E

(
− μ

S
· S

)τ

1{τ<T }.

Likewise, ϑn := −μ
S
1{T − 1

n
<τ }

T − 1
n E (−μ

S
· S)1�0,T � is in Θ and one has

1{T − 1
n
<τ } + ϑn · S = T − 1

n E

(
− μ

S
· S

)τ

1{T − 1
n
<τ<T }.

Observe that ϑn starts trading at

σn :=
(

T − 1

n

)
1{τ>T − 1

n
} + T 1{τ≤(T − 1

n
)},

which is an announcing sequence for the predictable stopping time σ := T . Therefore
the above yields

E[(1{T − 1
n
<τ } + ϑn · ST )2] = E

[
exp

(
−

∫ τ

T − 1
n

μ2
s ds

)
1{T − 1

n
<τ<T }

]
−→ 0

so that −ϑn ·ST → 1{τ=T } in L2. Thus 1{τ=T } ∈ cl{ϑ ·ST : ϑ ∈ Θ}, but there is no
ψ ∈ Θ such that ψ · ST = 1{τ=T } by (C) because such a ψ ∈ Θ would violate the
L2-(NA) property. This gives (D).

Moreover, because S is continuous and σ = T , we have {ϑ ·ST : ϑ ∈ Θσ−} = {0}
while 1{τ=T } ∈ ⋂

n∈N cl{ϑ · ST : ϑ ∈ Θσn}. This gives (E).
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(F): The ACLMM for S has been constructed in part (B), where it is also shown
that Q[F ] = 0. On the other hand, by the fundamental theorem of asset pricing as
for example in Delbaen and Schachermayer [13, Theorem 1.1], there cannot be an
ELMM for S.

(G): Observe that the non-negative local martingale E (−μ · W) = 1/E (
μ
S

· S)

on [0, T ) has a finite left limit at T and that this limit is 0 on {τ = T }. For the
stopping times (σn)n∈N given by

σn := inf

{
t > 0 : E

(
μ

S
· S

)
t

> n

}
∧ T ,

we thus have that σn < T on the event {τ = T } and that 1
n
(E (

μ
S

· S)σn − 1) is the
wealth of an L∞-admissible trading strategy

ψn := 1

n

μ

S
E

(
μ

S
· S

)
1�0,σn� ∈ Θ∞.

Since

ψn · ST = 1

n

(
E

(μ

S
· S

)σn

T
− 1

)

≥ 1

n

(
E

(μ

S
· S

)σn

T
1{τ=T } − 1

)
= 1{τ=T } − 1

n
−→ 1{τ=T } in L∞

and P [τ = T ] > 0, this sequence yields a “free lunch with vanishing risk”.
In the specific setting of this example, one could modify the sequence (ψn)n∈N by

starting to trade at T − 1
n

solely on the event {τ > T − 1
n
}, which yields a sequence

of terminal wealths where the gain is still (1 − 1
n
)1{τ=T } and the worst loss is still 1

n
,

but the probability of loss decreases from at most P [τ < T ] to at most P [τ<T ]
n

.
It remains to argue that the strategies ψn are not only in Θ∞ but also in Θ. To this

end, we recall that the wealth process ψn · S is valued in [−1/n, 1] for each n ∈ N

and hence a square-integrable semimartingale. Because S is locally square-integrable
and ψn · S is square-integrable, the stochastic integral ψn · S can be approximated
in H2(P ) by stochastic integrals ψn,m·S with bounded simple integrands (ψn,m)m∈N.
This gives ψn ∈ Θ.

3.3 The law of one price and wealth transfers

Let us offer some intuition for the connection between the values of the opportu-
nity process L on the one hand and the law of one price for S on the other hand, as
announced in Theorem 3.2. Recall that G = {ϑ · ST : ϑ ∈ Θ} consists of the ter-
minal wealth distributions attainable by simple trading with zero initial wealth. The
statement

“the affine subspaces v + G are disjoint for different values of v ∈ R” (3.3)

can be seen as the LOP for simple wealth transfers between time 0 and time T .
Indeed, the terminal wealths in v + G are obtainable at the initial price v. If the
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same wealth is obtainable at two distinct initial prices, the law of one price no longer
applies. Observe that (3.3) can be restated more compactly as 1 /∈ G. Since G is not
necessarily closed, one must strengthen this requirement to

1 /∈ clG; (3.4)

this condition fails if there exists a fixed random variable in L2 that can be approxi-
mated arbitrarily well by elements of v + G for two different values of v ∈ R.

Let us generalise these observations to trading between an arbitrary stopping time
τ ∈ T and T . To this end, let Gτ consist of terminal wealths of simple zero-cost
strategies that do not trade on the interval �0, τ�, i.e., Gτ := {ϑ · ST : ϑ ∈ Θτ }. The
appropriate condition now reads

1A /∈ clGτ for all A ∈ Fτ with P [A] > 0. (3.5)

In analogy with (3.4), the requirement (3.5) may be interpreted as the law of one
price for wealth transfers between times τ and T : if (3.5) fails for some non-null
event A ∈ Fτ , then there are strategies with different (constant on A) initial wealth
at time τ that approximate the same terminal wealth.

Given this interpretation, it is not difficult to see (at least on an intuitive level)
that (3.5) corresponds to the condition (1) of Definition 2.3 and that it yields L > 0
via (3.1). Theorem 3.2 further shows that Definition 2.3(2) corresponds to the require-
ment that for every predictable τ ∈ T and some (equivalently every) announcing
sequence (τn)n∈N for τ , one has

1A /∈
⋂
n∈N

clGτn for all A ∈ Fτ− with P [A] > 0, (3.6)

which then yields

⋂
n∈N

Gτn = {ϑ · ST : ϑ ∈ Θτ−} =: Gτ−, (3.7)

and hence L− > 0. The novel condition (3.6) may be interpreted as the LOP for
wealth transfers between τ− and T for predictable τ ∈ T . Without the LOP condi-
tion (3.6), the first equality in (3.7) may fail and this can occur even for continuous
price processes. Both conditions L > 0 and L− > 0 can therefore be seen as dynamic
versions of Schweizer’s [32, Sect. 4] requirement

no approximate profits in L2 for G,

which yields the absence of a restricted set of “L2 free lunches” tailored to quadratic
optimisation criteria.

With these observations in mind, let us revisit the notion of a family of state price
densities satisfying the law of one price as per Definition 2.6. For a fixed τ ∈ T , this
family, too, defines a set of terminal wealths available at zero cost at time τ , namely

Ĝτ := {W ∈ L2(P |Fτ ) : E[WτZT |Fτ ] = 0}.
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The set Ĝτ is trivially closed in L2(P |Fτ ). Furthermore, one has

1A /∈ Ĝτ for all A ∈ Fτ with P [A] > 0 (3.8)

since none of the payoffs 1A have zero cost in view of

E[1A
τZT |Fτ ] = 1AE[τZT |Fτ ] = 1A 	= 0.

Hence τZT yields the law of one price for wealth transfers between τ and T in the
statically complete market characterised by W ∈ L2(P |Fτ ) being available at the
price E[WτZT |Fτ ] at time τ . Observe that the corresponding opportunity process L̂

reads

L̂τ = min
W∈Ĝτ

E[(1 − W)2|Fτ ] = 1

E[τZ2
T |Fτ ]

.

So far, we have only exploited properties (1) and (3) of Definition 2.6. The time-
consistency condition (2) additionally ensures that Ĝσ ⊇ Ĝτ for σ, τ ∈ T with σ ≤ τ .
Let now τ be a predictable stopping time in T and (τn) an announcing sequence. In
principle, it may happen that

1A ∈
⋂
n∈N

Ĝτn for some A ∈
⋂
n∈N

Fτn with P [A] > 0, (3.9)

which is somewhat surprising given that (3.8) holds for all τ ∈ T . Condition (4) of
Definition 2.6 is needed to prevent (3.9).

We may now interpret Theorem 3.2 as a market extension theorem: S satisfies the
LOP if and only if trading on S can be embedded in a statically complete market that
satisfies the LOP.

3.4 L2-projections under the law of one price

In Duffie and Richardson [17], the mean–variance hedging problem seeks the mean–
variance frontier of wealth distributions of the form H +ϑ ·ST over admissible ϑ with
initial wealth 1 and a fixed contingent claim H ∈ L2. As in [17] and Schweizer [30], it
is convenient to approach mean–variance hedging by first minimising the L2-distance
between an arbitrary contingent claim and the terminal wealth of a self-financing
trading strategy, i.e.,

min
ϑ∈Θτ

E[(v + ϑ · ST − H)2|Fτ ] for v ∈ L2(Fτ , P ), τ ∈ T . (3.10)

In solving (3.10), Theorem 3.6 recovers and extends the main results of Černý and
Kallsen [4] “on the general structure of mean–variance hedging” in two ways. First,
the L2-projection is obtained without assuming the existence of an equivalent local
martingale measure for S, but under the milder LOP assumption. The second novelty
of Theorem 3.6 is an expression for the conditional hedging error in (3.14) and (3.15),
and the orthogonality statement (3.16), which allow us in Sect. 3.6 to formulate a
conditional version of the efficient frontier in the spirit of Hansen and Richard [19].
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To prepare for the statement of Theorem 3.6, let us recall some notation. Let X be
a special Rd -valued semimartingale with predictable characteristics (BX,CX, νX);
see [21, II.2.6]. Denote by Bd the Borel σ -algebra on R

d . By [21, II.2.9], there
exist some increasing predictable process of integrable variation, some predictable
R

d×d -valued process cX whose values are nonnegative symmetric matrices, and some
transition kernel FX from (Ω × R+, P ) into (Rd ,Bd) such that

BX = bX ·A, CX = cX ·A, νX([0, t] × G) = FX(G) ·At for t ∈ [0, T ],G ∈ Bd .

We call (bX, cX, FX,A) differential characteristics of X.
Especially when one can take At = t , one can interpret bX

t as a drift rate, cX
t as

a diffusion coefficient, and FX
t as a jump arrival intensity. The differential character-

istics are typically derived from other “local” representations of the process, e.g. in
terms of a stochastic differential equation. From now on, we choose the same fixed
process A for all the (finitely many) semimartingales in this paper. The results do not
depend on the particular choice of A.

If [X,X] is special (i.e., X is locally square-integrable), then

c̃X = cX +
∫

xx�FX(dx) = b[X,X]

stands for the modified second characteristic of X. If they refer to some probability
measure P � rather than P , we write instead (bX�, cX�, FX�,A) and c̃X�, respec-
tively. We denote the joint characteristics of two special vector-valued semimartin-
gales X, Y by

(bX,Y , cX,Y , FX,Y , A) =
((

bX

bY

)
,
(

cX cXY

cYX cY

)
, FX,Y , A

)
.

Furthermore, for locally square-integrable X and Y , we let

c̃XY = cXY +
∫

xy�FX,Y (dx, dy).

We write c−1 for the Moore–Penrose pseudoinverse of a matrix c.

Theorem 3.6 Suppose that S is locally square-integrable and satisfies the law of one
price (or, equivalently, any of the conditions (ii)–(v) in Theorem 3.2). Then:

1) The opportunity process L = (Lt )0≤t≤T is the unique bounded semimartingale
such that

(a) L > 0, L− > 0 and LT = 1;
(b) L

E (BL(L))
> 0 is a martingale on [0, T ];

(c) S and [S, S] are P �-special for the opportunity-neutral measure P � ≈ P

defined by

dP �

dP
= LT

E[L0]E (BL(L))T
> 0,
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which implies

bS� = bS + cS L(L) + ∫
xyFS,L(L)(dx, dy)

1 + ΔBL(L)
,

c̃S� = cS + ∫
xx�(1 + y)FS,L(L)(dx, dy)

1 + ΔBL(L)
;

(d) for a = (c̃S�)−1bS�, one has for all τ ∈ T that

bL(L)

1 + ΔBL(L)
= − min

ϑ∈Rd
(ϑc̃S�ϑ� − 2ϑbS�) = −ac̃S�a� + 2abS�,

− a1�τ,T �
τE (−a · S)− ∈ Θτ . (3.11)

2) The optimal strategy ϕ(τ) = ϕ(τ)(v,H) ∈ Θτ for the conditional quadratic
hedging problem (3.10) exists and is given in feedback form by

ϕ(τ)(v,H) = 1�τ,T �

(
ξ(H) + a

(
V−(H) − v − ϕ(τ)(v,H) · S−

))
, (3.12)

where the mean value process V = (Vt )0≤t≤T = (Vt (H))0≤t≤T is given by

Vt = Vt (H) = 1

Lt

E[tE (−a · S)T H |Ft ], (3.13)

and the pure hedging coefficient ξ = ξ(H) = (c̃S�)−1c̃SV � satisfies

min
ϑ∈Rd

(ϑc̃S�ϑ� − 2ϑc̃SV �) = ξ c̃S�ξ� − 2ξ c̃SV �

with

c̃SV � = cSV + ∫
xz(1 + y)FS,L(L),V (dx, dy, dz)

1 + ΔBL(L)
.

3) For t ∈ [0, T ], let

ε2
t (H) := E

[(
1�t,T �L(c̃V � − 2ξ c̃SV � + ξ c̃S�ξ�)

) ·AT

∣∣Ft

]
(3.14)

with

c̃V � = cV + ∫
z2(1 + y)FL(L),V (dy, dz)

1 + ΔBL(L)
.

Then ε(H) is a semimartingale and for τ ∈ T , the hedging error of the optimal
strategy satisfies

E
[(

v + ϕ(τ)(v,H) · ST − H
)2∣∣Fτ

] = Lτ

(
v − Vτ (H)

)2 + ε2
τ (H). (3.15)
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We further have that ϕ(τ)(H) := ϕ(τ)(Vτ (H),H) ∈ Θτ is the unique strategy (in the
sense of the wealth process ϕ(τ)(H) · S being unique up to P -indistinguishability)
such that

E
[(

Vτ (H) + ϕ(τ)(H) · ST − H
)
(1 + ϑ · ST )

∣∣Fτ

] = 0 for all ϑ ∈ Θτ . (3.16)

Conversely, if there exists a bounded semimartingale L = (Lt )0≤t≤T satisfying
1)(a)–(d), then L is the opportunity process, 2) and 3) hold, and S satisfies the LOP.

Proof Fix τ ∈ T and v ∈ L2(Fτ , P ). Recall from the proof of Theorem 3.2(vi) that
Θ(S̃) = Θτ(S) for S̃ = 1�τ,T � ·S, that ϑ · S̃ = ϑ ·S for all ϑ ∈ Θ(S̃) = Θτ(S), and
that the conditions (i)–(v) of Theorem 3.2 for S imply that the conditions also hold
for S̃. Therefore the solution ϕ̃ ∈ Θ(S̃) to the unconditional L2-approximation

min
ϑ̃∈Θ(S̃)

E[(v + ϑ̃ · S̃T − H)2] (3.17)

exists since {ϑ̃ · S̃T : ϑ̃ ∈ Θ(S̃)} is closed in L2 by Theorem 3.2 applied to S̃. By
the strict convexity of the square, the terminal wealth ϕ̃ · S̃T of the optimal strategy is
unique. The LOP then yields uniqueness of the wealth process ϕ̃ · S̃ = (ϕ̃ · S̃t )0≤t≤T

by Remark 2.4.
Next, we show that ϕ̃ ∈ Θ(S̃) = Θτ(S) also optimises (3.10). To this end, note

that the solution of (3.17) is uniquely characterised by the first-order condition

E[(v + ϕ̃ · S̃T − H)(ϑ̃ · S̃T )] = 0 for all ϑ̃ ∈ Θ(S̃),

which yields E[(v + ϕ̃ · S̃T −H)(ϑ̃ · S̃T )|Fτ ] = 0 for all ϑ̃ ∈ Θ(S̃) by the definition
of the conditional expectation, since

ϑ̃ ∈ Θτ(S̃) ⇐⇒ 1F ϑ̃ ∈ Θτ(S̃) for all F ∈ Fτ .

In view of Θ(S̃) = Θτ(S) and ϑ · ST = ϑ · S̃T for all ϑ ∈ Θτ (S) = Θ(S̃), the
strategy ϕ̃ indeed optimises (3.10), i.e.,

E[(v + ϕ̃ · ST − H)ϑ · ST |Fτ ] = 0 for all ϑ ∈ Θτ(S).

1) and the converse: As shown above, the optimiser ϕ(τ)(1, 0) ∈ Θτ exists. Parts
(1) and (2) of Czichowsky and Schweizer [11, Proposition 6.1] then yield that the op-
portunity process is the unique semimartingale L = (Lt )0≤t≤T satisfying 1)(a)–(d).
The converse implication that a bounded semimartingale L = (Lt )0≤t≤T satisfying
1)(a)–(d) is the opportunity process follows from [11, Proposition 6.1(3)].

2) and 3): This follows by observing that one only needs to solve the unconditional
L2-approximation problem (3.17) and that the arguments of [4, Sect. 4] only need the
properties 1)(a)–(d). As shown above, the latter follow from the LOP and do not re-
quire the existence of an equivalent local martingale measure with square-integrable
density as assumed in [4]. □
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Remark 3.7 All statements about trading from τ onwards in Theorem 3.6 have a nat-
ural counterpart for trading from τ− for predictable τ ∈ T , using strategies in Θτ−.
For example, for v ∈ L2(Fτ−, P ) and all ϑ ∈ Θτ−, one obtains

E
[(

v + ϕ(τ−)(v,H) · ST − H
)2∣∣Fτ−

] = Lτ−
(
v − Vτ−(H)

)2 + ε2
τ−(H),

E
[(

Vτ−(H) + ϕ(τ−)(H) · ST − H
)
(1 + ϑ · ST )

∣∣Fτ−
] = 0,

thus increasing the scope of Theorem 3.6. The proofs for τ− are completely analo-
gous and therefore omitted.

Remark 3.8 When the law of one price for S fails, the L2-approximation prob-
lem (1.1) becomes degenerate in the following sense. Let

σ := inf{t > 0 : Lt− = 0} and τ := inf{t > 0 : Lt = 0}.
Then at least one of the events {σ ≤ T } and {τ < T } has positive probability, and any
random variable in L2 supported on these events can be approximated with arbitrary
precision in L2 by zero-cost strategies in Θ. In that case, {ϑ · ST : ϑ ∈ Θ} may
or may not be closed, as illustrated by Delbaen et al. [12, Examples 3.10–3.12 and
Theorem 5.3].

Combining Theorems 3.2 and 3.6 allows us to give a simplified verification the-
orem for the law of one price that only involves finding a candidate L̂ = (L̂t )0≤t≤T

for the opportunity process and not the actual opportunity process L = (Lt )0≤t≤T .
Its significance compared to earlier results based on the converse implication of
Theorem 3.6 is that we do not need to verify the admissibility of the so-called ad-
justment process a in (3.11), which is usually a difficult task as illustrated in the
counterexample of Černý and Kallsen [5].

Theorem 3.9 Let S be locally square-integrable. Suppose that there exists a bounded
semimartingale L̂ = (L̂t )0≤t≤T such that

(a) L̂ > 0, L̂− > 0, and L̂T = 1;
(b) for

b̂ = bS + cS L(L̂) + ∫
xyFS,L(L̂)(dx, dy)

1 + ΔBL(L̂)
,

ĉ = cS + ∫
xx�(1 + y)FS,L(L̂)(dx, dy)

1 + ΔBL(L̂)
,

one has

bL(L̂)

1 + ΔBL(L̂)
= − min

ϑ∈Rd
(ϑĉϑ� − 2ϑb̂).

Then S satisfies the law of one price (or, equivalently, any of the conditions (ii)–(v) in
Theorem 3.2). In particular, the opportunity process L = (Lt )0≤t≤T is the maximal
bounded semimartingale satisfying (a) and (b).



A. Černý, C. Czichowsky

Proof By properties (a) and (b), the semimartingale L̂ is a solution to the BSDE [11,
Eq. (4.18)] that takes the form [11, Eq. (6.8)] without cone constraints. Because the
opportunity process L is the maximal solution to this BSDE by [11, Lemma 4.17], it
follows that the opportunity process L satisfies L ≥ L̂. Therefore L > 0 and L− > 0
by (a) so that (v) and hence any of the conditions (i)–(iv) in Theorem 3.2 holds. □

3.5 Hansen and Richard (1987) framework

The results in Sects. 3.1 and 3.4 have natural counterparts for trading in a wider class
of admissible strategies Θ̃τ , where one only requires conditional square-integrability
of the terminal wealth. This will allow us to study the Hansen and Richard [19]
framework enhanced by dynamic trading in Sect. 3.6.

Definition 3.10 For τ ∈ T , a trading strategy ϑ ∈ L(S) is in Θ̃τ if ϑ = 0 on �0, τ�
and there exists a sequence (ϑn)n∈N of simple strategies ϑn = (ϑn

t )0≤t≤T in Θτ

such that
(1) ϑn · ST → ϑ · ST in L2(P |Fτ ), i.e., E[(ϑn · ST − ϑ · ST )2|Fτ ] → 0 in L0.
(2) ϑn · Sσ → ϑ · Sσ in L0 for all σ ∈ T .

For predictable τ ∈ T , the set Θ̃τ− is defined analogously by replacing τ with τ−
above and requiring ϑ = 0 only on �0, τ�.

Remark 3.11 The convergence in Definition 3.10 (1) has the equivalent form
(1′) There is a bounded 0 < K ∈ L0(Fτ , P ) with (Kϑn · ST ) → (Kϑ · ST )

in L2,
from which it immediately follows that for all τ ∈ T , the set Θ̃τ satisfies

Θ̃τ = L0(Fτ , P )Θτ . (3.18)

Indeed, assume that (1) holds. To see that K in (1′) exists, consider
the sequence (Xn)n∈N given by Xn = ϑn · ST with ϑn ∈ Θ̃τ such that
Xn → X := ϑ · ST in L2(P |Fτ ). By passing to a subsequence, we may assume
that E[(Xn − X)2|Fτ ] → 0 P -almost surely. Since E[X2

n|Fτ ] < ∞, this yields
E[X2|Fτ ] < ∞ as well as

sup
n∈N

E[X2
n|Fτ ] < ∞.

Hence (1′) holds with

K = 1√
1 + sup{E[X2

n|Fτ ] + E[X2|Fτ ] : n ∈ N} ∈ (0, 1).

Conversely, if (1′) holds, then (1) follows from the properties of conditional expecta-
tions in He et al. [20, Theorem I.1.21].

By Theorem 3.2(vi), the law of one price for the price process S yields L2-closed-
ness of admissible terminal wealths {ϑ · ST : ϑ ∈ Θτ } for all τ ∈ T . The next result
translates the L2-closedness of {ϑ · ST : ϑ ∈ Θτ } into the conditional closedness
of terminal wealths generated by the wider class Θ̃τ . To avoid repetition, we do not
state an analogous result for Θ̃τ− for predictable τ ∈ T .
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Theorem 3.12 Assume the law of one price for S. Then the following statements hold
for any τ ∈ T , H ∈ L2(P |Fτ ), and v ∈ L0(Fτ , P ):

1) The set of terminal wealths {ϑ · ST : ϑ ∈ Θ̃τ } is closed in L2(P |Fτ ).
2) The optimiser in minϑ∈Θ̃τ

E[(v +ϑ ·ST −H)2|Fτ ] is the unique (up to a null

strategy) process ϕ(τ)(v,H) satisfying

E
[(

v + ϕ(τ)(v,H) · ST − H
)
(ϑ · ST )

∣∣Fτ

] = 0 for all ϑ ∈ Θ̃τ .

3) For H ∈ L2(FT , P ) and Lτv
2 ∈ L1(Fτ , P ), the optimal hedges in Θτ

and Θ̃τ coincide. In particular, the opportunity process over Θ coincides with that
over Θ̃.

4) The mean value process V (H) is well defined by (3.13) on �τ, T �. The feedback
formula (3.12) for the optimal strategy remains valid on �τ, T �.

5) The minimal hedging error in (3.14) is well defined on �τ, T �. Furthermore,
(3.15) continues to hold.

Proof 1): Consider the sets Gτ := {ϑ · ST : ϑ ∈ Θτ }, Gτ := {ϑ · ST : ϑ ∈ Θτ }, and
G̃τ := {ϑ ·ST : ϑ ∈ Θ̃τ }. Let (Xn)n∈N be a sequence that converges in L2(P |Fτ ) to
some X. By (3.18), we have G̃τ = L0(Fτ , P )Gτ . By Remark 3.11, there is a bounded
positive K ∈ L0(Fτ , P ) such that KXn ∈ (L0(Fτ , P )Gτ ) ∩ L2 = Gτ converges
to KX in L2. Hence KX ∈ clGτ = Gτ and X ∈ 1

K
Gτ ⊆ G̃τ .

2)–5): There is a bounded positive K ∈ L0(Fτ , P ) such that Kv and KH are
in L2. It is then immediate from (3.18) that ϕ(τ)(Kv,KH) = Kϕ(τ)(v,H), and the
formulae follow by applying Theorem 3.6 to the pair (Kv,KH). □

3.6 Mean–variance hedging

The next theorem extends the mean–variance hedging results of Duffie and Richard-
son [17, Sect. 4.3] to general contingent claims and a conditional mean–variance fron-
tier. Observe that even in the classical case with trivial F0 and square-integrable H ,
our characterisation of the mean–variance frontier simplifies that of [17]. By not re-
quiring Lτ < 1, we also expand the conditional mean–variance analysis of Hansen
and Richard [19] to a setting without their Assumption 3.1. Observe that dynamic
trading has not previously been considered in the setting of [19]. All statements be-
low have natural counterparts for trading from τ− for predictable τ ∈ T in the spirit
of Remark 3.7.

Theorem 3.13 Assume that S satisfies the law of one price. Then for τ ∈ T and
H ∈ L2(P |Fτ ), the following are equivalent:

(i) The random variable W ∈ H +{ϑ ·ST : ϑ ∈ Θ̃τ } has the smallest conditional
variance for a given conditional mean, i.e., W lies on the efficient frontier.

(ii) One has W = H − ϕ(τ)(H) ·ST + (λ − Vτ (H))(1 − τE (−a ·S)T ) for some
λ in L0(Fτ , P ).

(iii) One has

Var[W |Fτ ] = ε2
τ (H) + Lτ

1 − Lτ

(
E[W |Fτ ] − Vτ (H)

)2
,
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with the convention 0/0 = 0. In particular, on the set {Lτ = 1}, the efficient frontier
collapses to a single point with E[W |Fτ ] = Vτ (H) and Var[W |Fτ ] = ε2

τ (H).

Proof Since ϕ(τ)(0, 1) maximises the conditional expected quadratic utility over Θτ ,
it is mean–variance efficient in Θτ . Letting Xτ := ϕ(τ)(0, 1) · ST , one has

E[Xτ |Fτ ] = E[X2
τ |Fτ ] = 1 − Lτ

in view of the orthogonality (3.16) and the identity

Xτ = 1 − τE (−a · S)T . (3.19)

By (3.16), G̃τ = {ϑ · ST : ϑ ∈ Θ̃τ } decomposes orthogonally into a subspace whose
elements have conditional mean zero and L0(Fτ , P )Xτ . This shows that all efficient
payoffs in G̃τ are of the form λXτ for λ ∈ L0(Fτ , P ). Writing

H + G̃τ = H − Vτ (H) − ϕ(τ)(H) · ST + Vτ (H)(1 − Xτ ) + G̃τ ,

the equivalence of (i) and (ii) now follows from (3.16) and (3.19) in view of the
mutual orthogonality of H − Vτ (H) − ϕ(τ)(H) · ST , Vτ (H)(1 − Xτ ) and G̃τ . The
orthogonality yields moment expressions for W in (ii), namely

E[W |Fτ ] = λ(1 − Lτ ) + Vτ (H)Lτ ,

E[W 2|Fτ ] = ε2
τ (H) + λ2(1 − Lτ ) + V 2

τ (H)Lτ ,

which after algebraic manipulations shows the equivalence of (ii) and (iii). □

We next examine the mean–variance frontier when the contingent claim is not
part of the endowment, but can instead be purchased at time τ for the price
π ∈ L0(Fτ , P ). The question is then how to select an amount of the contingent
claim to be held from τ to maturity T so as to maximise the Sharpe ratio of a zero-
cost position that involves dynamic trading in the underlying assets (1, S) and a static
trade in the contingent claim.

Definition 3.14 For τ ∈ T , π ∈ L0(Fτ , P ) and H ∈ L2(P |Fτ ), we call

ρτ := sup

{
E[ϑ · ST + η(π − H)|Fτ ]√
Var[ϑ · ST + η(π − H)|Fτ ] : ϑ ∈ Θτ , η ∈ L0(Fτ , P )

}

the maximal Sharpe ratio on �τ, T �, with the convention 0/0 = 0.

Theorem 3.15 Assume S satisfies the law of one price. Fix a stopping time τ ∈ T
and a contingent claim H ∈ L2(P |Fτ ) and suppose further that at time τ , the con-
tingent claim H delivered at T is available at the price π ∈ L0(Fτ , P ), to be held
to maturity. Assume this π satisfies 1{ετ (H)=0}(π − Vτ (H)) = 0. Then the maximal
conditional Sharpe ratio ρτ is given by

ρ2
τ = L−1

τ − 1 + (π − Vτ (H))2

ε2
τ (H)

, (3.20)
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with the convention 0/0 = 0. Furthermore, this Sharpe ratio is attained by the
terminal wealth

η̂(π − H) + ϕ(τ)
(
0, 1 − η̂(π − H)

) · ST , (3.21)

with the contingent claim position

η̂ = π − Vτ (H)

ε2
τ (H)

1

1 + ρ2
τ

. (3.22)

Proof The proof mirrors Černý and Kallsen [6, Lemma 5.1]. For ϑ ∈ Θτ and
Fτ -measurable η and π , let Xη,ϑ := η(π − H) + ϑ · ST . For conditionally
square-integrable X, one easily obtains that

(E[X|Fτ ])2

Var[X|Fτ ] = 1

infα∈L0(Fτ ,P ) E[(1 − αX)2|Fτ ] − 1.

Then

ρ2
τ = sup

η∈L0(Fτ ,P ),ϑ∈Θτ

(E[Xη,ϑ |Fτ ])2

Var[Xη,ϑ |Fτ ]

= sup
α,η∈L0(Fτ ,P ),ϑ∈Θτ

1

E[(1 − αXη,ϑ)2|Fτ ] − 1

= 1

infη∈L0(Fτ ,P ) infϑ∈Θτ
E[(1 − Xη,ϑ)2|Fτ ] − 1

= 1

inf{Lτ (1 − η(π − Vτ (H)))2 + η2ε2
τ (H) : η ∈ L0(Fτ , P )} − 1,

where the last equality follows from (3.15) with the contingent claim 1 − η(π − H).
Straightforward calculations yield the optimal volume sold in (3.22) and the maximal
conditional Sharpe ratio (3.20). By (3.12) with the contingent claim 1 − η̂(π − H),
the optimal investment-cum-hedging wealth is given by (3.21). □

Remark 3.16 A square-integrable E -density compatible with S defines an extended
market that embeds admissible trading in S, i.e., for ϑ ∈ Θ and t ∈ [0, T ], one has

ϑ · St = E[(ϑ · ST ) tE (N)T |Ft ].
The extended market also yields a price process (S̃t )0≤t≤T for every contingent claim
H ∈ L2(FT , P ) via the formula

S̃t := E[H tE (N)T |Ft ].
If E (N) > 0, then E (N) is the density process of an equivalent local martingale mea-
sure for both S and S̃; hence the extended market (St , S̃t )0≤t≤T is arbitrage-free over
admissible strategies. However, as soon as E (N) ≤ 0 with positive P -probability,
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the extended market will contain arbitrage opportunities since the contingent claim
H = 1{τ≤T }, where τ is the first time E (N) is less than or equal to zero, trades at a
non-positive price S̃0 = E[E (N)τ1{τ≤T }|F0] at time 0.

Remark 3.17 Fix τ ∈ T and consider a statically complete market for wealth trans-
fers between τ and T , where every terminal wealth distribution W ∈ L2(P |Fτ ) is
available to purchase at time τ at the price

pτ (W) = E[τE (N)T W |Fτ ]
with N = −a ·S +L(L) − [a ·S,L(L)]. Such a market subsumes static positions in
any contingent claim H ∈ L2(P |Fτ ) at the price Vτ (H) as well as dynamic trading
in S using strategies in Θ̃τ . It is well known (see e.g. Hansen and Jagannathan [18,
Eq. (17)]) that the highest Sharpe ratio attainable in such a complete market takes the
value

Var[τE (N)T |Fτ ] = E

[ τE (−a · S)2
T

L2
τ

∣∣∣∣Fτ

]
− 1 = L−1

τ − 1.

Thus the variance-optimal E -density (τE (N))τ∈T is the only family of state price
densities compatible with S whose complete market does not expand the conditional
efficient frontiers generated by trading in S alone; cf. Theorem 3.15.

4 Proofs

4.1 Relation between state price densities and E -densities

We begin with two propositions that are of more general interest. Recall that by a
conditional version of the Riesz representation theorem for Hilbert spaces in Hansen
and Richard [19, Theorem 2.1], a conditionally linear and continuous operator can be
represented as a conditional expectation involving a conditionally square-integrable
random variable. More precisely, for τ ∈ T and an Fτ -conditionally linear and
continuous operator pτ : L2(FT , P ) → L0(Fτ , P ), there is an FT -measurable
random variable τZT such that

E[τZ2
T |Fτ ] < ∞ and

pτ (H) = E[τZT H |Fτ ] for all H ∈ L2(FT , P ). (4.1)

The conditional operator norm of pτ then satisfies ‖pτ‖ = (E[τZ2
T |Fτ ])1/2. We

refer to Cerreia-Vioglio et al. [7] for more details about conditional Lp-spaces and an
analysis of conditionally linear operators on them via L0 modules.

The next result shows that the existence of a price system (pτ )τ∈T and a family
of state price densities (τZT )τ∈T , both satisfying the law of one price, are equiv-
alent. Comparing Definitions 2.5 and 2.6, the equivalence of properties (1)–(3b) of
Definition 2.5 and (1)–(3) of Definition 2.6 directly follows from using (4.1). There-
fore we only need to show the equivalence of properties (4) of Definition 2.5 and (4)
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of Definition 2.6, which is a consequence of the conditional version of the uniform
boundedness principle below.

Proposition 4.1 For a predictable stopping time σ ∈ T with an announcing sequence
(σm)m∈N in T , the following are equivalent:

(i) There exist Fσm-conditionally linear and continuous mappings

pσm : L2(FT , P ) → L0(Fσm, P )

that are pointwise convergent, that is, (pσm(H))m∈N is a convergent sequence in L0

for all H ∈ L2(FT , P ).
(ii) There exists an Fσ−-conditionally linear and continuous mapping

pσ− : L2(FT , P ) → L0(Fσ−, P )

such that pσm(H) → pσ−(H) in L0 as m → ∞, for all H ∈ L2(FT , P ).
(iii) There is a sequence (σmZT )m∈N of random variables such that for the pσm

given by (4.1), the “conditional operator norms” ‖pσm‖ := (E[(σmZT )2|Fσm])1/2

are bounded, that is,

C := sup
m∈N

(
E[(σmZT )2|Fσm])1/2

< ∞ P -a.s., (4.2)

and there is a dense subset D of L2(FT , P ) such that for all H ∈ D, the sequence
(pσm(H))m∈N converges in L0 to some random variable.

Proof (ii) ⇒ (i) is clear.
(iii) ⇒ (ii): Set pσ−(H) := limm→∞ pσm(H) for all H ∈ D. Then the map-

ping pσ− : D → L0(Fσ−, P ) is continuous and Fσ−-conditionally linear, where
D ⊆ L2(FT , P ) is equipped with the topology of L2(FT , P ) and L0(Fσ−, P )

with the (completely metrisable) topology of convergence in probability. Indeed, for
H1,H2 ∈ D, we have that

|pσ−(H1) − pσ−(H2)| =
∣∣∣ lim
m→∞ pσm(H1) − lim

m→∞ pσm(H2)

∣∣∣
= lim

m→∞ |pσm(H1 − H2)|
= lim

m→∞
∣∣E[σmZT (H1 − H2)|Fσm ]∣∣

≤ lim
m→∞

(
E[(σmZT )2|Fσm ])1/2(

E[(H1 − H2)
2|Fσm])1/2

≤ C
(
E[(H1 − H2)

2|Fσ−])1/2
,

where we use that (Fσm)m∈N is increasing and
∨

m∈N Fσm = Fσ−, which also
implies that the range of pσ− is L0(Fσ−, P ). Since D is dense in L2(FT , P )

and L0(Fσ−, P ) is complete, we can therefore extend pσ− from D to L2(FT , P )

by continuity. Note that this implies that pσ−(H) = limm→∞ pσm(H) for all
H ∈ L2(FT , P ) and hence that pσ− is Fσm-linear for all m ∈ N. The Fσ−-linearity
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then follows from the continuity of pσ− and the fact that the indicator function 1A

of every set A ∈ Fσ− can be approximated by the indicator functions 1Am of sets
Am ∈ Fσm in L0 by Caratheodory’s extension theorem, since

∨
m∈N Fσm = Fσ−.

(i) ⇒ (iii): This is a modification of a direct proof of the uniform boundedness
principle in Tao [35, Remark 1.7.6]. By way of contradiction, we suppose that (4.2)
fails. Then there is a subsequence (mk)k∈N such that

lim
k→∞

(
E[(σmk ZT )2|Fσmk

])1/2 = ∞

on A := {supm∈N(E[(σmZT )2|Fσm ])1/2 = ∞} with P [A] > 0. By passing to a
further subsequence still denoted by (mk)k∈N, we can assume that

lim
k→∞

(
E[(σmk ZT )2|Fσmk

])1/2
1Ak

= ∞ (4.3)

on A for Ak := {(E[(σmk ZT )2|Fσmk
])1/2 ≥ 100k} ∈ Fσmk

. Set

H̃k :=
σmk ZT

(E[(σmk ZT )2|Fσmk
])1/2

.

Then H̃k is in L2(FT , P ) with (E[(H̃k)
2|Fσmk

])1/2 = 1. Therefore, we have that

H =
∞∑

k=1

εk10−kH̃k ∈ L2(FT , P )

for all choices εk ∈ {−1,+1}. Moreover, we can choose the signs εk ∈ {−1,+1} suc-
cessively in the following way. After ε1, . . . , εk−1 have been determined, we select
εk ∈ {−1,+1} such that

E

[
σmk ZT

( k∑
n=1

εn10−nH̃n

)∣∣∣∣Fσmk

]
≥ 10−k

(
E[(σmk ZT )2|Fσmk

])1/2
.

By the Cauchy–Schwarz and triangle inequalities, this implies

E[σmk ZT H |Fσmk
] = E

[
σmk ZT

( k∑
n=1

εn10−nH̃n +
∞∑

n=k+1

εn10−nH̃n

)∣∣∣∣Fσmk

]

≥ 10−k
(
E[(σmk ZT )2|Fσmk

])1/2

− (
E[(σmk ZT )2|Fσmk

])1/2
( ∞∑

n=k+1

10−n

)

= 10−k(1 − 1/9)
(
E[(σmk ZT )2|Fσmk

])1/2
. (4.4)

But since 10−k(E[(σmk ZT )2|Fσmk
])1/2 ≥ 10k on Ak , this contradicts the conver-

gence of pσmk
(H) = E[σmk ZT H |Fσmk

] in L0 in view of (4.3) and (4.4), which
completes the proof. □
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The next result shows that a family (τZT )τ∈T of state price densities satisfying
the law of one price can be represented in terms of stochastic exponentials of a local
martingale, more precisely, as a square-integrable E -density.

Proposition 4.2 For a family (τZT )τ∈T of random variables, the following statements
are equivalent:

(i) The collection (τZT )τ∈T of random variables is a family of state price densi-
ties satisfying the law of one price (i.e., properties (1)–(4) of Definition 2.6 hold).

(ii) There is a locally square-integrable martingale N such that (τE (N))τ∈T is a
square-integrable E -density and for all τ ∈ T , one has τZT = τE (N)T .

Proof (i) ⇒ (ii): We adapt the proof technique of Delbaen and Schachermayer [14]
as in [11, Lemma 3.5] to our situation. To this end, fix τ ∈ T and define the process
τZ = (τZt )0≤t≤T by τZt = E[τZT |Ft ]. Furthermore define the stopping times
(σn)n∈N and σ by setting

σ = inf{t > 0 : τZt = 0}, σn = inf

{
t > 0 : |τZt | ≤ 1

n + 1

}
∧ T .

Next let F = {τZσ− = 0}, observing that τZ is a locally square-integrable local
martingale by property (3) of Definition 2.6 and hence τZσ− is well defined. Note that
τZt (ω) = 1 for 0 ≤ t ≤ τ(ω) by property (1) of Definition 2.6. The Cauchy–Schwarz
inequality yields

1{σn<σ } = E[σnZT 1{σn<σ }|Fσn]
= E[σnZT 1{σn<σ }1Fc |Fσn]
≤ (E[σnZ2

T 1{σn<σ }|Fσn])
1
2 (P [Fc|Fσn])

1
2

= (E[σnZ2
T |Fσn])

1
2 (P [Fc|Fσn])

1
2 . (4.5)

On sending n → ∞, one obtains in view of (4.5) and the bounded conditional second
moments at predictable stopping times (by property (4) of Definition 2.6) that

1F = lim
n→∞1{σn<σ }1F

≤ lim sup
n→∞

(
(E[σnZ2

T |Fσn])
1
21F1{σn<σ }(P [Fc|Fσn]

1
2 )

)

= lim sup
n→∞

(E[σnZ2
T |Fσn])

1
21F1Fc

≤ C1F1Fc = 0,

where C2 = supn∈N E[σnZ2
T |Fσn]. This yields P [F ] = 0 and hence τZσ− 	= 0,

which means that each τZ can only jump to zero. Therefore τZ− 	= 0 on �0, σ � and
τZ = 0 on �σ, T � so that its stochastic logarithm L(τZ) = 1�0,σ�

τ Z− · τZ is well defined
and gives τZ = E (L(τZ)); see Choulli et al. [8, Proposition 2.2]. Note that since τZ

is a locally square-integrable martingale, so is L(τZ).
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Let (Tn)n∈N0 be the sequence of stopping times given by T0 = 0 and

Tn+1 = inf{t > Tn : TnZt = 0} ∧ T for n ∈ N0.

Then because each TnZ can only jump to zero, the sequence (Tn)n∈N0 converges
stationarily to T . Since L(TnZ)t (ω) = 0 for t /∈ (Tn(ω), Tn+1(ω)] and (Tn)n∈N0

converges stationarily to T , setting N := ∑∞
n=0 L(TnZ) yields a locally square-

integrable martingale. Fix τ ∈ T . Then for each ω ∈ Ω, there is only one in-
dex n(ω) ∈ N0 such that τ(ω) ∈ [Tn(ω)(ω), Tn(ω)+1(ω)). Observe that the mapping
ω �→ n(ω) is Fτ -measurable since {n(ω) = k} = {Tk ≤ τ < Tk+1} ∈ Fτ for all
k ∈ N0. Combining the time-consistency of τZ (property (2) of Definition 2.6) with
Yor’s formula for stochastic exponentials and the definition of N yields

τZT (ω) =
Tn(ω)ZT (ω)

Tn(ω)Zτ (ω)
= E (Tn(ω)N)T (ω)

E (Tn(ω)N)τ )(ω)
= E (τN)T (ω) = τE (N)T (ω)

and hence τZT = τE (N)T . By the square-integrability of (τZT )τ∈T (property (3) of
Definition 2.6), the latter also implies that E[τE (N)2

T |Fτ ] = E[(τZT )2|Fτ ] < ∞
for all τ ∈ T so that (τE (N))τ∈T is a square-integrable E -density (Definition 2.8).

(ii) ⇒ (i): We only need to verify that setting τZT := τE (N)T for τ ∈ T defines
a family (τZT )τ∈T of state price densities satisfying the law of one price. Indeed,
the family (τE (N))τ∈T being an E -density (as in Definition 2.8) implies the correct
pricing of the risk-free asset (property (1) of Definition 2.6) as well as the time-
consistency (property (2) of Definition 2.6) by applying Yor’s formula for stochastic
exponentials. The conditional square-integrability (property (3) of Definition 2.6) fol-
lows directly from the fact that the E -density (τE (N))τ∈T is square-integrable (as in
Definition 2.8). We prove the bounded conditional second moments at predictable
stopping times (property (4) of Definition 2.6) by contradiction. For this, let τ ∈ T
be a predictable stopping time and (τn)n∈N an announcing sequence for τ such that
P [F1] > 0 for F1 := {supn∈N E[τnE (N)2

T |Fτn] = ∞}. Note that F1 ⊆ {τ > 0} by
the conditional square-integrability (property (3) of Definition 2.6). Let (Tm)m∈N0 be
the sequence of stopping times given by T0 = 0 and

Tm+1 = inf{t > Tm : TmE (N)t = 0} ∧ T for m ∈ N0.

Because each TmE (N) can only jump to zero, the sequence (Tm)m∈N0 converges sta-
tionarily to T . Hence there is k ∈ N such that F2 := {Tk < τ ≤ Tk+1} ∩ F1 has
P [F2] > 0. On F2, we have TkE (N)T = TkE (N)τn

τnE (N)T for sufficiently large n.
Since E[TkE (N)2

T |FTk
] < ∞, this yields limn→∞ TkE (N)τn = TkE (N)τ− = 0

on F2. The latter contradicts the fact that TkE (N)τ− 	= 0 on {Tk < τ ≤ Tk+1} by the
definition of Tk+1, which completes the proof. □

Remark 4.3 The proof of Proposition 4.2 shows that condition (i) can be written in
the following equivalent form:

(i′) The family (τZT )τ∈T of state price densities satisfies properties (1)–(3) of
Definition 2.6 and τZ = (τZt )0≤t≤T does not reach zero continuously and is
absorbed in zero in the sense of (2.1), for each τ ∈ T .
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4.2 Proof of Theorem 3.2

We now construct a specific family (τ ẐT )τ∈T of variance-optimal state price densi-
ties as discussed in Remark 3.3.

Lemma 4.4 For any stopping time τ ∈ T , let Ĝ
(τ)
T be the orthogonal projection

of 1 onto cl{ϑ · ST : ϑ ∈ Θτ }. Furthermore, for such τ , define the square-integrable
martingale M̂(τ) = (M̂

(τ)
t )0≤t≤T by

M̂
(τ)
t := E[(1 − Ĝ

(τ)
T )|Ft ]. (4.6)

Then the process

M̂(τ)(x + ϑ · S) = (
M̂

(τ)
t (x + ϑ · St )

)
0≤t≤T

(4.7)

is a martingale for any x ∈ L2(F0, P ) and ϑ ∈ Θτ(0), and

Lτ = E[(1 − Ĝ
(τ)
T )2|Fτ ] = M̂(τ)

τ . (4.8)

Proof The martingale property of (4.7) follows from the first-order condition of op-
timality. Indeed, ϑ ∈ Θτ implies that 1F×(s,t]ϑ is in Θτ for all s ≤ t and arbitrary

F ∈ Fs . Therefore by the definition of Ĝ
(τ)
T , we have that

E[1F (ϑ · St − ϑ · Ss)(1 − Ĝ
(τ)
T )] = E

[(
(1F×(s,t]ϑ) · ST

)
(1 − Ĝ

(τ)
T )

] = 0.

As F ∈ Fs was arbitrary, the tower property of conditional expectations yields

E[(ϑ · St )M̂
(τ)
t |Fs] = E[(ϑ · St )(1 − Ĝ

(τ)
T )|Fs]

= E[(ϑ · Ss)(1 − Ĝ
(τ)
T )|Fs] = (ϑ · Ss)M̂

(τ)
s .

The case ϑ ∈ Θτ then follows by approximating ϑ ∈ Θτ by a sequence (ϑn)n∈N of
strategies ϑn = (ϑn

t )0≤t≤T in Θτ . This yields

E[(ϑ · ST )M̂
(τ)
T |Ft ] = E

[(
lim

n→∞ ϑn · ST

)
M̂

(τ)
T

∣∣∣Ft

]

= lim
n→∞ E[(ϑn · ST )M̂

(τ)
T |Ft ]

= lim
n→∞(ϑn · St )M̂

(τ)
t = (ϑ · St )M̂

(τ)
t ,

where we have used limn→∞ ϑn ·ST → ϑ ·ST in L2 in the first and second equality
and limn→∞ ϑn · St → ϑ · St in probability in the last equality.
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Finally, let (ϕn)n∈N be a sequence of trading strategies ϕn = (ϕn
t )0≤t≤T in Θτ

with ϕn · ST → Ĝ
(τ)
T in L2. Then

Lτ = E[(1 − Ĝ
(τ)
T )2|Fτ ]

= E[1 − Ĝ
(τ)
T |Fτ ] − E

[
(1 − Ĝ

(τ)
T )

(
lim

n→∞ ϕn · ST

)∣∣∣Fτ

]

= E[1 − Ĝ
(τ)
T |Fτ ] − lim

n→∞ E[(1 − Ĝ
(τ)
T )(ϕn · ST )|Fτ ]

= E[1 − Ĝ
(τ)
T |Fτ ]. □

Using (4.8), we next obtain a process Ĝ(τ) = (Ĝ
(τ)
t )0≤t≤T acting as a substitute

for the unavailable stochastic integral (ϕ(τ)(1, 0) · St )0≤t≤T that leads to the optimal
terminal wealth Ĝ

(τ)
T defined in Lemma 4.4. Observe that the construction in (4.9)

only needs the weak LOP condition L > 0.

Lemma 4.5 Suppose L > 0. For each τ ∈ T , define the process Ĝ(τ) = (Ĝ
(τ)
t )0≤t≤T

by

Ĝ
(τ)
t =

{
0, 0 ≤ t < τ,

1 − M̂
(τ)
t

Lt
, τ ≤ t ≤ T .

(4.9)

Then for all stopping times σ ≥ τ in T , we have that

1 − Ĝ
(τ)
T = (1 − Ĝ(τ)

σ )(1 − Ĝ
(σ )
T ). (4.10)

Proof Let (ϑn)n∈N be a sequence of trading strategies ϑn = (ϑn
t )0≤t≤T in Θτ such

that ϑn · ST → Ĝ
(τ)
T in L2. Then

(1 − ϑn · Sσ )2Lσ ≤ E[(1 − ϑn · ST )2|Fσ ] (4.11)

by [11, Proposition 3.1]. Since (ϑn · ST )n∈N is convergent in L2(P ), it is bounded
in L2(P ) and hence (ϑn · Sσ )n∈N is bounded in L2(P σ ) by (4.11), where P σ ≈ P

is defined by dP σ

dP
= Lσ

E[Lσ ] > 0. By Mazur’s lemma, see Brezis [3, Corollary 3.8],

there exist a sequence (ϕn)n∈N of trading strategies ϕn ∈ conv(ϑn, ϑn+1, . . .) ⊆ Θτ

and a random variable Xσ ∈ L2(Fσ , P σ ) such that ϕn · Sσ → Xσ in L2(P σ ) and
hence

(1 − Xσ )2Lσ ≤ E[(1 − Ĝ
(τ)
T )2|Fσ ]. (4.12)

Note that (4.12) implies that

1 − (
Xσ + (1 − Xσ )Ĝ

(σ)
T

) = (1 − Xσ )(1 − Ĝ
(σ )
T ) ∈ L2(P )

and hence Yσ := Xσ + (1 − Xσ )Ĝ
(σ)
T ∈ L2(P ). If we can show that

Yσ = Xσ + (1 − Xσ )Ĝ
(σ)
T ∈ Gτ , (4.13)
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then it follows from (4.12) that Yσ is optimal for (3.2) and hence

Yσ = Ĝ
(τ)
T . (4.14)

For the proof of (4.13), let (ψn)n∈N be a sequence of simple trading strategies
ψn = (ψn

t )0≤t≤T in Θσ such that ψn · ST → Ĝ
(σ )
T in L2(P ). By Egorov’s the-

orem, see [1, 10.38], there exists a sequence (Fm)m∈N of sets Fm ∈ Fσ with
P [Fm] ≥ 1 − 1/m such that for each m ∈ N, we have that (ϕn · Sσ )n∈N and Xσ

are uniformly bounded on Fm and ϕn · Sσ → Xσ uniformly on Fm. Then (ξm,n)n∈N
given by

ξm,n = ϕn1Fc
m

+ (
ϕn1�0,σ� + (1 − ϕn · Sσ )ψn1�σ,T �

)
1Fm

is a sequence of trading strategies ξm,n = (ξ
m,n
t )0≤t≤T in Θτ such that

ξn,m · ST = (ϕn · ST )1Fc
m

+ (1 − ϕn · Sσ )(ψn · ST )1Fm

by the local character of the stochastic integral. Hence for each m ∈ N,

ξm,n · ST −→ Ĝ
(τ)
T 1Fc

m
+ (1 − Xσ )Ĝ

(σ)
T 1Fm in L2(P ) as n → ∞.

Because Ĝ
(τ)
T 1Fc

m
+ (1 − Xσ )Ĝ

(σ)
T 1Fm → (1 − Xσ )Ĝ

(σ)
T in L2(P ) as m → ∞, we

can select a diagonal sequence (ξm,nm)m∈N with ξm,nm = (ξ
m,nm
t )0≤t≤T ∈ Θτ and

ξm,nm · ST −→ Yσ = Xσ + (1 − Xσ )Ĝ
(σ)
T in L2(P ) as m → ∞,

and hence (4.13) holds.
From (4.13), we obtain

Ĝ(τ)
σ = 1 − M̂

(τ)
σ

Lσ

= 1 − E[(1 − Xσ )(1 − Ĝ
(σ )
T )|Fσ ]

= 1 − (1 − Xσ )E[(1 − Ĝ
(σ )
T )|Fσ ] = Xσ

so that Xσ is uniquely determined as Xσ = Ĝ
(τ)
σ , and we have (4.10) by (4.14). □

Lemma 4.6 Suppose that L > 0. For each τ ∈ T , let

τ Ẑt =
⎧⎨
⎩

1, 0 ≤ t < τ,

M̂
(τ)
t

Lτ
= Lt (1−Ĝ

(τ)
t )

Lτ
, τ ≤ t ≤ T .

(4.15)

Then (τ ẐT )τ∈T is a family of state price densities satisfying properties (1)–(3) of
Definition 2.6, compatible with S, and such that for all τ ∈ T ,

E[(τ ẐT )2|Fτ ] = 1

Lτ

.
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If in addition L− > 0, then (τ ẐT )τ∈T satisfies the law of one price, that is, it also
fulfils property (4) of Definition 2.6.

Proof We begin by verifying that (τ ẐT )τ∈T is a family of state price densities sat-
isfying properties (1)–(3) of Definition 2.6. The definition (4.6) of M̂(τ) together
with (4.8) implies that for all τ ∈ T , one has

E[τ ẐT |Fτ ] = E

[
M̂

(τ)
T

Lτ

∣∣∣∣Fτ

]
= M̂

(τ)
τ

M̂
(τ)
τ

= 1

and hence the correct pricing of the risk-free asset (property (1) of Definition 2.6).
The time-consistency (Definition 2.6(2)) follows from τ Ẑt = (1 − Ĝ

(τ)
t )/Lτ , which

is an easy consequence of (4.15), together with (4.10). On combining the identity
τ ẐT = (1− Ĝ

(τ)
T )/Lτ with E[(1− Ĝ

(τ)
T )2|Fτ ] = Lτ < ∞ for all τ ∈ T by (4.8), we

obtain that τ ẐT is conditionally square-integrable (property (3) of Definition 2.6) and
E[(τ ẐT )2|Fτ ] = 1

Lτ
for all τ ∈ T . Because 1�0,σn∧σ� ∈ Θ ⊆ Θ is a simple trading

strategy for any localising sequence (σn)n∈N of stopping times with S∗
σn

∈ L2, we
have that S is compatible with (τZT )τ∈T in the sense of Definition 2.6 by choosing
τ = 0, x = S0, and ϑ = 1�0,σn∧σ� in (4.7).

For the proof of the bounded conditional expectations of squares at predictable
stopping times (property (4) of Definition 2.6), suppose that L− > 0. Let σ ∈ T be a
predictable stopping time and (σn)n∈N an announcing sequence for σ . Because

E[(σnẐT )2|Fσn] = E

[(
1 − Ĝ

(σn)
T

Lσn

)2∣∣∣∣Fσn

]
= 1

Lσn

,

we obtain that supn∈N E[(σnẐT )2|Fσn] = supn∈N 1
Lσn

< ∞, since Lσn converges
to Lσ− P -a.s. and we have both L > 0 and L− > 0. □

Proof of Theorem 3.2 The most efficient way to prove the theorem is to show
(i) ⇒ (v), (v) ⇒ (iv), (iv) ⇒ (iii), (iii) ⇒ (ii), and (ii) ⇒ (i).

(i) ⇒ (v): For a proof by contradiction, we first suppose that L > 0 fails. Then
for the stopping time τ := inf{t > 0 : Lt = 0} ∧ T and F := {Lτ = 0}, we have
P [F ] > 0 and therefore 0 = 1F Lτ = 1F (ess inf ϑ∈Θτ

E[(1−ϑ ·ST )2|Fτ ]). Because
the family

Γ = {E[(1 − ϑ · ST )2|Fτ ] : ϑ ∈ Θτ }
of random variables is stable under taking minima by [11, Lemma 2.18(1)], there
exists a sequence (ϑn)n∈N of trading strategies ϑn = (ϑn

t )0≤t≤T in Θτ such that

E
[(
1F − 1F (ϑn · ST )

)2] = E
[
1F E[(1 − ϑn · ST )2|Fτ ]

] −→ 0.

As 0 and ϑn are in Θτ for all n ∈ N, we have by [11, Lemma 2.18(1)] that

ψn := (1F ϑn) ∈ Θτ for all n ∈ N.
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Therefore we have a sequence (ψn)n∈N of trading strategies in Θτ and F ∈ Fτ

such that 1F (1 − ψn · ST ) → 0 in L2, but limn→∞ 1F (1 − ψn · Sτ ) = 1F 	= 0.
Approximating the strategies ψn ∈ Θτ by simple trading strategies ϕn ∈ Θτ , this
contradicts the LOP for S, namely, item (1) of Definition 2.3.

If L− > 0 fails, one has P [F ] > 0 for F := {Lσ− = 0} with the predictable
stopping time σ = inf{t > 0 : Lt− = 0} ∧ T . Define a sequence (σn)n∈N of stopping
times by σn = inf{t > 0 : Lt− ≤ 1

n
} ∧ T and set Fn = {Lσn− ≤ 1

n
}. Then (σn)n∈N is

an announcing sequence for σ and one has 1Fn → 1F in L0 and 1FnLσn → 1F Lσ−
in L2. Since for each n ∈ N, the family of random variables

Γn = {E[(1 − ϑ · ST )2|Fσn] : ϑ ∈ Θσn}
is stable under taking minima by [11, Lemma 2.18(1)], there exists a diagonal
sequence (ϑn)n∈N of trading strategies ϑn = (ϑn

t )0≤t≤T in Θσn such that

E
[(
1Fn − 1Fn(ϑ

n · ST )
)2] = E

[
1FnE[(1 − ϑn · ST )2|Fσn]

] −→ 0.

Because 0 and ϑn are in Θσn for all n ∈ N, we have again by [11, Lemma 2.18(1)]
that ψn := (1Fnϑ

n) ∈ Θσn for all n ∈ N. This gives a sequence (ψn)n∈N of trading
strategies with ψn ∈ Θσn and Fn ∈ Fσn such that 1Fn(1 − ψn · ST ) → 0 in L2,
while at the same time, one has limn→∞ 1Fn(1 − ψn · Sτ ) = 1F 	= 0. This yields a
contradiction to property (2) of Definition 2.3 of the LOP for S since one can approx-
imate each ψn ∈ Θσn by simple trading strategies in Θσn and then extract a diagonal
sequence.

(v) ⇒ (iv): This follows directly from Proposition 4.2 and Lemma 4.6.
(iv) ⇒ (iii): Since (τE (N))τ∈T is a square-integrable E -density (Definition 2.8),

Proposition 4.2 yields that setting τZT := τE (N)T for τ ∈ T gives a family
(τZT )τ∈T of state price densities satisfying the LOP (Definition 2.6). Moreover, the
property that S is an E (N)-local martingale (Definition 2.9) directly implies that
(τZT )τ∈T is compatible with S (Definition 2.6).

(iii) ⇒ (ii): Given a compatible family (τZT )τ∈T of state price densities satisfying
the LOP, we define a family (pτ )τ∈T of operators pτ : L2(FT , P ) → L0(Fτ , P ) by

pτ (H) = E[τZT H |Fτ ] for all H ∈ L2(FT , P ).

Since (τZT )τ∈T satisfies the LOP and is compatible with S (Definition 2.6), it
is straightforward to check that (pτ )τ∈T is a compatible price system satisfying
the LOP (Definition 2.5) by comparing the definitions and using the implication
(iii) ⇒ (i) of Proposition 4.1.

(ii) ⇒ (i): For a proof by way of contradiction, suppose that (i) and therefore either
condition (1) or condition (2) of Definition 2.3 fail.

We begin with condition (1). If that fails, there exist a stopping time τ ∈ T , an
Fτ -measurable endowment xτ and a sequence (ϑn)n∈N of simple trading strategies
such that xτ + ϑn1�τ,T � · ST → 0 in L2 and xτ 	= 0. By the conditional linearity
(property (3a) of Definition 2.5) and the time-consistency for simple strategies, we
have pτ (xτ + ϑn1�τ,T � · ST ) = xτ and hence xτ = pτ (xτ + ϑn1�τ,T � · ST ) → 0
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in L0 by the conditional linearity and continuity of pτ (properties (3a) and (3b) of
Definition 2.5). This, however, is a contradiction to xτ 	= 0.

Similarly, if condition (2) fails, there exist a predictable stopping time σ ∈ T , an
announcing sequence (σn)n∈N for σ , and sequences (xn

σn
)n∈N of Fσn-measurable ran-

dom variables and (ϑn)n∈N of simple trading strategies with xn
σn

+ϑn1�σn,T �·ST → 0

in L2 and xn
σn

→ xσ− in L0 for some random variable xσ− with xσ− 	= 0. Then again
by the conditional linearity (property (3a) of Definition 2.5) and the time-consistency
for simple strategies, we have pσn(x

n
σn

+ ϑn1�σn,T � · ST ) = xn
σn

. By Definition 2.5,

(pσn)n∈N is a sequence of continuous mappings pσn : L2(FT , P ) → L0(Fσn, P )

that are Fσn-linear and pointwise convergent, that is, (pσn(H))n∈N is a convergent
sequence in L0 for all H ∈ L2(FT , P ). Therefore it follows from the implication
(i) ⇒ (iii) of Proposition 4.1 that the conditional operator norms ‖pσn‖ are uniformly
bounded, that is,

C := sup
n∈N

‖pσn‖ < ∞ P -a.s.

Combining the latter with xn
σn

+ ϑn1�σn,T � · ST → 0 in L2 gives that

|xσn | = |pσn(x
n
τ + ϑn1�σn,T � · ST )|

≤ sup
n∈N

(
‖pσn‖

(
E[(xn

σn
+ ϑn1�σn,T � · ST )2|Fσn]

) 1
2
)

−→ 0 in L0,

which contradicts xσ− 	= 0 with xn
σn

→ xσ− in L0.
(vi) By (iv), there exists a semimartingale N such that (τE (N))τ∈T is a square-

integrable E -density and S is an E (N)-local martingale. Therefore the closedness of
the set {ϑ · ST : ϑ ∈ Θ} follows by applying [11, Theorem 2.16].

(vii) Fix τ ∈ T and let S̃ = 1�τ,T �·S. Observe that Θ(S̃) = Θτ(S) and ϑ ·S̃ = ϑ ·S
for all ϑ ∈ Θ(S̃) = Θτ(S) by the associativity of stochastic integrals. Moreover, the
properties (i)–(v) imposed on S in Theorem 3.2 are inherited by S̃. By (iv), there
exists a semimartingale N such that (τE (N))τ∈T is a square-integrable E -density
and S, hence also S̃, is an E (N)-local martingale. Therefore the closedness of

{ϑ · ST : ϑ ∈ Θτ } = {ϑ̃ · S̃T : ϑ̃ ∈ Θ(S̃)}
follows again by applying [11, Theorem 2.16] to S̃.

(viii) Fix ϑ ∈ Θσ−. Because 1�0,σn�ϑ = 0 for all n ∈ N by the definition of Θσ−,

we have ϑ ∈ Θσn for all n ∈ N and hence

{ϑ · ST : ϑ ∈ Θσ−} ⊆
⋂
n∈N

{ϑ · ST : ϑ ∈ Θσn}.

Conversely, suppose that ϑ ∈ Θσn for all n ∈ N. Then 1�0,σn�ϑ = 0 for all n ∈ N

by the definition of Θσn . Therefore (1�0,σ�ϑ) ·S = limn→∞(1�0,σn�ϑ) ·S = 0 in the

semimartingale topology and hence ϑ ∈ Θσ− so that
⋂
n∈N

{ϑ · ST : ϑ ∈ Θσn} ⊆ {ϑ · ST : ϑ ∈ Θσ−}.
□
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