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Carry Trades and Global Foreign Exchange Volatility

Abstract

We investigate the relation between global foreign exchange (FX) volatility risk and

the cross-section of excess returns arising from popular strategies that borrow in low-

interest rate currencies and invest in high-interest rate currencies, so-called ‘carry

trades’. We find that high interest rate currencies are negatively related to inno-

vations in global FX volatility and thus deliver low returns in times of unexpected

high volatility, when low interest rate currencies provide a hedge by yielding posi-

tive returns. Our proxy for global FX volatility risk captures more than 90% of the

cross-sectional excess returns in five carry trade portfolios. In turn, these results

provide evidence that there is an economically meaningful risk-return relation in the

FX market. Further analysis shows that liquidity risk also matters for expected FX

returns, but to a lesser degree than volatility risk. Finally, exposure to our volatility

risk proxy also performs well for pricing returns of other cross sections in foreign

exchange, U.S. equity, and corporate bond markets.

JEL Classification: F31, G12, G15.

Keywords: Carry Trade, Volatility, Liquidity, Forward Premium Puzzle.



This paper studies the risk-return profile of a popular trading strategy that borrows in

currencies with low interest rates and invests in currencies with high interest rates. This

trading strategy is called ‘carry trade’. According to uncovered interest parity (UIP),

if investors are risk neutral and form expectations rationally, exchange rate changes will

eliminate any gain arising from the differential in interest rates across countries. However,

a number of empirical studies show that exchange rate changes do not compensate for the

interest rate differential. Instead, the opposite holds true empirically: high interest rate

currencies tend to appreciate while low interest rate currencies tend to depreciate. As a

consequence, carry trades form a profitable investment strategy, violate UIP, and give rise

to the “forward premium puzzle” (Fama (1984)).

This puzzle and the resulting carry trade strategy are well documented for at least 25

years (Hansen and Hodrick (1980, 1983), Fama (1984)). Considering the very liquid foreign

exchange (FX) markets, the dismantling of barriers to capital flows between countries and

the existence of international currency speculation during this period, it is difficult to

understand why carry trades have been profitable for such a long time.1 A straightforward

and theoretically convincing solution for this puzzle is the consideration of time-varying risk

premia (Engel (1984), Fama (1984)). If investments in currencies with high interest rates

deliver low returns during “bad times” for investors, then carry trade profits are merely a

compensation for higher risk-exposure by investors. However, the empirical literature has

serious problems to convincingly identify risk factors that drive these premia until today.

In our empirical analysis we follow much of the recent literature (Lustig and Verdelhan

(2007), Lustig, Roussanov, and Verdelhan (2010)) and sort currencies into portfolios ac-

cording to their forward discount (or, equivalently, their relative interest rate differential

versus U.S. money market interest rates) at the end of each month.2 We form five such

portfolios and investing in the highest relative interest rate quintile, i.e. portfolio 5, and

shorting the lowest relative interest rate quintile, i.e. portfolio 1, therefore results in a carry

trade portfolio. This carry trade leads to large and significant unconditional excess returns

of more than 5% p.a. even after accounting for transaction costs and the recent market

turmoil. These returns cannot be explained by standard measures of risk (e.g. Burnside,
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Eichenbaum, Kleshchelski, and Rebelo (2006)) and seem to offer a free lunch to investors.

In this paper, we argue that these high returns to currency speculation can indeed be

understood as a compensation for risk. Finance theory predicts that investors are concerned

about state variables affecting the evolution of the investment opportunities set and wish

to hedge against unexpected changes (innovations) in market volatility, leading risk-averse

agents to demand currencies that can hedge against this risk.3 Guided by this insight

and earlier evidence for stock markets (e.g. Ang, Hodrick, Xing, and Zhang (2006)), we

test whether the sensitivity of excess returns to global FX volatility risk can rationalize

the returns to currency portfolios in a standard, linear asset pricing framework. We find

empirically that high interest rate currencies are negatively related to innovations in global

FX volatility and thus deliver low returns in times of unexpectedly high volatility, when

low interest rate currencies provide a hedge by yielding positive returns. In other words,

carry trades perform especially poorly during times of market turmoil and, thus, their high

returns can be rationalized from the perspective of standard asset pricing. This is the

major point of our paper and it shows that excess returns to carry trades are indeed a

compensation for time-varying risk.

Our paper is closely related to two contributions in the recent literature. First, as in

Lustig, Roussanov, and Verdelhan (2010), we show that returns to carry trades can be

understood by relating them cross-sectionally to two risk factors. Lustig, Roussanov, and

Verdelhan (2010) employ a data-driven approach in line with the Arbitrage Pricing Theory

of Ross (1976) and identify two risk factors that are (a) the average currency excess return

of a large set of currencies against the USD (which they coin “Dollar risk factor”) and (b)

the return to the carry trade portfolio itself (the “HMLFX” factor). In the present paper,

we also employ two risk factors to price the cross-section of carry trade returns, one of

which is the Dollar risk factor. Instead of the HMLFX factor of Lustig, Roussanov, and

Verdelhan (2010), however, we investigate the empirical performance of a different risk

factor: innovations in global FX volatility.4 This factor is a proxy for unexpected changes

in FX market volatility, and is the analogue of the aggregate volatility risk factor used

by Ang, Hodrick, Xing, and Zhang (2006) for pricing the cross section of stock returns.
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We show that global FX volatility is indeed a pervasive risk factor in the cross-section of

FX excess returns and that its pricing power extends to several other test assets. Second,

Brunnermeier, Nagel, and Pedersen (2009) find that liquidity is a key driver of currency

crashes: when liquidity dries up, currencies crash. Experience from the recent financial

market crisis suggests that liquidity is potentially important for understanding the cross-

section of carry trade excess returns as well. Following Brunnermeier, Nagel, and Pedersen

(2009) we show that liquidity is useful to understand the cross-section of carry trade returns

even more generally, i.e. also in times when currencies do not crash. We comprehensively

document, however, that our proxy for global FX volatility is the more powerful risk factor

and subsumes the information contained in various liquidity proxies.

Therefore, our main contribution relative to the existing literature is as follows. We show

that global FX volatility is a key driver of risk premia in the cross-section of carry trade

returns. The pricing power of volatility also applies to other cross sections, such as a com-

mon FX momentum strategy, individual currencies’ excess returns, domestic US corporate

bonds, US equity momentum as well as FX option portfolios and international bond portfo-

lios. This finding is in line with the result that aggregate volatility risk is helpful in pricing

some cross sections of stock returns (Ang, Hodrick, Xing, and Zhang (2006)). Reassuringly,

we find that FX volatility is correlated with several proxies for financial market liquidity

such as bid-ask spreads, the TED spread, or the Pastor and Stambaugh (2003) liquidity

measure. However, when analyzing carry trade returns, FX volatility always dominates

liquidity proxies in joint asset pricing tests where both factors are considered. This finding

corroborates evidence for stock markets where, e.g. Bandi, Moise, and Russell (2008) show

that stock market volatility drives out liquidity in cross-sectional asset pricing exercises.

Therefore, the results in our paper provide new insights into the behavior of risk premia

in currency markets in general as well as similarities between the relation of volatility and

cross-sectional excess returns in FX and stock markets.

We examine our main result in various specifications without qualitative changes of

our findings: (i) We show that sorting currencies on their beta with volatility innovations

yields portfolios with a large difference in returns. These portfolios are related, but not
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identical, to our base test assets of currency portfolios sorted on forward discount. (ii) We

investigate other factors such as liquidity, skewness, or coskewness. (iii) We investigate

potential Peso problems using different approaches, such as Empirical Likelihood methods

and winsorized volatility series. (iv) We investigate the performance of the proposed risk

factor for other test assets, including options, international bonds, US stock momentum

and corporate bonds, as well as individual currency returns. (v) We experiment with other

proxies for FX volatility (implied volatility from equity and currency options) or different

weighting schemes for individual realized volatility. (vi) We depart from our base scenario

of a U.S.-based investor and run calculations with alternative base currencies (taking the

viewpoint of a British, Japanese, or Swiss investor, respectively). We find that our results

are robust to these changes and corroborate our core result that volatility risk is a key

driver of risk premia in the FX market.

Our study is also closely related to a new strand of literature suggesting explanations

for the forward premium puzzle. Important contributions include Burnside, Eichenbaum,

Kleshchelski, and Rebelo (2006), who argue that carry trades may be difficult to imple-

ment due to high transaction costs. Brunnermeier, Nagel, and Pedersen (2009) show that

carry trades are related to low conditional skewness, indicating that they are subject to

crash risk, a result confirmed in further analysis by Farhi, Fraiberger, Gabaix, Ranciere,

and Verdelhan (2009). Related to this, Melvin and Taylor (2009) show that proxies for

market stress have some predictive power for carry trade returns. Burnside, Eichenbaum,

Kleshchelski, and Rebelo (2011) carefully document that carry trades are still profitable

after covering most of the downside risk through the use of derivatives so that the puz-

zle basically remains, whereas Burnside, Eichenbaum, and Rebelo (2009) suggest that the

forward premium may also be due to adverse selection risk. Lustig and Verdelhan (2007)

provide evidence that currency risk premia can be understood in the Durables Consumption

CAPM setting of Yogo (2006); Verdelhan (2010) shows how carry trade returns are related

to risk arising from consumption habits, and Lustig, Roussanov, and Verdelhan (2010) use

an empirically derived two-factor model which parsimoniously explains the cross-section of

currency portfolios and the carry trade. We also rely on Brunnermeier, Nagel, and Peder-
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sen (2009) in that we confirm some relevance for illiquidity as a risk factor. However, we

cannot confirm that transaction costs are prohibitively important (Burnside, Eichenbaum,

Kleshchelski, and Rebelo (2006)) or that skewness would be a pervasive proxy for risk in

the currency market (Brunnermeier, Nagel, and Pedersen (2009)).5

The paper is structured as follows. In Section I we briefly review the conceptual role of

volatility as a risk measure. Section II presents data and descriptive statistics. The main

results regarding volatility risk are shown in Section III. Section IV provides results on the

relation between volatility and liquidity risk. Other possible explanations for our findings

are discussed in Section V, whereas results for other test assets are shown in Section VI.

We briefly discuss robustness checks in Section VII, and conclusions are drawn in Section

VIII. Details on some of our data and estimation procedures are delegated to an Appendix

at the end of the paper. A separate Internet Appendix contains details for robustness tests

as well as additional analyses.

I Volatility as a Risk Factor in Foreign Exchange

Finance theory suggests that there must be a negative volatility risk premium because

a positive volatility innovation (i.e. unexpectedly high volatility) worsens the investor’s

risk-return tradeoff, characterizing a bad state of the world. Moreover, high unexpected

volatility typically coincides with low returns so that assets that covary positively with

market volatility innovations provide a good hedge and are, therefore, expected to earn a

lower expected return. Motivated by these insights, several recent papers study how expo-

sure to market volatility risk is priced in the cross-section of returns on the stock market

(Ang, Hodrick, Xing, and Zhang (2006), Adrian and Rosenberg (2008), Da and Schaum-

burg (2009)). In fact, given that volatility is known to exhibit substantial persistence, it

is reasonable to consider aggregate volatility innovations as a pricing factor. In empirical

research inspired by these considerations, the recent asset pricing literature considers a

parsimonious two-factor pricing kernel m (or stochastic discount factor, SDF) with the
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market excess return and volatility innovations as risk factors:

mt+1 = 1− b1rem,t+1 − b2∆Vt+1, (1)

where rem,t+1 is the log market excess return and ∆Vt+1 denotes volatility innovations. This

linear pricing kernel implies an expected return-beta representation for excess returns.

Regardless of its simplicity and the likely omission of other potential factors, this em-

pirical model has delivered important insights on the relationship between volatility risk

and expected stock returns. For example, Ang, Hodrick, Xing, and Zhang (2006) em-

ploy changes in the VIX index (from CBOE) to proxy for volatility risk, considered as a

non-traded risk factor. They find that aggregate volatility is priced in the cross-section of

U.S. stock returns and that stocks with a higher sensitivity to volatility risk do earn lower

returns. Further studies in this line of literature include Adrian and Rosenberg (2008),

who decompose market volatility into a long-run and a short-run component. They show

that each component is priced separately with a negative factor risk price. Moreover, Da

and Schaumburg (2009) price several asset classes with a pricing kernel that is linear in

the aggregate stock market return and volatility innovations. Christiansen, Ranaldo, and

Söderlind (2010) show that volatility matters for the correlation between excess returns

of stock markets and currencies. Finally, Bandi, Moise, and Russell (2008) do not only

consider volatility, but also liquidity as a further pricing factor. They find that both risk

factors are useful for understanding the pricing of U.S. stocks, but that volatility dominates

liquidity when they are considered jointly.6

Summing up these papers on stock pricing, volatility innovations emerge as a state

variable and there is a negative price of volatility risk because investors are concerned

about changes in future investment opportunities. This motivates our approach of pricing

forward-discount sorted portfolios with a SDF depending linearly on two risk factors: (i)

an aggregate FX market return, and (ii) aggregate FX market volatility innovations. We

show in this paper that this model has a lot to say about returns on carry trades as well
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as other cross-sections of asset returns.

In addition to this line of literature, our approach of using the covariance of returns with

market volatility as a priced source of risk is also related to the literature on coskewness

(see e.g. Harvey and Siddique (1999), Harvey and Siddique (2000), Ang, Chen, and Xing

(2006) for asset pricing implementations of coskewness). Coskewness is given by

coskew =
E [(rk − µk)(rm − µm)2]

σ(rk)σ2(rm)
, (2)

where rk, rm denote the return of a portfolio k and the market benchmark, respectively;

and µ and σ denote mean and standard deviation, respectively. Applying a covariance

decomposition to the numerator above, the covariance of returns with market volatility

emerges from this framework as well. The general idea here is that portfolios with a high

coskewness (i.e. portfolios delivering high returns when market volatility is high) serve as a

hedge against volatility and should thus earn lower returns. Therefore, this idea is closely

related to our setup as well.7

Overall, empirical evidence suggests that volatility innovations matter for understand-

ing the cross-section of equity returns. We show that a similar approach is helpful to

understand the cross-section of FX risk premia as well.8

II Data and Currency Portfolios

This section describes the currency and interest rate data used in the empirical analysis,

the construction of portfolios and associated excess returns, our main proxy for global

FX volatility risk and data on currency options. We also provide some basic descriptive

statistics.
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Data on spot and forward rates. The data for spot exchange rates and 1-month

forward exchange rates versus the US dollar (USD) cover the sample period from November

1983 to August 2009, and are obtained from BBI and Reuters (via Datastream). The

empirical analysis is carried out at the monthly frequency, although we start from daily

data in order to construct the proxy for volatility risk discussed below.9 Following the

extant literature since Fama (1984), we will work in logarithms of spot and forward rates

for ease of exposition and notation. Later in the paper, however, we will use discrete

returns (rather than log-returns) for our cross-sectional asset pricing tests.

We denote spot and forward rates in logs as s and f, respectively. Our total sam-

ple consists of the following 48 countries: Australia, Austria, Belgium, Brazil, Bulgaria,

Canada, Croatia, Cyprus, Czech Republic, Denmark, Egypt, Euro area, Finland, France,

Germany, Greece, Hong Kong, Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy,

Japan, Kuwait, Malaysia, Mexico, Netherlands, New Zealand, Norway, Philippines, Poland,

Portugal, Russia, Saudi Arabia, Singapore, Slovakia, Slovenia, South Africa, South Korea,

Spain, Sweden, Switzerland, Taiwan, Thailand, Ukraine and the United Kingdom. Follow-

ing Lustig, Roussanov, and Verdelhan (2010) we also study a smaller sub-sample consisting

only of 15 developed countries with a longer data history. This sample includes: Australia,

Belgium, Canada, Denmark, Euro area, France, Germany, Italy, Japan, Netherlands, New

Zealand, Norway, Sweden, Switzerland, and the United Kingdom. Since the introduction

of the Euro in January 1999, the sample of developed countries covers 10 currencies only.

Portfolio construction. At the end of each period t, we allocate currencies to five

portfolios based on their forward discounts f −s at the end of period t. Sorting on forward

discounts is equivalent to sorting on interest rate differentials since covered interest parity

holds closely in the data at the frequency analyzed in this paper (see e.g. Akram, Rime,

and Sarno (2008)). We re-balance portfolios at the end of each month. This is repeated

month by month during the more than 25 years period. Currencies are ranked from low to

high interest rates. Portfolio 1 contains currencies with the lowest interest rate (or smallest

forward discounts) and portfolio 5 contains currencies with the highest interest rates (or
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largest forward discounts). Monthly excess returns for holding foreign currency k, say, are

computed as

rxkt+1 ≡ ikt − it −4skt+1 ≈ fkt − skt+1. (3)

As basis for further calculations we compute the log currency excess return rxi,t+1 for

portfolio i by taking the (equally weighted) average of the log currency excess returns

in each portfolio i (gross returns). We then compute excess returns for bid-ask spread

adjusted currency positions (net returns). We employ a setup where bid-ask spreads are

deducted from returns whenever a currency enters and/or exits a portfolio. The net return

for a currency that enters a portfolio at time t and exits the portfolio at the end of the

month is computed as rxlt+1 = f bt − sat+1 for a long position and rxst+1 = −fat + sbt+1 for a

short position. A currency that enters a portfolio but stays in the portfolio at the end of the

month has a net excess return rxlt+1 = f bt − st+1 for a long position and rxst+1 = −fat + st+1

for a short position, whereas a currency that exits a portfolio at the end of month t but

already was in the current portfolio the month before (t − 1) has an excess return of

rxlt+1 = ft − sat+1 for a long position and rxst+1 = −ft + sbt+1 for a short position. We

assume that the investor has to establish a new position in each single currency in the first

month (November 1983) and that he has to sell all positions in the last month (at the end

of August 2009). Returns for portfolio 1 (i.e. the funding currencies in the carry trade) are

adjusted for transaction costs in short positions whereas portfolios 2 through 5 (investment

currencies) are adjusted for transaction costs in long positions. In the paper, we report

results for these net returns since transaction costs are available and can be quite high

for some currencies (Burnside, Eichenbaum, and Rebelo (2007)). Also, our portfolios have

about 30% turnover per month so that transaction costs should play a role.10

The return difference between portfolio 5 and portfolio 1 (the long-short portfolio H/L)

then is the carry trade portfolio obtained from borrowing money in low interest rate coun-

tries and investing in high interest rate countries’ money markets, HMLFX in the notation

of Lustig, Roussanov, and Verdelhan (2010). We also build and report results for a portfo-
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lio denoted DOL, which is the average of all five currency portfolios, i.e. the average return

of a strategy that borrows money in the U.S. and invests in global money markets outside

the U.S. Lustig, Roussanov, and Verdelhan (2010) call this zero-cost portfolio the “Dollar

risk factor”, hence the abbreviation “DOL”.11

Descriptive statistics for portfolios. Descriptive statistics for the five carry trade

portfolios, the DOL and H/L portfolios can be found in Table I. The first panel shows

results for the sample of all 48 currencies, and the lower panel shows results for the sample

of 15 developed countries. We report results for net returns (denoted “with b-a”).

Average returns monotonically increase when moving from portfolio 1 to portfolio 5 and

the H/L portfolio. We also see a monotonically decreasing skewness when moving from

portfolio 1 to portfolio 5 and H/L for the sample of all countries, as suggested by Brunner-

meier, Nagel, and Pedersen (2009), but a less monotonic pattern for developed countries. A

similar pattern emerges for kurtosis. There is no clear pattern, however, for the standard

deviation. Furthermore, there is some evidence for positive return autocorrelation, e.g.

among high interest rate currencies (portfolios 3 and 5), the long-short carry trade portfo-

lio H/L (or HMLFX), and the DOL portfolio. Finally, we also look at coskewness, which

is computed by βSKD = E[εi,t+1ε
2
M,t+1]/(E[ε2i,t+1]

0.5E[ε2M,t+1]) as in Eq. (11) of Harvey and

Siddique (2000) where εi denotes a portfolio’s (excess) return innovation with respect to

a market factor and εM denotes the market (excess) return innovation.12 We find that

coskewness does not show a monotone pattern with respect to mean excess returns of the

portfolio. We will elaborate on this point below in Section V.C.

Table I about here

The unconditional average excess return from holding an equally-weighted portfolio of

foreign currencies (i.e. the DOL portfolio) is about 2% per annum, which suggests that

U.S. investors demand a low but positive risk premium for holding foreign currency.
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Figure 1 shows cumulative log returns for the carry trade portfolio H/L for all countries

and for the smaller sample of developed countries. Shaded areas correspond to NBER

recessions. Interestingly, carry trades among developed countries were more profitable in

the 80s and 90s; only in the last part of the sample did the inclusion of emerging markets’

currencies improve returns to the carry trade. Also, the two recessions in the early 1990s

and 2000s did not have any significant influence on returns. It is only in the last recession

– that also saw a massive financial crisis – that carry trade returns show some sensitivity to

macroeconomic conditions. By and large, most of the major spikes in carry trade returns

(e.g. in 1986, 1992, 1997/1998, 2006) seem rather unrelated to the U.S. business cycle.

This is consistent with Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011), who find

in a more detailed analysis that standard business cycle risk factors are unable to account

for returns to carry trades.

Figure 1 about here

Volatility proxy. We use a straightforward measure to proxy for global FX volatility.

More specifically, we calculate the absolute daily log return |rkτ | (= |4sτ |) for each currency

k on each day τ in our sample. We then average over all currencies available on any given

day and average daily values up to the monthly frequency, i.e. our global FX volatility

proxy in month t is given by

σFXt =
1

Tt

∑
τ∈Tt

[∑
k∈Kτ

(
|rkτ |
Kτ

)]
, (4)

where Kτ denotes the number of available currencies on day τ and Tt denotes the total

number of trading days in month t. We also calculate a proxy σFX,DEVt based on the

developed country sample’s returns.

This proxy has obvious similarities to measures of realized volatility (see e.g. Andersen,
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Bollerslev, Diebold, and Labys (2001)), although we use absolute returns and not squared

returns to minimize the impact of outlier returns since our full sample includes several

emerging markets. We also do not weight currencies, e.g. according to shares in interna-

tional reserves or trade, but provide robustness on this issue later in the paper.13 Figure 1,

Panel (b), shows a time-series plot of σFXt . Several spikes in this series line up with known

crisis periods, e.g. the LTCM crisis in 1998 or, most recently, the current financial markets

meltdown. Therefore, our proxy seems to capture obvious times of market distress quite

well.

For the empirical analysis, we focus on volatility innovations (denoted ∆σFXt ), as a

non-traded risk factor. We tried a number of alternative ways to measure innovations.

The simplest way to do this is to take first differences of the volatility series described

above (as in e.g. Ang, Hodrick, Xing, and Zhang (2006)). We do find, however, that

first differences are significantly autocorrelated with a first-order autocorrelation of about

-22%. We therefore estimate a simple AR(1) for the volatility level and take the residuals

as our main proxy for innovations since the AR(1) residuals are in fact uncorrelated with

their own lags. The downside of this procedure is that it may induce an errors-in-variables

problem and that it requires estimation on the full sample, preventing pure out-of-sample

tests. We deal with this potential problem in two ways. First, we adjust our standard

errors for estimation uncertainty and do not find that it matters much, and, second, we

also present results for simple changes in volatility and basically find the same results as

for our volatility innovations based on an AR(1).14 A plot of these AR(1) based volatility

innovations is shown in Figure 1, Panel (b).

Data on currency options. We furthermore employ monthly currency option data from

JP Morgan for a total of 29 currencies against the USD. Our sample covers the period from

1996 to 2009. The data include quoted implied volatilities for options with a maturity of

one month. For each currency pair we have implied volatilities for at-the-money (ATM)

options, 25-Delta (out-of-the-money), and 10-Delta (far out-of-the-money) options.15

Currencies with available data are the same as listed above, except for the member
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countries of the Euro (the EUR is included, though), and, in addition, Bulgaria, Croatia,

Egypt, Kuwait, Saudi Arabia, and Ukraine. Thus, the data do not include potentially

interesting information about several large currencies such as the DEM/USD but still

include the major currencies and several important carry trade vehicle currencies, such as

the GBP, AUD, or JPY.

Returns to option strategies employed below are obtained by combining returns from

being long or short in calls or puts of a certain currency. We detail the calculation of

returns to options in the Appendix to this paper.

III Empirical Results

A. A First Look at the Relation between Volatility and Currency Returns

We first provide a simple graphical analysis to visualize the relationship between innova-

tions to global FX volatility and currency excess returns. To do so, we divide the sample

into four sub-samples depending on the value of global FX volatility innovations. The first

sub-sample contains the 25% months with the lowest realizations of the risk factor and

the fourth sub-sample contains the 25% months with the highest realizations. We then

calculate average excess returns for these sub-samples for the return difference between

portfolio 5 and 1. Results are shown in Figure 2. Panel (a) on the left shows results for

all countries whereas Panel (b) on the right gives the corresponding results for the smaller

sample of 15 developed countries.

Figure 2 about here

Bars show the annualized mean returns of the carry trade portfolio (the long-short port-

folio H/L as discussed above). As can be seen from the figure, high interest rate currencies

13



clearly yield higher excess returns when volatility innovations are low and vice versa. Aver-

age excess returns for the long-short portfolios decrease monotonically when moving from

the low to the high volatility states for the sample of developed countries, and almost

monotonically for the full sample of countries. While this analysis is intentionally simple,

it intuitively demonstrates a clear relationship between global FX volatility innovations

and returns to carry trade portfolios. Times of high volatility innovations are times when

the carry trade performs poorly. Consequently, low interest rate currencies perform well

compared to high interest rate currencies when the market is volatile, i.e. low interest

rate currencies (or funding currencies) provide a hedge in times of market turmoil. The

following sections test this finding more rigorously.

B. Methods

This section briefly summarizes our approach to cross-sectional asset pricing. The bench-

mark results rely on a standard SDF approach (Cochrane (2005)), which is also used in

Lustig, Roussanov, and Verdelhan (2010) for instance.

We denote excess returns of portfolio i in period t+1 by rxit+1.
16 The usual no-arbitrage

relation applies so that risk-adjusted currency excess returns have a zero price and satisfy

the basic Euler equation:

E[mt+1rx
i
t+1] = 0 (5)

with a linear SDF mt = 1−b′(ht−µ) and h denoting a vector of risk factors. b is the vector

of SDF parameters and µ denotes factor means. This specification implies a beta pricing

model where expected excess returns depend on factor risk prices λ and risk quantities βi,

which are the regression betas of portfolio excess returns on the risk factors:

E
[
rxi
]

= λ′βi (6)
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for each portfolio i (see e.g. Cochrane (2005)). The relationship between the factor risk

prices in Eq. (6) and the SDF parameters in Eq. (5) is given by λ = Σhb such that factor

risk prices, comparable to the traditional Fama-MacBeth (FMB) approach, can be easily

obtained via the SDF approach as well.

We estimate parameters of Eq. (5) via the generalized method of moments (GMM) of

Hansen (1982). Estimation is based on a pre-specified weighting matrix and we focus on

unconditional moments (i.e. we do not use instruments other than a constant vector of

ones) since our interest lies in the performance of the model to explain the cross-section of

expected currency excess returns per se. Factor means and the individual elements of the

covariance matrix of risk factors Σh are estimated simultaneously with the SDF parameters

by adding the corresponding moment conditions to the asset pricing moment conditions

implied by Eq. (5). This one-step approach ensures that potential estimation uncertainty

– associated with the fact that factor means and the covariance matrix of factors have to

be estimated – is incorporated adequately (see e.g. Burnside (2009)).17

In the following tables we report estimates of b and implied λs as well as cross-sectional

R2s and the Hansen-Jagannathan (HJ) distance measure (Hansen and Jagannathan (1997)).

Standard errors are based on Newey and West (1987) with optimal lag length selection ac-

cording to Andrews (1991). We also report simulated p-values for the test of whether the

HJ distance is equal to zero.18

Besides the GMM tests, we also report results using traditional FMB two-pass OLS

methodology (Fama and MacBeth (1973)) to estimate portfolio betas and factor risk prices.

Note that we do not include a constant in the second stage of the FMB regressions, i.e. we

do not allow a common over- or under-pricing in the cross-section of returns. We point out,

however, that our results are virtually identical when we replace the DOL factor with a

constant in the second stage regressions. Since DOL has basically no cross-sectional relation

to the carry trade portfolios’ returns, it seems to serve the same purpose as a constant

that allows for a common mispricing.19 We report standard errors with a Shanken (1992)

adjustment as well as GMM standard errors with Newey and West (1987) adjustment and
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automatic lag length determination according to Andrews (1991). More details on the

FMB procedure, computation of GMM and FMB standard errors and the exact moment

conditions used in the GMM estimation are provided in the Appendix to this paper.

C. Asset Pricing Tests

This section presents our main result that excess returns to carry trade portfolios can be

understood by their covariance exposure with global FX volatility innovations.

Volatility innovations. Table II presents results of our asset pricing tests using the five

currency portfolios detailed above as test assets. As factors we use DOL and innovations

to global FX volatility (VOL, or 4σFXt+1 in the regressions below) based on the residuals of

an AR(1) for global volatility, i.e. the pricing kernel reads:

mt+1 = 1− bDOL(DOLt+1 − µDOL)− bV OL4σFXt+1 .

Panel A of Table II shows cross-sectional pricing results. We are primarily interested

in the factor risk price of global FX volatility innovations, where we do indeed find a sig-

nificantly negative estimate for λV OL as theoretically expected. In fact, λV OL is estimated

to be negative both for the full country sample (left part of the table) and the developed

country sample (right part of the table). The estimated factor price is −0.07 for the all

country sample and −0.06 for the developed country sample.

Table II about here

The negative factor price estimate directly translates into lower risk premia for portfolios

whose returns co-move positively with volatility innovations (i.e. volatility hedges) whereas

portfolios with a negative covariance with volatility innovations demand a risk premium.

16



We also find that the volatility factor yields a nice cross-sectional fit with R2s of more than

90%, and we cannot reject the null that the HJ distance is equal to zero. The values of the

distance measure (i.e. the maximum pricing errors per one unit of the payoff norm) are

also quite small in economic terms, both for the full and the developed country sample.

Now, which portfolios of currencies provide insurance against volatility risk and which

do not? Panel B of Table II shows time-series beta estimates for the five forward discount-

sorted portfolios based on the full and the developed country sample. Estimates of βV OL

are large and positive for currencies with a low forward discount (i.e. with low interest

rates), whereas countries with a high forward discount co-move negatively with global FX

volatility innovations. There is a strikingly monotone decline in betas when moving from

the first to the fifth portfolio and it is precisely this monotone relationship that produces

the large spread in mean excess returns shown in Table I.20 These results also corroborate

our simple graphical exposition (Figure 2) in Section III.A.: Investors demand a high return

on the investment currencies in the carry trade (high interest rate currencies) since they

perform particularly poorly in periods of unexpected high volatility, whereas investors are

willing to accept low returns on carry trade funding currencies (low interest rate currencies)

since they provide them with a hedge in periods of market turmoil.

Finally, we document the fit of our model graphically in Figure 3 which shows realized

mean excess returns along the horizontal axis and fitted mean excess returns implied by our

model along the vertical axis. The main finding is that volatility risk is able to reproduce

the spread in mean returns quite well, both in the full sample (Panel (a)) and the sample

of developed countries (Panel (b)).

Figure 3 about here

Factor-mimicking portfolio. Following Breeden, Gibbons, and Litzenberger (1989)

and Ang, Hodrick, Xing, and Zhang (2006) we build a factor-mimicking portfolio of volatil-

ity innovations. Converting our factor into a return has the advantage of being able to
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scrutinize the factor price of risk in a natural way. If the factor is a traded asset, then the

risk price of this factor should be equal to the mean return of the traded portfolio so that

the factor prices itself and no-arbitrage is satisfied.

To obtain the factor-mimicking portfolio, we regress volatility innovations on the five

carry trade portfolio excess returns

4σFXt+1 = a+ b′rxt+1 + ut+1 (7)

where rxt+1 is the vector of excess returns of the five carry trade portfolios. The factor-

mimicking portfolio’s excess return is then given by rxFMt+1 = b̂′rxt+1. The average excess

return to this mimicking portfolio is −1.28% per annum. It is also instructive to look at

the weights b̂ of this portfolio given by

rxFMt+1 = 0.202rx1t+1 − 0.054rx2t+1 − 0.063rx3t+1 − 0.068rx4t+1 − 0.071rx5t+1

which shows – as one would expect – that the factor-mimicking portfolio for volatility

innovations loads positively on the return to portfolio 1. This portfolio was shown above

to provide a hedge against volatility innovations, and has an increasingly negative loading

on the portfolios 2 – 5. It also shows that the factor-mimicking portfolio should capture

some pricing information in the Lustig, Roussanov, and Verdelhan (2010) HMLFX factor

which is long in portfolio 5 and short in portfolio 1. Indeed, our factor-mimicking portfolio

has a correlation of roughly −85% with HMLFX . This result is not surprising. Lustig,

Roussanov, and Verdelhan (2010) show that HMLFX is closely related to the second

principal component (PC) of the cross-section of carry trade portfolios and that this second

PC captures basically all the necessary cross-sectional pricing information. Since volatility

innovations as a pricing factor also lead to a very high cross-sectional fit (as shown above),

it is natural to expect that the factor-mimicking portfolio of the five carry trade portfolios
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is closely related to this second PC (correlation with the factor-mimicking portfolio: 80%)

and, thus, HMLFX . We find that this is the case.

Finally, we test the pricing ability of the factor-mimicking portfolio and replace volatility

innovations with rxFMt+1 in the pricing kernel. As above, we use the five carry trade portfolios

as our test assets. Results are shown in Table III and reveal a significantly negative factor

price of λV OL = −0.102% which can be compared to the average monthly excess return

of the factor-mimicking portfolio of rxFMt+1 = −0.107%. This result is comforting since it

implies that our factor price of risk makes sense economically, that the factor prices itself,

and is thus arbitrage-free.21

Table III about here

Zero-beta straddle. While the analysis in Breeden, Gibbons, and Litzenberger (1989)

calls for using the test assets as the base assets to construct the factor-mimicking portfolio,

as we have done above, we empirically find that the resulting factor-mimicking portfolio

is very close to the second PC of the carry trade cross-section. This shows that volatility

innovations contain all the necessary information to price this cross-section, but it may

raise concerns that our estimated price of volatility risk may be mechanically identical to

the mean return on the factor-mimicking portfolio.22 Hence, we complement the analysis

above by constructing a zero-beta straddle along the lines of Coval and Shumway (2002)

based on our FX option data (described in Section III above).

To this end, we form an equally-weighted portfolio of long calls and long puts of all

available currencies to obtain a time-series of average excess returns to holding call and

put positions. We then combine these two portfolio excess returns to obtain a straddle

portfolio that has zero correlation with the “market risk” factor (the DOL factor in our

case). This portfolio delivers high returns in times of high volatility by construction and,

hence, loads on volatility risk but has no market risk.

19



Empirically, the zero-beta straddle has a weight on long calls of roughly 52% and a

weight on long puts of 48% in order for it to be uncorrelated with the DOL factor. More

importantly, the straddle portfolio yields a significantly negative mean return of −1.22%

p.a. (with a t-statistic of −2.77) which is very close to our price of volatility risk estimated

above. Also, the straddle return has a correlation of about 40% with our factor-mimicking

portfolio. Hence, our risk price estimate from above is validated by the zero-beta straddle

return and has a magnitude of about −1.2 to −1.3%, which is close to the estimated value

of about −1% for stock markets documented by Ang, Hodrick, Xing, and Zhang (2006).

D. Portfolios Based on Volatility Betas

We now show the explanatory power of volatility risk for carry trade portfolios in another

dimension. If volatility risk is a priced factor, then it is reasonable to assume that currencies

sorted according to their exposure to volatility innovations yield a cross-section of portfolios

with a significant spread in mean returns.23 Currencies that hedge against volatility risk

should trade at a premium, whereas currencies that yield low returns when volatility is

high should yield a higher return in equilibrium.

We therefore sort currencies into five portfolios depending on their past beta with inno-

vations to global FX volatility. We use rolling estimates of beta with a rolling window of

36 months (as in Lustig, Roussanov, and Verdelhan (2010)), and we re-balance portfolios

every six months.24 Descriptive statistics for portfolio excess returns are shown in Table IV.

Table IV about here

The table shows that investing in currencies with high volatility beta (i.e. hedges against

volatility risk) leads to a significantly lower return than investing in low volatility beta

currencies. The spread between portfolio 1 (low volatility beta, i.e. high volatility risk)

and portfolio 5 (high volatility beta, i.e. low volatility risk) exceeds 4% p.a. for both
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the sample of all countries and the sample of developed markets. Moreover, mean excess

returns tend to decrease steadily when moving from portfolio 1 to portfolio 5 (there is a

twist in mean excess returns for the developed markets sample, though).

The table also shows pre- and post-formation forward discounts for the five portfolios.

The results suggest that these portfolios are similar to the carry trade portfolios in that

forward discounts monotonically decline when moving from high return portfolios (portfolio

1) to low return portfolios (portfolio 5). Thus, sorting on volatility risk is similar to sorting

on interest rate differentials and, hence, the carry trade portfolios themselves.

However, a noteworthy difference between the carry trade and these volatility beta-

sorted portfolios is that they have a very different skewness pattern compared to the

forward-discount sorts. Table I showed that excess returns of high interest rate curren-

cies have much lower skewness than low interest rate currencies (also see Brunnermeier,

Nagel, and Pedersen (2009)). We do not find this pattern here. On the contrary, the H/L

portfolios actually tend to have higher skewness than portfolio 1, which suggests that sort-

ing on volatility betas produces portfolios related to, but not identical to the carry trade

portfolios. Furthermore, we also do not find patterns in kurtosis or coskewness that line up

well with average excess returns. Related to this, we find a clear increase in post-sorting

time-series volatility betas when moving from portfolio 1 to portfolio 5, just as for the carry

trade portfolios documented in Table I. However, the increase is not completely monotonic

so that our beta sorts do not reproduce the carry trade cross-section completely.

Overall, this section shows that volatility risk – as measured by the covariance of a

portfolio’s return with innovations to global FX volatility – matters for understanding the

cross-section of currency excess returns. This empirical relation is in line with theoretical

arguments where assets which offer high payoffs in times of (unexpected) high aggregate

volatility – and hence serve as a volatility hedge – trade at a premium in equilibrium and

vice versa.
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IV Relating Volatility and Liquidity Risk

As noted at the beginning of this paper, it is hard to disentangle volatility and liquidity

effects, since these concepts are closely related and – especially in the case of liquidity –

not directly observable. However, it is interesting to examine the contribution of these two

proxies of risk for currency investments since Brunnermeier, Nagel, and Pedersen (2009)

suggest that liquidity plays an important role in understanding risk premia in foreign

exchange. This section therefore relates volatility and liquidity proxies and investigates

their relative pricing power.

A. Liquidity Proxies

Global bid-ask spread. As a first measure of global FX liquidity, we resort to a classical

measure from market microstructure, the bid-ask spread (BAS). For consistency, we use

the same aggregating scheme as for global FX volatility in Eq. (4) to obtain a global

bid-ask spread measure ψFX :

ψFXt =
1

Tt

∑
τ∈Tt

[∑
k∈Kτ

(
ψkτ
Kτ

)]
, (8)

where ψkτ is the percentage bid-ask spread of currency k on day τ . Higher bid-ask spreads

indicate lower liquidity, so that the aggregate measure ψFXt can be seen as a global proxy

for FX market illiquidity.

TED spread. The TED spread is defined as the interest rate difference between 3-month

Eurodollar interbank deposits (LIBOR) and 3-month Treasury bills. Differences between

these rates reflect among other things the willingness of banks to provide funding in the

interbank market; a large spread should be related to lower liquidity. Hence, the TED

spread serves as an illiquidity measure, as used e.g. by Brunnermeier, Nagel, and Pedersen
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(2009). We include the TED spread to proxy for illiquidity in the funding market for carry

trades.

Pastor/Stambaugh liquidity measure. Pastor and Stambaugh (2003) construct a

liquidity measure for the U.S. stock market based on price reversals. The general idea

underlying their measure (denoted PS here) is that stocks with low liquidity should be

characterized by a larger price impact of order flow. Liquidity-induced movements of

asset prices have to be reversed eventually such that stronger price reversals indicate lower

liquidity. We refer to Pastor and Stambaugh (2003) for more details on the construction

of this measure and simply note here that they scale their measure to be a liquidity proxy,

i.e. higher values of the PS measure reflect higher liquidity. This contrasts with the other

two liquidity proxies which rather measure illiquidity. Since it seems reasonable to assume

that liquidity risk is correlated across assets to a certain extent, we include the PS measure

to proxy for liquidity risk in the home market of our baseline U.S. investor.

Relations among volatility and liquidity factors. How strongly are volatility and

liquidity factors related? We find that innovations of our FX volatility proxy are positively

correlated with innovations of the bid-ask spread measure (approx. 20%) and the TED

spread (19%), and negatively correlated with innovations of the PS measure (-21%). Not

surprisingly, the relation between the three liquidity measures and FX volatility is far from

perfect. Bid-ask spreads and the TED spread, for instance, are only very mildly correlated

(8%) and no correlation coefficient is larger than 30% in absolute value. Similarly, a

principal component analysis reveals that the first principal component explains less than

30% of the total variance. Overall, volatility and liquidity are statistically significantly

correlated, but the magnitudes of correlations are not impressive quantitatively.
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B. Empirical Results for Liquidity Factors

To shed more light on the role of liquidity risk for currency returns, we run the same asset-

pricing exercises as above in Section III, but replace volatility innovations with innovations

of one of the three liquidity factors. Table V shows factor loadings and prices for these

models.25 All three models shown in Panels A to C perform quite well with R2s ranging

from 70% to almost 100% and are not rejected by the HJ distance specification tests or the

χ2 test (except for the PS measure on the sample of all countries). Moreover, the factor

prices λ have the expected sign – that is negative for illiquidity (BAS, TED) and positive

for liquidity (PS) – and are significantly different from zero for the bid-ask spread and

marginally significant for the PS measure. None of these three models outperforms the

volatility risk factor in terms of R2s and HJ-distances for both the full and the restricted

developed country sample, though.

Table V about here

To address the relative importance of volatility and liquidity as risk factors, we also

evaluate specifications where we include volatility innovations and innovations of one of

the liquidity factors (or, alternatively, that part of liquidity not explained by contempora-

neous volatility) jointly in the SDF. Since volatility and liquidity are somewhat correlated,

leading to potential multicollinearity and identification issues, we report results for the full

country sample for the case where volatility innovations and the orthogonalized component

(orthogonalized with respect to volatility innovations) of one of the three liquidity factors

are included. Results are shown in Table VI.26

The central message of these results is that volatility innovations emerge as the dominant

risk factor, corroborating the evidence in Bandi, Moise, and Russell (2008) for the U.S.

stock market. Panel A, for example, shows results when jointly including innovations to

global FX volatility and global bid-ask spreads: both bV OL and λV OL are significantly

different from zero, whereas the bid-ask spread factor is found to be insignificant in this
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joint specification. The same result is found for the TED spread (Panel B) and the PS

liquidity factor (Panel C). Volatility remains significantly priced, whereas liquidity factors

always become insignificant when jointly included with volatility. We therefore conclude

that volatility is more important than each of the three single liquidity factors. However,

we cannot rule out an explanation based on volatility just being a summary measure of

various dimensions of liquidity which are not captured by our three (il)liquidity proxies.

Table VI about here

V Alternative Explanations for Our Findings

This section discusses alternative explanations for our findings beyond liquidity risk.

A. Peso Problems

The estimate of the price of global volatility risk is statistically significant but small in

magnitude (-0.07% per unit of volatility beta). Given these small estimates, one alternative

explanation of our findings may be a Peso problem. By construction, the factor mimicking

portfolio does well when global FX volatility displays a large positive innovation. The small

negative mean of the excess returns in the factor-mimicking portfolio of -0.107% per month

may be potentially due to having observed a smaller number of volatility spikes than the

market expected ex ante.

Therefore, one explanation for our findings could be that market participants expected

more spikes in volatility than have actually occurred over our sample period. Put another

way, since the factor price of volatility is negative (or, equivalently, the factor mimicking

portfolio has a negative average excess return), a few more large volatility innovations may

suffice to wipe out the negative risk premium estimate in our benchmark specifications in

Tables II and III. Similarly, had market participants expected less volatility spikes, our
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estimate of the volatility risk premium may be biased upwards. It is clear, that extreme

observations in our volatility factor could thus drive our results.

We provide some indicative evidence on the robustness of our findings with respect

to the above issue. First of all, we winsorize our volatility series at the 99%, 95% and

90% level, i.e. we set the 1%, 5%, or 10% most extreme volatility observations equal to

their cutoff levels.27 When we repeat our benchmark pricing test with these winsorized

volatility factors, we obtain very robust results. For instance, we find an estimate for the

SDF slope b = −7.446 (GMM s.e.: 3.623), volatility risk premium λ = −0.072 (GMM s.e.:

0.035) and a cross-sectional R2 of 97% when we exclude the 1% most extreme volatility

observations. Similarly, we find b = −8.334 (4.043), λ = −0.067 (0.032) and an R2 of 97%

when excluding the 5% most extreme observations, and estimates of b = −9.510 (4.465),

λ = −0.062 (0.029) and an R2 of 95% when excluding the 10% most extreme observations.

It seems fair to conclude that our main result, as reported in Tables II and III, is not driven

by outliers in our volatility proxy.

Second, we adopt an Empirical Likelihood (EL) approach to estimate the moment con-

ditions implied by our baseline specification. EL shares many similarities with traditional

GMM and is particularly attractive here since it endogenously allows the probabilities at-

tached to the states of the economy to differ from their sample frequencies (which is the

nature of Peso problems). It is thus more robust under Peso problems or rare events as

argued for example by Ghosh and Julliard (2010). The results from this exercise are very

similar to the results based on GMM so that Peso problems do not seem to drive our

results. We refer to the Internet Appendix of this paper for the exact implementation of

the procedure and detailed estimation results.

B. Horse Races between Volatility and HMLFX: A First Look

We run horse races between our volatility risk factor and the HMLFX factor of Lustig,

Roussanov, and Verdelhan (2010) in four different specifications. First, we simply include

DOL, volatility innovations and HMLFX jointly in the SDF; second, we include DOL,
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the factor-mimicking portfolio for volatility innovations and HMLFX ; third, we include all

three factors but orthogonalize the factor-mimicking portfolio for volatility innovations with

respect to HMLFX ; and fourth, we include all three factors but orthogonalize HMLFX

with respect to to the factor-mimicking volatility portfolio. Results are shown in this

ordering of specifications in Panels A to D of Table VII.

Table VII about here

As a first result from Panel A, it is clear that HMLFX dominates volatility innovations

when HMLFX and volatility innovations are included jointly in the SDF. This result

is not too surprising since HMLFX is close to the factor-mimicking portfolio of global

FX volatility and the second principal component of the carry trade return cross-section,

which accounts for almost all cross-sectional variation in returns. Also, it is clear that a

non-return factor (volatility innovations) cannot beat its own factor-mimicking portfolio

in a horse race (see e.g. chapter 7 in Cochrane (2005)). We find exactly this result in our

first test in Panel A.

Panel B shows results when including both the factor-mimicking portfolio for volatility

innovations and HMLFX . These two factors are highly correlated and we thus find that

the SDF slopes (b) of both factors turn insignificant and that both λs are significant so

that results here cannot be seen as decisive due to multicollinearity issues.

Perhaps more interestingly, Panels C and D show results when we orthogonalize either

the factor-mimicking portfolio with respect to HMLFX (Panel C) or when orthogonalizing

HMLFX with respect to the factor-mimicking portfolio of volatility innovations (Panel D).

These are more reliable results since by testing whether the orthogonal component of either

factor is priced we avoid the statistical inference problems that plague the earlier results.

It can be seen from Panel C that the orthogonalized component of the factor-mimicking

portfolio still has a significantly negative factor price in the joint specification (the GMM

t-statistic is −2.03), presumably due to the fact that the factor-mimicking portfolio picks

up some part of the second principal component of the cross-section of returns that is not
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captured by HMLFX . On the contrary, Panel D shows that the orthogonalized component

of HMLFX is not priced when jointly including it with the factor-mimicking portfolio of

volatility innovations, whereas the latter is highly significantly priced.

Finally, we also compare models with either DOL and volatility innovations or DOL

and HMLFX in terms of their economic significance. From Table II above, we see that

DOL and volatility innovations result in a cross-sectional R2 of 97% (for the sample of

all countries) and a HJ-distance of 8% (maximum pricing errors in terms of the payoff

norm) with a p-value of 0.79. When we estimate the same model using HMLFX instead of

volatility innovations, we find a cross-sectional R2 of 88% and a HJ-distance of 13% with

a p-value of 0.33. Thus, volatility innovations seem to outperform HMLFX in terms of

(smaller) pricing errors.

Summing up, it seems fair to conclude that, when HMLFX and volatility innovations

are considered jointly in the SDF, HMLFX outperforms volatility innovations in the cross-

section of carry trade portfolios in terms of statistical significance. However, volatility

innovations dominate HMLFX in economic terms, i.e. by delivering lower pricing errors.

This finding is quite remarkable, since volatility innovations are not a traded (return-

based) risk factor. Importantly, when we convert our risk factor into a return, i.e. the

factor-mimicking portfolio, and thus level the playground for both factors, we find that the

factor-mimicking portfolio prices the cross-section at least as well as HMLFX and contains

some additional information not captured by the latter.

C. Skewness and Coskewness

We also test the pricing ability of skewness and coskewness. With respect to skewness, we

do not find that the skewness of a portfolio is robustly related to average excess returns.

We showed this for the beta-sorted portfolios in Table IV and the developed countries in

Table I. Furthermore, we have experimented with aggregate skewness measures (computed

similarly to our volatility proxy in Eq. (4) or just as the skewness from the DOL portfolio

estimated from daily returns within a given month) and tested whether the sensitivity of
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portfolio returns to aggregate skewness (i.e. co-kurtosis) is priced in the cross-section of

returns. While we find a negative factor price estimate for (sensitivity to) skewness, we

do not find it to be significant and the cross-sectional explanatory power is typically low

(less than 50% in the cross-section of carry trade portfolios). Results for these tests are

available upon request.

Regarding coskewness (Harvey and Siddique (1999), Harvey and Siddique (2000)) we

showed in Table I that the relationship with returns to carry trade portfolios is not par-

ticularly strong since the coskewness pattern is not monotone across portfolios. When we

test this more formally, we find rather low cross-sectional R2s of about 50−60%. We note,

however, that this result depends on the specific coskewness measure employed (we have

used the direct coskewness measure β̂SKD as described above in Section II of our paper).

In fact, as noted in Section I of the paper, coskewness can alternatively be measured in

terms of the sensitivity of returns to market volatility in a time-series regression of ex-

cess returns on a market factor and market volatility (see Harvey and Siddique (2000)).

Measured in this way, the time-series volatility betas obtained in the first step of our Fama-

MacBeth procedure can be directly interpreted as measures of coskewness, and we have

shown that the covariance with volatility is significantly priced in the cross-section of carry

trade returns.28

VI Other Test Assets

We have also tested the pricing power of global FX volatility as a risk factor for a number

of other test assets which include a cross-section of 5 FX momentum returns, ten U.S.

stock momentum portfolios, five U.S. corporate bond portfolios (based on ratings), and all

48 individual currencies in our sample. Our results indicate that global FX volatility is

priced in these cross-sections and that we obtain a similar factor price of risk for volatility

innovations compared to our benchmark specification in Table II above. These results

are interesting since the other test asset noted above are not highly correlated with the

carry trade portfolios and thus serve as an out-of-sample test of the pricing power of
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volatility innovations.29 Furthermore, we find that volatility innovations do a much better

job of pricing these cross-sections than HMLFX lending support to the view that volatility

innovations contain additional information and that the two factors are not identical.

In short, results based on these out-of-sample tests indicate that our factor is priced in

other cross-sections and not just in currency carry trades. To conserve space, however, we

refer to the Internet Appendix of this paper for a detailed description of the test assets’

returns, portfolio construction, and empirical estimates of factor models for pricing these

cross-sections.

VII Robustness

We have performed a number of additional robustness checks relating to different proxies

for volatility, non-linearities in the relation between volatility and carry trade returns, or

the use of alternative base currencies (i.e. taking the viewpoint of a British, Japanese, or

Swiss investor). Overall, our results are very robust towards all these modifications so we

document these tests in the Internet Appendix to this paper in order to conserve space.

VIII Conclusion

This study empirically examines the risk-return profile of carry trades. Carry trades are the

consequent trading strategy derived from the forward premium puzzle, that is the tendency

of currencies trading at a positive forward premium (high interest rate) to appreciate rather

than depreciate. The major avenue of research to understand this puzzle is the search for

appropriate time-varying risk premia. Hence, dealing with a risk-based explanation for

carry trades simultaneously provides an explanation of currency risk premia and helps to

understand why trading on the forward premium puzzle is no free lunch.

This issue is a long-standing and largely unresolved problem in international finance.

Clearly, the consideration of volatility is not new, as the 1990s brought about many stud-
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ies examining the role of volatility in explaining time-varying risk premia; unfortunately

without a satisfactory result. However, this earlier use of volatility in modeling currency

risk premia has applied a time-series perspective on single exchange rates (e.g. Bekaert

and Hodrick (1992), Bekaert (1994)). In contrast, we rely on asset pricing methods well-

established in the stock market literature where aggregate volatility innovations serve as a

systematic risk factor for the cross-section of portfolio returns. This idea has proven to be

fruitful in empirical research on equity markets and we show that it also works very well

in FX markets.

We argue in this paper that global FX volatility innovations are an empirically powerful

risk factor in explaining the cross-section of carry trade returns. We employ a standard

asset pricing approach and introduce a measure of global FX volatility innovations as

a systematic risk factor. Interestingly, there is a significantly negative co-movement of

high interest rate currencies (carry trade investment currencies) with global FX volatility

innovations, whereas low interest rate currencies (carry trade funding currencies) provide

a hedge against unexpected volatility changes. The covariance of excess returns with

volatility is such that our global FX volatility proxy accounts for more than 90% of the

spread in five carry trade portfolios. Further analysis shows that liquidity risk also matters

for the cross-section of currency returns, albeit to a lesser degree. These results are robust

to different proxies for volatility and liquidity risk and extend to other cross-sections of

asset returns such as individual currency returns, equity momentum, or corporate bonds.

The strong link between exposure to volatility shocks and average currency excess re-

turns should also stimulate further theoretical and empirical research aimed at better un-

derstanding the drivers of volatility innovations and their link with currency risk premia.

It seems plausible that innovations in volatility capture a broad set of shocks to state

variables that are relevant to investors and the evolution of their risk-return tradeoff, and

a better understanding of these linkages is warranted. In addition, it would be useful to

build a structural asset pricing model which allows for a direct role of currency volatility

risk so that the magnitude of the price of volatility risk can be evaluated more thoroughly.

Having established the main results motivating such extensions, we leave these for future
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research.
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Appendix

In this Appendix we provide details on the construction of option returns and method-

ological details on the asset pricing tests conducted in this paper.

Option returns. To construct returns to option positions, we rely on the currency ver-

sion of Black and Scholes (1973), introduced by Garman and Kohlhagen (1983).30 We

calculate net payoffs to option positions in USD. We term this “net payoff” (or “excess

return”) since we adjust option payoffs for the price (and interest rate loss) of acquiring

the option position (see, for instance, Burnside, Eichenbaum, Kleshchelski, and Rebelo

(2011)). For example, the net payoff to a long call position in a foreign currency against

the USD is given by

rxL,Ct+1 = F−1t (max[St+1 −K, 0]− Ct(1 + rt)) (9)

and, similarly, by rxL,Pt+1 = F−1t (max[0, K−St+1]−Pt(1+rt)) for a long put position. Short

call positions yield net payoffs of

rxS,Ct+1 = F−1t (min[K − St+1, 0] + Ct(1 + rt)) (10)

and short puts yield rxS,Pt+1 = F−1t (min[St+1 −K, 0] + Ct(1 + rt)).

Here, C (P ) denotes the call (put) price, K denotes the strike, and S (F ) denote the

spot and forward rate in USD per foreign currency units (we use American quotation here

for ease of exposition). We scale by the current forward rate Ft so that payoffs correspond

to a position with a size of one USD (we follow Burnside, Eichenbaum, Kleshchelski, and

Rebelo (2011) in this respect). For our analysis in the main text, we combine different

long and short positions for different moneyness groups (i.e. ATM, Delta-25, or Delta-10)

of currency options to obtain net payoffs to option strategies such as risk reversals, bull
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spreads, and bear spreads.

Generalized Method of Moments. The empirical tests in this paper are based on a

stochastic discount factor mt+1 = 1 − (ht+1 − µ) linear in the k risk factors ht+1. Thus,

the basic asset pricing equation in Eq. (5) implies the following moment conditions for the

N -dimensional vector of test asset excess returns rxt+1

E {[1− b′(ht+1 − µ)] rxt+1} = 0. (11)

In addition to these N moment restrictions, our set of GMM moment conditions also

includes k moment conditions E[ht−µ] = 0 accounting for the fact that factor means µ have

to be estimated.31 Factor risk prices λ can be easily obtained from our GMM estimates

via the relation λ = Σhb, where Σh = E[(ht−µ)(ht−µ)′] is the factor covariance matrix.32

Following Burnside (2009), the individual elements of Σh,ij, i = 1, . . . , k, j = 1, . . . , k

are estimated along with the other model arameters by including an additional set of

corresponding moment conditions. Hence, the estimating function takes the following form

g(zt, θ) =


[1− b′(ht − µ)] rxt

ht − µ

vec((ht − µ)(ht − µ)′)− vec(Σh)

 (12)

where θ contains the parameters (b′ µ′ vec(Σh)
′)′ and zt represents the data (rxt, ht). By

exploiting the N + k(1 + k) moment conditions E[g(zt, θ)] = 0 defined by (12), estimation

uncertainty – due to the fact that factor means and the covariance matrix of factors are

estimated – is incorporated in our standard errors of factor risk prices.33 Our (first-stage)

GMM estimation uses a pre-specified weighting matrix WT based on the identity matrix

IN for the first N asset pricing moment conditions and a large weight assigned to the

additional moment conditions (for precise estimation of factor means and the factor co-

variance matrix). Standard errors are computed based on a HAC estimate of the long-run
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covariance matrix S =
∑∞

j=−∞ E[g(zt, θ)g(zt−j, θ)
′] by the Newey-West procedure, with the

number of lags in the Bartlett kernel determined optimally by the data-driven approach of

Andrews (1991).

Fama-MacBeth two-pass procedure. We additionally employ the traditional Fama-

MacBeth (FMB) two-step OLS methodology (Fama and MacBeth (1973)) to estimate

factor prices and portfolio betas. Our two-pass procedure is standard (e.g. Ch. 12 in

Cochrane (2005)) and we employ a first-step time-series regression to obtain in-sample

betas for each portfolio i. These betas are then used in the (second step) cross-sectional

regression of average excess returns onto the time-series betas to estimate factor risk prices

λ. There is no constant in the second pass of the regression. To account for the fact that

betas are estimated, we report standard errors with the Shanken (1992) adjustment and

HAC standard errors based on Newey and West (1987) with automatic lag length selection

(Andrews (1991)).34

Estimation uncertainty when using volatility innovations. Our main tests are

based on volatility innovations obtained from fitting a simple AR(1) model to the aggregate

global FX volatility series

σFXt = γ + ρσFXt−1 + εFXσ;t (13)

and taking the residuals ∆σFXt ≡ ε̂FXσ;t = σFXt − γ̂ − ρ̂σFXt−1 as our series of unexpected

volatility.

In our robustness analyses, we also checked the role of potential estimation uncertainty

(due to the pre-estimation of volatility innovations) on inference with regard to the esti-

mates of factor risk prices. To do so, we stack in our GMM system the moment conditions

implied by OLS estimation of the AR(1) model E[εFXσ;t xt] = 0, xt = ( 1 σFXt−1 )′ with the

asset pricing moment conditions (for time-series regressions E[(rxit−αi−β′iht)h̃′t] = 0, i =
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1, . . . , N, h̃t = ( 1 h′t )′, and cross-sectional regression E[rxit − β′iλ] = 0). Hence, both

volatility innovations and model parameters are estimated simultaneously in one step. De-

fine the k + 1-dimensional vector β̃i = ( αi β′i )′ for asset i and β as the N × k matrix

collecting the betas of the individual test assets. The estimating function then reads

g(zt, θ) =



h̃t(rx
1
t − h̃′tβ̃1)

...

h̃t(rx
N
t − h̃′tβ̃N)

rxt − βλ

εFXσ;t

εFXσ;t σ
FX
t−1


, (14)

where εFXσ;t = σFXt − γ− ρσFXt−1 , ht = ( DOLt ∆σFXt )′. Based on the system defined by

the N(k + 2) + 2 moment conditions in (14) both volatility innovations ∆σFXt and model

parameters θ = ( vec(β̃)′ λ′ γ ρ )′ are estimated simultaneously by GMM imposing

cross-equation restrictions. This ensures that estimation uncertainty regarding volatility

innovations is accounted for when conducting inference on the model parameters. It turns

out, as mentioned in the main text, that estimation uncertainty due to pre-estimating

volatility innovations is negligible. This is due to the fact that the AR(1) parameter ρ is

quite precisely estimated in samples of our size.
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Notes

1Since the beginning of the recent global financial crisis, carry trade strategies have made substan-

tial losses but recovered during 2009. Moreover, these losses are relatively small when compared to the

cumulative returns from carry trades of the last 15-20 years (e.g. Brunnermeier, Nagel, and Pedersen

(2009)).

2Originally, the innovation of sorting currencies into portfolios is due to Lustig and Verdelhan (2007)

and has been followed by other papers afterwards.

3For example, this is a key prediction of the Intertemporal CAPM (Merton (1973), Campbell (1993),

Campbell (1996), Chen (2003)). Also, assets that deliver low returns in times of high volatility add negative

skewness to a portfolio. Hence, if investors have preferences over skewness, assets with a highly negative

return sensitivity to volatility shocks should demand a higher return in equilibrium. Harvey and Siddique

(2000) examine this sort of coskewness risk and find that it matters for stock returns.

4Global FX volatility has a correlation of about -30% with the HMLFX factor. We therefore do not

exchange one factor for an essentially identical factor.

5With respect to the paper by Burnside, Eichenbaum, Kleshchelski, and Rebelo (2006), it is important

to point out that in terms of the bid-ask spread analysis, our results are similar to theirs in the sense that

indicative bid-ask spreads generally available from traditional data sources are not large enough to wipe

out the profits of carry trade portfolios. However, Burnside, Eichenbaum, Kleshchelski, and Rebelo (2006)

argue that transaction costs may be an important part of the explanation of carry trade returns if the

spreads charged to large trades limit the volume (or total value) of speculation.

6Also, see e.g. Acharya and Pedersen (2005), Brunnermeier and Pedersen (2009), Evans and Lyons

(2002), and Pastor and Stambaugh (2003) on the role of liquidity for asset prices.

7Furthermore, Dittmar (2002) uses Taylor approximations of general, non-linear pricing kernels to show

that the covariance of returns with higher-order moments of returns (such as return variance) theoretically

and empirically matters for equilibrium returns.

8A number of recent papers suggest theoretical approaches to make sense of the forward premium puzzle

and a selected list includes Bacchetta and van Wincoop (2006), Bansal and Shaliastovich (2008), Farhi and

Gabaix (2009), Gourinchas and Tornell (2004), and Ilut (2010). However, none of these papers precisely

makes the prediction that exposure to global volatility shocks should matter for currency risk premia which
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is central to our setup and results below. Hence, further theoretical research is needed to pin down the

exact reason why currency exposure to volatility innovations is strongly related to cross-sectional return

differences.

9Lustig, Roussanov, and Verdelhan (2010) and Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011)

also use these data.

10Results for unadjusted returns are very similar, though, and are reported in the Internet Appendix

to this paper. Below, we also provide results for a transaction cost adjustment scheme as in Lustig,

Roussanov, and Verdelhan (2010) where we assume 100% portfolio turnover each month.

11Equal weights in the DOL portfolio lead to a rebalancing effect and an effectively contrarian behavior

of the portfolio. We will argue below that the DOL portfolio is not crucial to our results so that we do not

expect this contrarian effect to be important.

12To calculate βSKD for our currency portfolios, we either use the DOL portfolio or the U.S. stock

market return (MKT) as the market factor. Since there is evidence of some low autocorrelation in the

DOL portfolio, we use unexpected returns from a simple AR(1) to compute the coskewness measure.

13See Section VII. The main message is that our results do not change when using sensible weighting

schemes.

14It is also worth noting that, while ∆σFX
t is a plausible proxy for innovations in global FX volatility

and in practice it would be possible to trade a basket of realized volatilities of the kind defined here

using customized over-the-counter volatility derivatives contracts, there are several caveats with respect to

considering ∆σFX
t as observed volatility (Della Corte, Sarno, and Tsiakas (2011)). First, volatility trading

in currency markets did not exist for most of our sample period. Second, it tends to happen on contracts

that define volatility using the Garman and Kohlhagen (1983) formula or use implied volatility, as in the

case of the JP Morgan VXY Index; see also the discussion of Ang, Hodrick, Xing, and Zhang (2006) on

these issues.

15The convention in FX markets is to multiply the delta of a put by −100 and the delta of a call by 100.

Thus, a 25-Delta put has a delta of −0.25 for example, whereas a 25-Delta call has a delta of 0.25.

16Note that we follow Lustig, Roussanov, and Verdelhan (2010) and employ discrete returns (and not

log returns as above) in all our pricing exercises below to satisfy the Euler equation which is for levels of

returns and not logs. Discrete returns for currency k are defined as rxkt+1 =
Fk

t −S
k
t+1

Sk
t

where F and S are

the level of the forward and spot exchange rate respectively.
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17In a similar way, we also estimate a version where we account for uncertainty induced by the estimation

of volatility innovations by stacking the corresponding moment conditions of the AR(1) model for our

volatility series with the remaining asset pricing moment conditions. We then use the estimated volatility

innovations in the pricing kernel such that estimation uncertainty is incorporated directly in the estimation

of factor prices and model parameters. We provide details of this approach in the Appendix.

18Simulations are based on weighted χ2(1)-distributed random variables. For more details on the com-

putation of the HJ distance and the respective tests, see Jagannathan and Wang (1996) and Parker and

Julliard (2005).

19Also see Burnside (2009) and Lustig and Verdelhan (2007) on the issue of whether to include a constant

or not.

20In the Internet Appendix, we also report results using simple volatility changes instead of AR(1)-

innovations. Results are very similar. We also estimated the AR(1) parameters jointly with the rest of the

model’s parameters by stacking AR(1) moment conditions and asset pricing moment conditions imposing

cross-equation restrictions. This avoids potential errors-in-variables problems as noted above in Section

II. Our results are basically unchanged, though. For example, the standard error of λV OL is 0.031 when

we estimate the AR(1)-based volatility innovations within the system of moments. This result is not too

surprising since volatility is rather persistent and the AR(1) coefficients are estimated with high precision

in our sample. Furthermore, we also show results when using transaction cost adjustments which assume

100% turnover per month as in Lustig, Roussanov, and Verdelhan (2010) in the Internet Appendix. Again,

our results are robust to this modification. Finally, we also estimate our baseline specification using log

returns instead of discrete returns. Using discrete or log excess returns does not impact our results.

21See Lewellen, Nagel, and Shanken (2010) on the importance to take the magnitude of the cross-sectional

slopes, i.e. the factor prices, seriously.

22We thank an anonymous referee for pointing this out.

23Beta sorts are a common means to investigate risk premia in financial markets (see e.g. Pastor and

Stambaugh (2003), Ang, Hodrick, Xing, and Zhang (2006), Lustig, Roussanov, and Verdelhan (2010)).

24We do not employ returns from the first 36 months of our sample for this analysis since we would have

to rely on in-sample estimated betas for this period.

25We only report GMM results in Table V (and all future tables in the paper) to conserve space. Results

based on the two-pass FMB method are available in the Internet Appendix to this paper.
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26Results for developed countries and results for not orthogonalizing liquidity innovations are very sim-

ilar.

27We thank an anonymous referee for suggesting this exercise.

28We can replace our volatility proxy in Eq. (4) by squared market returns and still obtain very similar

results. Thus, the analysis of Harvey and Siddique (2000) more or less directly applies to our findings as

well.

29In addition, we present additional evidence supporting these results for international bond returns

and FX option portfolios. These results also support the estimated level of our factor risk price but the

portfolio returns are correlated with the baseline carry trade portfolios.

30The JP Morgan data provides implied volatilities and deltas, but not prices directly. Hence, we infer

strike prices from information about deltas and implied volatilities. These can in turn be used to compute

option prices and holding period returns (since options expire after exactly one month).

31This applies mainly to the DOL portfolio and the liquidity risk factors, which are not mean zero by

construction as our series of global FX volatility innovations are.

32Standard errors for λ are obtained by the Delta Method.

33Moreover, point estimates of factor risk premia λ obtained in this way are identical to those obtained

by a traditional two-pass OLS approach (as described in Burnside (2009)).

34See Cochrane (2005, Ch. 12.2) and Burnside (2009) for further details on the derivation of HAC

standard errors in the two-pass cross-sectional regression approach.
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Table I. Descriptive Statistics

The table reports mean and median returns, standard deviations (both annualized), skew-
ness, and kurtosis of currency portfolios sorted monthly on time t − 1 forward discounts.
We also report annualized Sharpe Ratios, AC(1) is the first order autocorrelation coeffi-
cient, and Coskew(·) denotes the Harvey and Siddique (2000) measure of coskewness with
respect to either the excess return of a broad currency index (DOL) or the U.S. stock mar-
ket (MKT, based on CRSP). Portfolio 1 contains the 20% of all currencies with the lowest
forward discounts whereas Portfolio 5 contains currencies with highest forward discounts.
All returns are excess returns in USD. DOL denotes the average return of the five currency
portfolios and H/L denotes a long-short portfolio that is long in Portfolio 5 and short in
Portfolio 1. We report excess returns with transaction cost adjustments (with b-a). Re-
turns for portfolio 1 are adjusted for transaction costs that occur in a short position and
portfolios 2 – 5 are adjusted for transaction costs that occur in long positions. Numbers in
brackets show Newey and West (1987) HAC based t-statistics and numbers in parentheses
show p-values. Returns are monthly and the sample period is 12/1983 – 08/2009.

All countries (with b-a)

Portfolio 1 2 3 4 5 Avg. H/L
Mean -1.46 -0.10 2.65 3.18 5.76 2.01 7.23

[-0.80] [-0.06] [1.43] [1.72] [2.16] [1.18] [3.13]
Median -2.25 0.77 1.96 4.09 10.17 2.87 11.55
Std. Dev. 8.50 7.20 8.11 8.39 10.77 7.39 9.81
Skewness 0.18 -0.23 -0.28 -0.55 -0.66 -0.40 -1.03
Kurtosis 3.77 4.11 4.34 4.78 5.08 3.98 4.79
Sharpe Ratio -0.17 -0.01 0.33 0.38 0.54 0.27 0.74
AC(1) 0.04 0.09 0.14 0.11 0.23 0.14 0.18

(0.74) (0.27) (0.04) (0.14) (0.00) (0.04) (0.01)
Coskew (DOL) 0.38 -0.07 -0.14 -0.15 -0.06 0.38 -0.21
Coskew (MKT) 0.18 0.03 0.11 0.10 0.04 0.10 -0.12

Developed countries (with b-a)

Portfolio 1 2 3 4 5 Avg. H/L
Mean -0.82 1.55 1.98 2.82 4.90 2.09 5.72

[-0.40] [0.68] [0.97] [1.38] [1.95] [1.07] [2.50]
Median -1.13 2.64 2.93 3.11 6.17 3.25 8.18
Std. Dev. 9.75 10.02 9.34 9.40 10.82 8.71 10.24
Skewness 0.14 -0.17 -0.14 -0.70 -0.27 -0.23 -0.92
Kurtosis 3.45 3.69 3.91 5.84 4.73 3.60 5.76
Sharpe Ratio -0.08 0.16 0.21 0.30 0.45 0.24 0.56
AC(1) 0.02 0.11 0.12 0.12 0.17 0.12 0.13

(0.97) (0.14) (0.11) (0.12) (0.01) (0.12) (0.07)
Coskew (DOL) 0.30 -0.14 0.03 -0.33 0.03 0.14 -0.15
Coskew (MKT) 0.24 0.10 0.08 0.05 -0.11 0.08 -0.36
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Table II. Cross-Sectional Asset Pricing Results: Volatility Risk

The table reports cross-sectional pricing results for the linear factor model based on the
dollar risk (DOL) factor and global FX volatility innovations (VOL). The test assets are
excess returns to five carry trade portfolios based on currencies from all countries (left
panel) or developed countries (right panel). Panel A shows coefficient estimates of SDF
parameters b and factor risk prices λ obtained by GMM and FMB cross-sectional regression.
We use first-stage GMM and we do not use a constant in the second-stage FMB regressions.
Standard errors (s.e.) of coefficient estimates are reported in parentheses and are obtained
by the Newey-West procedure with optimal lag selection according to Andrews (1991). We
also report the cross-sectional R2 and the Hansen-Jagannathan distance (HJ-dist) along
with the (simulation-based) p-value for the test whether the HJ-distance is equal to zero.
The reported FMB standard errors and χ2 test statistics (with p-values in parentheses)
are based on both the Shanken (1992) adjustment (Sh) or the Newey-West approach with
optimal lag selection (NW). Panel B reports results for time-series regressions of excess
returns on a constant (α), the dollar risk (DOL) factor, and global FX volatility innovations
(VOL). HAC standard errors (Newey-West with optimal lag selection) are reported in
parentheses. The sample period is 12/1983 – 08/2009 and we use monthly transaction-cost
adjusted returns.

Panel A: Factor Prices

All countries (with b-a) Developed countries (with b-a)
GMM DOL VOL R2 HJ-dist GMM DOL VOL R2 HJ-dist
b 0.00 -7.15 0.97 0.08 b 0.02 -4.38 0.94 0.06
s.e. (0.05) (2.96) (0.79) s.e. (0.03) (2.73) (0.89)
λ 0.21 -0.07 λ 0.22 -0.06
s.e. (0.25) (0.03) s.e. (0.22) (0.04)
FMB DOL VOL χ2

SH χ2
NW FMB DOL VOL χ2

SH χ2
NW

λ 0.21 -0.07 1.35 0.94 λ 0.22 -0.06 0.95 0.83
(Sh) (0.15) (0.02) (0.72) (0.82) (Sh) (0.16) (0.02) (0.81) (0.84)
(NW) (0.13) (0.03) (NW) (0.15) (0.03)

Panel B: Factor Betas

All countries (with b-a) Developed countries (with b-a)
PF α DOL VOL R2 PF α DOL VOL R2

1 -0.29 1.01 4.34 0.76 1 -0.23 0.94 4.52 0.71
(0.08) (0.04) (0.70) (0.09) (0.05) (1.42)

2 -0.15 0.84 1.00 0.74 2 -0.05 1.05 0.43 0.82
(0.06) (0.04) (0.59) (0.07) (0.04) (0.89)

3 0.05 0.97 -0.30 0.79 3 -0.02 1.01 0.01 0.88
(0.06) (0.04) (0.63) (0.05) (0.03) (0.64)

4 0.09 1.02 -1.06 0.83 4 0.07 0.96 -1.94 0.82
(0.06) (0.04) (0.71) (0.07) (0.03) (0.97)

5 0.30 1.15 -3.98 0.67 5 0.24 1.04 -3.02 0.73
(0.11) (0.06) (1.20) (0.10) (0.05) (1.09)
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Table III. Cross-Sectional Asset Pricing Results: Factor-mimicking Portfolio

The setup of this table is identical to Table II but we replace volatility innovations by
the factor mimicking portfolio of volatility innovations (VOLFM). Test assets are the five
carry trade portfolios (excess returns) based on all countries or the 15 developed countries.
Panel A reports SDF parameter estimates b and factor prices λ obtained by GMM and
FMB cross-sectional regression. Standard errors (s.e.) of coefficient estimates (Newey-West
with optimal lag selection) are reported in parentheses, as well as p-values for the Hansen-
Jagannathan distance (HJ-dist) and the χ2 test statistics for the null that all pricing errors
are jointly equal to zero. FMB standard errors and pricing error statistics are based on the
Shanken (1992) adjustment (Sh) or the Newey-West approach with optimal lag selection
(NW). Panel B reports results for time-series regressions of excess returns on a constant (α),
the dollar risk (DOL) factor, and the factor mimicking portfolio of volatility innovations.
Robust (HAC) standard errors are reported in parentheses. The sample period is 12/1983
– 08/2009 and we use monthly net returns.

Panel A: Factor Prices

All countries (with b-a) Developed countries (with b-a)
GMM DOL VOL R2 HJ-dist GMM DOL VOL R2 HJ-dist
b 0.00 -0.71 0.97 0.08 b 0.01 -0.58 0.97 0.06
s.e. (0.03) (0.23) (0.64) s.e. (0.03) (0.26) (0.86)
λ 0.21 -0.10 λ 0.22 -0.08
s.e. (0.15) (0.03) s.e. (0.16) (0.04)
FMB DOL VOL χ2

SH χ2
NW FMB DOL VOL χ2

SH χ2
NW

λ 0.21 -0.10 1.89 4.59 λ 0.22 -0.09 0.90 0.81
(Sh) (0.13) (0.02) (0.60) (0.20) (Sh) (0.15) (0.03) (0.83) (0.85)
(NW) (0.13) (0.03) (NW) (0.14) (0.03)

Panel B: Factor Betas

All countries (with b-a) Developed countries (with b-a)
PF α DOL VOL R2 PF α DOL VOL R2

1 -0.01 1.21 3.63 1.00 1 0.02 1.05 3.08 0.84
(0.01) (0.00) (0.02) (0.08) (0.04) (0.26)

2 -0.08 0.89 0.85 0.76 2 0.04 1.09 1.09 0.84
(0.06) (0.04) (0.21) (0.07) (0.04) (0.18)

3 0.03 0.96 -0.24 0.79 3 -0.04 1.00 -0.29 0.88
(0.06) (0.05) (0.19) (0.06) (0.03) (0.16)

4 0.02 0.98 -0.88 0.84 4 -0.03 0.92 -1.16 0.84
(0.06) (0.04) (0.24) (0.08) (0.04) (0.28)

5 0.04 0.96 -3.36 0.79 5 0.01 0.94 -2.71 0.81
(0.09) (0.05) (0.30) (0.09) (0.04) (0.30)
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Table IV. Portfolios Sorted on Betas with Global Volatility

The table reports statistics for portfolios sorted on volatility betas, i.e. currencies are sorted
according to their beta in a rolling time-series regression of individual currencies’ excess
returns on volatility innovations. Portfolio 1 contains currencies with the lowest betas
whereas portfolio 5 contains currencies with the highest betas. The remaining notation
follows Table I. We report average pre-formation (pre-f. f − s) and post-formation (post-
f. f − s) forward discounts for each portfolio (in % p.a.). Pre-formation discounts are
calculated at the end of the month just prior to portfolio formation whereas post-formation
forward discounts are calculated over the six months following portfolio formation. We also
report pre-sorting (pre-β) and post-sorting (pre-β) volatility betas in the last two rows of
each panel.

All countries

Portfolio 1 2 3 4 5 Avg. H/L
Mean 4.28 2.76 2.19 0.69 0.17 2.02 4.11

[2.05] [1.36] [1.37] [0.39] [0.09] [0.98] [1.91]
Std. Dev. 9.58 8.43 7.22 7.35 8.19 6.93 8.88
Skewness -0.63 -0.67 -0.61 -0.41 -0.01 -0.48 -0.23
Kurtosis 5.17 5.23 6.75 4.06 3.30 4.22 3.29
AC(1) 17.47 11.69 3.26 5.34 3.84 12.15 0.33

(0.00) 0.00 0.20 0.07 0.15 0.00 0.85
Coskew (DOL) -0.14 0.11 -0.10 0.06 0.27 -0.47 -0.23
Coskew (MKT) 0.12 0.11 0.22 0.16 0.13 0.17 0.01
pre-f. f − s 0.23 0.22 0.11 0.06 0.01
post-f. f − s 0.25 0.27 0.11 0.02 0.00

pre-β -9.49 -3.58 -0.75 2.11 5.77
post-β -4.30 0.65 -0.51 0.99 3.18

Developed countries

Portfolio 1 2 3 4 5 Avg. H/L
Mean 3.77 1.99 1.46 1.76 -0.43 1.71 4.20

[1.25] [0.88] [0.64] [1.20] [-0.17] [0.87] [1.69]
Std. Dev. 8.93 9.59 9.83 10.43 9.08 8.39 8.68
Skewness -1.02 -0.32 -0.40 -0.18 0.06 -0.35 -0.38
Kurtosis 7.78 4.33 4.07 3.57 3.48 3.77 4.58
AC(1) 12.10 5.41 4.53 2.10 2.04 7.92 0.68

0.00 0.07 0.10 0.35 0.36 0.02 0.71
Coskew (DOL) -0.38 -0.07 0.09 0.02 0.25 -0.25 -0.37
Coskew (MKT) 0.03 0.13 0.12 0.29 0.06 0.15 -0.03
pre-f. f − s 0.09 0.08 0.05 0.07 0.04
post-f. f − s 0.10 0.07 0.05 0.05 0.03

pre-β -12.74 4.05 15.30 26.47 44.26
post-β -2.20 -1.15 1.17 0.67 2.06
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Table V. Cross-Sectional Asset Pricing Results: Liquidity Risk

The setup is the same as in Table II but this table shows factor prices for three different
models. We only report results based on GMM. As test assets we use excess returns to
the five carry trade portfolios based on all countries or the 15 developed countries. Factors
are the dollar risk (DOL) factor, and innovations of (i) global average percentage bid-ask
spreads denoted as BAS (Panel A), (ii) the TED spread (Panel B), or (iii) the Pastor and
Stambaugh (2003) liquidity measure denoted as PS (Panel C).

Panel A: Factor Prices – Global bid-ask spreads

All countries (with b-a) Developed countries (with b-a)
GMM DOL BAS R2 HJ-dist GMM DOL BAS R2 HJ-dist
b 0.00 -54.06 0.74 0.19 b 0.02 -36.68 0.58 0.13
s.e. (0.05) (26.48) (0.16) s.e. (0.03) (22.63) (0.36)
λ 0.21 -0.03 λ 0.22 -0.02
s.e. (0.24) (0.01) s.e. (0.21) (0.01)

Panel B: Factor Prices and Loadings – TED spread

All countries (with b-a) Developed countries (with b-a)
GMM DOL TED R2 HJ-dist GMM DOL TED R2 HJ-dist
b 0.04 -4.38 0.73 0.13 b 0.03 -2.44 0.81 0.66
s.e. (0.07) (3.35) (0.53) s.e. (0.04) (2.06) (0.16)
λ 0.21 -0.36 λ 0.22 -0.20
s.e. (0.30) (0.28) s.e. (0.24) (0.17)

Panel C: Factor Prices and Loadings – Pastor/Stambaugh liquidity measure

All countries (with b-a) Developed countries (with b-a)
GMM DOL PS R2 HJ-dist GMM DOL PS R2 HJ-dist
b 0.06 12.89 0.70 0.19 b 0.05 12.24 0.97 0.05
s.e. (0.05) (8.29) (0.09) s.e. (0.04) (9.05) (0.94)
λ 0.18 0.05 λ 0.18 0.05
s.e. (0.22) (0.03) s.e. (0.23) (0.03)
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Table VI. Cross-Sectional Asset Pricing Results: Volatility and Liquidity Risk

The setup is the same as in Table V. As test assets we use excess returns to the five
carry trade portfolios based on all countries. Factors are the dollar risk (DOL) factor,
FX volatility innovations (VOL), and innovations to (i) global average percentage bid-ask
spreads denoted as BAS (Panel A), (ii) the TED spread (Panel B), or (iii) the Pastor and
Stambaugh (2003) liquidity measure denoted as PS (Panel C). The latter three measures
of liquidity risk are orthogonalized with respect to volatility innovations.

Panel A: Volatility and global bid-ask spreads

GMM DOL BAS VOL R2 HJ-dist

b 0.01 18.23 -8.11 0.98 0.06
s.e. (0.07) (36.08) (4.24) (0.82)
λ 0.21 0.01 -0.08
s.e. (0.31) (0.02) (0.04)

Panel B: Volatility and TED spread

GMM DOL TED VOL R2 HJ-dist

b 0.01 -1.03 -6.17 0.98 0.07
s.e. (0.05) (2.94) (3.28) (0.66)
λ 0.21 -0.08 -0.06
s.e. (0.25) (0.24) (0.03)

Panel C: Volatility and P/S liquidity measure

GMM DOL PS VOL R2 HJ-dist

b -0.01 -1.65 -7.46 0.97 0.08
s.e. (0.07) (10.36) (3.82) (0.65)
λ 0.18 -0.01 -0.08
s.e. (0.29) (0.04) (0.04)
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Figure 1. Returns to Carry Trade Portfolios
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The upper panel of this figure shows cumulative log excess returns of the carry trade. The
solid black line corresponds to all countries, while the gray line corresponds to a subset of
15 developed countries. The lower panel shows a time-series plot of global FX volatility
(upper black line) and volatility innovations (lower gray line). Shaded areas in the figure
correspond to NBER recessions. The sample period is 11/1983 – 08/2009.

52



Figure 2. Excess Returns and Volatility

(a) All Countries
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(b) Developed Countries
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The figure shows mean excess returns for carry trade portfolios conditional on global FX
volatility innovations being within the lowest to highest quartile of its sample distribution
(four categories from “lowest” to “highest” shown on the x-axis of each panel). The bars
show average excess returns for being long in portfolio 5 (largest forward discounts) and
short in portfolio 1 (lowest forward discounts). Panel (a) shows results for all countries,
while Panel (b) shows results for developed countries. The sample period is 11/1983 –
08/2009.

Figure 3. Pricing Error Plots
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(b) Developed Countries
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The figure shows pricing errors for asset pricing models with global volatility as risk factor.
The sample period is 11/1983 – 08/2009.
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