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Abstract: We present the Bio-Silicon Intelligence System (BSIS), an innovative hybrid platform that 
integrates biological neural networks with silicon-based computing. The BSIS, a Physics-Informed 
Hybrid  Hierarchical  Reinforcement  Learning  State  Machine,  employs  carbon  nanotube-coated 
electrodes  to  interface  rat  brains  with  computational  systems,  enabling  high-fidelity  neural 
interfacing and bidirectional communication through self-organizing systems in both biological 
and  silicon  forms.  Our  system  leverages  both  analogue  and  digital  AI  theory,  incorporating 
concepts  from  computational  theory,  chaos  theory,  dynamical  systems  theory,  physics,  and 
quantum mechanics. Additionally, the BSIS replicates the neuronal dynamics typical of intelligent 
brain tissue, employing nonlinear operations underlying learning and information storage. Neural 
signals are read through the FreeEEG32 board and BrainFlow software, then features are extracted 
and mapped to game actions by tracking feature changes in continuous data. Metadata is encoded 
into  both  analogue  and  digital  brain  stimulation  signals  at  the  microvolt  level  using  our 
proprietary software and hardware. The system employs a dual signaling approach for training 
the rat  brain,  incorporating a reward solution and sound as well  as human-inaudible  distress  
sounds.  This paper details  the design,  theory,  functionality,  and technical  specifications  of  the 
BSIS, highlighting its interdisciplinary approach and advanced technological integration.
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Figure 1: Graphical Abstract
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1. Introduction
The  integration  of  biological  neural  networks  with  silicon-based  computing 

represents a significant frontier in bioengineering and neurotechnology [3,4]. Traditional 
computing  systems,  while  powerful  in  terms  of  raw  processing  speed  and  storage 
capacity,  lack  the  adaptability  and learning capabilities  inherent  to  biological  neural 
networks [5,6,7,8].  For example, silicon-based systems excel  at  rapid calculations and 
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data manipulation but struggle with pattern recognition and few-shot learning areas, 
whereas  biological  neural  networks  excel  in  these  domains.  Conversely,  biological 
systems, despite their adaptability, face limitations in processing speed and scalability 
when  compared  to  their  silicon  counterparts  [9,10,11].  The  synergy  of  these  two 
paradigms—biological  and  silicon-based  computing—presents  an  opportunity  to 
harness the strengths of both to create versatile and powerful systems. This concept of  
bio-silicon  integration  forms  the  foundation  of  our  research  into  the  Bio-Silicon 
Intelligence  System (BSIS)  [12,13].  Recent  advancements  in  brain-computer  interfaces 
(BCIs)  have  opened  new  possibilities  for  direct  communication  between  biological 
neurons  and  electronic  devices  [14,15].  These  interfaces  have  the  potential  to 
revolutionize  various  domains,  from neuroprosthetics  and rehabilitation  to  cognitive 
enhancement  and  advanced  artificial  intelligence  [16,17].  A  critical  aspect  of  this 
integration involves understanding the role of symmetry and asymmetry in nonlinear 
operations  within  neuromorphic  learning mechanisms.  Symmetry  in  neural  network 
design can  optimize  learning algorithms by ensuring consistent  and balanced signal 
processing, which enhances pattern recognition and information storage. This can lead 
to  more  efficient  and  effective  learning  processes.  Conversely,  asymmetry  in  neural 
networks  can  reveal  unique  properties  and  behaviors,  such  as  nonlinear  response 
dynamics and adaptive learning patterns, which are essential for replicating complex 
neuronal functions. In the BSIS, utilizing both symmetrical and asymmetrical principles 
allows for a more nuanced approach to integrating biological and silicon components.

Innovations and System Overview
The BSIS offers a hybrid platform that bridges the gap between biological neural 

networks and silicon-based computing,  utilizing human cortical  organoids interfaced 
with  rat  brains  through carbon  nanotube-coated  electrodes.  This  integration  enables 
high-fidelity neural interfacing and precise bidirectional communication, leveraging the 
natural learning and adaptability of biological systems while enhancing their capabilities 
with  silicon-based  computational  power.  The  signal  acquisition  and  processing 
framework  of  BSIS  utilizes  a  Synthetic  Intelligence  Labs’  custom  MEA,  FreeEEG32 
board[1] and BrainFlow [2] software for accurate reading and processing of complex 
neural  signals.  The  system  provides  comprehensive  analysis  and  feedback  using 
proprietary software, which includes advanced analytical tools for detailed visualization 
and interaction with neural data.A key innovation of BSIS is its dual signaling approach 
for  training  neural  networks,  employing  a  reward  mechanism  alongside  human-
inaudible  distress  sounds  to  guide  and  modify  rat  brain  behavior.  The  reward 
mechanism reinforces desired neural patterns, while the distress sounds deter undesired 
activity, creating a comprehensive feedback system for shaping neural responses. This 
approach enhances the learning process and ensures a balanced and humane method for 
neural conditioning. BSIS's design incorporates robust ethical considerations, ensuring 
the well-being of research animals with communal housing, a carefully planned diet, 
and  comprehensive  care  protocols.  The  versatility  of  BSIS  supports  applications  in 
advanced  artificial  intelligence  research,  bioengineering,  neuroprosthetics,  cognitive 
enhancement,  and  neurotechnology,  making  it  a  powerful  tool  for  pioneering  new 
frontiers in these fields.
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Figure 2: System Flow of Signals

2. Materials and Methods

Physics Informed Hybrid Hierarchical Reinforcement Learning State Machine
The  Bio-Silicon  Intelligence  System  (BSIS)  functions  as  an  advanced  physics-

informed Hybrid Hierarchical  State  Machine  and analogue  bio-silicon AI,  effectively 
integrating  discrete  and  continuous  computational  paradigms  to  manage  complex 
neural  signal  processing  and  adaptive  game  control.  This  system  synergistically 
combines principles from hybrid automata and hierarchical state machines, facilitating 
dynamic interactions between neural signals,  game actions,  and associated metadata. 
Continuous dynamics are encapsulated through an extensive array of neural features, 
such as peak count, spectral centroid, and Higuchi Fractal Dimension, which collectively 
modulate state transitions. Discrete states represent not only various game actions but 
also game metadata, analogue signal lambda transformations, and digital signal binary 
encoding. State transitions are driven by continuous neural data input, augmented by a 
reinforcement  learning  framework.  The  BSIS  is  physics-informed,  meaning  that  its 
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design and functionality are grounded in principles from physics,  particularly in the 
areas  of  chaos  theory,  dynamical  systems  theory,  and  quantum  mechanics.  These 
principles inform the system's ability to process and adapt to complex neural signals in a 
robust and efficient manner. For instance, the system utilizes concepts from chaos theory 
to  manage  the  unpredictable  nature  of  neural  signal  fluctuations,  while  dynamical 
systems theory aids in understanding and modeling the continuous changes in neural 
states. Quantum mechanics principles are applied in the generation of neural signals, 
enhancing the precision and fidelity of neural interfacing.

The  hierarchical  architecture  of  BSIS  organizes  states  across  multiple  levels  of 
abstraction, efficiently managing high-level game states and nested sub-states to handle 
specific  game  mechanics,  neural  responses,  and  signal  encoding  processes. 
Reinforcement learning constitutes a pivotal component of this system, wherein the rat 
brain is  conditioned via  positive  reinforcement  through a  nicotine-sugar-caffeine-salt 
water  reward  paired  with  an  auditory  beep,  and  negative  reinforcement  through 
ultrasonic  distress  sounds.  This  adaptive  learning  mechanism,  coupled  with  the 
continuous  processing  of  analogue  signals,  ensures  that  the  system  remains  highly 
responsive and optimized for real-time neurofeedback. This physics-informed approach 
ensures that the BSIS can accurately and reliably interpret and respond to neural data, 
making it a powerful tool for real-time neurofeedback and adaptive control.

The proceeding section describes the acquisition of neural signals from rat brains 
using a custom multi-electrode array (MEA) coated with multi-walled carbon nanotubes 
(MWCNTs),  ensuring  high-fidelity  neuron-to-electrode  connections.  It  details  the 
processing  of  signals  by  the  FreeEEG32  board  [1]  and  BrainFlow  [2]  framework. 
Preprocessing  methods  include  downsampling  and buffering,  followed by advanced 
feature  extraction  techniques  through  the  BSIS  software  such  as  spectral  centroids, 
spectral edge density, Higuchi Fractal Dimension (HFD), and evolution rate. The system 
translates neural features into actionable commands for applications like games, offering 
both digital  and analogue feedback options.  Additionally,  it  outlines  the stimulation 
hardware's  role  in  ensuring  safe  neural  interfacing  by  adjusting  signal  levels  and 
minimizing electromagnetic interference.

Signal Acquisition
The  process  begins  with  the  capture  of  neural  signals  from  rat  brains  using  a 

custom  multi-electrode  array  (MEA)  coated  with  carbon  nanotubes  for  enhanced 
conductivity  and  biocompatibility.  These  electrodes  provide  high-fidelity  signal 
acquisition, ensuring that neural activity is accurately detected. The captured signals are 
then transmitted to the FreeEEG32 board[2], which serves as the primary interface for 
signal  acquisition.  This  board is  equipped with 32 channels,  allowing it  to  handle  a 
substantial volume of neural data, ensuring high-resolution acquisition with minimal 
noise and distortion. Once the neural signals are captured, they are processed by the 
BrainFlow framework[1]. BrainFlow handles filtering and artifact removal. This ensures 
that the neural signals maintain their integrity and are accurately prepared for analysis 
and feedback. The processed signals are then fed into our proprietary software suite for 
comprehensive  analysis.  This  software  framework  operates  in  conjunction  with  the 
FreeEEG32  board  and  BrainFlow[1,2],  capturing  high-resolution  neural  data  and 
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performing essential  preprocessing  tasks  to  maintain  the  integrity  of  the  signals  for 
further analysis.

Multiwalled Carbon Nanotubes
Recent  research  has  highlighted  the  self-organizing  properties  of  multi-walled 

carbon  nanotubes  (MWCNTs),  which  can  be  particularly  beneficial  in  establishing 
effective neuron-to-electrode connections.  MWCNTs have demonstrated the ability to 
spontaneously form networks that mimic natural neural pathways, promoting targeted 
and robust synaptic connections[18,19,20]. This self-organizing behavior helps to align 
the electrodes precisely with the neurons, ensuring that the neural signals are captured 
with high specificity and fidelity. The branching out of these connections to the right 
neurons is facilitated by the inherent properties of MWCNTs, which support the growth 
and guidance of neurites. Consequently, the system's overall performance is improved, 
with enhanced signal clarity and reduced noise, thereby augmenting the efficiency of 
neuron-electrode  interfaces  and  contributing  to  more  accurate  and  reliable  neuro-
computational interactions.

This integrated model for network formation and dynamics can be described as: 
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Where:

Equation 1: Integrated model for network formation and dynamics

Real-Time Monitoring and Visualization
The  processed  and feature-extracted  data  are  visualized  in  real-time  through a 

graphical user interface (GUI). The GUI, developed using PyQt and PyQtGraph[21,22],  
offers an intuitive and interactive platform for monitoring neural activity. The interface 
displays various features such as signal amplitude, frequency bands, and other extracted 
metrics, allowing researchers to gain real-time insights into the neural data. To facilitate 
robust  data  transmission  and integration,  the  BSIS  software  framework incorporates 
MQTT (Message Queuing Telemetry Transport)[23] protocols. These protocols facilitate 



Arxiv Preprint 8 of 53

efficient  data  transfer  between  different  system  components  and  remote  servers, 
enabling  real-time  monitoring  and  analysis  from  multiple  locations.  The  system 
publishes  data  to  a  central  server,  making  it  accessible  for  further  analysis  by 
researchers. For the BSIS system software, Figure 3 illustrates the neural signal reading 
display, Figure 4 the extracted features display, Figure 5 the zoomed in first section from 
the left of the extracted features display, Figure 6 the zoomed in second section from the 
left of the extracted features display, Figure 7 the third section, and Figure 8 the fourth 
section. Figure 9 illustrates the features to action display with averaged feature values  
mapped to force adjustments, and Figure 10 shows the distance to target and adjusted 
force over time. Figure 11 illustrates the BSIS game metadata and game action encoded 
analogue signals,  and Figure 12 shows the game metadata and game action encoded 
digital  signals,  both  digital  and  analogue  encoded  signals  are  sent  to  the  BSIS 
stimulation hardware to stimulate the brain directly via our custom MEA.

Figure 3: Neural signals

Figure 4: Extracted Features
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Figure 5: Extracted Features part 1
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Figure 6: Extracted Features part 2
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Figure 7: Extracted Features part 3
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Figure 8: Extracted Features part 4
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Figure 9: Force adjustments from mapped features to game actions
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Figure 10: Distance to target and adjusted force over time

Figure 11: Game metadata and game action encoded analogue signals for 250ms at 48000hz  
upsampled from 500hz
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Figure 12: Game metadata and game action encoded digital  signals for 250ms upsampled to  
48000hz

Preprocessing and Buffering
The preprocessing stage of BSIS begins immediately after neural signal  capture. 

The  system  downsamples  the  capture  signals  to  a  manageable  rate  for  processing. 
Downsampling  is  performed  using  resampling  techniques  to  preserve  the  essential 
characteristics of the data while reducing the computational load on the system. The 
processed data is then stored in a buffer, which maintains a continuous stream of recent 
neural activity. This buffered data serves as the input for further analysis.

Theory, Feature Extraction, and Calculation
Spectral Centroids

The concept of spectral centroids is deeply rooted in the mathematical framework 
of signal processing and Fourier analysis. The spectral centroid represents the "center of 
mass" of a signal's power spectrum, which can be derived by transforming the signal 
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from the time domain to the frequency domain using the Fast Fourier Transform  (FFT)
[24,25].  The FFT is based on the Discrete Fourier Transform (DFT), which converts a 
finite sequence of equally spaced samples of a function into a same-length sequence of 
equally  spaced  samples  of  the  discrete-time  Fourier  transform  (DTFT),  which  is  a 
complex-valued function of frequency. The FFT's computational efficiency (O(N log N) 
vs O(N^2) for direct DFT calculation) makes it practical for real-time signal processing 
applications, such as those in BSIS.

The theoretical foundation of the FFT relies on the orthogonality of sine and cosine 
functions,  which  form an  orthogonal  basis  for  the  space  of  periodic  functions.  This 
orthogonality ensures that each frequency component in the signal can be independently 
analyzed,  providing  a  precise  decomposition  of  the  signal  into  its  constituent 
frequencies.  This  decomposition  is  critical  for  accurately  determining  the  spectral 
centroid,  as  it  allows  for  the  clear  identification  and  quantification  of  the  power 
associated with each frequency component.

Equation 2: Spectral Centroids

In theoretical physics,  particularly in the study of wave phenomena, the spectral 
centroid can be interpreted as the average energy state of  a system. For instance,  in 
quantum  mechanics,  the  energy  levels  of  a  quantum  system  are  analogous  to  the 
frequency  components  of  a  signal.  The  spectral  centroid,  therefore,  represents  an 
average energy state, providing insights into the system's overall energy distribution. 
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This  analogy is  powerful  in  understanding the  behavior  of  complex  systems,  where 
energy distribution and transitions between states are critical aspects [26].

Equation 3: Energy State
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Equation 4: Spectral Centroid for Frequency Analysis in Non-Linear and Chaotic Systems

In the context  of  neural  signals,  spectral centroids can provide insights into the 
dominant frequency ranges of neural activity. Shifts in the spectral centroid can indicate  
changes in cognitive states or the engagement of different neural networks. For example, 
a shift towards higher frequencies might indicate increased cognitive load or alertness 
while  a  shift  towards  lower  frequencies  could  suggest  relaxation  or  drowsiness. 
However,  while  sufficient  for  the  BSIS  system,  spectral  centroids  have  several 
limitations, including high sensitivity to signal noise.

Spectral Edge Density
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Spectral edge density is a measure that captures the distribution of power within a  
signal's spectrum up to a specified threshold, typically 95% of the total power[30]. The 
calculation of spectral edge density involves transforming the signal into the frequency 
domain  using  the  FFT,  which  reveals  the  signal's  power  spectrum.  The  cumulative 
power distribution is then computed by summing the power contributions of individual 
frequency components, starting from the lowest frequency.

Theoretical  exploration of  spectral  edge density  involves the  use  of  cumulative 
distribution  functions  (CDFs)  and  quantile  analysis[31,32].  The  cumulative  power 
distribution can be seen as analogous to a CDF, representing the accumulation of power 
across the frequency spectrum [33,34].

Equation 5: Spectral Edge

This  measure  provides  insights  into  the  concentration  and dispersion  of  signal 
power, highlighting the frequencies that contain the majority of the signal's energy. In 
theoretical physics, spectral edge density can be linked to thermodynamic principles and 
statistical mechanics. In these fields, the distribution of particles or energy states within a 
system  can  be  described  by  cumulative  distributions,  with  the  spectral  edge 
corresponding  to  a  specific  quantile  of  this  distribution.  This  analogy  provides  a 
framework  for  understanding  how  energy  is  distributed  within  a  system  and  the 
thresholds that characterize significant energy concentrations[35].
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In the context of signal processing and theoretical neuroscience, spectral edge density is  
crucial for understanding how signal power is spread across frequencies. This measure 
is particularly valuable in distinguishing between different types of signals based on 
their power distribution characteristics. For example, in brain signal analysis, different 
cognitive states or neural activities can exhibit distinct spectral edge densities, reflecting 
the underlying neural  dynamics  and connectivity [36,37].  Furthermore,  spectral  edge 
density can be related to concepts in wave mechanics and acoustics. In these fields, the 
distribution of energy across different frequency components determines the behavior 
and properties of waves. The spectral edge, therefore, provides a critical parameter for  
characterizing  wave  phenomena  and  their  interactions  with  the  environment.  By 
understanding the spectral edge, researchers can gain insights into the propagation and 
dispersion of waves, as well as the concentration of energy within specific frequency 
bands [38].

This  measure  provides  insights  into  the  concentration  and dispersion  of  signal 
power, highlighting the frequencies that contain the majority of the signal's energy. In 
theoretical physics, spectral edge density can be linked to thermodynamic principles and 
statistical mechanics. In these fields, the distribution of particles or energy states within a 
system  can  be  described  by  cumulative  distributions,  with  the  spectral  edge 
corresponding  to  a  specific  quantile  of  this  distribution.  This  analogy  provides  a 
framework  for  understanding  how  energy  is  distributed  within  a  system  and  the 
thresholds that characterize significant energy concentrations[35].
In the context of signal processing and theoretical neuroscience, spectral edge density is  
crucial for understanding how signal power is spread across frequencies. This measure 
is particularly valuable in distinguishing between different types of signals based on 
their power distribution characteristics. For example, in brain signal analysis, different 
cognitive states or neural activities can exhibit distinct spectral edge densities, reflecting 
the underlying neural  dynamics  and connectivity [36,37].  Furthermore,  spectral  edge 
density can be related to concepts in wave mechanics and acoustics. In these fields, the 
distribution of energy across different frequency components determines the behavior 
and properties of waves. The spectral edge, therefore, provides a critical parameter for  
characterizing  wave  phenomena  and  their  interactions  with  the  environment.  By 
understanding the spectral edge, researchers can gain insights into the propagation and 
dispersion of waves, as well as the concentration of energy within specific frequency 
bands [38].

Integration of Theoretical Concepts
The  theoretical  underpinnings  of  spectral  centroids  and  spectral  edge  density 

highlight  their  significance  in  the  broader  context  of  signal  analysis.  These  features 
encapsulate  fundamental  principles  from  Fourier  analysis,  energy  distribution,  and 
statistical mechanics, providing deep insights into the structure and dynamics of signals. 
By capturing the essence of power and frequency distribution, these measures bridge the 
gap between mathematical theory and practical applications, offering powerful tools for 
the analysis and interpretation of complex signals in various scientific fields.
The theoretical  depth of spectral centroids and spectral edge density extends beyond 
simple  calculations,  delving  into  the  core  principles  of  signal  processing,  theoretical  
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physics,  and  energy  distribution.  These  measures  offer  profound  insights  into  the 
behavior and characteristics of signals, providing a robust framework for understanding 
and analyzing complex systems. Through their applications in fields like neuroscience, 
acoustics,  and  wave  mechanics,  spectral  centroids  and  spectral  edge  density 
demonstrate  their  versatility  and  importance  in  advancing  our  understanding  of 
dynamic systems and their underlying processes [39].

Higuchi Fractal Dimension
The Higuchi Fractal Dimension (HFD)[40] provides a quantitative measure of the 

complexity of a signal, with higher values indicating greater complexity and irregularity. 
The theoretical  foundation of  HFD lies  in  chaos theory and the  study of  dynamical 
systems.  In  these  fields,  fractal  dimensions  are  used  to  characterize  the  behavior  of 
chaotic systems, which are sensitive to initial conditions and exhibit complex, aperiodic 
behavior. The HFD measures the self-similarity and intricacy of a signal, capturing the 
essence  of  this  chaotic  behavior.  This  allows  for  a  more  nuanced  understanding  of 
systems that do not exhibit regular periodicity but are instead governed by underlying 
non-linear  dynamics.  Such insights  are invaluable  in fields where understanding the 
unpredictable behavior of a system can lead to better models and predictions.
In the realm of theoretical physics, the concept of fractals extends to the study of natural 
phenomena and structures that exhibit fractal properties. For instance, the distribution 
of galaxies  in  the  universe,  the structure  of  turbulent  flows,  and the  morphology of 
biological  systems  all  exhibit  fractal  characteristics.  The  HFD,  therefore,  serves  as  a 
bridge  between  signal  processing  and  the  analysis  of  complex,  natural  systems,  
providing  a  tool  for  understanding  the  underlying  mechanisms  that  drive  these 
phenomena.  By  quantifying  the  self-similar  and  scale-invariant  properties  of  such 
systems,  the  HFD  aids  in  uncovering  the  fundamental  principles  that  govern  their 
formation  and  evolution.  This  connection  between  fractal  geometry  and  natural 
phenomena underscores the universality of fractal dimensions in describing complex 
structures [41,42,43,44].

In neuroscience,  the application of HFD is  particularly significant  for  analyzing 
neural  signals,  which  often  exhibit  complex,  non-linear  dynamics.  Neural  activity, 
characterized by oscillations and transient events, can be effectively studied using fractal 
dimensions. The HFD provides insights into the complexity of neural signals, reflecting 
the underlying neural connectivity and functional organization. Higher HFD values in 
neural signals may indicate more intricate neural processing and higher levels of neural 
interactivity.  This  is  particularly useful  for  distinguishing between different  states  of 
brain activity,  such  as  rest  versus  task  engagement,  and can  also  aid  in  identifying 
pathological conditions characterized by abnormal neural dynamics. The ability of the 
HFD to capture the intricate patterns in neural signals makes it a valuable tool in both 
research and clinical settings.

Moreover, the HFD can be linked to the concept of self-organized criticality (SOC), 
a property of dynamical systems that naturally evolve to a critical state where minor 
events can lead to significant, system-wide changes. SOC is observed in various natural 
systems,  including  neural  networks,  where  it  manifests  as  spontaneous  activity  that 
exhibits scale-invariant behavior. The fractal dimension,  including the HFD, captures 
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this  scale-invariant  property,  providing  a  measure  of  the  system's  propensity  for 
criticality and complexity. This theoretical framework explains how neural systems can 
maintain  a  delicate  balance  between  stability  and  flexibility,  enabling  both  robust 
information processing and adaptability. Understanding SOC through the lens of HFD 
enhances our comprehension of how complex neural dynamics  emerge from simple, 
local interactions [45,46,47].

The practical application of HFD in our system involves several critical steps, each 
grounded in the theoretical principles discussed. First, the neural signal is segmented 
into smaller sections to facilitate multi-scale analysis.  The length of the signal within 
these segments is then computed across different scales, capturing the self-similarity of 
the signal.
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Equation 6: Higuchi Fractal Dimension

The Higuchi Fractal Dimension is a powerful tool for quantifying the complexity of 
signals,  rooted  in  the  principles  of  fractal  geometry,  chaos  theory,  and  dynamical 
systems.  By analyzing the self-similarity  of a  signal  across  different  scales,  the  HFD 
provides deep insights into the structure and behavior of complex systems, bridging the 
gap  between  theoretical  mathematics,  physics,  and  practical  applications  in  signal 
processing and neuroscience. Through its ability to capture the intricacy and irregularity 
of  signals,  the  HFD  stands  as  a  testament  to  the  profound  interconnectedness  of 
mathematical  theory  and  the  natural  world.  This  interconnectedness  is  further 
exemplified by the practical applications of HFD in our system, where it plays a crucial
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 role in feature extraction and the analysis of neural signals, providing valuable insights 
into the dynamics of brain activity.

Evolution Rate
The evolution rate captures the dynamic behavior of a signal by quantifying its rate 

of change over time. This concept is deeply rooted in several theoretical frameworks, 
including  complex  analysis,  signal  processing,  theoretical  physics,  and neuroscience. 
The process involves the Hilbert transform[48,49], which converts a real-valued signal 
into  its  analytic  signal,  providing  both  amplitude  and  phase  information.  This 
transformation allows for a detailed examination of the signal's temporal dynamics.

Hilbert Transform and Analytic Signal
The Hilbert transform is an integral operator that shifts the phase of a signal by 90 

degrees, producing an imaginary component from a real-valued signal. This results in 
the creation of the analytic signal, z(t)=x(t)+ix^(t), where x^(t) is the Hilbert transform of 
x(t). The Hilbert transform is defined by:

Equation 7: Hilbert Transform-Based Method for Signal Evolution Rate Calculation
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This integral is taken as the Cauchy principal value, which ensures convergence 
and proper handling of singularities. The analytic signal is a complex-valued function 
that facilitates the separation of the instantaneous amplitude and phase. The envelope 
represents the instantaneous amplitude of the signal, capturing its amplitude variations 
independently of phase information.

In  the  context  of  signal  processing,  the  instantaneous  amplitude  (envelope)  is 
critical for understanding the energy distribution of the signal. The energy of a signal is 
proportional to the square of its amplitude, hence variations in the envelope directly 
reflect changes in the signal's energy. Theoretical foundations in energy modulation and 
complex signal analysis emphasize the importance of the envelope in representing the 
signal's  power  dynamics.  The  derivative  of  the  envelope  with  respect  to  time,  \(\
frac{dA(t)}{dt}\), quantifies the rate at which the signal's amplitude evolves. This rate of 
change provides insights into the temporal dynamics of the signal, highlighting periods 
of  rapid  fluctuation  and  stability.  In  theoretical  terms,  the  derivative  captures  the 
instantaneous rate of energy transfer within the signal, a concept that is fundamental in 
the study of dynamic systems [50,51,52].

The  evolution  rate's  theoretical  significance  extends  to  the  field  of  dynamical  
systems  and  chaos  theory.  Dynamical  systems  describe  how  the  state  of  a  system 
evolves over time according to a set of deterministic rules. These systems can exhibit a 
range of behaviors from stable periodic oscillations to chaotic dynamics, where small 
changes in initial conditions can lead to vastly different outcomes. The evolution rate, by 
quantifying  the  amplitude  changes  in  a  signal,  provides  a  measure  of  the  system's 
dynamic  behavior.  In  chaotic  systems,  the  sensitivity  to  initial  conditions  and  the 
presence of strange attractors result in complex, aperiodic behavior. The rate of change 
of the envelope can capture these chaotic dynamics, revealing the underlying complexity 
of the signal. The Hilbert transform, by providing a complex representation of the signal, 
enables the analysis of these intricate behaviors in the complex plane [53,54]. 
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Equation 8: Derivative of Envelope Using Hilbert Transform for Signal Evolution Analysis

This  formulation  provides  a  comprehensive  view  of  the  signal's  amplitude 
dynamics, capturing both instantaneous amplitude and its rate of change. The Hilbert 
transform is crucial in this analysis, offering a means to understand the signal's behavior 
in the complex plane. By examining the envelope and its derivative, researchers can gain 
deep  insights  into  the  energy  distribution  and  dynamic  behavior  of  non-linear  and 
chaotic systems. In theoretical neuroscience, the evolution rate is crucial for analyzing 
the  dynamic  behavior  of  neural  signals.  Neural  activity  is  inherently  dynamic,  
characterized by oscillations,  spikes, and transient events.  The evolution rate offers a 
quantitative  measure  of  these  dynamics,  reflecting  the  underlying  neural  processes. 
Theoretical models of neural activity often involve differential equations and dynamical 
systems theory to describe the interactions within neural networks. The evolution rate 
can provide insights into neural connectivity and functional organization. For example, 
rapid changes in the evolution rate may indicate heightened neural activity associated 
with  sensory  processing,  cognitive  tasks,  or  pathological  conditions  like  epilepsy. 
Theoretical  neuroscience  posits  that  neural  signals  are  manifestations  of  complex 
network  interactions,  and  the  evolution  rate  captures  these  interactions'  temporal 
characteristics [55].

Self-organized criticality (SOC) is a fundamental property of dynamical systems, 
including neural networks, that naturally evolve towards a critical state where minor 
events can trigger significant, system-wide changes. This phenomenon, first described 
by Bak, Tang, and Wiesenfeld in 1987, has since been observed across a wide range of 
natural systems, from earthquakes and forest fires to economic markets and, notably, 
neural  networks.  In  neural  systems,  SOC  manifests  as  a  spontaneous  activity  that 
exhibits  scale-invariant  behavior,  where  patterns  are  self-similar  across  different 
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temporal and spatial scales. The evolution rate captures these scale-invariant properties 
by  measuring  changes  in  the  signal's  amplitude.  In  SOC  systems,  the  amplitude 
fluctuations reflect the system's propensity for criticality and complexity. The theoretical 
framework of SOC provides a basis for understanding how neural systems maintain a 
balance between stability and flexibility, enabling both robust information processing 
and adaptability [56,57,58].

In our system, the evolution rate is calculated by first obtaining the analytic signal 
using the Hilbert transform. The envelope of the signal is then extracted, and the rate of 
change of this envelope is computed. The mean of the absolute values of these changes 
provides  a  single  measure  of  the  signal's  dynamic  behavior.  This  practical 
implementation is grounded in the theoretical principles discussed,  ensuring that the 
measure accurately captures the temporal dynamics of the signal. The evolution rate is 
particularly  valuable  for  distinguishing  between  different  types  of  neural  activity, 
identifying transient events, and understanding the overall temporal dynamics of neural 
signals. In neural systems exhibiting SOC, amplitude fluctuations are not random but 
follow specific statistical distributions, often characterized by power laws. These power 
law distributions reflect the system's balance between order and chaos. By providing a 
detailed view of the signal's behavior, the evolution rate enhances our ability to analyze 
and interpret complex neural data. The evolution rate is a powerful feature rooted in 
deep theoretical concepts from complex analysis, signal processing, theoretical physics, 
and  neuroscience.  By  capturing  the  rate  of  change  in  signal  amplitude,  it  provides 
profound insights into the dynamic behavior of neural signals. This feature bridges the 
gap between theoretical understanding and practical application, offering a robust tool 
for analyzing the temporal dynamics of complex systems.
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Equation  9:  Integrating  Self-Organized  Criticality  and  Chaotic  Theory  in  Signal  Evolution  
Analysis

As further understanding of SOC in neural systems is developed, new possibilities 
for  designing  brain-inspired  computing  architectures  that  can  harness  the  power  of 
criticality emerge. These advancements could lead to the development of more efficient, 
adaptive,  and  robust  artificial  intelligence  systems  that  more  closely  mimic  the 
information-processing capabilities of biological systems.
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Application in Game Actions
The  BSIS  software  includes  a  component  for  translating  complex  neural  signal 

features  into  actionable  commands  for  applications  such  as  interactive  games.  This 
functionality is encapsulated in the FeaturesToGameAction class, which maps extracted 
neural  features  to specific game actions.  The FeaturesToGameAction class  allows for 
dynamical adjustments to the game actions based on real-time changes in neural signal 
features,  providing  a  responsive  and  adaptive  control  mechanism.  The 
FeaturesToGameAction  class  listens  to  the  "EXTRACTED  FEATURES"  topic  for 
incoming neural signal features and publishes game actions to the "GAME ACTIONS" 
topic using

MQTT [23]for communication. A GUI built with  PyQt5 [21] displays the neural 
signal features, their values, and the corresponding actions taken, updating dynamically 
based  on  incoming  data.  The  class  processes  a  core  set  of  neural  signal  features, 
including Higuchi  fractal  dimension,  evolution rate,  spectral  centroids,  spectral  edge 
density, variance, standard deviation, root mean square (RMS), and peak count. Instead 
of using predefined mappings for actions, the script compares the current feature values 
to previously recorded ones. This approach accounts for individual variability in neural 
signals  and  can  adapt  to  changes  in  a  user's  neural  patterns  over  time.  The  class 
continuously updates its internal state based on incoming neural data, ensuring that the 
game actions reflect the most current neural activity.

Dynamic Adjustment of Force in Interactive Systems
The dynamic adjustment of force based on changes in neural signal features can be 

deeply understood through the lens of continuous signal processing and control theory.  
These systems process information in a manner that mimics biological neural networks, 
allowing  for  a  more  natural  and  fluid  integration  of  neural  data  into  interactive 
applications. Continuous signal processing enables the capture of subtle variations in 
neural activity, providing a richer and more nuanced understanding of the underlying 
dynamics. The theoretical foundation for this approach lies in the study of continuous 
dynamical  systems,  capturing  the  inherent  complexity  and  adaptability  of  neural 
processes.  By leveraging these principles,  systems can dynamically adjust  interactive 
forces in response to real-time neural signals, creating a seamless and responsive user  
experience.

The  feedback  mechanism  is  crucial  for  adjusting  forces  based  on  neural  signal 
changes.  Feedback  control  theory,  well-established  in  both  engineering  and 
neuroscience,  provides  the  mathematical  framework  for  this  dynamic  adjustment. 
Feedback loops continuously monitor the neural signal features and compare them to 
previous values. Any deviation from these values triggers an adjustment in the force 
applied  in  the  interactive  environment.  This  feedback  mechanism  is  analogous  to 
biological homeostasis, where organisms maintain internal stability through continuous 
monitoring  and  adjustment  of  physiological  parameters.  This  continuous  feedback 
ensures that the system can respond smoothly and in real-time to the varying states of 
neural activity.
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The integration of neural signal features in the BSIS involves understanding the 
biophysical  properties  of  neural  activity.  Neural  signals  are  electrical  in  nature, 
generated by the ion flow across cell membranes. The Hodgkin-Huxley model describes 
this process mathematically:

Equation 10: Hodgkin-Huxley Model for Membrane Potential Dynamics

Changes in neural signal features, such as variance and RMS, reflect alterations in 
these  ionic  currents  and  membrane  potentials.  Continuous  processing  capabilities 
enables real-time monitoring and interpretation of biophysical changes in neural signals, 
enabling  precise  and  timely  adjustments  in  interactive  forces.  This  biophysical 
perspective is essential for developing systems that can effectively interface with neural 
data.  By understanding these underlying biophysical  equations,  the system can map 
neural signal changes to appropriate force adjustments, ensuring the system's response 
aligns  with  the  underlying  neural  dynamics.  The  integration  of  this  biophysical 
knowledge enhances the system's ability to adapt to the complex and dynamic nature of 
neural activity.

Control systems theory enhances the adaptability and responsiveness of interactive 
applications. Control systems operate on continuous feedback, allowing for smooth and 
precise adjustments in response to neural signal changes. This continuous feedback loop 
is essential for maintaining the dynamic balance required in interactive environments. 
By employing control theory, systems can modulate interactive forces based on real-time 
neural  data,  ensuring that  the system remains responsive and adaptive to the user's 
neural state.  This  approach not  only enhances the user experience but  also provides 
insights into the dynamic nature of neural activity.

Incorporating  the  concept  of  self-organized  criticality  (SOC)  into  these  systems 
further deepens our understanding of neural dynamics.  SOC describes how complex 
systems  naturally  evolve  to  a  critical  state  where  small  perturbations  can  lead  to 
significant changes. Neural networks often exhibit SOC, where spontaneous activity can 
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scale  across  different  levels  of  organization.  With continuous  processing  capabilities, 
systems  are  well-suited  to  capture  these  scale-invariant  properties.  By  monitoring 
changes in neural signal features, these systems can dynamically adjust forces to reflect 
the  criticality and complexity  of  neural  activity,  providing a realistic  and immersive 
interactive experience.

The  practical  implementation  involves  real-time  processing  and  continuous 
adaptation. Neural signals are continuously monitored, and their features are analyzed 
to  detect  changes  in  real  time.  The  system  then  adjusts  the  force  applied  in  the 
interactive  environment  accordingly.  This  continuous  adaptation  ensures  that  the 
system remains responsive  to the  user's  neural  state,  creating a  seamless  interaction 
between  the  neural  data  and  the  external  application.  This  real-time  processing 
capability highlights the potential for developing advanced interactive systems that can 
adapt to the user's neural dynamics.
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The interactive force dynamics with neural signal evolution rate can be described as:

Equation 11: Interactive Force Dynamics with Neural Signal Evolution Rate

The dynamic adjustment of force based on neural signal features is rooted in deep 
theoretical  principles  from  continuous  dynamical  systems,  control  theory,  and 
neurophysics.  By  leveraging  continuous  processing  capabilities,  these  systems  can 
accurately and responsively interface with real-time neural data. This integration not 
only  enhances  interactive  applications  but  also  provides  profound  insights  into  the 
dynamic  and  complex  nature  of  neural  activity.  The  application  in  this  context 
represents a significant advancement in our ability to create adaptive and immersive 
interactive  environments  that  respond  to  the  user's  neural  state  in  real  time.  This 
approach bridges the gap between theoretical neuroscience and practical applications, 
demonstrating the profound potential in advancing our understanding and utilization of 
neural signals.
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Analogue AI and Our System
Our system's functionality mirrors analogue AI in its continuous signal processing 

and  adaptive  response  mechanisms.  In  analogue  AI,  information  is  processed  as 
continuous waveforms, capturing the natural, uninterrupted flow of data. Similarly, our 
system processes neural signals in their continuous form, which allows for the detection 
of intricate variations in neural activity that would be lost in a discrete, digital approach. 
This continuous processing is crucial for accurately reflecting the dynamic and complex 
nature of neural signals, which are inherently variable and rich in detail. By maintaining 
the continuity of the data, our system can provide a more detailed and precise analysis,  
akin to how biological neural networks operate, capturing the subtle nuances of neural  
activity in real time.

Further paralleling analogue AI, our system utilizes continuous feedback loops to 
dynamically adjust interactive forces based on real-time neural signals. This feedback 
mechanism ensures that the system can adapt to changes in neural activity with high 
precision,  maintaining a  responsive  and immersive  user  experience.  In  analogue AI, 
such feedback loops are essential for achieving a natural and adaptive interaction with 
the environment. Similarly, our system's feedback mechanism continuously monitors 
neural  signal  features,  compares  them  to  previous  states,  and  makes  real-time 
adjustments  to  the  interactive  forces.  This  process  is  crucial  for  creating  a  seamless  
interaction between the neural data and the external application, mirroring the adaptive 
and real-time processing capabilities  of analogue AI.  By leveraging these continuous 
feedback  loops,  our  system  can  respond  to  the  dynamic  nature  of  neural  activity,  
providing an experience that is both responsive and deeply integrated with the user's 
neural state.
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The  integrative  force  model  with  neural,  synaptic,  and  quantum  dynamics  can  be 
described as:

Equation 12: Integrative Force Model with Neural, Synaptic, and Quantum Dynamics



Arxiv Preprint 35 of 53



Arxiv Preprint 36 of 53



Arxiv Preprint 37 of 53

Game Simulation: Shuffleboard Game
An  example  of  BSIS’s  application  is  the  shuffleboard  game  simulation,  which 

translates  neural  signal  features  into  game  actions.  The  shuffleboard game is  a  one 
dimensional game, consisting of pushing a shuffleboard puck in one direction, using the 
force of the throw to equal the distance, and the distance to the target being included in 
the  outcome  of  the  game.  The  shuffleboard  puck  is  pushed  every  second,  giving 
adequate time for the rat to consume the reward solution. The game interface provides 
real-time  feedback  on  the  player's  performance,  displaying  the  target  and  actual 
distances achieved by the player. The game window updates dynamically based on the 
neural  signal  analysis,  allowing players  to  see the  immediate impact  of  their  neural 
activity on the game. The system also includes functionality for logging historic data, 
ensuring that all game sessions and neural activities are recorded for future analysis.  
This is achieved through an MQTT [23]client that subscribes to the "historic_data" topic, 
capturing detailed logs of each game session and saving them to a designated directory. 
The  logged  data  includes  game  duration,  actions  taken,  results  achieved,  and 
timestamps,  providing  a  comprehensive  record  of  each  session.  The  BSIS  integrates 
feedback  mechanisms  to  reinforce  desired  behaviors  during  neural  training.  The 
FeedbackSystem class  plays a crucial  role in  this  process  by providing auditory and 
physical rewards based on the outcome of neural activities. Positive reinforcement is 
delivered  through  a  combination  of  reward  sounds  and  activation  of  a  feeder 
mechanism controlled by a USB relay. In contrast, distress sounds (inaudible to humans) 
are used as a deterrent for undesired behaviors. These feedback mechanisms ensure that 
the training process  is  effective and humane.  These  feedback signals  are transmitted 
back to the brain through the MEA, completing the bidirectional communication loop. 
This loop ensures continuous interaction between the biological and silicon components, 
facilitating real-time adaptation and learning.

Digital Stimulation Metadata Encoding
The  BSIS  offers  users  the  option  to  utilize  digital  stimulation,  which  involves 

encoding neural feedback into digital signals for precise control. The digital stimulation 
metadata encoder translates game state features into binary signals for transmission as 
ON (150 microvolts) or OFF (0 microvolts) signals. Features like score, round, distance to 
target, and player forces are converted into binary signals used to generate stimulation 
waveforms based on the outcome of neural activities, such as reward or distress. The 
encoding method converts each feature value into a binary string representation. Each 
feature value is scaled to fit within a specified range and then converted to a binary  
string. This binary string is translated into a sequence of ON and OFF signals, where the  
ON  signal  corresponds  to  150  microvolts  and  the  OFF  signal  to  0  microvolts.  For 
example, a feature value is first normalized to a range between 0 and 100, then scaled to  
fit  within  a  16-bit  binary  representation.  Each  bit  in  the  binary  representation  is  
converted to an ON or OFF signal based on its value (1 or 0),  generating a series of 
digital signals that represent the encoded feature value. The generated digital signals are 
then combined to create a stimulation waveform. The waveform is adjusted based on the 
latest neural activity outcome, with distinct waveforms for different outcomes such as 
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reward or  distress.  A reward outcome generates  a clean sine wave,  while  a distress 
outcome generates a chaotic wave. The final waveform is composed by appending the 
outcome-based waveform to the feature-encoded signals. This method of encoding and 
transmitting  neural  feedback  as  digital  signals  enables  BSIS  to  effectively  control 
external  devices  and  applications,  providing  a  robust  interface  for  real-time  neural 
signal integration.

Digital Stimulation Signal Output
The digital stimulation signal outputter is responsible for taking encoded digital 

signals and transmitting them to stimulation hardware. This process ensures the signals 
are correctly formatted and continuously sent, enabling the neural feedback system to 
operate effectively. To transmit the waveforms, the outputter uses PyAudio, a library for 
audio  playback.  The  system sets  up  audio  streams  for  each  channel,  specifying  the 
output device indices.  The audio callback function continuously feeds the waveform 
data  from  ring  buffers  to  the  audio  streams,  ensuring  smooth  and  uninterrupted 
playback. Each channel has a dedicated ring buffer that holds the waveform data, with 
positions  managed  cyclically  to  ensure  seamless  signal  transmission.  The  outputter 
includes a visualization component built with PyQt5 and PyQtGraph[21,22], providing a 
real-time  display  of  the  digital  waveforms  being  transmitted  for  monitoring  and 
verification of the signal output. The core components of the digital stimulation signal 
outputter include  MQTT communication[23], waveform conversion, continuous signal 
buffering, audio playback, and real-time visualization. The on_connect and on_message 
functions  handle  MQTT  communication[23],  subscribing  to  the  relevant  topic  and 
processing incoming messages.  The waveform conversion translates binary values to 
amplitude values, while the ring buffers ensure continuous playback. PyAudio manages 
the audio streams, and the visualization component provides real-time feedback on the 
waveforms. Overall, the digital stimulation signal outputter integrates these components 
to  create  a  robust  system  for  transmitting  neural  feedback  signals  to  stimulation 
hardware. This integration ensures the neural feedback system can operate smoothly,  
providing precise and continuous stimulation based on the encoded digital signals.
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The  integrated  model  for  generating  digital  stimulation  signals  can  be  described  as 
follows:
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Equation 13: Integrated Model for Generating Digital Stimulation Signals

The BSIS proprietary system design is as follows:

Figure 13: BSIS Proprietary System Design
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Overall the BSIS system can be described as follows:

Figure  14:  Diagram of  BSIS  Physics  Informed Hybrid  Hierarchical  Reinforcement  Learning  
State Machine

Analogue Stimulation Metadata Encoding
BSIS also provides an analogue option for stimulation, involving the encoding of 

neural feedback into analogue signals. The analogue metadata encoder translates game 
state  features  into  various  parameters  used  to  generate  these  signals.  The  encoding 
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process ensures the effective transformation of neural feedback into analogue signals. 
First, the system processes game state features, such as distance to target and player 
force,  normalizing  these  values  for  consistency  across  different  input  ranges.  This 
normalization allows uniform processing of features regardless of their original scale.  
The encoder then determines the system's  state (e.g.,  resting or active) based on the 
normalized distance, tailoring feedback signals to the current game context. Key features 
like variability factor, variance, standard deviation, RMS value, fractal dimension, and 
peak height are encoded using specific algorithms. For example, variance is calculated as 
the  sum  of  normalized  distance  and  force,  while  standard  deviation  is  a  weighted 
average  of  these  normalized  values.  Similarly,  other  features  are  derived  through 
defined  mathematical  relationships  involving  the  normalized  input  values.  These 
encoded  features  are  organized  per  channel,  with  each  channel  receiving  a  set  of 
encoded  parameters.  Features  like  variability  factor,  variance,  and  RMS  value  are 
calculated for each channel independently, ensuring comprehensive stimulation signals 
that cover various aspects of neural activity. To transmit these features, the encoder uses 
the MQTT protocol[23],  publishing encoded features at regular intervals (4 Hz). This 
ensures the feedback loop remains responsive and up-to-date with the latest game state.  
The MQTT[23] messages contain all encoded features, structured for easy decoding and 
use by the receiving end to generate appropriate analogue signals. Finally, the encoded 
features are sent as MQTT[23] messages, allowing continuous and accurate generation of 
analogue  signals.  This  variation  in  analogue  signals  is  particularly  useful  for 
applications requiring a more nuanced and adaptable form of neural stimulation.

Analogue Signal Generation
The analogue signal generator processes the encoded metadata to produce ECoG-

like  signals  used  for  neural  stimulation.  This  involves  several  steps  to  ensure  the 
generated signals are complex and representative of real neural activity. The process 
begins by generating base signals within a specified voltage range, either starting from 
initial values or generating them randomly within the range. These base signals are then 
scaled to a specific bit depth, normalizing the signal values between the minimum and 
maximum voltages. To introduce realistic neural characteristics, various transformations 
are applied to the signals. Oscillations corresponding to different brain states (such as 
resting or active) are added by generating sinusoidal patterns within specific frequency 
bands  (e.g.,  alpha,  beta,  gamma).  Amplitude  variability  is  introduced  based  on  a 
variability factor, with noise scaled by the standard deviation of the signals added to 
them.  Variance  and standard deviation  adjustments  ensure  the  signals  maintain the 
desired statistical properties while remaining within the voltage range. The signals are 
scaled to have a specified RMS value, and peaks are added at random positions, scaled 
appropriately to fit within the voltage range. Fractal structures are introduced using the 
Hurst exponent derived from the fractal dimension,  creating patterns that mimic the 
complexity of neural signals. Zero-crossing rates are adjusted to target rates by scaling 
the  signals,  and Arnold  tongues  are  applied  by  generating  sinusoidal  patterns  with 
added harmonics and noise. Phase synchronization is achieved by adjusting the phase of 
the  signals'  Fourier  transform  components,  and  transfer  entropy  involves  adding 
influenced signals based on interaction weights derived from the influence factor. The 
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Hilbert-Huang  transform  modulates  the  signals  with  low  and  high-frequency 
components, which are then clipped to the voltage range. Spectral centroids and edge 
densities are applied by adjusting the power spectrum of the signals,  while dynamic 
time warping aligns signals to themselves, ensuring proper scaling. The signals undergo 
FFT and are  adjusted  based on a  complexity  factor,  while  signal  evolution involves 
progressively  adding  random  variations.  Phase-amplitude  coupling  combines  low-
frequency and high-frequency components, and Granger causality adjusts signals based 
on causal relationships. Multivariate empirical mode decomposition decomposes signals 
into intrinsic mode functions (IMFs), which are then combined to achieve the desired 
structure.  Lastly,  quantum-inspired  transformations are  applied using parameterized 
Hermitian matrices. These matrices are generated with specified value ranges, and their 
eigenvalues  and  eigenvectors  are  used  to  create  density  matrices.  The  signals  are 
modified based  on  the  interpolated  density  matrix  values,  ensuring  they  reflect  the 
desired quantum-inspired properties. By applying these transformations, the analogue 
signal  generator  produces  complex  and  realistic  neural-like  signals  suitable  for 
stimulation, enhancing the effectiveness of the neural feedback system.

The integrated model for analogue stimulation signals can be defined as:

Equation 14: Integrated Model for Analogue Stimulation Signals
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Stimulation Hardware
The audio outputs from BSIS are then run through voltage dividers to adjust signal  

levels to the appropriate range for safe and effective neural stimulation in the millivolt 
range,  before  being  directed  to  the  MEA.  Additionally,  all  shielding  for  wires  and 
components  enclosures  are  grounded  to  minimize  electromagnetic  interference  and 
ensure  stable  signal  transmission.  This  comprehensive  approach to hardware design 
ensures  high-fidelity  signal  acquisition,  processing,  and  feedback,  creating  a  robust 
platform for neural interfacing. The signal processing and analysis framework of BSIS 
ensures high-fidelity capture, precise processing, and comprehensive analysis of neural 
signals. Through advanced preprocessing, feature extraction, and detailed analysis, the 
system  provides  actionable  insights  and  effective  feedback,  supporting  advanced 
research in neurotechnology and bioengineering.

4. Discussion

Further Development of System

The Bio-Silicon Intelligence System (BSIS) could be significantly enhanced by 
integrating a multitude of advanced computational theories to manage complex neural 
signal processing and adaptive game control. Building on the foundation of Hierarchical 
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Reinforcement Learning (HRL) and Hybrid Automata, the system effectively manages 
both discrete and continuous dynamics. Continuous dynamics of neural signals are 
currently captured through a vast array of features, such as peak count, spectral 
centroid, and Higuchi Fractal Dimension. We are also developing graph neural 
networks that utilize various topological data embeddings to further enhance the 
processing and interpretation of complex neural signals. Adaptive Dynamic 
Programming could optimize control and movement strategies within the game, 
ensuring efficient mapping of physical actions to neural inputs. Lagrangian Mechanics 
could be employed to model the system's physical dynamics and optimize the force and 
movement parameters for game actions.

To formalize the symbolic representation and processing of neural features, BSIS 
could employ Symbolic Computation and Formal Languages, including Automata 
Theory and Petri Nets. These frameworks could enhance the clarity and precision of 
brain-computer interactions by structuring the symbolic encoding and decoding of 
neural signals. Symbolic Computation could be used to create complex expressions that 
encapsulate neural data patterns, while Automata Theory and Petri Nets could model 
the flow and processing of these symbolic data. Category Theory and Monads could 
provide a robust mathematical framework to handle the compositional structures of 
these symbolic expressions, facilitating more complex and flexible data transformations. 
Fuzzy Logic and Probabilistic Graphical Models could be used to manage the inherent 
uncertainty and variability in neural data, allowing the system to make informed 
decisions even with noisy inputs.

Graph Theory and Information Geometry could be employed to map and analyze 
the intricate relationships between neural features, game actions, and environmental 
metadata, providing deeper insights into the underlying structures of neural data. This 
could help in visualizing and optimizing the pathways through which neural signals are 
processed and translated into game actions. Reinforcement Learning with Function 
Approximation could enhance the system's learning capabilities, allowing it to 
generalize from limited data and perform complex computations efficiently. Process 
Calculus could provide a formal framework for modeling concurrent processes and 
interactions within the system. Denotational and Operational Semantics, along with 
Automated Theorem Proving, could ensure the correctness and reliability of symbolic 
transformations and state transitions within the system.

The development of a self-optimizing language for brain-computer and computer-
brain communication could be central to BSIS. Symbolic Communication and 
Computational Linguistics, along with Formal Grammars such as Context-Free 
Grammars, Attribute Grammars, and Tree Adjoining Grammars, could structure the 
symbolic encoding and decoding of neural features. These grammars could define the 
syntax and semantics for the symbolic language, ensuring that neural data is accurately 
and meaningfully translated into game actions. Phase space analysis could be utilized to 
understand the dynamic behavior of neural signals over time, providing a deeper 
understanding of the system's state transitions and stability. Hierarchical Temporal 
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Memory could be used to capture temporal patterns in neural data, while Deep Learning 
techniques such as Autoencoders could extract and compress relevant features, 
enhancing the system's ability to identify and utilize critical information. Symbolic 
Regression could be employed to discover mathematical relationships within the neural 
data, while automated Formal Concept Analysis could refine these symbolic 
representations, enabling more precise and effective communication.

Self-Organizing Maps and Neural Turing Machines could facilitate the self-
organization and continuous learning of the system, ensuring it adapts to new data and 
scenarios effectively. Evolutionary Algorithms and Genetic Programming could be used 
to evolve symbolic expressions that represent neural features and their transformations, 
supporting the development of a robust and adaptive symbolic language. These 
methods could help the system to continuously improve and optimize its symbolic 
language, making it more efficient and expressive over time. Meta-Learning could 
enable the system to optimize its learning process, continuously improving its 
performance. Active Inference and Predictive Coding could enhance the system's ability 
to predict and adapt to changes in neural signals, ensuring real-time responsiveness.

Chaos Theory and Fuzzy Systems could manage the inherent complexity and 
variability of neural data, providing robust frameworks for signal processing and state 
transitions. Information-Theoretic Optimization and mutual information could optimize 
the encoding and transmission of neural data, ensuring that critical information is 
preserved and effectively communicated. Formal Verification and Validation, along with 
Semantic Web Technologies and Pi-Calculus, could ensure the reliability and scalability 
of the system, enabling it to handle complex and large-scale neural data efficiently. 
Temporal Logic and Formal Verification techniques could provide the tools to validate 
the system's behavior over time, ensuring that it operates correctly under all conditions.

By incorporating these advanced methods, the BSIS could achieve sophisticated 
symbolic communication, self-organization, and optimization, significantly enhancing 
its functionality and potential applications in AI and neurotechnology. The integration 
of Behavioral Trees and the use of Lagrangian Mechanics could further refine the 
system's decision-making and physical modeling capabilities. Graph Theory and 
Information Geometry could provide deep insights into the relationships between 
different neural features and game actions.

Applications and Use Cases for AI

BSIS addresses critical limitations in current AI hardware and the physical 
constraints associated with the miniaturization of silicon-based chips and digital AI 
limitations, leveraging the superior learning capabilities of biological intelligence. As 
traditional AI systems approach their limits in processing power and efficiency due to 
the physical boundaries of chip size and thermal management, BSIS offers a hybrid 
approach that integrates biological neural networks with silicon-based computing. This 
integration harnesses the adaptive and learning capabilities of biological systems, 
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paving the way for the development of more efficient, scalable, and intelligent AI 
solutions.

Potential applications for BSIS span a wide range of sectors, including autonomous 
systems and robotics, where the adaptive and self-organizing capabilities of BSIS could 
lead to more robust and efficient control systems capable of operating in dynamic and 
unpredictable environments. In industrial automation, BSIS could optimize 
manufacturing processes, enhance predictive maintenance, and improve operational 
efficiency. Government applications could benefit from advanced data analysis, 
enhanced security systems, and improved decision-making capabilities. For consumers, 
BSIS could enable smarter home automation systems, more intuitive personal assistants, 
and enhanced user experiences in gaming and entertainment. By overcoming the 
limitations of current AI hardware, BSIS has the potential to revolutionize various fields 
by providing a more powerful and flexible framework for AI development.

Moreover, the hybrid bio-silicon approach of BSIS could significantly improve energy 
efficiency and reduce the ecological impact of AI systems. Biological systems are 
inherently more energy-efficient than traditional silicon-based processors, as they 
operate effectively at much lower power levels. This could lead to substantial reductions 
in the energy consumption of AI systems, addressing one of the major challenges of 
modern AI hardware. Additionally, the use of bio-silicon hybrids could reduce the need 
for complex and energy-intensive cooling solutions, further enhancing the sustainability 
of AI technologies. By integrating biological components, BSIS not only enhances 
computational capabilities but also contributes to the development of greener and more 
sustainable AI solutions.

Applications and Use Cases in Neurotechnology Research

The BSIS demonstrates significant potential in neurotechnology research, 
showcasing its versatility and capability to advance the field. One primary application is 
in the development and optimization of neural interfaces. The high-fidelity signal 
acquisition and processing capabilities of BSIS enable precise neural interfacing, 
facilitating detailed studies of neural activity and communication. By utilizing carbon 
nanotube-coated electrodes, BSIS enhances signal clarity and stability, paving the way 
for advancements in BCIs. This advancement allows for more accurate and efficient 
communication between the brain and external devices. BSIS is also instrumental in 
exploring cognitive enhancement techniques through neural stimulation and feedback 
mechanisms. The system's ability to deliver tailored neuromimetic signals shows 
promising results in modulating neural activity to enhance cognitive functions. BSIS also 
plays a crucial role in studying neural plasticity and its implications for rehabilitation. 
The system's dual signaling approach, combining reward solutions and distress sounds, 
effectively promotes neural plasticity and facilitates the reorganization of neural 
pathways. This is important for rehabilitation therapies aimed at recovering neural 
function after injury or disease, enabling targeted interventions that enhance the brain's 
ability to adapt and recover.
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Applications and Use Cases in Bioengineering Advancements

BSIS has shown considerable potential in advancing bioengineering by integrating 
biological neural networks with silicon-based computing, opening new possibilities for 
research and applications. It significantly contributes to synthetic biology and tissue 
engineering by providing a robust platform for studying interactions between biological 
tissues and engineered systems. The integration of BSIS into bio-hybrid systems opens 
possibilities to novel interfaces that combine living tissues with artificial components. By 
leveraging BSIS's bidirectional communication capabilities, researchers can develop bio-
hybrid devices that can perform complex functions by mimicking natural biological 
processes. The application of BSIS in personalized medicine has the potential to 
revolutionize patient care by tailoring treatments based on individual neural responses. 
By analyzing the neural activity of patients in response to different therapies, BSIS helps 
identify the most effective treatment strategies for each individual. This personalized 
approach ensures that patients receive therapies best suited to their specific conditions, 
improving treatment outcomes and reducing the risk of adverse effects. BSIS promotes 
ethical and sustainable research practices by minimizing the need for animal testing and 
ensuring the humane treatment of research animals. Its design includes protocols for the 
ethical treatment of animals, such as positive reinforcement and mild deterrence 
techniques. Combining high-fidelity neural interfacing with robust data analysis and 
ethical research practices, BSIS paves the way for innovative solutions and 
groundbreaking discoveries in bioengineering.

5. Conclusions
The integration of biological neural networks with silicon-based computing in BSIS 

offers  numerous advantages,  bridging the gap between the adaptability of  biological 
systems and the  computational  power  of  silicon technologies.  This  hybrid approach 
leverages the strengths of both paradigms, enabling precise and dynamic interactions 
not possible with either system alone. Biological neural networks provide unparalleled 
flexibility and learning capabilities,  adapting to new information and stimuli in ways 
that  traditional  silicon-based  systems  cannot.  By  interfacing  these  networks  with 
advanced  silicon  computing,  BSIS  enhances  the  fidelity  and  complexity  of  data 
processing,  enabling sophisticated  real-time analysis  and feedback  mechanisms.  This 
synergy  opens  new  avenues  for  research  and  application,  from  advanced 
neuroprosthetics  and  cognitive  enhancement  to  more  effective  neuromodulation 
therapies.  Compared  to  existing  systems,  BSIS  stands  out  in  terms  of  performance,  
versatility,  and  innovation.  Traditional  brain-computer  interfaces  (BCIs)  and  neural 
recording  systems  often  lack  the  bidirectional  communication  capabilities  and high-
fidelity  signal  processing  that  BSIS  provides.  The  use  of  carbon  nanotube-coated 
electrodes in BSIS ensures superior signal clarity and stability, enhancing the overall  
performance  of  the  system.  Moreover,  the  dual  signaling  approach—using  reward 
solutions  and  human-inaudible  distress  sounds—offers  a  novel  method  for  neural 
conditioning, promoting more effective learning and adaptation. In terms of versatility,  
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BSIS supports a wide range of applications, from bio-hybrid devices and drug testing to 
personalized  medicine  and  ethical  research  practices.  This  adaptability  makes  it  a 
valuable tool across multiple fields,  setting it  apart from more specialized or limited 
systems.The  Bio-Silicon  Intelligence  System  represents  a  significant  advancement  in 
integrating  biological  and silicon  computing.  The  system’s  innovative  approach  and 
versatile  applications  hold  great  promise  for  the  future  of  neurotechnology  and 
bioengineering..  Continued  research  and  development  will  enhance  its  capabilities, 
broadening its impact and paving the way for new scientific and medical breakthroughs.
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Appendix A
Experimental Code: SIL-BSIS-Phase1-2024
Funding and Resource Allocation ID: BSIS-RD124
Compliance and Regulatory Codes Overview: SIL-BSIS-RD2024, SIL-BSIS-OD2024, SIL-
BSIS-DUC2024,  SIL-BSIS-AWC2024,  SIL-BSIS-ETH-MBT2024,  SIL-BSIS-MBT-SEC2024, 
SIL-BSIS-DURC-MBT2024, SIL-BSIS-BSBS-MBT2024, SIL-BSIS-HDM-ETH2024, SIL-BSIS-
DMP-PRIV2024,  SIL-BSIS-DMP-CYSEC2024,  SIL-BSIS-RM-ETH2024,  SIL-BSIS-RM-
TECH2024, SIL-BSIS-RM-PUBPER2024
This  project  receives  direct  research  and  development  funding  from  Synthetic 
Intelligence Labs, with a designated budget code for the fiscal year 2024.This allocation 
supports the project's operational and research activities.
Compliance  and  Operational  Disclosure:  The  findings  and  statements  within  this 
document  solely  reflect  the  objectives  of  the  research  initiative  and  do  not 
implyendorsement by Synthetic Intelligence Labs nor its affiliates. This endeavor aims to 
push the  boundaries  of  technical  development  and knowledge  sharing.  License  and 
Property Code: The "Bio-Silicon Intelligence System" model, a proprietary development 
by Synthetic Intelligence Labs,  is  protected under the CreativeCommons Attribution-
ShareAlike  4.0  International  License  (CC  BY-SA  4.0),  facilitating  the  legal  use  and 
modification of the work with appropriate attribution. The foundational work is stored 
in the Synthetic  Intelligence Labs'  repository.  Additional  permissions may be  sought 
directly  from  Synthetic  Intelligence  Labs.  Research  activities  are  be  carried  out  in 
Synthetic  Intelligence  Labs'  facilities,  equipped  with  advanced  instrumentation  for 
precise,  reliable  experimentation.  The  project  utilizes  controlled  pharmaceuticals, 
procured in compliance  with legal standards and ethical  practices concerning animal 
research. The methodology adheres to international standards for animal research ethics, 
including guidelines by the Institutional Animal Care and Use Committee (IACUC) and 
the  National  Institutes  of  Health  (NIH),  ensuring  ethical  treatment  and  care  of 
laboratory animals. The study involves continuous veterinary oversight and adherence 
to  acomprehensive  animal  welfare  protocol,  ensuring  the  health  and  well-being  of 
rodent subjects through systematic health assessments and maintenance of appropriate 
living conditions. 
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