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ABSTRACT Using raw sensitive data of end-users helps service providers manage their operations
efficiently and provide high-quality services to end-users. Although access to sensitive information benefits
both parties, it poses several challenges concerning end-user privacy. Most data-sharing schemes based on
differential privacy allow control of the level of privacy, which is not straightforward for end-users and leads
to unpredictable utility. To address this issue, a novel local differentially private data-sharing scheme is
proposed featuring a bimodal probability distribution that allows determining the range of random variables
from which the noise is drawn with high probability. Additionally, a local differentially private mechanism
is introduced to regulate the amount of noise injected into the data to control data utility. These components
are combined to make up a user-centric data-sharing scheme which provides the end-user with control over
the utility of their data, with the level of privacy being calculated from individual utility preferences. The
simulation results show that the proposed scheme allows keeping the utility within the boundaries defined
by the end-user, while providing the maximum possible level of privacy. Furthermore, it allows injecting
more noise into the data for the same error in utility compared to the Laplace mechanism.

INDEX TERMS Data utility, local differential privacy, personal data, privacy-preserving, probability
distribution.

I. INTRODUCTION
The variety of sensitive data generated by end-users grows
over time while the number of data-driven services also
increases gradually. To use a service provided by a third
party, customers need to share their sensitive information.
For example, households need to share their electricity
consumption data with the energy supplier that calculates
the electricity bill. Another example is when patients share
their health information with a hospital to predict genetic
diseases [1]. The number of use cases where sensitive end-
user data may be used is enormous and constantly expanding.

Although having access to sensitive end-user data benefits
both parties - the end-user gets more accurate results, and
a service provider can better manage its business - it also
poses some privacy-related issues. For example, access to
electricity consumption profiles of households can help local
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authorities make better decisions about where to install
charge points for electric vehicles [2], whereas by analyzing
these data, an adversary may gain some knowledge about
the customers behavior [3]. According to regulations such as
General Data Protection Regulation (GDPR) [4] and Health
Insurance Portability and Accountability Act (HIPPA) [5],
end-users must have control over the use of their sensitive
data. Thus, it is essential to preserve end-user privacy when
sharing data with third parties.

Differential Privacy (DP) has become one of the most
widely used techniques to preserve privacy by injecting
noise into sensitive data. The main idea of DP is that end-
users report sensitive data to an aggregator through a secure
(encrypted) channel. Then, the aggregator adds controllable
noise to the aggregated data and shares it with a service
provider for processing. The most notable problem of DP is
that end-users still share raw data with a third party, which
may cause a leakage of sensitive information in case of a key
leakage or insider attack on the aggregator’s side. Secondly,
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it cannot be usedwhen a service provider needs access to each
end-user’s individual data to provide personalized services.

Local Differential Privacy (LDP) is a variation of DP that
addresses the issue of sharing raw data with an aggregator.
LDP enables end-users to inject noise into the data on their
side before sharing it with a third party. As a result, in the
event of a key leakage or insider attack on the third party’s
side, an adversary would only gain access to the noisy data.

Many DP and LDP-based data-sharing schemes utilize
the Laplace randomized mechanism to perturb sensitive data
with noise drawn from the Laplace probability distribution.
These schemes allow end-users to specify the desired level
of privacy, based on which a controllable amount of noise
is injected into the data. However, they do not allow end-
users to specify utility (the result accuracy), which could
then determine the level of privacy. Instead of adjusting
privacy levels directly, end-users might prefer to set limits
(boundaries) on the extra cost incurred from added noise, i.e.,
the cost they are willing to pay for enhanced privacy. The
privacy level would then be determined based on this extra
cost or utility preference. This approach would make it easier
for end-users to control utility while the level of privacy is
automatically adjusted based on their utility preferences.

Another challenge in DP and LDP-based schemes is
obtaining more privacy without reducing utility proportion-
ally. In the Laplace mechanism, an intuitive approach to
increase noise levels, and consequently enhance privacy
for a given privacy budget, is to shift the distribution so
that its mean is not centered around zero. However, this
can lead to a significant reduction in utility. An alternative
approach involves using a multimodal distribution, where
random variables with opposite signs are drawn with equal
probability. This means that similar amounts of noise with
opposite signs, drawn from the probability distribution, can
cancel each other out over time. In this paper, we refer to
this concept as ‘‘noise compensation.’’ Noise compensation
can ensure that, over time, the accuracy of queries performed
on noisy data does not significantly deviate from the results
obtained by querying the original data.

To address the above mentioned challenges, this article
proposes a novel user-centric data-sharing scheme that
preserves privacy using LDP. The main contributions of this
article are as follows:

• To enhance the end-users privacy and inject more noise
into the data, a novel bimodal probability distribution
is proposed that enables the control over the intervals
from which a random variable can be drawn with high
probability. This distribution allows to control the spread
around the modes, as well as the ratio of probabilities
around the modes and the mean.

• To ensure that end-user privacy is preserved, we propose
a novel randomized mechanism. This mechanism is
based on the proposed bimodal probability distribution
and satisfies LDP.

• To enable the end-users to control the utility, a novel
user-centric data-sharing scheme is designed that allows

the end-user to determine the boundaries for the utility,
while the maximum possible level of privacy is provided
based on the end-user’s utility preference.

The rest of this article is organized as follows. Related
works are presented in Section II. Section III describes
the theoretical background of this article. A novel LDP
mechanism and a novel user-centric data-sharing scheme are
presented in Section IV. Simulation results are presented in
Section V. Finally, the conclusion is given in Section VI.

II. RELATED WORK
To preserve end-user privacy, DP-based models are widely
used across different domains that include but are not limited
to machine learning [6], Industrial Internet of Things [7], and
healthcare [8]. Most of the privacy preserving data-sharing
schemes based on DP focus on injecting noise into end-users’
aggregated data on the service provider’s side. For example,
Wei et al. [1] proposed a DP-based genetic matching scheme
to achieve effective genetic matching and protect genetic
data before outsourcing it to an untrusted cloud server for
diagnosing patients’ diseases. End-users share their sensitive
data with a gene provider that injects noise into the aggregated
data, which means that the end-users’ private data may be
disclosed in case of an attack on the gene provider’s side.
In [1], the level of privacy is chosen by following other works.
To protect the location privacy of both workers and tasks
in a location-based crowdsourcing service, Wei et al. [9]
proposed a novel DP-based location protection scheme. End-
users share their sensitive information, including precise
locations, with a cellular service provider. The provider then
adds noise to the data and sends the noisy data to a server
for processing. However, this process carries the risk of
personal data leakage. The level of privacy is determined by
the service provider, which means that end-users do not have
control over their privacy. In [10], a novel traffic estimation
scheme using DP is proposed to protect the vehicles’ data
in vehicular cyber-physical systems. A vehicle shares its
location data with the roadside unit after the authentication
using Public Key Infrastructure (PKI). The roadside unit
perturbs aggregated data and submits it to the central server
for future analysis. A key leakage attack on the roadside unit’s
side may cause the leakage of vehicle’s data. In this case, the
level of privacy is determined by the roadside unit (service
provider). To achieve privacy and high estimation accuracy,
the model’s parameters must be set properly, but there is still
no clear understanding of the relationship between privacy
level and accuracy.

Instead of injecting noise on the aggregator’s side, the
noise can be injected on the end-user’s side using a LDP-
based mechanism. For example, Zheng et al. [11] proposed a
novel recommendation system scheme by combining amatrix
factorization algorithm with LDP to prevent the leakage of
end-users sensitive information. End-users’ sensitive data
are perturbed using the Laplace mechanism on the end-
user’s side based on personalized privacy requirements and
then sent to an aggregator. Similar to other works, the
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accuracy of the model increases with decreasing level of
privacy (amount of noise). End-users may adjust their level
of privacy, whereas it is still unclear how the change in the
end-user’s privacy level affects the accuracy of the result.
In [12], a novel game-theoretic federated learning framework
using DP is proposed to prevent malicious clients from
compromising private information of other parties through
inference attacks. After performing local training, end-users
perturb the trained model parameters and submit these data
to a central server. To enhance the global model accuracy,
the amount of noise injected on the end-user’s side should
be reduced, resulting in a low level of privacy. To reduce
the risk of industrial data leakage in the process of deep
model training, Jiang et al. [13] proposed a new federated
edge learning scheme using hybrid DP for industrial data
processing. After training a local model, the edge terminal
(end-user) generates and injects noise into the parameters
of the local model, after which the noisy data are sent to
the central server that generates the parameters of the new
global model. To achieve better accuracy of the training
model, the level of privacy chosen is relatively low compared
to other works. As expected, the training loss decreases
with the decreasing level of privacy (amount of noise).
An optimal level of privacy is chosen (adjusted) based on
the results of several simulations. To protect node feature and
graph structure information against a malicious data curator,
Lin et al. [14] designed a novel privacy-preserving framework
for decentralized network graphs based on graph neural
networks using edge LDP. The central server sends a query
to the end-users, whereas each end-user sends an obfuscated
answer (noisy data) back to the server. The proposed model
achieves high accuracy for the predefined level of privacy,
which means that the level of privacy (model’s parameters)
is chosen based on the number of simulations. A novel
privacy-preserving data aggregation scheme satisfying LDP
is presented in [15] to prevent the disclosure of end-user’s
electricity usage habits and daily activities in the smart grid.
A smart meter, which is deployed on the end-user’s side,
measures the electricity consumption, perturbs electricity
usage data using randomized response, and submits noisy
data to the aggregator.

The use of DP-based schemes implies that end-users share
their sensitive data with a service provider that determines
the level of privacy according to which the noise is injected
into the aggregated data. Thus, end-users do not have control
either over their privacy or utility. Because of sharing raw data
with a third party, the end-users privacy may be disclosed
due to a key leakage or insider attack on the aggregator’s
side. On the contrary, the use of LDP schemes allows each
end-user to determine an individual level of privacy, based
on which the noise is injected into the data on the end-
user’s side before sharing it with a third party. Both DP and
LDP-based data-sharing schemes allow control over the level
of privacy. However, since there is no theoretically defined
relationship between privacy level and model accuracy, users

have no control over the resulting data utility, even when
privacy levels are predefined. Most existing schemes rely
on the results of simulations and select the most appropriate
level of privacy (model’s parameters) that should be used to
achieve high accuracy.

To address these limitations, we propose a novel data-
sharing scheme based on LDP that allows end-users to
choose the tolerated error in utility (result accuracy), with the
corresponding privacy level being automatically determined
based on their preferences. Additionally, this work introduces
a new bimodal probability distribution that enables the
injection of more noise to perturb raw data while minimizing
the impact on data utility through its noise compensation
feature.

III. PRELIMINARIES
In this section, the theoretical background and mathematical
formulation of LDP, sensitivity of a function, and the Laplace
mechanism are presented.

A. LOCAL DIFFERENTIAL PRIVACY
DP is one of the most popular privacy-preserving techniques,
where a trusted centralized aggregator (data curator) accesses
sensitive data of end-users, aggregates those data, and adds
controllable noise to the aggregated data. In a real-world
setting, it is challenging to determine whether a centralized
aggregator operates honestly or not, as well as to guarantee
that end-users’ sensitive data are not shared (accessed) with
malicious actors during the aggregation process. LDP has
become a solution to overcome these limitations of DP,
so that end-users locally perturb their sensitive data using a
LDP mechanism, after which end-users share noisy data with
a centralized aggregator. Thus, an adversary cannot obtain the
sensitive data of end-users.
Definition 1 (ϵ-local differential privacy): Let x and y

denote two neighboring datasets, where y can be produced
by adding, removing, or modifying exactly one entry from
x. A randomized mechanism M : D → S satisfies ϵ-
local differential privacy iff for any output s ∈ S, and two
neighboring datasets x, y ∈ D:

Pr[M(x) = s]
Pr[M(y) = s]

≤ eϵ (1)

where S is the set of all possible outputs that a mechanism
M can produce, Pr[M(x) = s] is the probability of a
randomized mechanismM outputting the result s given the
input x, and ϵ is the privacy budget (level of privacy) that
bounds the probability of M outputting the same result for
any pair of neighboring datasets x, y [16]. A smaller value of ϵ
provides stronger privacy guarantee, whereas large ϵ provides
weak privacy guarantee [17].

B. LAPLACE MECHANISM
The Laplace mechanism has become one of the most popular
techniques to preserve end-users privacy. Let f : D → Rk
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denote the function that maps datasets (D) to real numbers.
For example, f (·) may be a function that takes a dataset x ∈ D
as an input and calculates the mean f (x) ∈ R. To introduce
controllable noise to the result of f (·), the Laplace mechanism
relies on the sensitivity (L1-sensitivity) of f (·).
Definition 2 (L1-sensitivity): Given a query function f (·),

its L1-sensitivity 1f is the maximum L1 distance between
the results of f (·) over any pair of neighboring datasets x and
y, which is defined as follows [16]:

1f = max
x,y

∥f (x) − f (y)∥1 (2)

The Laplace mechanism uses the Laplace probability
distribution to generate noise. The Probability Density
Function (PDF) of the Laplace distribution centered around
0 with the scale factor b = 1f /ϵ is defined as follows [16]:

Lap(x|b) =
1
2b
exp

(
−

|x|
b

)
(3)

where the scale factor b is calibrated according to the 1f .
The Laplace mechanism is ϵ-differentially private [18], and
has the following definition:

ML (x, f (·), ϵ) = f (x) + Lap
(
1f
ϵ

)
(4)

IV. PROPOSED SCHEME
Preserving end-users’ privacy is important, but in real-world
applications, it is equally important to maintain control over
the utility of the protected data. The main question in the
DP domain is recognized to be the trade-off between privacy
and utility [19]. Adding more noise to the data increases the
level of privacy and may decrease the utility. End-users may
find it challenging to understand how added noise will affect
data utility. As a result, selecting an optimal privacy budget
(ϵ) becomes difficult. Instead of adjusting ϵ, end-users could
simply set the maximum change (error) in utility they can
bear, which is usually more palpable for them.

This article proposes a novel user-centric data-sharing
scheme utilizing LDP. In the proposed scheme, end-users
determine the boundaries for utility change, that is the relative
error in utility they arewilling to tolerate. The noisewithin the
randomizedmechanism is generated using a novel probability
distribution that allows to determine positive and negative
ranges of random variables from which the noise will be
drawn with high probability. Keeping the amount of noise
within the specified ranges helps to keep the relative error
in utility within the boundaries. Thus, based on the end-
user’s utility preference, the proposed scheme adjusts its
parameters to inject the right amount of noise and to provide
the maximum possible level of privacy.

A. BOIARKIN PROBABILITY DISTRIBUTION
The proposed privacy-preserving scheme relies on a new
probability distribution, named the Boiarkin distribution.
When the Laplace distribution is used in differential privacy
mechanisms, its mean (µ) is set to 0 [18], [20]. As a result,

the noise values drawn from the distribution are centered
around zero. In the Boiarkin distribution, we have two non-
zero means with opposite signs. For this reason, the noise
values drawn from the mechanism based on the Boiarkin
distribution are higher than those from the Laplace-based
mechanism, but the utility is maintained since the opposite
signs compensate each other in the long term. Additionally,
the Boiarkin distribution includes some hyperparameters that
allow fine-tuning, providing more precise control over the
generated values. The rationale behind the proposed proba-
bility distribution is to provide control over the probability of
a random variable r = 0 to be generated (Pr[r = 0]), as well
as to control the amount of noise drawn from the distribution
by increasing the probability Pr[r ̸= 0]. The PDF of the
Boiarkin probability distribution is defined as follows:

Boi(x|b, ψ,µ) = q · exp

(
−

∣∣ψ − |x − µ|
∣∣

b

)
(5)

where b is the scale of the distribution, ψ is the spread of the
modes, µ is the shift, and q is the normalizing factor, which
is defined as follows:

q =
1

2b
(
2 − exp

(
−
ψ

b

)) (6)

The Boiarkin distribution is a symmetric bimodal proba-
bility distribution centered at µ (mean of the distribution)
and has two modes, namely λ1 = −ψ and λ2 = ψ . The
purpose of having two modes is to determine the ranges
from which random variables (with opposite signs) can be
drawn with high probability. Since continuously generating
non-zero random variables may seriously affect the utility,
it is important to have the noise compensation feature. When
using the Boiarkin probability distribution with increased
Pr[r ̸= 0], more non-zero random variables will be generated
around the modes λ1 and λ2. Since the negative and positive
modes are on the same distance (spread ψ) from the mean
µ = 0, many non-zero random variables will be generated
around λ1 and λ2 but with opposite signs, which means
that they will compensate each other. Thus, the Boiarkin
distribution enables the noise compensation feature, while
providing control over the intervals from which random
variables can be drawn with high probability.

Let c (Fig. 1) denote the probability of a random variable
r = 0 to be generated (c = Pr[r = 0]), and q denote the
probability of a non-zero random variable r = λ1 = λ2 to
be generated (q = Pr[r = λ1] = Pr[r = λ2]). To be able
to control the ratio of probabilities of generating zero (c) and
non-zero (q) random variables, the ratio p (p ∈ (0; 1]) of these
probabilities is introduced. The ratio p allows to fine-tune the
amount of noise drawn from the probability distribution and
is defined as follows:

p =
c
q

= exp
(
λ1

b

)
(7)
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FIGURE 1. Probability density function of the Boiarkin probability
distribution with scale factor b = 1 and p = 0.2.

FIGURE 2. Probability density functions of the Laplace distribution with
the scale factor b = 2 and Boiarkin distribution with the scale factor
b = 2 and p = 0.1, 0.5, 0.7.

Fig. 1 shows the PDF of the Boiarkin probability
distribution with the scale factor b = 1, and p = 0.2. It can
be seen that the probabilities around the modes λ1 and λ2 are
higher compared to the mean (µ = 0). More precisely, the
probabilities Pr[r = λ1] and Pr[r = λ2] are 5 times higher
than Pr[r = 0], which is controlled by p.
Fig. 2 shows the PDF of the Laplace distribution with

the scale factor b = 2 and Boiarkin distribution with the
scale factor b = 2 and p = 0.1, 0.5, 0.7. By decreasing p,
Pr[r = 0] decreases, whereas the probabilities Pr[r = λ1]
and Pr[r = λ2] increase. Thus, by decreasing p, more
random variables are generated around λ1 and λ2. When
p = 1, i.e., the Pr[r = µ] = Pr[r = λ1] = Pr[r = λ2], the
Boiarkin distribution becomes the Laplace distribution with
the scale factor b centered at µ.

B. BOIARKIN MECHANISM
In this section, to preserve end-user privacy, a novel
ϵ-LDP mechanism is introduced, which utilizes the proposed
Boiarkin probability distribution to generate noise.

Definition 3 (The Boiarkin Mechanism): Given any func-
tion f : D → Rk , the Boiarkin mechanism is defined as
follows:

MB(x, f (·), ϵ, ψ) = f (x) + (Y1, . . . ,Yk ) (8)

where Yi are i.i.d. random variables drawn from Boi(1f /ϵ,
ψ, 0) (5).
Theorem 1: The Boiarkin mechanism MB(x, f (·), ϵ, ψ)

preserves ϵ-LDP for any end-user with personal privacy
budget ϵ.
Proof: Let x ∈ D and y ∈ D be any neighboring

datasets, differing in one entry, and f (·) be some function
f : D → Rk . Let Px(z) denote the probability density
function of MB(x, f (·), ϵ, ψ), and let Py(z) denote the
probability density function of MB(y, f (·), ϵ, ψ). To prove
ϵ-local differential privacy [16], it is shown that the ratio
Px(z)/Py(z) is bounded by exp(ϵ) at any arbitrary point z ∈

Rk .
Px(z)
Py(z)

=

k∏
i=1


exp

(
−
ϵ
∣∣ψ − |zi − f (x)|

∣∣
1f

)

exp

(
−
ϵ
∣∣ψ − |zi − f (y)|

∣∣
1f

)


=

k∏
i=1

exp
(

−
ϵ

1f

∣∣ψ − |zi − f (x)|
∣∣

+
ϵ

1f

∣∣ψ − |zi − f (y)|
∣∣)

=

k∏
i=1

exp
(
ϵ

1f

(∣∣ψ − |zi − f (y)|
∣∣− ∣∣ψ − |zi − f (x)|

∣∣))

≤

k∏
i=1

exp
(
ϵ

1f

∣∣ψ − |zi − f (y)| − ψ + |zi − f (x)|
∣∣)

=

k∏
i=1

exp
(
ϵ

1f

∣∣|zi − f (x)| − |zi − f (y)|
∣∣)

≤

k∏
i=1

exp (|zi − f (x) − zi − f (y)|)

=

k∏
i=1

exp
(
ϵ

1f
|f (y) − f (x)|

)

= exp

(
ϵ

1f

k∑
i=1

|f (y) − f (x)|

)

= exp
(
ϵ

1f
∥f (y) − f (x)∥1

)
≤ exp(ϵ) (9)

where the first and second inequalities are triangle inequal-
ities, and the last inequality follows from the definition of
sensitivity (2). Therefore, the Boiarkin mechanism ensures
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that the probability of a given outcome is nearly the same
(bounded by exp(ϵ)) for any neighboring datasets x, y ∈ D
differing in one entry.

C. USER-CENTRIC DATA-SHARING SCHEME
Most of DP privacy-preserving mechanisms imply the
adjustment or use of a predefined privacy budget ϵ to control
the trade-off between the level of privacy and utility. The
question regarding this trade-off has been studied by many
researchers [21], [22], [23], whereas there is still no clear
answer on how to chose the right ϵ.
In this section, a novel user-centric privacy-preserving

mechanism is proposed, which enables the end-users to
choose an acceptable error in utility, whereas the level
of privacy (an optimal privacy budget ϵ) is automatically
calculated by the scheme. The proposed scheme utilizes the
Boiarkin ϵ-LDP mechanism, which relies on the Boiarkin
probability distribution to fine-tune the amount of generated
noise. Let U : D → R denote the utility function that maps
input datasets (D) to real numbers, and it is defined as follows:

U (d) = g(d), d ∈ D (10)

where g(·) is the function that takes d as an input and
outputs the result for a particular use case by performing
mathematical operations on d . For example, g(·) may be a
function that just returns d , or it may be a function that outputs
the energy usage cost for a household by multiplying the
average energy consumption per day (d) by the number of
time slots and purchasing price for energy per kWh.

Let δ denote the maximum acceptable relative error in
utility, which is expressed as follows:

δ =
U (d ′) − U (d)

U (d)
· 100% (11)

where d is the result of a query function f (·) (original data),
and d ′ is the output of a randomized mechanismM(·). Thus,
(11) may be rewritten as follows:

δ =
U (M(x)) − U (f (x))

U (f (x))
· 100% (12)

where x is the input dataset. Taking into account that a
randomized mechanism adds noise to the result of a query
function (8), (12) may be rewritten as follows:

δ =
U (f (x) + r) − U (f (x))

U (f (x))
· 100% (13)

where r is the noise drawn from a probability distribution
used by a randomized mechanism. Expressing the variable
r (13), the maximum acceptable noise can be found for the
chosen error δ. Note that an equation for r would be different
depending on U (·).

To make sure that the noise drawn from a probability
distribution does not exceed the maximum acceptable noise,
the boundaries for this probability distribution are calculated
using its Cumulative Distribution Function (CDF). The CDF

of the Boiarkin probability distribution centered at 0 is
defined as follows:

FX (x) =



q · b · exp
(x − λ1

b

)
, x ≤ λ1

1
2

− q · b ·

(
exp
(λ1 − x

b

)
− exp

(λ1
b

))
, λ1 ≤ x ≤ 0

1
2

+ q · b ·

(
exp
(x − λ2

b

)
− exp

(
−λ2

b

))
, 0 ≤ x ≤ λ2

1−q · b · exp
(λ2 − x

b

)
, λ2 ≤ x

(14)

To find a point x at which the CDF of the Boiarkin
distribution gives the required level of the CDF’s accuracy
α (α = 0.9999), x has to be expressed from the last equation
in (14). Taking into account that p = exp(λ1/b) and p =

exp(−λ2/b), x is expressed as follows:

x = −b · log(p)−b · log(2(1 − α)(2 − p)) (15)

By replacing x with the maximum acceptable noise, scale
b or spread ψ of the Boiarkin probability distribution may
be adjusted, so that a random variable r drawn from the
probability distribution lies within the acceptable interval
[−x, x]. For the Laplace probability distribution, x would be
expressed as follows:

x = −b · log(2(1 − α)) (16)

Based on the end-user’s preference regarding the max-
imum acceptable error in utility (δ), parameters of the
probability distribution used by the randomized mechanism
can be adjusted, so that δ (12) is within the acceptable range
(e.g., δ ≤ 50%). Note that end-users set the maximum
acceptable error δ, which affects the parameters of the
randomized mechanism, more specifically the probability
distribution used by it. This means that the boundaries for
the probability distribution are calculated based on the end-
user’s preference regarding δ, and this configuration of the
probability distribution gives the maximum possible level of
privacy (range of random variables).

V. RESULTS
This section presents the simulation results to evaluate the
proposed data-sharing scheme. In this work, a smart grid
environment is studied as a specific use case, whereas the
model can be applied to other scenarios.

In the simulated use case, a smart meter deployed on the
end-user’s side measures the electricity consumption of a
household and submits the average electricity consumption
per hour to the energy supplier once per day. In the smart grid,
end-users energy usage data may be shared with different
third parties, including the electricity system operator that
controls the balance between supply and demand. In this case
study, the data are only shared with the energy supplier and
used exclusively for billing. All other scenarios, including the
influence on the network operation, are out of the scope of this
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article. End-users’ individual electricity consumption data is
classified as personal data under GDPR. For this reason, end-
users must have control over who can access their electricity
consumption data, how often, and for what purposes, except
when the data access is mandated [24]. In addition, in case
of an insider attack or a key leakage attack on the energy
supplier’s side, an adversary would be able to access the raw
electricity consumption data of the end-users.

To make sure that the privacy of end-users is not disclosed,
as well as to prevent the consequences of cyber-attacks on
the energy supplier’s side, households may choose to use a
LDP scheme to protect their privacy and data, whereas the
final energy usage cost may be increased due to the noise
injected into the electricity usage data. Thus, end-users decide
the extra cost they are willing to pay to increase their privacy
level, based on which the noise will be added to the data.
The real electricity consumption data for 100 households in
London are taken from [25], which contains smart meter
readings from 2011 to 2014. The buying price of energy
from the utility grid in the UK is taken from [26] and is
equal to 14.37 pence/kWh. The objective of this use case is
to evaluate if the error in utility stays within the boundaries
determined by the end-user, as well as how the proposed
mechanism performs compared to the Laplace mechanism.
The simulations are conducted on a machine with Apple M1
CPU@3.2GHz and 8.0GB RAM using Python programming
language.

Let f (x) denote the function that calculates the average
electricity consumption per hour for a household, which is
defined as follows:

f (x) =
1
n

n∑
i=1

xi (17)

where x is the vector that contains electricity consumption for
each time slot (30 minutes) in a day. Let g(f (x)) denote the
function that takes the average electricity consumption of a
household and calculates the energy usage cost for one day,
which is defined as follows:

g(f (x)) = f (x) · T · γ (18)

where T is the number of time slots in a day (T =

48), and γ is the buying price of energy per kWh (γ =

14.37 pence/kWh).
By combining (17) and (18), the maximum acceptable

relative error in utility δ (12) is calculated as follows:

δ =
(f (x) + r) · T · γ − f (x) · T · γ

f (x) · T · γ
· 100%

=
r
f (x)

· 100% (19)

where r is the random variable (noise) drawn from a
probability distribution used by amechanismM(·).When the
end-user decides on the acceptable relative error in the energy
usage cost, the boundaries for the probability distribution can
be calculated as follows:

r =
δ · f (x)
100

(20)

By combining (15) and (20), an adjusted scale for the
Boiarkin probability distribution is calculated as follows:

b = −
δ · f (x)

100(log(p) + log(2(1 − α)(2 − p)))
(21)

By combining (16) and (20), the scale for the Laplace
distribution is adjusted as follows:

b = −
δ · f (x)

100(log(2(1 − α)))
(22)

Therefore, based on the end-user’s preference regarding δ,
the scale of a probability distribution used by a mechanism
M(·) is adjusted to make sure that the noise is within the
boundaries, which helps to control the change (error) in
utility.

FIGURE 3. Dependency between the relative error in utility σ and the
maximum acceptable error δ for randomly chosen end-users for 1 day
using the Laplace mechanism and the Boiarkin mechanism with
p = 0.7 and p = 0.2.

Let σ denote the actual relative error in utility. The depen-
dency between the relative error in utility σ and themaximum
acceptable error δ set by the end-user using the Laplace
and Boiarkin mechanisms for randomly chosen end-users is
shown in Fig. 3. To demonstrate how p affects the relative
error σ , first we set p = 0.7. This p value close to 1 makes the
modes of the Boiarkin distribution close to 0, which means
that most of the noise will be concentrated around 0. The
second value picked for p (p = 0.2) is closer to zero, which
increases the spread of the modes of the Boiarkin distribution.
As a result, most of the noise will be concentrated around
λ1 and λ2. Since end-users send data to the energy supplier
once per day, Fig. 3 shows the relative error in the energy
usage cost (σ ) for one day depending on the maximum
acceptable error (δ), 10%, 50%, or 100%. It can be seen that
σ does not exceed δ. The Laplace mechanism results in a
concentration of relative errors around 0% because the noise
(a random variable r) drawn from the Laplace distribution has
the highest probability around 0. The Boiarkin mechanism
results in similar relative error as the Laplace mechanism
when p is set close to 1 because the modes λ1 and λ2 of
the Boiarkin distribution are close to 0. When decreasing p
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for the Boiarkin mechanism, the concentration of the relative
errors around 0% decreases because the noise is concentrated
around the modes λ1 and λ2, which can be clearly observed
when the maximum acceptable error δ ≤ 100% and p =

0.2. Compared to the Laplace mechanism, the Boiarkin
mechanism allows to increase the spread of relative errors
while keeping it within the boundaries by fine-tuning the
amount of generated noise using the parameter p. Note that
Fig. 3 shows the results for only one day (iteration), so there
is no room for noise compensation. When p = 0.2, although
the noise is frequently not zero, positive and negative values
have the same magnitude, which can result in compensation
in the long term.

FIGURE 4. Dependency between the relative error in utility σ and the
maximum acceptable error δ for randomly chosen end-users over a
period of 300 days using the Laplace mechanism and Boiarkin
mechanism with p = 0.7 and p = 0.2.

To show the effect of noise compensation, the simula-
tion was conducted for randomly chosen end-users for a
period of 300 days using the Laplace mechanism and the
Boiarkin mechanism with p = 0.7 and p = 0.2. The
dependency between the relative error in utility σ and the
maximum acceptable error δ is shown in Fig. 4. It can be
clearly observed that the relative error in utility is smaller
than the maximum acceptable error because of the noise
compensation for both the Laplace andBoiarkinmechanisms.
The concentration of the relative errors for the Laplace and
Boiarkin mechanisms is around 0%, whereas the spread
of relative errors using the Boiarkin mechanism is slightly
higher but does not exceed the maximum acceptable error
δ. When a randomized mechanism is executed only once
(Fig. 3), U (M(x)) may result in both higher and lower
values compared to the result of U (x), which may result
in positive or negative relative error. Over time, with the
mechanism being executed multiple times, the relative error
becomes smaller because of the noise compensation. Unlike
the Laplace mechanism, the Boiarkin mechanism allows to
fine-tune the amount of noise injected into the data, which
results in a slightly higher relative error when the mechanism
is executed only once (see Fig. 3), while over time, due
to the noise compensation, both the Laplace and Boiarkin

mechanisms yield comparable relative errors, all of which fall
within the user-defined boundaries (see Fig. 4). Thus, fine-
tuning the parameter p of the Boiarkin mechanism allows to
inject more noise, while resulting in the same relative error
over time compared to the Laplace mechanism.

FIGURE 5. Dependency between the relative error σ and the absolute
amount of noise added to the data for randomly chosen end-users over a
period of 300 days using the Laplace mechanism and the Boiarkin
mechanism with different p, where the maximum acceptable error in
utility δ is set to 100%.

To show the dependency between the amount of noise
injected by a randomized mechanism and relative error σ ,
the simulation was conducted for randomly chosen end-users
over a period of 300 days using the Laplace mechanism
and the Boiarkin mechanism with p = 0.5, p = 0.2, and
p = 0.08 (Fig. 5). The maximum acceptable error in utility
δ is set to 100%, which means that the maximum energy
usage cost the end-user is willing to pay should not exceed
the double of the original cost. It can be observed that the
Boiarkin mechanism allows to inject more noise compared to
the Laplacemechanism for the same relative error, whichmay
provide better privacy for the end-user with the same utility.
When p is set close to 1, the amount of noise is slightly higher
compared to the noise injected by the Laplace mechanism.
With the decreasing p, the amount of noise increases because
the probability of a random variable Pr[r = 0] decreases,
and the probabilities around the modes (λ1 and λ2) of the
Boiarkin distribution increase. Since the Boiarkin probability
distribution has two modes, around which the probabilities
are concentrated, and taking into account the effect of noise
compensation, it is possible to inject more noise and produce
the same error in utility as the Laplace mechanism.

The results above showed that the Boiarkin mechanism
allows to inject more noise compared to the Laplace, whereas
the final error in utility is the same. To check whether
more noise means more privacy, the mutual information
score between the noisy electricity consumption profiles
and the original profiles for randomly chosen end-users
over a period of 300 days is evaluated for the Laplace and
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FIGURE 6. Mutual information score between the noisy and original
electricity consumption profiles for different end-users over a period of
300 days using the Laplace mechanism and the Boiarkin mechanism with
different p, where the maximum acceptable error in utility δ is set to
100%.

Boiarkin mechanisms (Fig. 6). The maximum acceptable
error in utility δ set by end-users is equal to 100%. The
mutual information score reflects the extent to which the
noisy electricity consumption profile is similar to the original
profile of the end-user. The lower the mutual information
score, the more independent electricity consumption profiles
are. It can be seen that for the Boiarkin mechanism, the
mutual information score decreases when p decreases (p ≥

0.2), whereas when p becomes too small (p < 0.2), the
mutual information score increases compared to the Laplace
mechanism. Thus, when increasing the probability around
the modes (λ1 and λ2) of the Boiarkin distribution, more
noise can be injected into the data, which makes noisy
and original electricity consumption profiles of the end-user
more independent. To keep noisy and original electricity
consumption profiles of the end-user more independent and
preserve the privacy of end-users, it is suggested to use
p ≥ 0.2. These results also show that the parameter p of the
Boiarkin mechanism allows to fine-tune the amount of noise
injected into the data, while still keeping the relative error
within the boundaries defined by the end-user. For p = 0.2,
the Boiarkin mechanism provides more privacy compared to
the Laplace mechanism since the mutual information score
between the noisy and original profiles is lower than for the
Laplace mechanism.When p = 0.9, the Boiarkin mechanism
provides slightly better privacy compared to the Laplace
mechanism because the modes λ1 and λ2 (Fig. 2) of the
Boiarkin distribution are close to 0.

To understand how the end-user’s preference regarding
δ affects the privacy budget ϵ used by the Laplace and
Boiarkin mechanisms, the simulation was conducted for a
randomly chosen end-user for one day using the global
sensitivity of a query function f (·) (17) (Fig. 7). The

FIGURE 7. Dependency between the privacy budget ϵ and the maximum
acceptable relative error in utility δ for a randomly chosen end-user for
one day using the Laplace mechanism and the Boiarkin mechanism with
p = 0.5 and p = 0.2.

global sensitivity reflects the maximum distance between two
neighboring datasets. The level of electricity consumption
for a typical household is around 4kWh, and by changing
one entry in an empty dataset (no electricity consumption)
to the maximum level of consumption (4kWh), the global
sensitivity is calculated as 1f = 4/48 = 0.08333, where
48 is the number of elements (time slots) in the dataset. After
calculating the sensitivity of the function1f , our next step is
to determine the appropriate scale, denoted as b. This scale
will be determined based on the maximum acceptable error
in utility δ. Subsequently, we calculate ϵ, taking into account
the global sensitivity and the adjusted scale (ϵ = 1f /b).
It can be seen that to keep the relative error around 0%, the
privacy budget has to be very high (ϵ ≈ 200) because the
scale of the probability distribution used by the randomized
algorithm should produce random variables within a very
limited range, which depends on the sensitivity and may
be different for other applications. If the end-user sets the
maximum acceptable error δ = 100%, the privacy budget for
the Laplace mechanism ϵ = 1.928, whereas ϵ = 1.994 and
ϵ = 2.160 for the Boiarkin mechanism with p = 0.5 and
p = 0.2 respectively. When ϵ ≤ 1, the relative error in
utility increases, namely the Laplace mechanism with ϵ =

0.999 results in 193% error, whereas the Boiarkin mechanism
with p = 0.2 and ϵ = 1 results in 216% error.

Although the privacy budget ϵ is slightly higher for
the Boiarkin mechanism, the amount of noise injected by
the Boiarkin mechanism is higher, as well as the mutual
information score between noisy and original data is lower
compared to the Laplace mechanism, which means that the
Boiarkin mechanism may provide better privacy for the same
ϵ. In the scheme proposed in this work, when the end-user
defines the boundaries for utility (δ), the privacy budget ϵ
is calculated automatically based on the sensitivity and the
scale of the probability distribution. Since the scale of the
probability distribution is adjusted based on δ, which allows
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to control the amount of noise, there is only one ϵ that can
be calculated for the given δ and 1f . This provides the
maximum possible level of privacy for the defined δ. On the
other hand, if the end user had to choose the privacy budget ϵ
instead of the maximum tolerated error, the error in the utility
they would get in the future would be unclear. By utilizing the
proposed data-sharing scheme, end-users have control over
the utility, as well as better understanding how the level of
privacy affects utility.

VI. CONCLUSION
In this article, a novel user-centric privacy-preserving
data sharing scheme is proposed. First, a novel bimodal
probability distribution has been proposed that provides
control over the ranges of random variables from which
the noise is drawn with high probability, and enables the
noise compensation. Second, a novel privacy-preserving
mechanism that satisfies ϵ-LDP has been introduced. The
proposed Boiarkin mechanism allows adding more noise,
compared to the Laplace mechanism, while the relative
error in utility over time is the same. Finally, a novel user-
centric data-sharing scheme has been designed that allows
the end-users to specify the boundaries for utility, whereas
the maximum possible level of privacy (privacy budget ϵ)
is provided by the scheme. The amount of noise injected
into the data can be fine-tuned by adjusting the parameter p
of the Boiarkin mechanism, which affects the relative error
for one iteration of the mechanism. According to the mutual
information score analysis, injecting more noise using the
Boiarkin mechanism (p ≥ 0.2) makes the noisy and original
data more independent. Thus, the Boiarkin mechanism can
provide better privacy compared to the Laplace mechanism,
whereas the relative error in utility is always within the
boundaries defined by the end-user. A smart grid environment
is studied as a particular use case, where the model can be
further extended for different application scenarios.

The results obtained in this work can be used to enhance
existing and design novel privacy-preserving user-centric
data-sharing schemes in different application domains. For
example, by utilizing the proposed Boiarkin mechanism,
car owners may share the data about their vehicles such as
speed and location with insurance companies in a privacy-
preserving manner, whereas the level of privacy would affect
insurance premiums.

As future work, we plan to study how to design a privacy-
preserving user-centric federated learning mechanism, where
end-users do not share their privacy preferences with a
central server. Specifically, by utilizing the proposedBoiarkin
mechanism, we aim to enable personalized privacy settings
for each client while maintaining a high level of accuracy of
a global model.
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