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Abstract
Linear Temporal Logic (LTL) synthesis aims at automatically synthesizing a program that 
complies with desired properties expressed in LTL. Unfortunately it has been proved to be 
too difficult computationally to perform full LTL synthesis. There have been two success 
stories with LTL synthesis, both having to do with the form of the specification. The first is 
the GR(1) approach: use safety conditions to determine the possible transitions in a game 
between the environment and the agent, plus one powerful notion of fairness, Generalized 
Reactivity(1), or GR(1). The second, inspired by AI planning, is focusing on finite-trace 
temporal synthesis, with LTL f  (LTL on finite traces) as the specification language. In this 
paper we take these two lines of work and bring them together. We first study the case in 
which we have an LTL f  agent goal and a GR(1) environment specification. We then add to 
the framework safety conditions for both the environment and the agent, obtaining a highly 
expressive yet still scalable form of LTL synthesis.
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1 Introduction

Program synthesis is considered the culmination of the ideal of declarative programming 
[1, 2]. By describing a system in terms of what it should do, instead of how it should do 
it, we are able, on the one hand, to simplify the program design process while avoiding 
human mistakes and, on the other hand, to allow an autonomous agent to self-program 
itself just from high-level specifications. Linear Temporal Logic (LTL) synthesis [3] is pos-
sibly one of the most popular variants of program synthesis, being the problem of auto-
matically designing a reactive system with the guarantee that all its behaviors comply with 
desired dynamic properties expressed in LTL, the most used system/process specification 
language in Formal Methods. Unfortunately this dream of LTL synthesis has proven to be 
too difficult, and, in spite of a full-fledged theory, we still do not have good scalable algo-
rithms after more than 30 years [4].

There have been two successful responses to these difficulties, both having to do 
with limiting the expressive power of the formalism used for the specification. The first 
approach, developed in Formal Methods, has been what we may call the GR(1), response 
[5]: essentially you focus on safety conditions, determining the possible transitions in a 
game between the environment and the agent, plus one powerful notion of fairness called 
Generalized Reactivity(1), or GR(1). This approach has found numerous applications, for 
example, in robotic motion-and-mission planning [6]. The second approach, developed 
in AI and inspired by classical AI planning, is of finite-horizon temporal synthesis, with 
LTL f  (LTL on finite traces) [7] as the specification language. In this approach [8], we 
specify the agent’s goal in LTL f  , together possibly with environment specifications, such 
as safety conditions, possibly specified as a nondeterministic planning domain [9–13], or 
simple fairness and stability conditions (both special cases of GR(1) fairness) [14]. There 
are also studies in which general LTL environment specifications are used for LTL f  goals, 
but in this case the difficulties of handling LTL can indeed manifest [12, 15, 16]. Since 
LTL f  is a fragment of LTL, as shown in [7], the problem of LTL f  synthesis under LTL 
environment specifications can be reduced to LTL synthesis, as, e.g., explicitly pointed out 
by [12]. However, LTL synthesis algorithms do not scale well due to the difficulty of Büchi 
automata determinization, see e.g., [1].

In this work we propose to take these two lines of work, which are really the only suc-
cessful stories in LTL synthesis, and bring them together. We first study the case in which 
we have an LTL f  agent goal and a GR(1) environment specification. We propose an 
approach based on using the automaton corresponding to the LTL f  goal as the game arena 
on which the environment has to satisfy its GR(1) environment specification. This means 
that we are able to reduce the problem to that of GR(1) synthesis over the new arena. We 
prove the correctness of the approach.

We then add to the framework safety conditions for both the environment and the agent, 
obtaining a highly expressive yet still scalable form of LTL synthesis. These two kinds 
of safety conditions differ, since the environment needs to maintain its safety indefinitely 
(as usual for safety), while the agent has to maintain its safety conditions only until s/he 
fulfills its LTL f  goal, i.e., within a finite horizon, something that makes them similar to 
“maintenance goals” in Planning [17]. We show that we can specify these safety condi-
tions in a very general way by using LTL f  . In particular, our safety conditions require 
that all prefixes of a trace satisfy an LTL f  formula. For the environment safety conditions, 
we consider all finite prefixes of infinite traces, while for the agent safety conditions, we 
consider all prefixes of the finite trace satisfying the agent’s LTL f  goal. Again, we prove 
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the correctness of our approach and demonstrate its scalability through an experimental 
analysis.

Differences to conference paper. This paper is an extension of the previous conference 
version [18], we extend the content in the following way:

• Provide the full proofs for all the theorems and lemmas;
• Extend Sect. 2 to include more background knowledge to make the paper more self-

contained;
• Extend Sects. 3 and 5 by (i) new subsections consisting of detailed descriptions of how 

to reduce our synthesis problem settings to LTL synthesis; (ii) complexity analysis of 
our proposed synthesis approaches;

• Extend Sect. 6 by (i) a new subsection of detailed description and complete formulation 
of the benchmarks; (ii) a new subsection to present a detailed reduction to LTL synthe-
sis of the studied synthesis problems with the proposed benchmarks;

• Add Sect. 7 for a thorough discussion with related work;
• Add Sect. 8 of conclusion and future work.

2  Preliminaries

2.1  LTL and LTL 
f

LTL is one of the most popular logics for temporal properties [19]. Given a set of proposi-
tions Prop, the formulas of LTL are generated as follows:

where a ∈ Prop , ◦ (next) and U (until) are temporal operators. We use common abbrevia-
tions, so we have eventually as ◊� ≡ trueU� and always as □� ≡ ¬◊¬�.

LTL formulas are interpreted over infinite traces � ∈ (2Prop)� . A trace � = �0,�1,… is 
a sequence of propositional interpretations (sets), where for every i ≥ 0 , �i ∈ 2Prop is the i-
th interpretation of � . Intuitively, �i is interpreted as the set of propositions that are true at 
instant i. Given � , we define when an LTL formula � holds at position i, written as 𝜋, i ⊧ 𝜑 , 
inductively on the structure of � , as:

• 𝜋, i ⊧ a iff a ∈ 𝜋i (for a ∈ Prop);
• 𝜋, i ⊧ ¬𝜑 iff 𝜋, i ̸⊧ 𝜑;
• 𝜋, i ⊧ 𝜑1 ∧ 𝜑2 iff 𝜋, i ⊧ 𝜑1 and 𝜋, i ⊧ 𝜑2;
• 𝜋, i ⊧ ◦𝜑 iff 𝜋, i + 1 ⊧ 𝜑;
• 𝜋, i ⊧ 𝜑1 U𝜑2 iff there exists j ≥ i such that 𝜋, j ⊧ 𝜑2 , and for all k, i ≤ k < j we have 

that 𝜋, k ⊧ 𝜑1.

We say � satisfies � , written as 𝜋 ⊧ 𝜑 , if 𝜋, 0 ⊧ 𝜑.
LTL f  is a variant of LTL interpreted over finite traces instead of infinite traces [7]. The 

syntax of LTL f  is exactly the same as the syntax of LTL. We define 𝜋, i ⊧ 𝜑 , stating that � 
holds at position i, as for LTL, except that for the temporal operators we have:

• 𝜋, i ⊧ ◦𝜑 iff i < ���(𝜋) and 𝜋, i + 1 ⊧ 𝜑;

�∶∶=a|(� ∧ �)|(¬�)|(◦�)|(�U�)
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• 𝜋, i ⊧ 𝜑1 U𝜑2 iff there exists j such that i ≤ j ≤ ���(�) and 𝜋, j ⊧ 𝜑2 , and for all 
k, i ≤ k < j we have that 𝜋, k ⊧ 𝜑1.

where we denote the last position (i.e., index) in the finite trace � by ���(�) . In addition, we 
define the weak next operator ∙ as abbreviation of ∙� ≡ ¬◦¬� . Note that, over finite traces, 
¬◦� ≢ ◦¬� , instead ¬◦� ≡ ∙¬� . We say that a trace satisfies an LTL f  formula � , written 
𝜋 ⊧ 𝜑 , if 𝜋, 0 ⊧ 𝜑.

2.1.1  Generalized reactivity(1) formulas

Generalized Reactivity(1) [5], or GR(1), is a fragment of LTL that generalizes fairness 
( □◊� ) and stability ( ◊□� ) formulas (cf. [14]). Given a set of propositions Prop, a GR(1) 
formula � is required to be of the form

where Ji and Kj are Boolean formulas over Prop.

2.2  Deterministic automata

A deterministic automaton (DA, for short) is a tuple A = (Σ, S, s0, �, �) , where Σ is a finite 
alphabet, S is a finite set of states, s0 ∈ S is the initial state, � ∶ S × Σ → S is the transition 
function, 𝛼 ⊆ S𝜔 is an acceptance condition. Given an infinite word � = a0a1a2 … ∈ Σ� , 
the run of A on � , denoted by A(�) is the sequence r = s0s1s2 … ∈ S� starting at the initial 
state s0 where si+1 = �(si, ai) . The automaton A accepts the word � if A(�) ∈ � . The lan-
guage of A , denoted by L(A) , is the set of words accepted by A . In this work we specifi-
cally consider reachability, safety, and reachability-safety acceptance conditions:

• Reachability conditions. Given a set T ⊆ S of target states, 
Reach(T) = {s0s1s2 … ∈ S�|∃k ≥ 0 ∶ sk ∈ T} requires that a state in T is visited at 
least once.

• Safety conditions. Given a set T ⊆ S of target states, 
Safe(T) = {s0s1s2 … ∈ S�|∀k ≥ 0 ∶ sk ∈ T} requires that only states in T are visited. 
This is the dual of reachability conditions.

• Reachability-Safety conditions. Given two sets T1, T2 ⊆ S of tar-
get states corresponding to reachability and safety conditions, respectively, 
Reach-Safe(T1, T2) = {s0s1s2 … ∈ S�|∃i ≥ 0 ∶ si ∈ T1 and ∀j, i ≥ j ≥ 0 ∶ sj ∈ T2} 
requires that a state in T1 is visited at least once, and until then only states in T2 are vis-
ited.

We define the complement of a DA A = (Σ, S, s0, �, �) as A = (Σ, S, s0, �, S
�⧵�) . 

Note that L(A) = Σ�⧵L(A) . Note also that S�⧵Reach(T) = Safe(S⧵T) and 
S�⧵Safe(T) = Reach(S⧵T) . Therefore, the complement of a DA with a reachability 
acceptance condition is a DA with a safety acceptance condition, and vice-versa. We 
also define the intersection of two DAs A1 = (Σ, S1, s

0
1
, �1, �1) and A2 = (Σ, S2, s

0
2
, �2, �2) 

as A1 ∩A2 = (Σ, S1 × S2, (s
0
1
, s0

2
), ��, ��) , where ��((s1, s2), a) = (�1(s1, a), �2(s2, a)) and 

�� = {(s0
1
, s0

2
)(s1

1
, s1

2
)(s2

1
, s2

2
)… ∈ (S1 × S2)

�|s0
1
s1
1
s2
1
… ∈ �1 and s0

2
s1
2
s2
2
… ∈ �2} . Note 

� =

m⋀

i=1

□◊Ji →

n⋀

j=1

□◊Kj
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that if �1 = Safe(T1) and �2 = Safe(T2) , then �� = Safe(T1 × T2) . If �1 = Reach(T1) and 
�2 = Safe(T2) we define a bounded intersection, where �� = Reach-Safe(T1, T2).

2.3  GR(1) games

Following [5], we define a GR(1)  game structure as a tuple G = ⟨V, I,O, �a, �p, �a, �p,�⟩ 
where:

• V = {v1,… , vk} is a set of Boolean state variables. A state of the game is given by an 
assignment s ∈ 2V of these variables. I ⊆ V is the set of input variables controlled by 
the antagonist. O = V ⧵ I  is the set of output variables controlled by the protagonist.

• �a is a Boolean formula over I  representing the initial states of the antagonist. �p is a 
Boolean formula over V representing the initial states of the protagonist.

• �a is a Boolean formula over V ∪ I� , where I′ is the set of primed copies of I  . This 
formula represents the transition relation of the antagonist, between a state s ∈ 2V and a 
possible input sI ∈ 2I for the next state.

• �p is a Boolean formula over V ∪ I� ∪O� , where O′ is the set of primed copies of 
O . This formula represents the transition relation of the protagonist, relating a pair 
(s, sI) ∈ 2V × 2I of state s and input sI to an output sO.

• � is the winning condition for the protagonist given by a GR(1) formula.

We use the terms antagonist and protagonist instead of environment and agent to avoid 
confusion when we switch roles.

2.4  LTL 
f
 synthesis under environment specifications

Let X  and Y be Boolean variables, with X  controlled by the environment and Y controlled 
by the agent. An agent strategy is a function �ag ∶ (2X)∗ → 2Y , and an environment strat-
egy is a function �env ∶ (2Y)+ → 2X . A trace is a sequence (X0 ∪ Y0)(X1 ∪ Y1)⋯ ∈ (2X∪Y)� . 
An agent strategy induces a trace (Xi ∪ Yi)i if �ag(�) = Y0 and �ag(X0X1 ⋯Xj) = Yj+1 for 
every j ≥ 0 . An environment strategy induces a trace (Xi ∪ Yi)i if �env(Y0Y1 ⋯Yj) = Xj for 
every j ≥ 0 . For an agent strategy �ag and an environment strategy �env let ����(�ag, �env) 
denote the unique trace induced by both �ag and �env , and ����k(�ag, �env) be the finite trace 
that is a prefix up to k.

Let �a
task

 be an LTL f  formula over X ∪ Y . An agent strategy �ag realizes �a
task

 if for 
every environment strategy �env there exists k ≥ 0 , chosen by the agent, such that the finite 
trace ����k(�ag, �env) satisfies �a

task
 , that is, �a

task
 is agent realizable.

In standard synthesis the environment is free to choose an arbitrary move at each step, 
but in AI typically the agent has some knowledge of how the environment works, which 
it can exploit in order to enforce the goal, specified as an LTL f  formula �a

task
 . Here, we 

specify the environment behaviour by an LTL formula Env and call it environment specifi-
cation. In particular, Env specifies the set of environment strategies that enforce Env [20]. 
Moreover, we require that Env must be environment realizable, i.e., the set of environment 
strategies that enforce Env is not empty. Formally, given an LTL formula � , we say that an 
environment strategy enforces � , written �env ⊳ � , if for every agent strategy �ag we have 
����(𝜎ag, 𝜎env) ⊧ 𝜑.

The problem of LTL f  synthesis under environment specifications is to find an agent 
strategy �ag such that
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As shown in [20], this can be reduced to solving the synthesis problem for the implica-
tion Env → LTL(�a

task
) , with LTL(�a

task
) being a suitable LTL f -to-LTL transformation [7], 

which is 2expTime-complete [3].

3  LTL f  synthesis under GR(1) environment specifications

In this section, we first study LTL f  synthesis under GR(1) environment specifications. 
Formally, we are interested in solving the following synthesis problem.

Definition 1 (LTL f  synthesis under GR(1) Environment Specifications) The problem is 
described as a tuple P = (X,Y,�e

GR(1)
,�a

task
) , where �e

GR(1)
 is a GR(1) formula and �a

task
 is 

an LTL f  formula. Realizability of P checks whether

Synthesis of P computes a strategy �ag if exists.

Reduction to LTL  synthesis. A naive approach to solve P is to reduce it to standard 
LTL synthesis. Since �e

GR(1)
 can be naturally considered as an LTL formula, we are able 

to reduce the problem of �e
GR(1)

→ �a
task

 by directly reducing to LTL synthesis, applying 
the reduction in [14, 16]. However, reducing to LTL synthesis has not shown promising 
results. Hence specific techniques have been proposed that try to avoid, if possible, the 
Büchi determinization and the solution of parity games, see e.g., [12, 16]. In the next, 
we will show how to avoid the detour to LTL synthesis for our case.

3.1  Reduction to GR(1) game

To solve the problem P , we first observe that the agent’s goal is to satisfy ¬�e
GR(1)

∨ �a
task

 , 
while the environment’s goal is to satisfy �e

GR(1)
∧ ¬�a

task
 . Moreover, we know that �a

task
 

can be represented by a DA with a reachability condition [8]. Then, focusing on the 
environment point of view, we show that P can be reduced into a GR(1) game in which 
the game arena is the complement of the DA for �a

task
 , i.e., a DA with safety condition, 

and �e
GR(1)

 is the GR(1) winning condition. Since we want a winning strategy for the 
agent, we need to deal with the complement of the GR(1) game to obtain a winning 
strategy for the antagonist. More specifically, we can solve the problem by taking the 
following steps: 

1. Translate �a
task

 into Aag = (2X∪Y, S, s0, �, Reach(T)) that accepts a trace � iff 𝜋 ⊧ 𝜑a
task

 [8].
2. Complement Aag into Aag = (2X∪Y, S, s0, �, Safe(T �)) with T � = S⧵T  . Note that Aag 

accepts a trace � iff � has no prefix satisfying �a
task

.
3. Define a GR(1) game GP with the environment as the protagonist, where the arena is 

given by Aag and the winning condition is given by �e
GR(1)

.
4. Solve this game for the antagonist, i.e. the agent.

∃𝜎ag∀𝜎env ⊳ Env ∶ ∃k.����k(𝜎ag, 𝜎env) ⊧ 𝜑a
task

.

∃𝜎ag∀𝜎env ∶ 𝗉𝗅𝖺𝗒(𝜎ag, 𝜎env) ⊧ 𝜑e
GR(1)

→ ∃k.𝗉𝗅𝖺𝗒k(𝜎ag, 𝜎env) ⊧ 𝜑a
task

.
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3.1.1  Building the GR(1) game

We now detail how to build the GR(1) game GP (c.f., step 3 above). Given 
Aag = (2X∪Y, S, s0, �, Safe(T �)) , we start by encoding the state space S into a logarithmic set 
of variables Z (similarly to [21]). In what follows we identify assignments to Z with states 
in S, respectively. Given a subset Y ⊆ V and a state s ∈ 2V , we denote by s ∣Y the projection 
of s to Y . We then construct the GR(1) game structure GP = ⟨V, I,O, �a, �p, �a, �p,�⟩ as 
follows:

• V = X ∪ Y ∪ Z , I = Y , O = X ∪ Z;
• 𝜃a = ⊤ ; �p is a formula satisfied by an assignment s ∈ 2V iff s ∣Z= s0;
• 𝜂a = ⊤ ; �p is a formula satisfied by assignments s ∈ 2V and s� ∈ 2V

� iff 
�(s ∣Z, s

� ∣X�∪Y� ) = s� ∣Z� , s� ∣Z�∈ T �;
• � = �e

GR(1)
.

In the game GP , the environment takes the role of protagonist, and the agent of antagonist. 
States in the game are given by assignments of X ∪ Y ∪ Z , where the X  and Y components 
represent respectively the last assignment of the environment and agent variables chosen 
by the players, and the Z component represent the current state of Aag . The agent first 
chooses the Y component of the next state. There is no restriction on what it can be, so 
𝜃a = 𝜂a = ⊤ . Then, the environment chooses the X  component, and based on the chosen 
assignments assigns the Z variables as well. �p and �p enforce that the assignment to the Z 
variables is consistent with Aag , and �p also enforces that the safety condition Safe(T �) is 
not violated. Note that a play of GP , given by ���� = �0�1 … ∈ (2V)� , corresponds to the 
run r = (�0 ∣Z)(�1 ∣Z)(�2 ∣Z)… of Aag on trace (�1 ∣X∪Y)(�2 ∣X∪Y)… . Since �0 satisfies �p , 
�0 ∣Z= s0 , and since every (�i, �i+1) satisfy �p , �(�i ∣Z, �i+1 ∣X∪Y) = �i+1 ∣Z . Therefore, r is a 
valid run for Aag.

Given a play ���� of GP , there are two ways the environment can lose in ���� . The first is 
by being unable to pick an assignment that satisfies �p . Since the transition relation � of Aag 
is total, this can only happen if s ∣Z∉ T � , meaning that Aag rejects a run visiting s ∣Z . The 
other is by failing to satisfy �e

GR(1)
 . These correspond to the two ways that the specification 

can be satisfied: by satisfying �a
task

 or by violating the GR(1) environment specification. 
Therefore, a play satisfies the specification iff it is losing for the protagonist of GP (i.e, the 
environment) and thus wining for the antagonist (i.e., the agent).

3.1.2  Correctness

The correctness of the reduction described above is illustrated by the following theorem.

Theorem 1 P = ⟨X,Y,�e
GR(1)

,�a
task

⟩ is realizable iff the antagonist has a winning strategy 
in the GR(1) game GP.

Proof Let Aag = (2X∪Y, S, s0, �, Safe(T �)) be the constructed DA of P . We now prove the 
theorem in two directions.

←∶ If the antagonist has a winning strategy �a in GP , then every play �0, �1,… ∈ (2V)� 
that is consistent with �a is an antagonist winning play. That is to say, either of the follow-
ing holds:
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• protagonist’s goal is violated, such that �e
GR(1)

 does not hold on this play. There-
fore, ignoring the initial state of �0 , the corresponding sequence (�1 ∣X∪Y), 
(�2 ∣X∪Y),… ∈ (2{X∪Y})� violates �e

GR(1)
 . Thus �e

GR(1)
→ �a

task
 holds.

• There exists k, such that the protagonist’s transition constraint �p is violated, thus 
�(�k ∣Z, �k+1 ∣X�∪Y� ) ∉ T � . That is to say, the finite trace (�1 ∣X∪Y), (�2 ∣X∪Y),…(�k+1 ∣X∪Y) 
satisfies �a

task
 , then �e

GR(1)
→ �a

task
 holds.

→∶ If P is realizable, then the agent has a winning strategy �ag . So for every trace 
�0,�1,… ∈ (2X∪Y)� that is consistent with �ag , either of the following holds:

• �e
GR(1)

 is violated, therefore, starting from the initial state �0 , following �ag , the antago-
nist is able to force the corresponding play �0, �1, �2 … ∈ (2V)� to violate the protago-
nist’s goal. Thus this play is winning for the antagonist.

• There exists k such that 𝜋 = 𝜋0,𝜋1,…𝜋k ⊧ 𝜑a
task

 . Therefore, the corresponding run of � 
on Aag ends in a state ∉ T � . That is to say, in the corresponding play � , the antagonist 
is able to force the protagonist to violate its transition constraint �p , by having the move 
from �k to �k+1 . Thus this play is winning for the antagonist.

  ◻

3.1.3  Complexity

We now discuss the computational properties of the synthesis algorithm described above.

Theorem  2 The algorithm described above algorithm solves the synthesis problem 
P = (X,Y,�e

GR(1)
,�a

task
) in 2exptime (the problem is indeed 2exptime-complete).

Proof We first prove that the problem is 2expTime. Specifically, building the correspond-
ing DA with reachability condition for �a

task
 takes doubly exponential time in the size of 

�a
task

 [8]. This allows us to exploit subset construction and minimization rather than Büchi 
determinization, making it more scalable in practice, as for LTL f  synthesis. The comple-
mentation takes linear time in the size of the automaton. Finally, building the GR(1) game 
takes linear time in the size of the automaton and solving the corresponding GR(1) game is 
quadratic in the size of the game [5].

The hardness is immediate from 2expTime-completeness of LTL f  synthesis itself [8]. 
Notice that as a special case of our problem, we have standard LTL f  synthesis by consid-
ering trivially Env to be true.   ◻

4  Introducing safety conditions

Next we introduce safety conditions into the framework. Safety conditions are proper-
ties that assert that the behaviors of the environment or the agent always remain within 
some allowed boundaries. A notable example of safety conditions for the environment 
are effect specifications in planning domains that describe how the environment can 
react to agent actions in a given situation. A notable example of safety conditions for the 
agent are action preconditions, i.e. the agent cannot violate the precondition of actions. 
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Another notable example of safety conditions for the agent comes from planning with 
maintenance goals  (c.f. [17]). Observe though that there is a difference between the 
safety conditions on the environment and those on the agent: the first must hold forever, 
while the second must hold until the agent task is terminated, i.e., the goal is fulfilled.

4.1  Expressing safety as LTL 
f
 formulas

Typically, we capture general safety conditions as LTL formulas that, if invalid, are 
always violated within a finite number of steps. Alternatively, we can think of them 
as properties that need to hold for all prefixes of an infinite trace. Under this second 
view, we can also describe the finite variant of safety by simply requiring that the safety 
condition holds for all prefixes of a finite trace determined by the LTL f  agent task 
requirement. This view of safety conditions as properties that must hold for all prefixes 
also allows us to specify them in LTL f  . Indeed, all prefixes are, in fact, finite traces. 
Formally, in order to use LTL f  formulas to specify safety conditions, we need to define 
an alternative notion of satisfaction that interprets a formula over all prefixes of a trace:

Definition 2 A (finite or infinite) trace � satisfies an LTL f  formula � on all pre-
fixes, denoted 𝜋 ⊧∀ 𝜑 , if every non-empty finite prefix of � satisfies � . That is, 
𝜋k = 𝜋0𝜋1,… ,𝜋k ⊧ 𝜑 , for every 0 ≤ k <∣ 𝜋 ∣.

Next we show that we can specify all possible safety conditions expressible in LTL, 
i.e., all first-order (logic) safety properties [22], using LTL f  on prefixes.

It is known that every safety property expressible in LTL can be expressed by a for-
mula of the form □� , where � is a pure-past formula [22]. Let us denote by pLTL 
f  these pure-past formulas. For every pLTL f  formula � , there exists an LTL f  for-
mula �′ such that every finite trace � that satisfies � (i.e., 𝜋, ���(𝜋) ⊧ 𝜑 ) also satisfies 
�′ (i.e., 𝜋, 0 ⊧ 𝜑′ ) [23]. As an example of the equivalence between pLTL f  and LTL f  , 
consider the pLTL f  formula � = ((¬p)S q) , where S stands for pure-past connective 
Since. We refer to [23] for more details about pLTL f  . An equivalent LTL f  formula is 
�� = ◊(q ∧ ∙□(¬p)) . Considering this discussion, we can prove the following result.

Theorem 3 Every first-order safety property can be expressed as an LtL f  formula on all 
prefixes, and viceversa.

Proof It has been shown that every first-order safety property can be expressed by a for-
mula of the form □� , where � is pLTL f  (pure-past) formula [22]. From the semantics of 
□� when � is a pure-past formula, 𝜋 ⊧ □𝜑 iff every non-empty prefix �′ of � satisfies � . 
Moreover, for every pLTL f  formula � , there exists an LTL f  formula �′ such that every 
finite trace � that satisfies � (i.e., 𝜋, last(𝜋) ⊧ 𝜑 ) also satisfies �′ (i.e., 𝜋, 0 ⊧ 𝜑′ ) [23]. That 
is to say, 𝜋 ⊧ □𝜑 happens iff every non-empty prefix �′ satisfies �′ , which by definition 
happens iff 𝜋 ⊧∀ 𝜑�.

The other direction is proved by the definition of LTL f  on all prefixes. Indeed, by defi-
nition, a trace 𝜋 ⊧∀ 𝜑 if every non-empty prefix of � satisfies � . Therefore, if 𝜋  ⊧∀ 𝜑 , then 
there exists a finite prefix that does not satisfy � . Then, the LTL f  formula � on all prefixes 
expresses a safety property.   ◻
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Turning to safety conditions for the agent, we observe that the fact that an LTL f  for-
mula holds for every prefix of a finite trace (in our case the trace satisfying the task of the 
agent), is expressible in first-order logic on finite traces, and hence directly as an LTL f  
formula [7]. Nevertheless, translating an LTL f  formula on all prefixes to an LTL f  formula 
may require exponential blowups in general.

5  Adding safety into LTL f  synthesis under GR(1) environment 
specifications

We now enrich our synthesis framework by adding safety conditions, expressed in LTL f  , 
on both the environment and the agent, following the considerations made previously. In 
this setting, we are interested in solving the synthesis problem defined as follows.

Definition 3 (LTL f  under GR(1) Environment Specifications, adding safety conditions) 
The problem is described as a tuple P� = ⟨X,Y,Env,Goal⟩ where Env = ⟨�e

GR(1)
,�e

safe
⟩ , 

Goal = ⟨�a
task

,�a
safe

⟩ , and �e
GR(1)

 is a GR(1) formula and �a
task

 , �e
safe

 and �a
safe

 are LTL f  for-
mulas. Realizability of P checks whether

Synthesis of P computes a strategy �ag if exists.

This class of synthesis problem is able to naturally reflect the structure of many reactive 
systems in practice. We illustrate this with a relatively simple example representing a three-
way handshake used to establish a TCP connection.

Example 1 In this example, the server and client involved in TCP connection are consid-
ered as environment and agent, respectively. Let X = {SynAck} and Y = {Syn,Ack}.

• The server can only send a SYN-ACK message after the client has sent a SYN mes-
sage. �e

safe
= □¬Syn → □¬SynAck Note that, �e

safe
 is an LTL f  formula and represents 

a safety property with respect to all prefixes semantic (see Definition 2).
• If the client keeps sending a SYN message, the server eventually responds with a SYN-

ACK message. �e
GR(1)

= □◊Syn → □◊SynAck

• The client should eventually send an ACK message, establishing the TCP connection. 
�a
task

= ◊Ack

• The client can only send an ACK message after the server has sent a SYN-ACK mes-
sage. �a

safe
= □¬SynAck → □¬Ack

5.1  Reduction to LTL synthesis

Notice that there is a critical difference between the safety conditions of the environment 
and the ones of the agent, where we require the environment safety conditions to hold for-
ever (leading to an infinite trace), and the agent safety conditions to hold until fulfilling the 
agent task (expressed as an LTL f  formula such that leading to a finite trace). We start with 

∃𝜎ag∀𝜎env ∶ 𝗉𝗅𝖺𝗒(𝜎ag, 𝜎env) ⊧ 𝜑e
GR(1)

and 𝗉𝗅𝖺𝗒(𝜎ag, 𝜎env) ⊧∀ 𝜑e
safe

→

∃k.𝗉𝗅𝖺𝗒k(𝜎ag, 𝜎env) ⊧ 𝜑a
task

and 𝗉𝗅𝖺𝗒k(𝜎ag, 𝜎env) ⊧∀ 𝜑a
safe

.
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considering the case of adding environment safety conditions only, and then discuss the 
case of also adding agent safety conditions.

5.1.1  Adding environment safety conditions

Suppose Env = ⟨�e
GR(1)

,�e
safe

⟩ and Goal is an LTL f  formula �a
task

 , we are still able to 
reduce the problem of �e

GR(1)
∧ �e

safe
→ �a

task
 to LTL synthesis. The reduction here, how-

ever, is not as intuitive as the ones studied for LTL f  synthesis [21] or LTL f  synthesis 
under LTL environment specifications [14, 16]. This is because the safety condition �e

safe
 

is interpreted over all prefixes, and there is no known linear translation from this type of 
formula to LTL. Nevertheless, it is still possible to reduce P = ⟨X,Y,Env,Goal⟩ to LTL 
synthesis. Note that the problem can be rewritten as

where ¬�e
safe

 is interpreted using standard LTL f  semantics. That is to say, an agent strat-
egy �ag ∶ (2X)∗ → 2Y realizes Goal under environment specification Env, if for every 
� = �0,�1,… ∈ (2X∪Y)� consistent with �ag it is the case that

• if 𝜋 ⊧ 𝜑e
GR(1)

 , then

– 𝜋 ⊧∀ 𝜑e
safe

 is violated, or
– there exists k ≥ 0 such that 𝜋k ⊧ 𝜑a

task
.

This interpretation allows us to shift environment specification �e
safe

 to be part of the agent 
goal, such that Goal is satisfied by � if 𝜋 ⊧∀ 𝜑e

safe
 is violated or there exists k ≥ 0 such that 

𝜋k ⊧ 𝜑a
task

.
Regarding the first case, note that 𝜋 ⊧∀ 𝜑e

safe
 requires that every non-empty finite prefix 

of � satisfies �e
safe

 . That is, 𝜋0,… ,𝜋k ⊧ 𝜑e
safe

 , for every 0 ≤ k <∣ 𝜋 ∣ . Therefore, 𝜋 ⊧∀ 𝜑e
safe

 
is violated iff there exists a non-empty finite prefix of � that falsifies �e

safe
 in the standard 

LTL f  semantics. That is, 𝜋0,… ,𝜋k ⊧ ¬𝜑e
safe

 , for some 0 ≤ k <∣ 𝜋 ∣ , which is equivalent 
to 𝜋 ⊧ ¬𝜑e

safe
 in standard LTL f  semantics. Therefore, Goal is satisfied by � if there exists 

k ≥ 0 such that 𝜋k ⊧ (¬𝜑e
safe

) ∨ 𝜑a
task

.
Consequently, the original problem of Goal under environment specification Env is real-

ized by agent strategy �ag ∶ (2X)∗ → 2Y , if for every � = �0,�1,… ∈ (2X∪Y)� consistent 
with �ag it is the case that

• if 𝜋 ⊧ 𝜑e
GR(1)

 , then
• there exists k ≥ 0 such that 𝜋k ⊧ (¬𝜑e

safe
) ∨ 𝜑a

task

Since �e
GR(1)

 is an LTL formula, this is a standard problem of LTL f  synthesis under 
LTL environment specifications. Therefore, following the reduction in [14, 16], 
consider synthesis problem P = ⟨X,Y,Env,Goal⟩ , where Env = ⟨�e

GR(1)
,�e

safe
⟩ 

and Goal is �a
task

 , we are able to reduce it to solving the LTL synthesis problem 
⟨X,Y ∪ {alive},�e

GR(1)
→ LTL((¬�e

safe
) ∨ �a

task
)⟩ . The operation of LTL(�) takes an LTL f  

formula � as input, applies the LTL f -to-LTL translation introduced in [7], and returns the 
corresponding LTL formula � , that is equa-satisfiable to � . Moreover, proposition alive is 
introduced by LTL f -to-LTL translation and assigned as agent variable.

The following theorem guarantees the correctness of this reduction.

�e
GR(1)

→ (¬�e
safe

∨ �a
task

)
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Theorem  4 Let P = ⟨X,Y,Env,Goal⟩ , where Env = ⟨�e
GR(1)

,�e
safe

⟩ and Goal is �a
task

 , be 
the defined synthesis problem, P� = ⟨X,Y ∪ {alive},�e

GR(1)
→ LTL((¬�e

safe
) ∨ �a

task
)⟩ be the 

reduced LtL synthesis problem. We have P is realizable if and only if P′ is realizable.

Proof We prove the two directions separately.

• ←∶ Since P′ is realizable with respect to ⟨X,Y ∪ {alive}⟩ , there exists a winning strat-
egy ��

ag
∶ (2X)∗ → 2Y∪{alive} such that every trace �′ that is consistent with �′

ag
 satisfies 

¬�e
GR(1)

∨ LTL((¬�e
safe

) ∨ �a
task

) . Therefore, one of the following conditions holds for �′:

– ¬�e
GR(1)

 is true, and therefore the environment specification �e
GR(1)

 is violated. �′ thus 
realizes P by violating environment specification �e

GR(1)
.

– LTL((¬�e
safe

) ∨ �a
task

) is true, and therefore there exists a position k such that either 
𝜋�
0
,… ,𝜋�

k
⊧ ¬𝜑e

safe
 or 𝜋�

0
,… ,𝜋�

k
⊧ 𝜑a

task
 . The former happens, then environment 

specification �e
safe

 is violated, and �′ thus realizes P by violating environment speci-
fication �e

safe
 . The latter happens when agent task �a

task
 is accomplished, and �′ thus 

realizes P.

   Finally, in order to obtain the winning strategy �ag , we have �ag(�) = ��
ag
(�) ∣Y , 

where � ∈ (2X)∗.
• →∶ Since P is realizable, there exists a winning strategy �ag ∶ (2X)∗ → 2Y such that 

every trace � that is consistent with �ag realizes �a
task

 under environment specification 
Env. Therefore, one of the following conditions holds:

– The environment behaves in a way that violates �e
GR(1)

 , in which case environ-
ment specification �e

GR(1)
 does not hold. Therefore, � realizes P′ by satisfying 

�e
GR(1)

→ LTL((¬�e
safe

) ∨ �a
task

).
– The environment behaves such as violating �e

safe
 , in which case environment 

specification �e
safe

 does not hold. That is to say, there exists a position k such that 
𝜋0,… ,𝜋k ⊧ ¬𝜑e

safe
 . Since alive is assigned as an agent variable, we can construct �′ 

such that ��
i
= �i ∪ {alive} for 0 ≤ i ≤ k and ��

i
= �i for i > k . Thus, we have �′ such 

that 𝜋� ⊧ LTL(¬𝜑e
safe

) . Therefore, 𝜋� ⊧ 𝜑e
GR(1)

→ LTL((¬𝜑e
safe

) ∨ 𝜑a
task

) by satisfying 
the right side of the implication LTL((¬�e

safe
) ∨ �a

task
).

– Goal is accomplished, and therefore �a
task

 holds. That is to say, there exists k such 
that 𝜋k ⊧ 𝜑a

task
 . We again construct �′ similarly as above, and 𝜋� ⊧ LTL(𝜑a

task
) holds. 

Therefore, 𝜋� ⊧ 𝜑e
GR(1)

→ LTL((¬𝜑e
safe

) ∨ 𝜑a
task

) by satisfying the right side of the 
implication LTL((¬�e

safe
) ∨ �a

task
).

   Finally, we obtain the agent winning strategy as follows. Given k the position in which 
LTL((¬�e

safe
) ∨ �a

task
) is satisfied, we have that ��

ag
(X0,… ,Xi) = �ag(X0,… ,Xi) ∪ {alive} 

for 0 ≤ i ≤ k , and ��
ag
(X0,… ,Xi) = �ag(X0,… ,Xi) , for i > k.

  ◻

5.1.2  Adding environment and agent safety conditions

We now have Env = ⟨�e
GR(1)

,�e
safe

⟩ and Goal = ⟨�a
task

,�a
safe

⟩ , where �a
safe

 is expressed in 
LTL f  on all prefixes. As mentioned above, the agent safety condition requires that the 
agent remains in desired boundaries until fulfilling the task. In this case, there is no known 
linear translation from an arbitrary �a

safe
 directly to LTL f  or LTL. However, later in the 
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experiments, we show that for specific �a
safe

 formulas, one can still obtain an equivalent 
LTL f  formula � by analyzing the properties specified by �a

safe
 . Let P = ⟨X,Y,Env,Goal⟩ , 

where Env = ⟨�e
GR(1)

,�e
safe

⟩ and Goal = ⟨�a
task

,�a
safe

⟩ , be the defined synthesis problem. 
Suppose there is an LTL f  formula � that is equivalent to �a

safe
 , we are able to reduce the 

original problem to P̂ = ⟨X,Y,Env, Ĝoal⟩ , where Env = ⟨�e
GR(1)

,�e
safe

⟩ , Ĝoal = ⟨�̂a
task

⟩ , 
and �̂a

task
= �a

task
∧ � . This reduction allows us to solve P by applying the reduction from 

P̂ to LTL synthesis described in Sect. 5.1.1.

5.2  Reduction to GR(1) game

We now show that the synthesis problem P′ can be reduced into a GR(1) game GP′ , analo-
gously to the construction of GP in Sect. 3. To solve this problem, the first thing to note is 
that �a

task
∧ �a

safe
 can be represented by a DA with reachability-safety condition. As we will 

show later in this section, this DA can then be reduced into one with a pure reachability 
condition. Now, since the environment’s goal is to satisfy �e

GR(1)
∧ �e

safe
∧ ¬(�a

task
∧ �a

safe
) , 

then we can reduce P′ to solving a GR(1) game whose game arena is the product of the DA 
for �e

safe
 with safety condition and the complement of the DA for �a

task
∧ �a

safe
 with reach-

ability condition, i.e. a DA with safety condition. Note that in what follows, we consider 
Σ = 2X∪Y.

To solve the synthesis problem P′ we proceed as follows: 

1. Build the DA Aa
t
= (Σ, S1, s

0
1
, �1, Reach(T1)) of �a

task
 [8].

2. Build the DA Aa
s
= (Σ, S2, s

0
2
, �2, Safe(T2 ∪ {s0

2
})) that accepts a trace � iff 𝜋 ⊧∀ 𝜑a

safe
 (see 

Sect. 6.3.1).
3. T a k e  t h e  b o u n d e d  i n t e r s e c t i o n  o f  Aa

t
 a n d  Aa

s
 i n t o 

Aa
t∧s

= (Σ, S1 × S2, (s
0
1
, s0

2
), ��, Reach-Safe(T1, T2 ∪ {s0

2
}) . Note that Aa

t∧s
 accepts a trace 

� iff there exists k ≥ 0 such that 𝜋k ⊧ 𝜑a
task

 and 𝜋k ⊧∀ 𝜑a
safe

.
4. Reduce Aa

t∧s
 to Aag = (Σ, S1 × S2, (s

0
1
, s0

2
), ��, Reach(T)) , as described later in this section. 

We have that L(Aa
t∧s
) = L(Aag).

5. Complement Aag into Aag = (Σ, S1 × S2, (s01, s
0
2
), ��, Safe(T �)) with T � = (S1 × S2)⧵T .

6. Build the DA AEnv = (Σ,Q, q0, �
e, Safe(R)) that accepts a trace � iff 𝜋 ⊧∀ 𝜑a

safe
.

7. Intersect Aag and AEnv into a DA B = (Σ, S1 × S2 × Q, (s0
1
, s0

2
, q0), �, Safe(T

� × R)) . Note 
that B accepts exactly the safe prefixes for the environment.

8. Define a GR(1) game GP′ with the environment as the protagonist, where the arena is 
given by B and the winning condition is given by �e

GR(1)
 (see Sect. 3).

9. Solve this game for the antagonist, i.e. the agent.

We now detail the construction at Step  4 above. Let A = (Σ, S, s0, �, �) be a DA with a 
reachability-safety condition � = Reach-Safe(T1, T2) . We describe a reduction to a 
A� = (Σ, S, s0, �

�, ��) with a reachability condition �� = Reach(T) such that L(A�) = L(A) . 
We define the transition relation of A′ as follows:

Intuitively, the only change we make is to turn all non-safe states (states not in T2 ) into sink 
states. We then define the reachability condition as �� = Reach(T1 ∩ T2) . Intuitively, we 

��(s, �) =

{
�(s, �) if s ∈ T2
s if s ∉ T2
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want to reach a goal state (a state in T1 ) that is also safe (i.e., it is in T2 ). The two automata 
are indeed equivalent:

Lemma 5 Let A and A′ be as above, then L(A�) = L(A).

Proof (⊇ ) Assume � = �0�1 … ∈ L(A) . Then, the run r = s0s1s2 … = A(�) has a prefix 
rk that ends in T1 and for which every state visited (including the last one) is in T2 . Let 
r� = A�(�) be the corresponding run in A′ . We prove that (r�)k = rk and (r�)k satisfies the 
reachability condition �′.

To prove that (r�)k = rk , note that both start at s0 and that every state si in rk is in T2 . 
Therefore, ��(si,�i) = �(si,�i) for every state si in rk , by the definition of �′ . By induction, 
(r�)k = rk.

To prove that (r�)k satisfies the reachability objective �′ , we need to prove that 
���((r�)k) ∈ T1 ∩ T2 . But we already know that ���(rk) ∈ T1 and ���(rk) ∈ T2 . Since (r�)k = rk , 
the conclusion follows.

(⊆ ) Assume � = �0�1 … ∈ L(A�) . Then, the run r� = s0s1s2 … = A�(�) has a pre-
fix (r�)k that ends in T1 ∩ T2 . Let r = A(�) be the corresponding run in A . We prove that 
rk = (r�)k and rk satisfies the reachability-safety condition �.

To prove both of these, we first prove that all states in (r�)k are in T2 . By the definition of 
�′ , if there was a state s in (r�)k that was not in T2 , then every following state would also be 
s, and therefore not in T2 . But we already know that ���((r�)k) ∈ T1 ∩ T2 , and therefore the 
last state is in T2 . Thus, all states in (r�)k must be in T2.

To prove that rk = (r�)k , note that both rk and (r�)k start at s0 , and that �(si,�i) = ��(si,�i) 
for every state in T2 . Since we have already proved that all states in (r�)k are in T2 , it follows 
by induction that rk = (r�)k.

To prove that rk satisfies the reachability-safety condition � , note that ���((r�)k) ∈ T1 ∩ T2 , 
and therefore ���((r�)k) ∈ T1 . We have also proved that all states in (r�)k are in T2 . Since 
rk = (r�)k , this is enough to prove that rk satisfies � .   ◻

Hence, we are able to reduce the synthesis problem P� = ⟨X,Y,Env,Goal⟩ to a GR(1) 
game as well.

5.3  Correctness

The correctness of the reduction described above is illustrated by the following theorem.

Theorem 6 P� = ⟨X,Y,Env,Goal⟩ , with Env = ⟨�e
GR(1)

,�e
safe

⟩ and Goal = ⟨�a
task

,�a
safe

⟩ , is 
realizable iff the antagonist has a winning strategy in the GR(1) game GP′.

Proof The proof here naturally follows the proof for Theorem  1. This is because the 
accomplishing Goal = ⟨�a

safe
,�a

task
⟩ can be reduced to a reachability condition �a

task

′ , as 
stated by Lemma  5. Moreover, violating environment safety condition �e

safe
 can be con-

sidered as a reachability condition as well, thus we have ¬�e
safe

 . Consequently, following 
the detailed constructions described in Sect.  5, we can consider the original problem of 
(�e

GR(1)
∧ �e

safe
) → (�a

task
∧ �a

safe
) as �e

GR(1)
→ (¬�e

safe
∨ �a

task

�) , where (¬�e
safe

∨ �a
task

�) can 
be considered as a reachability condition, as in the problem defined in Sect. 3. Therefore, 
the solution of reducing to a GR(1) game remains correct.   ◻
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5.3.1  Complexity

We study the computational properties of the synthesis technique presented in this section, 
and analyze the operations required in our synthesis technique in detail.

Theorem 7 The synthesis problem P = (X,Y,Env,Goal) can be solved with the algorithm 
described above in 2exptime (the problem is indeed 2exptime-complete).

Proof We first prove the membership. Specifically, building the DAs for �a
task

 and �a
safe

 
takes doubly exponential time in the size of �a

task
 and �a

safe
 , respectively. Second, the com-

putation of the bounded intersection between the two DAs, and the reduction to a DA with 
reachability condition and complementation is done in linear time in the size of the autom-
aton. Then, building the corresponding DA with safety condition for �e

safe
 takes double 

exponential time in the size of �e
safe

 , complementing it and performing the intersection with 
the DA built previously takes linear time in the size of the automaton. Finally, building the 
GR(1) game takes linear time in the size of the automaton and solving the corresponding 
GR(1) game is quadratic in the size of the game.

The hardness is immediate from 2expTime-completeness of LTL f  synthesis itself [8]. 
Notice that as a special case of our problem, we have standard LTL f  synthesis by consid-
ering trivially �e

GR(1)
 and �e

safe
 to be true.   ◻

6  Experimental analysis

We implemented the approach described in Sect. 5, which subsumes the method described 
in Sect. 3, in a tool called GFSynTh  .1 In this section, we first describe the implementation 
of GFSynTh, and then introduce two representative benchmarks that are able to capture 

Fig. 1  Illustration of Finding 
Nemo with n = 4 1 2

3

4

56

7

8

1 Tool (also benchmarks) available at https:// github. com/ Shufa ng- Zhu/ GFSyn th.

https://github.com/Shufang-Zhu/GFSynth
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commonly used sensor-based robotic tasks. An empirical evaluation is shown at the end to 
show the performance of our approach.

6.1  Implementation

GFSynTh runs in three steps: automaton construction, reduction to GR(1) game, and 
GR(1) game solving. In the first step, we use code from the LTL f -synthesis tool SyFT 
[21] to read and parse the input and construct corresponding DAs. All DAs in GFSynTh 
are symbolically represented by Binary Decision Diagrams (BDDs), as in [21], with each 
explicit state represented as an assignment over a set of state variables. Therefore, each 
state in the automaton for the bounded intersection of �a

safe
 and �a

task
 is a concatenation of 

the state assignments from both automata. In symbolic representation, the transition func-
tion is given by a sequence of BDDs, each computing the next assignment for one of the 
state variables. Analogously, the transition function in the bounded-intersection automaton 
can be obtained by concatenating the transition functions from both automata. Regarding 
the reachability-safety to reachability reduction, where the key part is turning all non-safe 
states into sink states, consider the set of non-safe states represented by BDD Bunsafe . For 
each BDD Bz in the transition function corresponding to state variable z, if the current state 
is a non-safe state, we restrict Bz to return the same value as in the current state assign-
ment. Otherwise, we don’t change the value that Bz is supposed to return. This can be com-
puted as (¬Bunsafe ∧ Bz) ∨ (Bunsafe ∧ z) . The necessary BDD operations are available in the 
CUDD−3.0.0 [24] BDD library. Finally, we solve the GR(1) game in the input format of 
the GR(1)-synthesis tool SLuGS [25]. To solve and compute a strategy for the antagonist, 
we call SLuGS using the -CounterStrategy option.

6.2  Benchmarks

For the experimental evaluation, we use two sets of benchmarks based on examples of 
reactive synthesis from the literature, slightly modified to adapt them to our framework. 
Both examples involve an agent navigating around an environment in order to perform a 
task. In both cases, we can use a parameter n to scale the number of regions, and thus 
measure how our tool performs as the size of the problem grows.

6.2.1  Finding Nemo

This example is based on the running example from [6]. The agent is a robot that moves 
in a workspace consisting of a circular hallway with n sections, each of which leads to two 
rooms with no other exits, adding up to 3n regions in total. Figure 1 shows an illustration 
with n = 4.

The agent is searching for “Nemo”, who can move around the odd-numbered rooms. 
The robot has a sensor that detects if Nemo is in the current region the robot is in, and 
has a camera that it can use to record Nemo if it finds him. The input variable SenseNemo 
indicates whether the sensor has detected Nemo in the current room. The sensor can also 
detect if Nemo is leaving the region, which is represented by the input variable NemoLeav-
ing. The output variables R = {Hallway1,… ,Hallwayn,Room1,… ,Room2n} indicate 
which region the robot is currently at. The output variable CameraOn indicates whether 
the robot’s camera is turned on. We use T ⊆ R2 to denote the transition relation between 
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regions. Specifically, (r, r�) ∈ T  iff the robot can move directly from region r to region r′ . 
Following the room layout described above, we define T as follows:

The following are the components of the specification, and note that all the safety condi-
tions are expressed in LTL f  on all prefixes:

• Nemo can only be found in the odd-numbered rooms. (environment safety condition) 

• Nemo leaves a room if and only if the sensor has detected so in the previous 
timestep. (environment safety condition) 

• If Nemo is found in a room, then Nemo will stay in that room for at least one time 
step after it is found. (environment safety condition) 

• If the rooms where Nemo appears are visited infinitely often, then Nemo is found 
infinitely often. (environment GR(1) condition) 

• Only one region can be visited at a time. (agent safety condition) 

T =
⋃

1≤i≤n

{(Hallwayi,Hallway(i−1) mod n),

(Hallwayi,Hallwayi),

(Hallwayi,Hallway(i+1) mod n),

(Hallwayi,Room2i−1),

(Hallwayi,Room2i),

(Room2i−1,Room2i−1),

(Room2i−1,Hallwayi),

(Room2i,Room2i),

(Room2i,Hallwayi)}

safe1
env

= □

((
n⋀

i=1

¬Room2i−1

)
→ ¬SenseNemo

)

safe2
env

= □((SenseNemo ∧

2n⋁

i=1

(
Roomi ∧ ◦Roomi

)
)

→ (◦SenseNemo ↔ ¬NemoLeaving))

safe3
env

= □((¬SenseNemo ∧ ◦SenseNemo∧
2n⋁

i=1

(
◦Roomi ∧ ◦◦Roomi

)
) →

◦◦SenseNemo)

GR(1)env =

(
n⋀

i=1

□◊Room2i−1

)
→ □◊SenseNemo
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• The robot can only move to a region that has a connection to the region it is currently 
in. (agent safety condition) 

• The camera should not be on if Nemo is not present to be recorded. (agent safety 
condition) 

• The robot should get 3 timesteps worth of footage of Nemo. (agent task) 

6.2.2  Workstation resupply

This example is based on the scenario presented in [26] of a robot responsible for resup-
plying workstations in a factory with parts from a stockroom, as illustrated in Fig. 2

There are n stations that the robot needs to resupply. In order to resupply a station, 
the robot must first pick up a part from the stockroom, then bring it to the workstation. 
A workstation may be occupied, in which case the robot has to wait until it is vacated 
before going inside. The environment must guarantee that the workstations will be 

safe1
agn

= □
⋀

r∈R

(
r →

⋀

r�≠r

¬r�

)

safe2
agn

= □
⋀

r∈R

(
r →

⋁

(r,r�)∈T

∙r�

)

safe3
agn

= □(¬SenseNemo → ¬CameraOn)

taskagn = ◊(SenseNemo ∧ CameraOn∧

◦◊(SenseNemo ∧ CameraOn∧

◦◊(SenseNemo ∧ CameraOn)))

Fig. 2  Illustration of Workstation 
Resupply 

Stockroom

Workstation_1

Workstation_2

Workstation_3

Workstation_n

. 

. 

.
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vacated infinitely often and that they won’t become occupied when the robot is already 
inside.

We use a map consisting of 2n + 2 regions. The set of regions R is repre-
sented by the output variables Stockroom, Station1,… , Stationn , OutsideStockroom, 
OutsideStation1,… ,OutsideStationn . We define the transition relation T as follows:

The output variables also include PickUpPart and Resupply, representing the actions that 
the robot can take in the stockroom and workstations, respectively. The input variables are 
Occupied1,… ,Occupiedn , which indicate if each workstation is occupied at a given point 
in time.

The following are the components of the specification, and note that all the safety condi-
tions are expressed in LTL f  on all prefixes:

• A station cannot become occupied after the robot is already inside. (environment safety 
condition) 

• Every workstation must be vacated infinitely often. (environment GR(1) condition) 

• Only one region can be visited at a time. (agent safety condition) 

• The robot can only move to a region that has a connection to the region it is currently 
in. (agent safety condition) 

T =(Stockroom,OutsideStockroom) ∪

(OutsideStockroom, Stockroom) ∪
⋃

1≤i≤n

{(Stationi,OutsideStationi),

(OutsideStationi, Stationi),

(OutsideStationi,OutsideStockroom),

(OutsideStockroom,OutsideStationi)} ∪⋃

1≤i≤n

⋃

1≤j≤n

{(OutsideStationi,OutsideStationj)} ∪

{(r, r)|r ∈ R}

safeenv =

n⋀

i=1

□((¬Occupiedi ∧ ◦Stationi) →

¬◦Occupiedi)

GR(1)env = □◊⊤ →

(
n⋀

i=1

□◊¬Occupiedi

)

safe1
ag

= □
⋀

r∈R

(
r →

⋀

r�≠r

¬r�

)

safe2
ag

= □
⋀

r∈R

(
r →

⋁

(r,r�)∈T

∙r�

)
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• The robot cannot be in a station if it is occupied. (agent safety condition) 

• The robot needs to be inside the stockroom to pick up a part. (agent safety condition) 

• The robot needs to be inside a station to resupply. (agent safety condition) 

• The robot can only resupply a station if it has picked up a part since last resupplying. 
Intuitively, this also requires that whenever Resupply holds, it only holds for one time 
step. (agent safety condition)2

• The robot should resupply all workstations. (agent task) 

6.3  Empirical evaluation

In this section, we describe in detail the techniques that allow us to compare GFSynTh 
against a state-of-the-art LTL synthesis tool STRix [27], the winner of the LTL-synthesis 
track of the synthesis competition SYNTCOMP 2020 [28], using it as the baseline of com-
parison to our tool. Note that since our benchmarks assume that the agent moves first, 
while STRix assumes the environment moves first, we had to slightly modify the specifica-
tions by adding a ◦ before all variables controlled by the environment, a transformation that 
essentially corresponds to ignoring the first move by the environment.

Consider synthesis problem P = ⟨X,Y,Env,Goal⟩ , the alternative approach of reducing 
to LTL synthesis exists regarding different configurations of Env and Goal, as shown in 
Sects. 3 and 5. In particular, when considering both GR(1) and environment safety condi-
tions  (no agent safety conditions), there exists a linear time reduction to LTL synthesis. 
However, for the case of adding also agent safety conditions, although the reduction to 
LTL synthesis works, there is no naive reduction to LTL synthesis. This is because there is 
no known linear translation from an arbitrary �a

safe
 directly to LTL f  or LTL. Nevertheless, 

in both of benchmarks Finding Nemo and Workstation Resupply, we are able to obtain an 

safe3
ag

= □
n⋀

i=1

(
Occupiedi → ¬Stationi

)

safe4
ag

= □(PickUpPart → Stockroom)

safe5
ag

= □

(
Resupply →

n⋁

i=1

Stationi

)

safe6
ag

= ◊(last ∧ Resupply) →

(◊(PickUpPart∧

¬Resupply U (last ∧ Resupply)))

taskag =

n⋀

i=1

◊(Resupply ∧ Stationi)

2 We use last as a shorthand for ∙⊥ , denoting the last point in the prefix.
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equivalent LTL f  formula by analyzing the properties specified by �a
safe

 . We now elaborate 
their details.

6.3.1  Reduction to LTL synthesis with proposed benchmarks

Suppose Env = ⟨�e
GR(1)

,�e
safe

⟩ and Goal = ⟨�a
task

,�a
safe

⟩ , where �a
safe

 is expressed in LTL f  
on all prefixes. Note that in both of benchmarks Finding Nemo and Workstation Resup-
ply, �a

safe
 is a conjunction over smaller safety conditions safe∗

ag
 . Basically, safe∗

ag
 is speci-

fied in one of the following three patterns, where � denotes a propositional formula: 

1. safe∗
ag

= □(�)
2. safe∗

ag
= □(� →

⋁
i ∙�i)

3. safe∗
ag

= ◊(last ∧ Resupply) → (◊(PickUpPart ∧ ¬Resupply U (last ∧ Resupply)))

We now describe the corresponding equivalent LTL f  formula safe∗
ag

� that accepts the same 
language as each pattern of safe∗

ag
 : 

1. safe∗
ag

� = □(�) (no changes)
2. safe∗

ag
� = □(� →

⋁
i ∙�i) (no changes)

3. safe∗
ag

� = ((¬Resupply)WPickUpPart) ∧□(Resupply → (∙((¬Resupply)WPickUpPart)))

The equivalence between each pattern of safe∗
ag

 of the corresponding LTL f  for-
mula safe∗

ag
� can be shown by comparing the corresponding DAs respectively. It is 

worth noting that, we only consider finite safety of agent safety conditions. There-
fore, we reload the definition of DA in Sect.  2 with finite-trace interpretation. Basi-
cally, the reachability condition is reloaded as Reach(T) = {s0s1s2 … sk ∈ S∗|sk ∈ T} 
requires that the run of finite trace � on D ends in T. The safety condition is reloaded as 
Safe(T) = {s0s1s2 … sk|∀0 ≤ i ≤ k ∶ si ∈ T} requires that the run of finite trace � on D 
only visits states in T.

We now show how to obtain a DA of an LTL f  formula on all prefixes. Consider for-
mula safe∗

ag
 on all prefixes. In order to obtain a DA D such that � is accepted by D iff 

𝜋 ⊧∀ safe∗
ag

 , we proceed as follows: 

1. Construct the DA A = (Σ, S, s0, �, Reach(T)) such that � is accepted by A iff 𝜋 ⊧ safe∗
ag

.
2. We construct D = (Σ, S, s0, �

�, Safe(T)) based on A = (Σ, S�, s0, �, Reach(T)) as follows. 
Note that a sink state is a non-accepting state that has only one outgoing edge but going 
back to itself.

• S� =

{
S if there is a sink state in A

S ∪ {sink} if there is no sink state in A

• ��(s, �) =

{
sink if �(s, �) ∉ T

�(s, �) if �(s, �) ∈ T

Consider an arbitrary trace � ∈ Σ∗ . By the construction of D , � is accepted by D iff the 
corresponding run of � only visits T. That is, for every 0 ≤ k <∣ 𝜋 ∣ , the corresponding run 
of �0,… ,�k ends in T, and therefore 𝜋0,… ,𝜋k ⊧ 𝜑 . By definition, 𝜋 ⊧∀ safe∗

ag
.

The DA D′ of the corresponding LTL f  formula safe∗
ag

� can be achieved directly using 
existing LTL f -to-DA tools [21]. By checking the equivalence between the DA D and the 
DA D′ , we can address the equivalence check between LTL f  formula safe∗

ag
 over all pre-

fixes and LTL f  formula safe∗
ag

�.
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We now can reduce to LTL synthesis following the subsequent steps described in 
Sect. 5.1.2.

Baseline and Experiment Setup. All tests were run on a computer cluster. Each test had 
exclusive access to a node with Intel(R) Xeon(R) CPU E5-2650 v2 processors running at 
2.60GHz. Time out was set to two hours (7200 s).

Correctness. Our implementation was verified by comparing the results returned by 
GFSynTh with those from STRix. No inconsistency encountered for the solved cases.

6.3.2  Results

We compared GFSynTh against STRix by performing an end-to-end (from specification 
to winning strategy if realizable) comparison experiment over the benchmarks described 
in Sect. 6.2. Comparison on both classes of benchmarks show that GFSynTh outperforms 
STRix.

Figures  3 and 4 show the running time of GFSynTh and STRix on both benchmarks, 
respectively. The x-axis indicates the value of the scalable parameter n for each benchmark. 
The y-axis is in log scale. Results of cases on which both tools failed are not shown. For 
benchmark Finding Nemo, in small cases where n ≤ 2 , there is no large gap in the time 
cost. However, as n grows, the time cost of GFSynTh increases linearly, while the time cost 
of STRix increases exponentially. Regarding benchmark Workstation Resupply, the expo-
nential gap is not so obvious. Nevertheless, as the benchmark grows, STRix almost always 
takes around 10 times longer than GFSynTh. STRix also failed for n = 5.
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7  Related work

There has been extensive studies on the problem of LTL f  synthesis under environment 
specifications. The paper [29] introduces environment specifications in LTL making the 
observation that even if the agent goal is expressed in LTL f  the environment specifications 
should be expressed in LTL on infinite traces, since it is the agent and not the environment 
that decides when to stop. This observation was already implicit in earlier works [9, 10] on 
planning for LTL f  goals  (the planning domain can be considered as environment safety 
specifications), indeed in FOND planning the environment fairness specification of FOND 
is already on infinite traces, but [12] spells this point out in details. [12] also gives a reduc-
tion of the LTL f  synthesis under environment specifications problem to LTL synthesis and 
a specific technique to work with environment safety and co-safety specifications. Interest-
ingly, environment specifications were also studied in [11, 30] and then in [15] under the 
perspective of seeing environment specifications as sets of environment strategies.

In [31] one of the bases of our technique was developed: create the game arena out of 
the LTL f  goals, and impose on that arena simple fairness and stability conditions, both 
subsumed by GR(1). Note, however, that in general the arena built from the LTL f  for-
mula must be combined with the arena coming from the environment specifications, and 
if expressed in LTL this will lead to solving a parity game, but above all the construction 
of the arena for the LTL part will require determinization of Büchi automata for which we 
have no scalable algorithms. This is spelled out in [16].

In this paper, we consider as environment specifications only safety conditions and 
GR(1) formulas, again avoiding Büchi determinization. GR(1) has been used before in syn-
thesis/planning to specify temporally extended goal on infinite traces, e.g., in [32], or in 
fact much earlier in [29, 33]. Here instead we are using GR(1) for the environment specifi-
cations, while keeping the goal on finite traces in LTL f  . In this way we take advantage of 
the two most successful cases in synthesis, namely GR(1) and LTL f .
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8  Conclusion and future work

In this paper, we brought together the two most successful stories in LTL synthesis, GR(1) 
and LTL f  , obtaining a form of reactive synthesis which is highly expressive yet still scal-
able. More specifically, we studied the problem in the form of LTL f  synthesis under 
environment specifications, where the environment specification is expressed as a GR(1) 
formula, and the agent task is specified as an LTL f  formula. Our approach bases on a 
reduction to GR(1) game, where the game arena only derivates from the LTL f  part, and 
the game winning condition comes from by the GR(1) part. In particular, the crux of the 
reduction is that we aim to obtaining a winning strategy of the antagonist of the GR(1) 
game, which, in fact, leads to solving a dual GR(1) game. Moreover, we enriched the prob-
lem setting by allowing safety conditions on both players. To do so, we first presented a 
different way of specifying safety properties via LTL f  formulas, which is able to cover 
all first-order expressible safety properties, and provide a natural way of expressing safety 
properties. We showed that, with additional safety conditions on both players, our synthesis 
approach of reducing to GR(1) game stills works. Finally, we integrated our approach in a 
tool GFSynTh, and proved its efficiency through empirical evaluations.

Looking deeper into GFSynTh, we observed that on those cases where GFSynTh fails, 
the automata can not be constructed by the mOnA library employed by SyFT for automata 
construction from LTL f  . There have been various studies on LTL f -to-automata transla-
tion. Possibly the most successful attempt is the compositional approach presented in [34, 
35]. For future work, we will take this approach into account to improve GFSynTh.
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