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Selectively augmented attention network for
few-shot image classification

Xiaoxu Li, Xiangyang Wang, Rui Zhu, Zhanyu Ma, Senior Member, IEEE, Jie Cao, Jing-Hao Xue, Senior
Member, IEEE

Abstract—Few-shot image classification is a challenging task
that aims to learn from a limited number of labelled training
images a classification model that can be generalised to unseen
classes. Two strategies are usually taken to improve the classifica-
tion performances of few-shot image classifiers: either applying
data augmentation to enlarge the sample size of the training set
and reduce overfitting, or involving attention mechanisms to high-
light discriminative spatial regions or channels. However, naively
applying them to few-shot classifiers directly and separately may
lead to undesirable results; for example, some augmented images
may focus majorly on the background rather than the object,
which brings additional noises to the training process. In this
paper, we propose a unified framework, the selectively augmented
attention (SAA) network, that carefully integrates the best of
the two approaches in an end-to-end fashion via a selective
best match module to select the most representative images
from the augmented training set. The selected images tend to
concentrate on the objects with less irrelevant background, which
can assist the subsequent calculation of attentions by alleviating
the interference from background. Moreover, we design a joint
attention module to jointly learn both the spatial and channel-
wise attentions. Experimental results on four benchmark datasets
showcase the superior classification performance of the proposed
SAA network compared with the state-of-the-arts.

Index Terms—Few-shot image classification, Data augmenta-
tion, Attention mechanism, Metric-based methods

I. INTRODUCTION

DEEP learning has achieved significant advancements in
the field of computer vision, reaching human-level accu-

racy when the deep model is trained on a substantial amount
of labelled data. However, the cost of labelling and training
becomes prohibitive for large-scale datasets. Therefore, it
is worthwhile to investigate few-shot learning that aims to
maintain efficient and accurate classification when there are
only few labelled images for training [1].

Metric-based methods that make class membership assign-
ments based on proper metric functions are effective solutions
for few-shot image classification [2], [3]. The metric function
can be either pre-defined by domain knowledge [4] or properly

Corresponding author: Rui Zhu (email: rui.zhu@city.ac.uk)
X. Li, X. Wang, J. Cao are with the School of Computer and Communi-

cation, Lanzhou University of Technology, Lanzhou 730050, China (email:
lixiaoxu@lut.etu.cn, 2395792430@qq.com, caoj@lut.edu.cn).

R. Zhu is with the Faculty of Actuarial Science and Insurance, Bayes
Business School, City, University of London EC1Y 8TZ, UK.

Z. Ma are with the Pattern Recognition and Intelligent System Laboratory,
School of Artificial Intelligence, Beijing University of Posts and Telecommu-
nications, Beijing 100876, China (email: mazhanyu@bupt.edu.cn).

J.-H. Xue is with the Department of Statistical Science, University College
London, London WC1E 6BT, UK (email: jinghao.xue@ucl.ac.uk).

fφ
Support

Query

Augmented Support

Augmented Query
Few-shot Networks Metric(a)

fφ
Support

Query

S-attention

Q-attention
Metric(b)

fφ
S-attention

Q-attention
Metric

Support

Query

Augmented Support

Augmented Query
Selection process(c)

Fig. 1. Three strategies to improve the performance of few-shot image
classification. (a) Data augmentation to reduce the overfitting arising from
the limited amount of training data. (b) Attention mechanism to assign
higher weights to more discriminative features or channels. S-attention and
Q-attention denote the attentions for support and query sets, respectively. The
attentions can be in either spatial or channel-wise dimensions or both. (c)
A unified framework proposed in this paper to carefully integrate both data
augmentation and attention mechanism, via a key step of selecting the most
representative augmented images to obtain attentions in an end-to-end fashion.

(a) The oiginal image (b) The augmented image

……
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set by random cropping image

Fig. 2. An example of the most representative image selected from the
augmented image set.

learnt via training data [5]. ProtoNet [4] is a classical metric-
based method, which classifies the test image by calculating
its Euclidean distances to the class prototypes, i.e. the simple
averages of each class in the support set. DN4 [6] adopts
a novel image-to-class metric based on local descriptors,
using the local features of samples to learn feature metrics.
BSNet [7] uses a dual similarity network as the metric,
utilising a combination of two different metrics to learn fewer
but more discriminative spatial regions to assist classification.
NDPNet [8] uses a feature re-abstraction embedding network
that projects local features into the similarity metric learning
network, which aims to learn discriminative projection factors.
It adopts the Euclidean distance to measure the dissimilarity
between constructed features and original features.
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Two strategies are usually implemented to improve the
classification performances of few-shot classifiers. First, since
there are only few training images for each class, few-shot
methods can suffer from overfitting easily. Thus, data augmen-
tation techniques aiming at increasing the sample size and the
diversity of the training set are effective solutions to reduce
overfitting, as illustrated in Fig. 1(a). Commonly adopted data
augmentation methods include image rotation, image flip-
ping, random cropping, noise injection and image mixing [9].
Generative methods such as GAN [10] are also powerful to
generate new images. Data augmentation techniques have been
well explored in the few-shot setting. For example, Kumar
et al. [11] investigate six feature-space data augmentation
methods and demonstrate that they can improve classification
performance in few-shot setting. Wang et al. [12] propose a
novel feature-space augmentation method based on rectified
normal distribution by considering the relationship between
base and novel classes. However, it is important to note that
data augmentation methods can introduce noises and may even
carry the risk of overfitting due to inappropriate augmentation,
which can impact the final classification performance in a
negative way [9]. For example, when creating new images
by random cropping, some cropped patches may concentrate
mostly on the background rather than the object, which can
bring additional noises to the training process. We present one
example in Fig. 2, where some random cropped patches focus
on the background of water rather than the object of bird.

Second, instead of treating all features equally, identifying
and rewarding those features with high discriminative power
can boost the accuracy of few-shot image classification. This
could be achieved via additional attention mechanisms to
obtain attentions that are usually either in the spatial dimension
to weigh discriminative spatial features or in the channel
dimension to highlight discriminative channels, as illustrated
in Fig. 1(b). For instance, Song et al. [13] propose a fusion
spatial attention method in both the image space and the em-
bedded space. During the fusion process, different weights are
assigned to different positions in the two spaces, and the infor-
mation is fused and integrated into existing few-shot learning
methods. Yan et al. [14] propose a meta learning method by
considering spatial attention to locate relevant object regions.
They also involve a special task-wise attention mechanism to
select similar training data for classification. Some works also
design the channel-wise attention mechanisms. For example,
Hu et al. [15] propose a squeeze and extraction (SE) block to
clarify the interdependence between channels. Lee et al. [16]
introduce the task descrepancy maximisation (TDM) module
to learn task-wise channel weights. Moreover, in other com-
puter vision areas, such as person re-identification, spatial and
channel attentions are learnt jointly [17].

However, to the best of our knowledge, there are no existing
methods that carefully combine the two strategies together to
further enhance the performance of few-shot image classifi-
cation. In this paper, we propose a unified framework, the
selectively augmented attention (SAA) network, that integrates
the strengths of both approaches in an end-to-end fashion.
Our motivation is presented in Fig. 1(c). In this framework,
after extracting support and query features from the augmented

support and query sets, we propose a key step to select
the most representative feature from each set and calculate
attentions based only on the selected ones. In this way, we
aim to alleviate the potential noises brought by the augmented
samples and assist the subsequent attention calculation with
less contamination in the training data.

In this paper, for illustration purposes, we adopt the random
cropping technique to augment the support and query sets,
but other augmentation methods or combinations of different
augmentation methods can be utilised as well. With random
cropping, we obtain patches in random sizes from the original
image to enlarge the sample size of the training set. For the
selection process, we propose a novel selective best match
(SBM) module that can select the features focusing mostly on
the objects and eliminate potential background noises. Here
each feature corresponds to a specific image passing through
the embedding module, and feature selection aims to find the
feature corresponding to the most representative image in the
augmented set of an original image. Specifically, we obtain the
pairwise cosine similarities between all augmented support and
query features. From the augmented feature set of each support
image, we select the one with the highest mean similarity to
all query features as the representative, while for each query
image, we select the one that is mostly similar to all support
features. In this way, images concentrating on the objects, e.g.
with the object in the centre of the image, are usually selected,
while those background patches are ignored in the subsequent
attention calculation because they tend to be less similar to
other images. Fig. 2(c) shows the the most representative
image selected by the proposed SBM module, which focuses
mostly on the bird’s head and beak that are usually the areas
helpful to identify the bird species. Moreover, we design
a joint attention (JA) module to encourage the model to
jointly learn discriminative spatial and channel-wise features.
Since only the selected clean features focusing on objects are
utilised in the attention mechanism, the obtained attention
maps can well capture the spatial regions and channels to
discriminatively describe the objects. In such a manner, the
SBM and JA modules work together to guide the model to
pay more attention to the most crucial features that can largely
distinguish between different classes. Experimental results on
four benchmark datasets showcase the superior classification
performance of our SAA network compared with the state-of-
the-arts few-shot learning methods.

To sum up, the contributions of this paper are four-fold:
1) We propose the novel selectively augmented attention

(SAA) network for few-shot image classification, which
carefully integrates data augmentation with joint spatial
and channel-wise attentions to boost the classification
performance.

2) To reduce the potential noises brought by the augmented
images, we introduce the selective best match (SBM)
module that can find the most representative images
from the augmented support and query sets. The selected
images tend to focus more on the objects rather the
irrelevant background.

3) We design the joint attention (JA) module to apply
the attention mechanism on both spatial and channel
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dimensions based only on the selected features from
SBM. In this way, we obtain the adjusted features that
can focus mainly on the discriminative regions and
channels of objects to assist classification.

4) We conduct extensive experiments on four benchmark
datasets to validate the effectiveness of SAA networks.
The experimental results demonstrate significant im-
provement on classification accuracy for few-shot image
classification.

The rest of the paper is organised as follows. In section II,
we discuss the literature closely related to our work. The
technical details of the proposed SAA network are introduced
in section III. In section IV, we present extensive experimental
results and ablation study to validate the effectiveness of SAA
network. Finally, we draw conclusions in section V.

II. RELATED WORK

A. Metric-based few-shot image classification

Metric-based few-shot image classification assigns a test
image to its most similar class by a metric function, which can
be pre-defined or learnt from the network. Classic metric-based
methods include the matching networks (MatchNet) based on
the cosine similarities between images [18], the prototypical
networks (ProtoNet) based on the Euclidean distances between
a query image and class prototypes [4], and the relation
network (RelationNet) which learns the metric function via
the relation module [19]. The metric function is also learnt in
various ways recently. For example, the deep nearest nieghbour
neural network (DN4) includes an image-to-class module to
compute the consine similarity between a query image and its
nearest neighbours in each class [6]. The bi-similarity network
(BSNet) calculates two different metrics to capture diverse and
discriminative characristics between classes [7].

In this paper, we adopt ProtoNet as the underlying metric-
based method to demonstrate the effectiveness of our SAA
networks, which carefully integrate both data augmentation
and attention mechanism via the proposed novel SBM and JA
modules, respectively.

B. Data augmentation for few-shot image classification

Few-shot image classification can easily suffer from over-
fitting due to the limited number of training samples. Data
augmentation is a straightforward pre-processing strategy to
increase the training sample size, usually via various transfor-
mations or modifications of the existing training data. Kumar
et al. [11] demonstrate that the performance for few-shot image
classification can be enhanced by data augmentation via a
study of six feature-space data augmentation methods. Chu
et al. [20] propose a deep reinforcement learning method
that can be treated as a learnt data augmentation step to
search for different sequences of patches of an image reflecting
human glimpse trajectories to recognise an object. Wang et
al. [12] adopt the rectified normal distribution for feature-space
augmentation that considers the relationship between base and
novel classes. Hu et al. [21] fuse the class-irrelevant and class-
relevant features to obtain the augmented features. However,

the augmentation step can result in noisy training data, which
would have harmful impact on the training process.

Different from previous studies to apply existing data aug-
mentation methods to improve classification performance, we
aim to properly utilise the augmented images by selecting the
most representative ones to reduce the background noises and
propose the novel SBM module to achieve this.

C. Attention mechanisms for few-shot image classification

Attention mechanisms are widely applied to address the
learning and generalisation challenges when there are limited
training data available for few-shot image classification. They
can help the model focus on discriminative inter-class infor-
mation and enhance the generalisation ability to new tasks.
Attentions are usually learnt from either the spatial dimension
to extract the most informative spatial regions or the channel
dimension to identify which channels are more discriminative
to assist classification. To learn spatial-wise attention, Song
et al. [13] propose to assign different weights to different
positions in both the original feature space and the embedding
spaces. Yan et al. [14] propose to learn spatial attention and
locate relevant object regions via a meta learning approach.
Xu et al. [22] propose a dual attention network containing
two parallel branches to learn hard attentions that can exploit
correlation between fine object parts and soft attentions to
learn global aggregated features. To learn channel-wise atten-
tion, Lee et al. [16] design the task discrepancy maximisation
(TDM) module that can assign task-wise channel weights to
capture the most discriminative information. There are studies
to fuse both types of attentions in other computer vision areas,
such as person re-identification [17].

In our work, we jointly learn the spatial and channel-wise
attentions in the novel JA module, based on the selected
features from the SBM module.

III. METHODOLOGY

In this section, we provide the technical details of the
proposed SAA network. The overall structure of the SAA
network is presented in section III-B. In sections III-C, III-D
and III-E, we introduce the SBM module to select the most
representative features, the JA module to learn spatial and
channel-wise attentions and the metric module for membership
assignment, respectively.

A. Problem formulation

Following literature [4], [6], [8], [23], [24], we employ the
classic episodic training strategy for few-shot image classi-
fication, where each episode learns from an N -way K-shot
task, i.e. the models are trained based on N classes, each with
K labelled images. This trained model aims to learn general
knowledge from the tasks sampled from the training set and
can be easily adapted to the tasks in the test set.

To be more specific, given a dataset D with a label set L,
we randomly split it to three mutually exclusive subsets, the
training set Dtrain, the validation set Dval and the test set Dtest.
Note that the label sets of the three subsets form a partition
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Fig. 3. The overall structure of the proposed SAA network in the three-way one-shot setting. It consists of the random cropping procedure, the embedding
module fφ, the SBM module, the JA module and the metric module. The SBM module takes the embedded features of the original support and query sets and
their augmented versions as input, calculates the cosine similarities between the support features and query features and selects the most representative features
with the highest similarities. Subsequently, the selected features from the SBM module are fed into the JA module to obtain the spatial and channel-wise
attentions. We then reweight the original support and query features by the obtained attentions. The reweighted features are utilised in the metric module to
calculate the metric scores for classification. The details of the SBM and JA modules are depicted in Figures 4 and 5, respectively.

of L; that is, Ltrain, Lval and Ltest are mutually exclusive and
their union is L. To form a task for each episode, we randomly
select N classes from Ltrain, and randomly select M images
for each of these N classes from Dtrain. Then, for each selected
class, the M images are randomly split to two subsets with K
images to form the support set S and M −K images to form
the query set Q. Following the same strategy, we can define
tasks for the validation and test sets.

B. The overall structure of the SAA network

To exploit and illustrate the advantages of both data aug-
mentation and attention mechanism in one unified framework,
we propose the SAA network with the random cropping to
augment the dataset and the joint attention (JA) module to
incorporate both spatial and channel-wise attentions. More
importantly, to carefully integrate the two data augmentation
and attention mechanism, we propose the selective best match
(SBM) module to select the most representative support and
query features from the augmented features to eliminate po-
tential noises and to facilitate the calculation of attentions that
concentrate more on the objects.

The overall structure of SAA networks is depicted in Fig. 3,
which consists of the random cropping for data augmentation,
the embedding module fφ to extract features, the SBM module
to select representative features, the JA module to obtain
discriminative spatial features and channels, and finally the
metric module to calculate the similarity scores between the
reweighted support and query features.

In this paper, we adopt the prototypical network (Pro-
toNet) [4] as the base metric learning method. To be more
specific, we calculate the simple average of each class in the
support set as the class prototype, and obtain the Euclidean
distances between the query feature and the prototypes. The
query image is then assigned to the class with the shortest
distance (or say the highest similarity).

Instead of naively taking all augmented features to train
the network, we propose to select the most representative
ones to reinforce the learning process, especially the attention
mechanism, because data augmentation can sometimes provide
patches focusing mainly on the nuisance background and this
contamination of training data can lead to deficient classifica-
tion accuracy. To resolve this problem, we propose to carefully
integrate the augmentation procedure via the SBM module.
By comparing the similarities between the support and query
features, the SBM module aims to select the best matched
ones with strong focuses on the objects and thus minimise the
negative impact brought by the noisy background.

C. The selective best match (SBM) module

To enlarge the sample size of the training set and reduce
overfitting, we adopt the random cropping procedure [9] for
both support and query sets. That is, for each support or
query image, we obtain the corresponding augmented image
set with size of R, including the original image. That is,
for the support set, the sample size becomes R × N × K
after generating cropped patches, while for the query set,
it becomes R × N × (M − K). These samples are then
passed through the embedding module fφ, resulting in support
features ZSi ∈ RR×c×h×w (i = 1, 2, . . . , N × K) and
ZQ ∈ RR×c×h×w, where c, h and w represent the number of
channels, the height and the width of the features, respectively.
Note that we provide the example of classifying one query
image and ZQ represents the augmented image features of
one query image rather than the whole query set.

The SBM module takes the embedded features ZSi and ZQ

as input and aims to select the most representative feature
from the augmented set of R features for each image. Specifi-
cally, we calculate the pairwise cosine similarities between all
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support image, we select the feature with the highest mean similarity with all
query features. Similarly, we take the column means of S and for each query
image, we select the one with the highest mean similarity to all images in the
support set.

support and query features and obtain the cosine similarities

sijk =
(zSij)

T zQk

max(‖zSij‖2 · ‖z
Q
k ‖2, ε)

, (1)

where zSij is the flattened vector of the jth augmented feature
of the ith support sample with i = 1, 2, . . . , N × K and
j = 1, 2, . . . , R; zQk is the flattened vector of the kth aug-
mented query feature with k = 1, 2, . . . , R; and ε is a small
nonnegative value to prevent the numerical problem when the
denominator is close to zero. These similarities form a three-
way tensor of dimensions (N×K)×R×R and we flatten it to
obtain the similarity matrix S ∈ R(N×K×R)×R, as shown on
the right-hand-side of Fig. 4. The rows of S are the similarities
between one support feature and all query features while the
columns are those between one query feature and all support
features.

The one with the largest similarity to all query features is
the selected as the most representative feature for each support
image. To achieve this, we calculate the row means of S and
obtain one mean similarity score for each support feature, and
for the augmented feature set of each image, we select the
one with the largest mean similarity score. Thus, the selected
support feature represents the one that is highly correlated to
all query features. Similarly, we calculate the column means
of S and obtain one mean similarity score for each query
feature, which measures the overall similarity between each
query feature and all support features. Again, the query feature
with the largest mean score is selected as the representative
of all query features.

The output of the SBM module is the selected support
features ẐSi ∈ RR×c×h×w and the query features ẐQ ∈

RR×c×h×w. Note that we repeat the selected features R times
to facilitate calculations in latter modules.

D. The joint attention (JA) module

The structure of the joint attention (JA) module is illustrated
in Fig. 5, which consists of the following two parts. First,
the selected features from the SBM module are utilised to
calculate the attentions in both spatial and channel dimensions.
Second, the augmented features are then adjusted by the
attentions obtained from the first part to assign discriminative
features and channels higher weights.

To be more specific, for each class, in the channel di-
mension, the selected support and query features are passed
through an adaptive average pooling layer, resulting in an
N × c × 1 × 1 tensor at each pixel position. This tensor is
flattened into a one-dimensional tensor and sequentially passed
through a linear layer, a normalization layer and an activation
function layer. Finally, an upsampling function is adopted to
restore the shape of the tensor to its initial state. This channel
attention mechanism is illustrated in the left branch in Fig. 6.
In the spatial direction, a 1 × 1 convolutional layer is firstly
used to reduce the number of channels, which can reduce the
number of parameters of the network and the computational
complexity. Subsequently, a 3×3 convolutional layer is applied
to the feature maps in the h × w direction, increasing the
focus on local regions of the feature maps. Both the 1×1 and
3×3 convolutional layers are followed by a normalization layer
and an activation function layer to accelerate network training,
reduce model parameters and prevent overfitting. Lastly, the
output from the last 1 × 1 convolutional layer is mapped to
[0, 1] using a sigmoid function, as shown in the right branch
in Fig. 6. The resulting attentions of the two dimensions are
summed together to obtain the final attentions, WS and WQ,
for the support and query sets, respectively:

{WS ,WQ} = gA({ẐSi }N×Ki=1 , ẐQ), (2)

where gA(·) denotes the attention mechanism in Fig. 6.
Before utilising WS and WQ to adjust the augmented

features, we propose an additional step to further alleviate the
impact of the nuisance background. For background positions,
their element-wise products with WS or WQ are close to
zeros as they are suppressed by attentions, and they can be
eliminated to facilitate classification. To achieve this, we set
up a mask matrix with initial values of ones. After passing
the products of WS ⊗ exp(ZSi ) and WQ⊗ exp(ZQ) through
the softmax function, we record the position information of
all 0 elements in the output to identify background positions,
replace all corresponding positions in the mask matrix with 0,
and then multiply the obtained mask matrix with ZSi or ZQ

to filter out background.
Finally, the reweighted support and query features are

obtained as follows:

TS
i = softmax(

exp(ZSi )⊗WS

√
d

) +MS
i ⊗ ZSi , (3)

TQ = softmax(
exp(ZQ)⊗WQ

√
d

) +MQ ⊗ ZQ, (4)
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where MS
i ∈ RR×c×h×w and MQ ∈ RR×c×h×w are the

masks for the support and query features, respectivley, TQ ∈
RR×c×h×w are the reweighted support and query features,
respectively, and d is the scaling parameter. In this way, TS

i

and TQ carry the information of the discriminative spatial
regions and channels for better classification, with background
information filtered out through the SBM module and the mask
operation.

E. The metric module

In the metric module, we assess the differences between
the prototype of the original augmented features and the
reweighted query features, as well as those between the
reweighted prototype and the original query features.

Specifically, we calculate

dTQ→PS
n
= ‖TQ −PS

n‖22, (5)

and
dZQ→QS

n
= ‖QS

n − ZQ‖22, (6)

where ZQ and TQ are the original and reweighted query
features, respectively, while PS

n and QS
n are the original and

reweighted prototypes of the nth class, respectively. Finally,
the total distance between the query and the support set of the
nth class is obtained by taking the weighted sum of the two
differences:

dQn = λ1dTQ→PS
n
+ λ2dZQ→QS

n
, (7)

where λ1 and λ2 are learnable weights, and both of them are
initialised as 0.5.

To train the network, we follow ProtoNet and minimise the
cross-entropy loss:

L = −
N(M−K)∑

l=1

log
(
P (ŷl = yl | xQl )

)
, (8)

with

P
(
ŷ = n | xQ

)
=

e−δd
Q
n∑

n′∈[1,N ] e
−δdQ

n′
, (9)

where xQl is the lth query image with label yl and δ parame-
terises the softmax function.

TABLE I
THE DETAILS OF THE CUB, DOGS, AIRCRAFT AND FLOWERS DATASETS,

INCLUDING THE SAMPLE SIZE, THE NUMBER OF CLASSES AND THE
TRAINING\VALIDATION\TEST SPLIT.

Sample size Number of classes Training\valid.\test split

CUB 11,788 200 100\50\50
Dogs 20,580 120 60\30\30

Aircraft 10,000 100 50\25\25
Flower 8,189 102 51\25\26

IV. EXPERIMENTS

A. Datasets

In the experiments, we choose four benchmark datasets,
the CUB, Aircraft, Dogs and Flower datasets. The CUB
dataset [33] consists of 200 categories with a total of 11,788
images. The Aircraft dataset [34] contains 10,000 aircraft
images with four-level hierarchical notations: model, variant,
family and manufacturer. The Dogs dataset [35] includes
28,580 annotated images of 120 dog breeds from around the



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 7

TABLE II
FIVE-WAY FEW-SHOT CLASSIFICATION ACCURACIES ON THE CUB, DOGS, AIRCRAFT AND FLOWERS DATASETS UNDER THE CONV-4 BACKBONE

STRUCTURE. THE BEST RESULTS ARE IN BOLD.

Model

5-Way Accuracy (%)

CUB Dogs Aircraft Flowers

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet [4] 61.64 ± 0.23 70.23 ± 0.15 37.59 ± 0.79 48.19 ± 0.91 50.90 ± 0.22 71.65 ± 0.15 59.23 ± 0.23 79.97 ± 0.16
MatchingNet [18] 60.06 ± 0.88 74.57 ± 0.73 46.10 ± 0.86 59.79 ± 0.72 58.47 ± 0.28 70.90 ± 0.11 63.89 ± 0.90 77.46 ± 0.59
RelationNet [19] 63.94 ± 0.92 77.87 ± 0.64 47.35 ± 0.88 66.20 ± 0.74 62.04 ± 0.91 82.48 ± 0.49 65.44 ± 0.95 83.45 ± 0.52

DN4 [6] 56.45 ± 0.89 80.41 ± 0.58 39.08 ± 0.76 69.81 ± 0.69 64.41 ± 0.91 83.48 ± 0.49 65.15 ± 0.94 78.86 ± 0.56
Baseline++ [25] 62.36 ± 0.84 79.08 ± 0.61 44.49 ± 0.70 64.48 ± 0.66 52.38 ± 0.83 70.62 ± 0.60 65.54 ± 0.84 80.63 ± 0.58
DeepEMD [26] 64.08 ± 0.50 80.55 ± 0.71 46.73 ± 0.49 65.74 ± 0.63 66.37 ± 0.23 80.76 ± 0.14 63.41 ± 0.21 76.93 ± 0.17

BSNet(D&C) [7] 62.84 ± 0.95 81.39 ± 0.56 43.42 ± 0.86 71.49 ± 0.68 56.61 ± 1.09 70.80 ± 0.81 66.60 ± 1.04 80.42 ± 0.75
SAML [27] 65.35 ± 0.65 78.47 ± 0.41 45.46 ± 0.36 59.65 ± 0.51 - - - -

MixtFSL [28] 53.61 ± 0.88 73.24 ± 0.75 43.96 ± 0.77 64.43 ± 0.68 44.89 ± 0.75 62.81 ± 0.73 67.01 ± 0.90 84.50 ± 0.62
LRPABN [29] 46.81 ± 0.73 71.82 ± 0.99 45.72 ± 0.75 60.94 ± 0.66 - - - -

ProtoNet [4]+TDM [16] 65.90 ± 0.49 76.96 ± 0.50 44.73 ± 0.48 53.24 ± 0.51 53.36± 0.90 73.07 ± 0.33 64.16 ± 0.52 81.72 ± 0.53
Ours 67.26 ± 0.51 81.49 ± 0.34 54.13 ± 0.63 71.67 ± 0.37 71.11 ± 0.50 84.39 ± 0.29 67.14 ± 0.52 84.28 ± 0.35

TABLE III
FIVE-WAY FEW-SHOT CLASSIFICATION ACCURACIES ON THE CUB, DOGS, AIRCRAFT AND FLOWERS DATASETS UNDER THE RESNET-12 BACKBONE

STRUCTURE.

Model

5-Way Accuracy (%)

CUB Dogs Aircraft Flowers

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet [4] 68.48 ± 0.50 76.48 ± 0.28 62.90 ± 0.51 77.95 ± 0.34 59.48 ± 0.52 77.87 ± 0.33 68.53 ± 0.52 84.30 ± 0.35
MatchingNet [18] 71.87 ± 0.85 85.08 ± 0.57 65.12 ± 0.35 80.50 ± 0.42 82.20 ± 0.80 88.99 ± 0.50 74.57 ± 0.69 87.61 ± 0.55
RelationNet [19] 70.09 ± 0.46 84.38 ± 0.16 59.27 ± 0.79 79.10 ± 0.37 74.20 ± 1.04 86.62 ± 0.55 69.51 ± 1.01 86.84 ± 0.56
BSNet(P&C) [7] 69.61 ± 0.92 81.28 ± 0.64 63.58 ± 0.96 79.10 ± 0.77 63.02 ± 0.93 79.00 ± 0.75 70.21 ± 1.06 84.78 ± 0.82
DeepEMD [26] 71.11 ± 0.31 86.30 ± 0.19 67.59 ± 0.30 83.13 ± 0.20 73.30 ± 0.29 88.37 ± 0.17 70.00 ± 0.35 83.63 ± 0.26
MixtFSL [28] 67.86 ± 0.94 82.18 ± 0.66 67.26 ± 0.90 82.05 ± 0.56 60.55 ± 0.86 77.57 ± 0.69 72.60 ± 0.91 86.52 ± 0.65
BlockMix [30] 75.16 ± 0.69 87.62 ± 0.35 67.87 ± 0.33 82.26 ± 0.45 - - - -
QSFormer [31] 75.26 ± 0.17 86.42 ± 0.19 68.87 ± 0.72 83.56 ± 0.45 76.45 ± 0.56 88.97 ± 0.55 75.24 ± 0.25 87.81 ± 0.60

ProtoNet [4]+TDM [16] 71.32 ± 0.37 80.12 ± 0.34 64.73 ± 0.48 78.19 ± 0.36 61.39 ± 0.76 79.09 ± 0.56 70.24 ± 0.64 85.22 ± 0.30
Ours 75.57 ± 0.48 88.03 ± 0.29 70.32 ± 0.50 84.61 ± 0.32 85.70 ± 0.40 91.80 ± 0.19 74.22 ± 0.49 90.19 ± 0.28

world. The Flowers dataset [36] consists of images of flowers
from 102 different categories with a total of 8,189 images.

We randomly split each dataset to a training set, a validation
set and a test set in the ratio of 2 : 1 : 1. The sample size of
each dataset, the number of classes and the split of classes for
the three subsets are shown in Table I. All images in the four
datasets are resized to 84× 84.

B. Implementation details

All of our experiments are performed using PyTorch on
NVIDIA 3090Ti GPUs. We conduct experiments on two back-
bone architectures: Conv-4 and ResNet-12. The architectures
of Conv-4 and ResNet-12 are the same as those used in
previous works [37], [38]. In addition, the proposed attention
module in this paper is shared during the training process. For
both backbone architectures, we train the models under 10-
way 1-shot and 5-shot settings and conduct tests under 5-way
1-shot and 5-shot settings.

During the training phase, the Adam optimizer is used with
a learning rate of 0.003, without decay or scheduling. The
1-shot models are trained for 300 epochs, with 200 tasks
per epoch, resulting in a total of 60,000 tasks. The 5-shot
models are trained for 200 epochs, with 200 tasks per epoch,
resulting in a total of 40,000 tasks. During the test phase, we

evaluate the models by testing 15 query samples per class in
each episode, and report the average accuracy with a 95%
confidence interval.

For random cropping to augment the datasets, we generate
20 randomly cropped images for each image, with a randomly
chosen ratio of cropping size from 0.3, 0.5 and 0.7. Regardless
of the sizes of the cropped images, they are converted to 84×
84 as input to the embedding module.

C. Comparison with the state-of-the-arts

To validate the effectiveness of the proposed SAA network,
we compare it with several classic methods for few-shot
image classification, such as ProtoNet [4], Baseline++ [25],
MatchingNet [18], and RelationNet [19], as well as some state-
of-the-arts methods, including SAML [27], LRPABN [29],
MTL [39], DN4 [6], BSNet [7], DeepEMD [26], MixFSL [28],
TDM [16], BlockMix [30], QSFormer [31]. The classification
performances of these methods on the four benchmark datasets
can be found in Tables II and III.

For the Conv-4 backbone, our proposed SAA outperforms
other methods on all four datasets, except for the 5-shot
scenario on the Flowers dataset where SAA is slightly worse
than MixFSL. For the ResNet-12 backbone, SAA can beat
all methods on all datasets. The results demonstrate that
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TABLE IV

COMPARING THE SELECTIVELY AUGMENTATION (SA) METHOD WITH TWO CLASSIC DATA AUGMENTATION METHODS, CUTOUT AND RANDOM FLIP, ON
THE CUB, DOGS, AIRCRAFT AND FLOWERS DATASETS UNDER THE RESNET-12 BACKBONE STRUCTURE. THE BEST RESULTS ARE IN BOLD.

Model

5-Way Accuracy (%)

CUB Dogs Aircraft Flowers

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

SENet [15] 69.98 ± 0.50 81.53 ± 0.29 63.79 ± 0.50 79.21 ± 0.29 62.86 ± 0.51 79.69 ± 0.30 70.55 ± 0.50 84.25 ± 0.29
SENet+Cutout 63.24 ± 0.50 80.16 ± 0.32 61.28 ± 0.49 76.20 ± 0.34 66.72 ± 0.50 82.63 ± 0.25 65.37 ± 0.52 83.76 ± 0.36
SENet+Random flip 71.23 ± 0.50 83.07 ± 0.33 65.97 ± 0.49 81.72 ± 0.31 68.78 ± 0.49 83.52 ± 0.32 72.48 ± 0.49 84.12 ± 0.37
SENet+SA 72.15 ± 0.49 84.65 ± 0.30 67.21 ± 0.50 82.53 ± 0.30 69.32 ± 0.50 84.57 ± 0.30 72.76 ± 0.50 87.61 ± 0.30
TDM [16] 70.96 ± 0.49 83.59 ± 0.30 65.75 ± 0.50 81.74 ± 0.29 64.12 ± 0.50 81.34 ± 0.30 71.28 ± 0.51 86.45 ± 0.29
TDM+Cutout 68.42 ± 0.51 82.74 ± 0.32 62.82 ± 0.50 81.77 ± 0.37 69.95 ± 0.48 83.31 ± 0.30 66.58 ± 0.49 84.72 ± 0.31
TDM+Random flip 72.17 ± 0.49 85.87 ± 0.29 67.54 ± 0.50 83.15 ± 0.30 71.91 ± 0.49 86.03 ± 0.31 72.64 ± 0.51 87.14 ± 0.30
TDM+SA 73.85 ± 0.50 86.73 ± 0.30 68.34 ± 0.49 83.46 ± 0.30 73.56 ± 0.49 86.75 ± 0.30 73.53 ± 0.50 88.39 ± 0.30
CTX [32] 70.58 ± 0.50 82.85 ± 0.30 64.17 ± 0.50 80.67 ± 0.30 63.79 ± 0.49 80.82 ± 0.30 71.45 ± 0.50 85.76 ± 0.30
CTX+Cutout 68.17 ± 0.49 82.67 ± 0.30 64.73 ± 0.48 78.94 ± 0.35 68.27 ± 0.50 83.52 ± 0.32 67.54 ± 0.51 82.73 ± 0.31
CTX+Random flip 72.98 ± 0.50 84.19 ± 0.32 66.57 ± 0.50 82.95 ± 0.36 70.48 ± 0.50 85.06 ± 0.28 72.91 ± 0.52 87.26 ± 0.30
CTX+SA 74.10 ± 0.50 85.92 ± 0.30 67.52 ± 0.50 83.48 ± 0.30 72.85 ± 0.50 85.62 ± 0.29 73.38 ± 0.50 88.43 ± 0.30

TABLE V
THE CLASSIFICATION ACCURACIES OF FIVE-WAY FEW-SHOT CLASSIFICATION FOR THE ABLATION STUDY OF THE SBM AND JA MODULES ON THE CUB,

DOGS, AIRCRAFT AND FLOWERS DATASETS UNDER THE RESNET-12 BACKBONE STRUCTURE.

Crop SBM JA

5-Way Accuracy (%)

CUB Dogs Aircraft Flowers

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

(a) × × × 68.48 ± 0.50 76.48 ± 0.28 62.90 ± 0.51 77.95 ± 0.34 59.48 ± 0.52 77.87 ± 0.33 68.53 ± 0.52 84.30 ± 0.35
(b) X × × 68.19 ± 0.51 83.08 ± 0.31 61.19 ± 0.49 79.04 ± 0.32 61.46 ± 0.57 78.55 ± 0.32 67.30 ± 0.48 85.57 ± 0.36
(c) X X × 71.40 ± 0.48 84.53 ± 0.29 63.43 ± 0.50 80.24 ± 0.30 78.80 ± 0.45 85.96 ± 0.23 70.00 ± 0.50 87.35 ± 0.28
(d) × × X 70.42 ± 0.50 85.92 ± 0.29 61.52 ± 0.53 82.18 ± 0.31 62.66 ± 0.53 78.86 ± 0.33 70.11 ± 0.51 87.44 ± 0.31

Ours X X X 75.57 ± 0.48 88.03 ± 0.29 70.32 ± 0.50 84.61 ± 0.32 85.70 ± 0.40 91.80 ± 0.19 74.22 ± 0.49 90.19 ± 0.28

the proper integration of data augmentation and attention
mechanism in SAA can substantially improve the classifica-
tion performance for few-shot image classification. It is also
obvious that SAA can provide more impressive improvements
on classification accuracies for 1-shot scenarios than 5-shot
scenarios. This may suggest that the few-shot setting with
extremely limited labelled training images can benefit more
from data augmentation with careful image selection.

Furthermore, to compare our selectively augmentation (SA)
method, i.e. random cropping + SBM, with other traditional
data augmentation methods, e.g. cutout and random flip, we
evaluate their improvements on the classification accuracies
of three state-of-the-art methods, SENet [15], TDM [16] and
CTX [32] in Table IV. Cutout randomly crops 0.3 of the
image area around a randomly generated centre point. Random
flip randomly flips the image horizontally or vertically. For
cutout and random flip, we generate five augmented images
per original image to augment the support set. Clearly, not all
augmentation methods can improve performance; for exam-
ple, cutout largely decreases classification accuracies for all
datasets, except for Aircraft. While random flip can enhance
the performance for all scenarios, SA provides the best im-
provments in accuracy.

In summary, the SAA network shows superior classification
performance compared with the state-of-the-arts. Moreover,
the SA part alone is readily to be used as a data augmentation
method to improve the performance of existing few-shot

classifiers.

D. Ablation Study

To evaluate the impacts of the new modules in the SAA
network, we conduct a series of ablation experiments based
on the ResNet-12 backbone structure on the four datasets.

1) The effectiveness of the SBM and JA modules: We
implement the following four scenarios to demonstrate the
effectiveness of the data augmetation step and the two new
modules and record the results in Table V: (a) we exclude
data augmentation and the two modules, which is equivalent
to the original ProtoNet; (b) we only keep random cropping
for data augmentation; (c) we remove the JA module and keep
the SBM module to select the most representative features
from the augmented set to calculate the class prototypes and
the metrics to assign test images; and (d) we remove data
augmentation and the SBM module and directly apply the JA
module to all original images to obtain spatial and channel-
wise attentions.

Clearly, scenario-(a) provides the worst classification results
for most cases. In addition, naively applying data augmentation
as in scenario-(b) cannot always improve the classification
accuracy compared with scenario-(a), especially for 1-shot set-
tings. However, by utilising the SBM module in scenario-(c),
we observe substantial increases in classification accuracies
compared with scenario-(b), especially for the Aircraft dataset,
which demonstrate the effectiveness of the proper selection
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TABLE VI
THE CLASSIFICATION ACCURACIES OF FIVE-WAY FEW-SHOT CLASSIFICATION FOR THE ABLATION STUDY OF THE TWO DIMENSIONS (JA S FOR THE
CHANNEL DIMENSION AND JA C FOR THE CHANNEL DIMENSION) IN THE JA MODULE ON THE CUB, DOGS, AIRCRAFT AND FLOWERS DATASETS

UNDER THE RESNET-12 BACKBONE STRUCTURE.

SBM JA S JA C

5-Way Accuracy (%)

CUB Dogs Aircraft Flowers

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

(a) X × X 72.66 ± 0.48 86.76 ± 0.28 68.78± 0.51 83.97 ± 0.30 83.37 ± 0.43 89.64 ± 0.23 71.05 ± 0.49 89.78 ± 0.26
(b) X X × 72.38 ± 0.49 86.29 ± 0.28 68.43 ± 0.50 83.11 ± 0.30 83.75 ± 0.41 89.92 ± 0.21 72.06 ± 0.50 88.56 ± 0.27

Ours X X X 75.57 ± 0.48 88.03 ± 0.29 70.32 ± 0.50 84.61 ± 0.32 85.70 ± 0.40 91.80 ± 0.19 74.22 ± 0.49 90.19 ± 0.28

TABLE VII
THE IMPACT OF THE CROPPING METHODS ON THE CLASSIFICATION ACCURACY FOR THE CUB, DOGS, AIRCRAFT AND FLOWERS DATASETS UNDER THE

RESNET-12 BACKBONE STRUCTURE.

Model

5-Way Accuracy (%)

CUB Dogs Aircraft Flowers

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Random cropping 75.57 ± 0.48 88.03 ± 0.29 70.32 ± 0.50 84.61 ± 0.32 85.70 ± 0.40 91.80 ± 0.19 74.22 ± 0.49 90.19 ± 0.28
Centre cropping 74.83 ± 0.21 88.46 ± 0.35 70.17 ± 0.34 84.42 ± 0.30 83.75 ± 0.41 90.64 ± 0.23 74.63 ± 0.48 90.56 ± 0.27
Batch cropping 74.57 ± 0.46 87.60 ± 0.27 69.31 ± 0.50 82.93 ± 0.37 82.45 ± 0.45 89.50 ± 0.23 72.78 ± 0.49 88.99 ± 0.29

TABLE VIII
THE IMPACT OF THE ATTENTION MECHANISM ON THE CLASSIFICATION ACCURACY FOR THE CUB, DOGS, AIRCRAFT AND FLOWERS DATASETS UNDER

THE RESNET-12 BACKBONE STRUCTURE.

Model

5-Way Accuracy (%)

CUB Dogs Aircraft Flowers

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Ours 75.57 ± 0.48 88.03 ± 0.29 70.32 ± 0.50 84.61 ± 0.32 85.70 ± 0.40 91.80 ± 0.19 74.22 ± 0.49 90.19 ± 0.28
Ours+TDM [16] 74.67 ± 0.47 86.34 ± 0.28 69.82 ± 0.50 84.23 ± 0.30 84.48 ± 0.51 90.27 ± 0.31 73.84 ± 0.50 89.42 ± 0.30
Ours+CTX [32] 74.60 ± 0.51 87.34 ± 0.30 68.79 ± 0.49 84.12 ± 0.28 84.41 ± 0.50 89.96 ± 0.30 73.63 ± 0.51 89.35 ± 0.31
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Fig. 7. The impact of the number of epochs on the validation classification accuracy for the CUB, Aircraft, Dogs and Flowers datasets.

of augmented features. Moreover, only using the attention
module in scenario-(d) can improve the classification perfor-
mance compared with scenarios-(a) and (b), but cannot always
beat scenario-(c) on all datasets, which leads to the following

two conclusions. First, reweighting the discriminative spatial
regions and channels can bring benefits to the classification
task. Second, using a carefully selected training set on a simple
model, e.g. scenario-(c), can provide competitive and some-
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Fig. 8. The impact of the number of cropped patches per image on the validation classification accuracy for the CUB, Aircraft, Dogs and Flowers datasets.
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Fig. 9. Visualisations of discriminative regions of example images in the CUB dataset for the ProtoNet, DeepEMD, ProtoNet+TDM and our proposed method.

times better classification accuracies than using models with
more complex structures, e.g. scenario-(d). Finally, utilising
both modules can achieve the highest classification accuracies
on all datasets.

Furthermore, in Table VI, we compare the classification
performances of only involving attentions in one dimension,
i.e. either spatial-wise or channel-wise. It is obvious that
using the spatial-wise or channel-wise attentions can provide
competitive classification accuracies, and using both has the

best results.

2) The impact of the data augmentation methods: To
verify the impact of the data augmentation methods on the test
accuracy, we conduct experiments on two additional cropping
methods, centre cropping and batch cropping, in Table VII.
Note that since SBM aims to select the best matched local
areas across the support and query images and eleminate
background noise, data augmentation methods such as image
fipping and rotation are not considered here, because the
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background is still included in the augmentations. In the
experiments, we tailor centre cropping for SBM by cropping
the centre area with the cropping ratio randomly selected from
[0.3,1]. For batch cropping, we divide the image into nine non-
overlapping patches.

It is obvious that random cropping can provide the best
or competitive classification accuracies for all datasets and
K-shot settings. Batch cropping usually performs worse than
the other two methods, because the non-overlapping patches
may segment the important features to different patches. With
the effect of SBM, only one patch of an image is selected
for subsequent analysis, and thus batch cropping cannot al-
ways capture a sufficient amount of discriminative features
for classification. On the other hand, centre cropping can
sometimes perform better than random cropping depending
on the characteristics of the images. For example, for the
Flowers dataset, the discriminative regions are mostly located
in the centre of the images, e.g. small petals or stamens.
Hence centre cropping can provide better patches for SBM
to select. However, for datasets such as Dogs and Aircraft,
the discriminative regions are usually not in the centre of the
image, e.g. heads of dogs or wings of aircraft, and thus centre
cropping cannot capture sufficient discriminative information
for classification. From the above analysis, we can conclude
that data augmentation method has to be properly chosen to
work together with SBM.

3) The impact of the attention methods: To evaluate the
effectiveness of the proposed JA module, we replace it by
two state-of-the-art attention mechanisms, the task discrepancy
maximisation (TDM) module [16] and the CrossTransformers
(CTX) [32], and report the classification accuracies in Ta-
ble VIII. Obviously, only re-weighting the channel dimension
in TDM and the spatial dimensions in CTX cannot beat the
classification performance of using the JA module that can
re-weight both spatial and channel dimensions.

4) The impact of the number of epochs: We also study the
impact of the number of epochs on the classification accuracy
for all four benchmark datasets. There is an obvious upward
trend of classification accuracy when the number of epochs
increases, and the trend starts to slow down when the number
of epochs reaches 300 and 200 for the 1-shot and 5-shot
scenarios, respectively.

5) The impact of the number of cropped patches per image:
Here we test the impact of the number of cropped patched per
image on the test accuracy in Fig. 8. Clearly, as the number
increases, the test accuracy also increases, which makes sense
because the more patches from different locations, the higher
the likelihood that the key features are presented in one patch.
An increase in the number of patches may contribute to
further improvement in test accuracy, but with a burden on
the computational resources.

E. Visualisations of discriminative regions and attention maps

In this section, we visualise the discriminative regions of
example images of seven classes in the CUB dataset obtained
by ProtoNet, ProtoNet+TDM, DeepEMD and our proposed
SAA network in Fig. IV-C. ProtoNet can focus on some

Class1 Class2 Class3 Query

Fig. 10. Visualisations of the attention maps obtained in the JA module. The
highest attentions are labelled in the original images of the examples in the
CUB dataset. Red areas receive the highest attentions, followed by the green
and blue areas.

discriminative regions but also involve nuisance backgrounds,
while DeepEMD usually includes most of the object. Pro-
toNet+TDM can provide better focusing areas compared with
the previous two methods. Clearly, our proposed SAA network
show the best precise focus on the most discriminave regions,
e.g. beaks, eyes, bellies and legs.

In addition, in Fig. 10, we visually assess the effectiveness
of the attention maps obtained in the JA module, i.e. WS and
WQ in equation (2). We label the attention maps with large
values in the original images to highlight the areas receiving
high weights. The red patches receive the highest weights,
followed by blue and green areas. It is obvious that the query
weights WQ identify the neck and wings of the query bird as
the most important body parts for classification, while similar
parts in the support classes are also selected by the support
weights WS .

F. Computational complexity

TABLE IX
THE NUMBER OF PARAMETERS AND FLOPS OF DN4, DEEPEMD, FRN

AND SAA. THE SMALLER THE TWO METRICS, THE HIGHER THE
COMPUTATIONAL EFFICIENCY.

Backbone params.(M) FLOPs.(G)

DN4 [6] ResNet-12 16.7 68.48
DeepEMD [26] ResNet-12 15.2 37.29
ProtoNet [4]+TDM [16] ResNet-12 19.5 79.96
SAA(Ours) ResNet-12 14.5 29.69

Finally, we compare the computational complexity of SAA
with three state-of-the-art methods, DN4 [6], DeepEMD [26]
and ProtoNet [4]+TDM [16], in terms of the number of
parameters and the FLOPs in Table IX. It is clear that SAA
has the least number of parameters and the FLOPs compared
with the state-of-the-art competitors, while shows superior
classification performance over them.

V. CONCLUSION

In this paper, for few-shot image classification, we propose a
unified framework, the selectively augmented attention (SAA)
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network, that carefully integrate data augmentation and atten-
tion mechanism in an end-to-end fashion. We propose the
new SBM module to select the most representative images
that focus more on the objects and less on the background
to alleviate potential noises in the augmented set. Moreover,
we propose the novel JA module to learn the spatial and
channel-wise attentions together on the selected features to
identify discriminative spatial regions and channels. Exten-
sive experiments and ablation study demonstrate the superior
classification performance of the SAA network and the ef-
fectiveness of the new modules. Besides the application to
few-shot image classification, the appropriate modifications of
SAA also have potential to solve other few-shot learning prob-
lems, such as few-shot object detection [40], [41], few-shot
semantic segmentation [42] and few-shot video object seg-
mentation [43], as well as zero-shot image classification [44].
Given the observation that cropping methods have impact on
the classification performance of SAA, in the future, we aim
to develop a more intelligent data augmentation methodology
that can capture local regions focusing more on the objects.
Moreover, instead of using the simple cosine similarity in
SBM, more sophisticated while efficient network modules
can be designed in the future to learn the similarity between
support and query patches.
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