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Abstract 

The development of battery electric vehicles (BEV) must continue since this offers the leading route 

towards a zero emission transport system. The fuel flexibility of the BEV offers the greatest potential 

to utilize power from renewable or low emission sources to be used in the transport system. 

However the limited range and high cost of the BEV remain important issues to be addressed. The 

battery is the element which strongly affects the cost and range of the BEV. The batteries offer 

either high specific power or high specific energy, but not both. This paper presents the modelling of 

a BEV which is used to study the potential for improvement in its energy efficiency. The battery 

model types have been discussed. The vehicle and other component models have been described. 

The choice of model parameters and the control strategy has been explained. The simulations have 

been performed on homologation and real world cycles for different scenarios. Results show 

significant potential for improvement in the energy efficiency of the BEV in real world usage by the 

utilization of a secondary energy storage device.  
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Introduction 

The battery electric vehicle has been operating on the road since the inception of the automobile. 

They were popular in the beginning of the 20th century as the internal combustion engine vehicles 

(ICEV) were less attractive at that stage. In 1900 out of the total sales of automobiles in the US about 

38% were BEVs as compared to 22% ICEVs with steam powered vehicles making the rest of the 

numbers [1]. However with the rapid improvement in ICEVs, the BEVs started losing their popularity. 

By 1930s the BEV had almost disappeared from the scene. They gained impetus periodically in the 

last century such as during the 1973 oil crises but were always stuck at the prototype stage or were 



produced in small numbers. The introduction of production hybrid electric vehicles (HEV) by Toyota 

in 1997 and subsequently by Honda in 1999 triggered a number of HEVs to be mass produced by 

other manufacturers in the 2000s. Since the last few years a small number of mass produced BEVs 

such as the Nissan Leaf, the Mitsubishi iMiEV and the Tesla Roadster have been introduced in the 

markets worldwide and many more are in the pipeline. However their cost and range are still issues 

that impede their popularity.  

Baseline vehicle 

The configuration of a modern BEV is shown in fig. 1. 

The powertrain consists of an energy storage device which is a rechargeable battery in most cases 

powering one or more electric machines connected to the driveline. The electric machines might be 

connected to driveline directly as wheel hub machines or using a single speed or multi speed 

transmission. There is usually a power converter for AC/DC conversion as most BEV electric 

machines are AC machines. The primary energy source is usually a high voltage battery and the 

auxiliary power source is the standard 12 v battery. Most auxiliary loads are electric in nature unlike 

the conventional vehicle where they are mechanical. The BEVs also have an on board charger which 

is used to charge the high voltage battery. The vehicle controller and energy management system 

control the flow of energy. An inherent advantage of BEVs is that they can perform regenerative 

braking unlike conventional vehicles. 

 

 

Figure 1: Schematic of BEV powertrain [2] 

machine 



 

Battery 

The most important element in the BEV is the battery. The battery in a BEV is constituted of a 

number of modules in series or parallel to achieve the desired voltage and current.  The modules are 

in turn formed by connecting a number of cells in series or parallel. The cell is the smallest element 

of the battery. The general terminology related to batteries is given in [3]. 

As described by Ehsani et.al. (2010) and Chan et. al. (2001), there are different types of cell 

chemistries and the most popular for a modern BEV is the Lithium ion (Li-ion). However Li-ion is 

really a group of chemistries in which the anode is usually a lithium metal oxide and there are a 

variety of different compounds that can be used. Some of the important chemistries are described 

below [4]: 

 Lithium iron phosphate (LFP) 

 Lithium nickel manganese cobalt oxide (NMC) 

 Lithium nickel cobalt aluminium (NCA) 

 Lithium titanate oxide (LTO) 

 Lithium manganese spinel oxide (LMO) 

 

Some of the important properties of cells are specific energy, specific power, life cycle, safety and 

cost. Safety is linked to the thermal and chemical stability of the cell. The different chemistries have 

their different properties. LFP and LTO are considered to have high safety and life than Nickel-Cobalt 

chemistries but the latter usually have higher specific energy [5]. As with various technologies there 

are trade-offs. Another important aspect is the specific power which is usually a trade off with 

specific energy. As indicated by Burke et. al. (2009) any specific power can be achieved for all 

chemistries by sacrificing specific energy. 

The following fig. 2 shows the Ragonne plot for various cell chemistries. 



 

Figure 2: Ragonne plot for various battery chemistries [6] 

 

 

From the fig. 2 it can be seen that the Li ion chemistry can be designed from very high power to high 

energy. The energy in very high power cells is about 35% the energy of high energy cells [7]. Usually 

for the BEV a high energy cell is more useful as compared to a HEV where high power is more 

essential.  Not only is the chemistry of the cell important in deciding the properties, also the shape 

of the cell has significant effect in deciding the specific energy and specific power. Currently the cells 

are shaped into cylindrical, prismatic or pouch shapes which are shown in the fig. 3. The shape of the 

cell decides the surface area and volume of the cell. While for high power a bigger surface area is 

essential so that the lithium ions can be ionized in the electrolyte, transferred from one electrode 

and intercalated into another, a high energy cell requires a higher volume to store more charge [4]. 

It can therefore be said that the surface area to volume ratio of the cell is a significant parameter for 

design. A cell with thin electrodes will provide for bigger surface area whereas a thicker electrode 

will provide more volume. As the resistance of the cell is inversely proportional to the surface area 

and directly proportional to the thickness, the high energy cells have higher internal resistance than 

high power cell and consequently lower energy efficiency. The high energy cell will have higher 

power losses at high loads as compared to high power cells.  

 

 



 

Figure 3: Cell designs (Cylindrical, Prismatic and Pouch) [4] 

 

 

The cells are connected in series or parallel to create battery packs for BEV. There can be either a 

large number of small cells or fewer large cells. According to Pesaran et. al. (2009) using smaller cells 

has the benefit of lower cost (commodity market), improved safety and high quality production but 

they suffer from higher integration costs, complicated assembly, a large number of interconnects, 

lower weight and volume efficiency, lower reliability and costly electrical management. The larger 

cells have the benefit of lower assembly cost, higher weight and volume efficiency, better reliability 

though they have higher cell cost, lower quality and difficult thermal management. These are design 

trade-offs which need to be considered for particular applications [8]. According to Cluzel et. al. 

(2012), the cell size in the range 40-60 Ah are of good quality currently [9]. They are appropriate for 

vehicle application. 

 

Battery modelling 

Modern batteries can be modelled in various ways and there are three main types of modelling 

techniques. The electrochemical model is one of the techniques which describe the dynamic process 

of chemical reactions occurring on the electrodes based on mathematical method, which can 

integrally reflect dynamic characteristics of the battery [10]. They consist of partial differential 

equations with a large number of unknown parameters and do require detailed understanding of 

the battery design. One such model is the Shepherd model which is a simplified electrochemical 

model [11].  

Another type of battery model is the data driven neural network model [12]. In this case a data set is 

used for training the model to identify the non-linear battery characteristics during charging and 

discharging. However the disadvantage of this model is that it requires large amount of data for 

training and validation. 

The third type and one of the more popular one is the equivalent circuit (EC) model. In this case the 

battery is modelled as a network of resistances and capacitances (RC) to characterize their non-

linear behaviour. They usually consist of a voltage source connected with RC elements. The voltage 

source typically models the open circuit voltage of the battery whereas the rest of the elements 

model the internal resistance along with other dynamic effects such as polarization. The EC models 



are accurate to predict the dynamic behaviour of the battery however they require precise 

experimental results to parameterize the model. Different authors have used different 

methodologies to build these models. Zhang et. al. (2009) use Extended Kalman Filter technique to 

parameterize the EC model whereas Rahmoun et. al. (2012) use non-linear least squares algorithm 

[13]. 

Among the EC models there are different types with varying complexity. The simplest one is the so 

called Rint model where there is an open circuit voltage (OCV) source connected in series with an 

internal resistance. The open circuit voltage and internal resistance can be specified as function of 

SOC, temperature and charging or discharging process. According to Rahmoun et. al. (2012), this 

model is not suitable for any dynamic operation as it does not represent the transient behaviour of 

Li-ion cells. Another type is the one RC model in which the Rint model is connected in series with a 

parallel RC network to model the transient behaviour of the cell. This is called the Thevnin model or 

One Time Constant model. This allows the modelling of one time constant for charging and 

discharging. Antaloae et. al. (2012) observe that Li ion cells exhibit a second longer time constant in 

practice which reduces the modelling error in longer discharge cycles [14]. This is modelled by 

adding another RC network to the Thevnin model and is called Dual Polarization model (DP) or Two 

Time Constant model. The fig. 4 below shows the circuit of the Rint, Thevnin and DP models. 

According to He et. al. (2012) and Rahmoun et. al. (2012), the dual polarization model is the most 

accurate one for dynamic operations. It is decided to use this type of model in the present analysis. 

 

Figure 4: Battery models (Rint, Thevnin and DP) [11]  

 

 

Another important aspect of battery model is the calculation of state of charge (SOC).  The most 

common method is called coulomb counting where the current is integrated over time to calculate 

the SOC. For real life application in a battery monitoring system (BMS), this method can introduce 

errors due to uncertainty over the start SOC and the error can accumulate over time. Another 

method is the voltage based SOC correction which is again not suitable for BMS application. Other 

methods which treat the OCV as an internal variable and estimate SOC from the battery model have 

been developed which are suitable for BMS applications [15]. However for the present analysis the 

simple coulomb counting method is deemed sufficient as it is a comparative analysis using 

simulation. 

 

 



Vehicle Model 

The present analysis deals with the longitudinal dynamics of the vehicle and these are sufficiently 

and accurately represented by empirical map based models. This type of models can be constructed 

in Simulink like ADVISOR [16] or PSAT [17]. However there are commercial packages available such 

as AVL Cruise which can be used to construct them with relative ease [18]. The modular structure of 

AVL Cruise offers the flexibility in modelling and can perform a variety of tasks such as cycle run, full 

load performance and climbing performance. It offers the option of both forward and backward 

simulation and can be linked up with other tools such as Simulink which are more suitable for 

control system modelling. In the forward modelling approach a driver model is necessary which tries 

to control the vehicle via pedal movement to achieve the target vehicle velocity. However in the 

backward approach the calculation is done from wheel to the powertrain. The forward approach is 

more realistic though the backward approach is faster to run. For this analysis the forward approach 

is taken. The difference between forward and backward approach is explained in detail [19].  

A C-segment passenger car is taken as the base vehicle for this study as this is the one of most 

common mode of private transport especially in Europe. The vehicle is a 5 door hatchback front 

wheel drive with a kerb weight of 1445 kg. The particulars of the vehicle are mentioned in the table 

1. 

 

Table 1: Vehicle parameters 

Parameters  Value 

Kerb mass 1445 kg 

Gross mass 1884 kg 

Frontal area 2.29 m^2 

Drag coefficient 0.29 

Wheel radius 301 mm 

Rolling resistance 0.009 

  

The two time constant model is preferred for the battery and the 3.7 V Li ion polymer cell modelled 

in [13] is used for this analysis. The specific energy of the cell is mentioned as 163 Wh/kg by the 

manufacturer which would classify it as a high energy cell suitable for BEV. It is taken to construct a 

pack of 98 cells in series giving a nominal voltage of 362.6 V for the vehicle. This would constitute a 

battery pack with capacity of 53 Ah and energy of 19.2 kWh, which is similar to the ones used in 

modern BEVs. The cell model parameters are mentioned at 25 deg C and that is taken as the working 

temperature of the pack. The peak pulse current discharge limit is 260 A. Some parameters such as 

mass of the cell are taken from the manufacturer’s website [20]. The mass of the battery pack is 

modern BEVs is about double the total mass of the cells and similar assumption is used to constitute 

the battery pack mass for the base vehicle which amounts to be about 225 kg. The auxiliary loads are 

taken to be 300 W which is a reasonable assumption for the average power consumption related to 

power requirements for vehicle house-keeping. This does not include heating, ventilation and air-

conditioning loads. This load is directly added to the electric machine load at the battery terminals. 



The electric machine is a 72 kW machine which is scaled down from the 80 kW machine mentioned 

in [21] to match the peak power of the battery which is about 77 kW. The maximum torque 

performance and the efficiency of the machine, which includes the power inverter efficiency, in 

motoring mode are illustrated in [21] and the same is assumed for the generating mode. The 

rotating inertia of the original machine is estimated to be 0.0657 kgm^2 from its dimensions and 

mass. The scaled down EM has maximum power of 72 kW, maximum torque of 252 Nm and 

maximum speed of 10,390 rpm. The EM is connected to a single speed transmission of ratio 7.93, 

which has an efficiency of 98%. The characteristics of the machine are shown in fig. 5 and are 

assumed the same for all voltages. The map shows constant efficiency of 85% below 1000 rpm. It 

was extrapolated to create efficiency values below 1000 rpm at constant torque and was found that 

the effect of this change on cycle simulation results is marginal; therefore the efficiency below 1000 

rpm was kept as the original 85%. The map based modelling approach is commonly used for the 

electric machine in BEVs [22]. 

 

 

 

 

 

 

 

Figure 5: EM properties 
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There are two operating modes in the vehicle, namely motoring and braking. The motoring control is 

relatively straightforward. For motoring purposes the driver controls the accelerator pedal to match 

the desired vehicle speed and that is converted to the load signal for the electric machine which 

powers the vehicle forward. The braking mode requires a strategy different from the conventional 

vehicles since there is possibility of regenerative braking. The regenerative braking strategy used is 

similar to the one mentioned in [23]. The required braking torque is calculated from the brake 

pressure signal which comes from the brake pedal controlled by the driver to achieve the desired 

deceleration. This brake torque is compared to the available electric machine generating torque and 

the brake torque limit of the front axle. The minimum of the three values is taken as the desired 

electric machine torque which is converted into the load signal for the electric machine. If at all the 

brake torque requested by the driver is higher than the available EM torque, the rest is provided by 

the mechanical braking.  

In AVL Cruise the brake pressure signal is same for all the four brakes and the brake size for the front 

and rear brakes, is dependent on the mass distribution of the vehicle. In this case an equal mass 

distribution for the front and rear axle is assumed. This is a reasonable assumption as the heavy 

batteries are usually in the rear of the vehicle. The dimensions of the brake are used to compute the 

brake torque according to the following equation. The model takes into account the change in axle 

load due to acceleration or deceleration. This front axle load which is a model output, is used to 

compute the front axle load limit. According to most standard driving cycles, the maximum 

deceleration is about 0.4g which is easily achievable by braking only the front axle if the standard 

road conditions, which have an average friction coefficient of 0.8-0.9 [2], are assumed. It can be seen 

in the fig. 6, that the maximum brake force demand for various drive cycles which is calculated by 

using the maximum deceleration rate and neglecting the resistance force, is lower than the front 

axle brake limit calculated under steady state conditions, for all drive cycles except HYZEM road 

cycle. 

 



 

Figure 6: Brake force 

 

With regenerative braking a few more conditions have to be incorporated to protect the EM and the 

battery. It is not easy for the electric machine to generate electricity at low vehicle speed which 

implies low EM speed, because of the very low electric motive force (voltage) generated at that 

speed [23]. Therefore the EM is not used for regenerative braking below 10 kph. Another factor is 

the battery SOC. At close to full SOC the battery is protected from over charging by limiting 

regenerative braking and to include this effect in the present analysis the regenerative braking is 

only allowed below 90% SOC. Fig. 7 shows the model schematic in AVL Cruise.  



 

Figure 7: Vehicle model 

 

 

Drive cycle simulation 

The standard homologation drive cycles which are used for the fuel consumption simulation include 

the New European Drive Cycle (NEDC), Federal Test Procedure (FTP-75), Highway Fuel Economy Test 

(HWFET) and the Japanese 10-15 drive cycle. As mentioned before the simulations are carried out in 

the forward simulation mode and at steady state temperature of 25 deg C. The wheel slip is not 

considered. The maximum simulation time step is taken to be 10 ms which gives sufficient accuracy. 

The vehicle test weight during the simulations is taken as the kerb mass plus an additional mass of 

75 kg to simulate the driver. The simulations are carried out at initial SOC of 100% and 90% to show 

the benefit by regenerative braking. Table 2 shows the result of the simulation. 

From the table 2 the effect of regenerative braking can be easily seen in the energy consumption 

figures. Considerable improvement is seen in all the cycles where the energy consumption reduces 

by 23-34% with regenerative braking, except HWFET. The lowest benefit of only 5% is seen in HWFET 

since it is highway cycle with limited opportunity for regenerative braking. 



Another important parameter which is calculated for the cycles is the cycle round trip (RT) battery 

efficiency. One of the model outputs is the power loss in the battery primarily due to its internal 

resistance and other factors such as polarization. Integrating this power loss over the cycle time 

gives the energy lost in the battery and with the net energy output at the battery terminals known, 

the round trip battery efficiency is calculated by taking ratio of net energy output to the sum of net 

energy output and energy lost. It can be seen from the table that the battery gives round trip 

efficiency of about 90% or more on all the standard drive cycles. 

 

Table 2 Results for Homologation Drive Cycles 

 Energy consumed at battery terminals 
[kWh/km] 

Improvement in  
Energy consumed 
[%] 

Battery Round trip 
Efficiency [%]  

Start SOC 100% Start SOC 90% Start SOC 90% 

NEDC 0.1409 0.1083 23.1 90.9 

FTP-72 0.1454 0.0963 33.7 89.7 

JA1015 0.1438 0.0947 34.1 92.3 

HWFET 0.1210 0.1148 5.1 93.9 

 

Real world driving cycles 

A problem with the homologation cycles mentioned in the previous section is that they do not 

represent the real world driving situation. They are made for testing vehicles on the chassis 

dynamometer and have lower acceleration and deceleration rates than what is encountered in real 

world driving. This is done to make the testing easier to perform. However in the last 10-15 years a 

lot of work has been done to create real world driving cycles such as Artemis cycles [24] and Hyzem 

cycles [25]. Other real world cycles such as US06, LA92 and New York City Cycle (NYCC) have also 

been created. The US06 is an aggressive highway driving cycle, the LA92 represents the extra-urban 

driving conditions in California and NYCC represents the urban driving condition in New York. The fig. 

8 shows the average velocity and root mean square (RMS) acceleration behaviour for these driving 

cycles. 

In the fig. 8, the results of a statistical analysis of cycles show that the homologation cycles have 

much lower acceleration than the real world cycles. The US06, LA92 and Artemis urban cycles seem 

to have the highest acceleration over the entire speed range. Only the Artemis and Hyzem 

motorway cycles seem to have higher average velocities than the rest of the cycles. For the present 

analysis the US06, LA92 and Artemis urban cycles are taken as reference for the real world cycle 

usage. 



 

Figure 8: Drive cycle properties 

 

 

Table 3 shows the results of vehicle energy consumption for the US06, LA92 and Artemis urban cycle 

with start SOC 90%. As can be seen the energy consumption under these cycles is higher than most 

of the homologation cycles though the interesting result is the overall cycle round trip battery 

efficiency which is significantly lower than for the homologation cycles. It can be seen that the 

roundtrip battery efficiency in these real world cycles varies from 78-83% as compared to at least 90 

% for the homologation cycles. The worst case is the US06 cycle where it is about 78%. Fig. 9 shows 

the trend comparing RMS acceleration of cycles vs. battery round trip efficiency. It can be broadly 

seen that as the RMS acceleration increases the efficiency goes down, hence there is a reasonably 

good correlation. It is expected that in more demanding terrain such as hills the efficiency could be 

further reduced.   

 

Table 3: Real world drive cycles 

 Energy consumed at battery  
terminals at start SOC 90% [kWh/km] 

Battery Round trip  
Efficiency [%]  

US06 0.1546 78.6 

LA92 0.1167 82.4 

Artemis Urban 0.1100 83.6 
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Figure 9: RMS acceleration vs. RT Battery efficiency 

 

The average power consumed during these cycles is calculated by dividing the net energy consumed 

at the battery terminals by the cycle duration. The next table 4 shows the average power consumed 

during these drive cycles and the simulation results when the battery load is fixed to the average 

power for the duration of the cycle. The peak power is many times the average power and the worst 

case is the Artemis urban cycle where it is almost 24 times the average power. However when the 

average power is applied to the battery for the duration of the cycle, the net energy output from the 

battery terminals is the same as before but the difference is in the cycle roundtrip battery efficiency 

which is more than 96% for all the cycles. It is more than 99% for the Artemis urban cycle and 96.2% 

for the US06 cycle. Thus it can be seen that the power losses inside the battery can be theoretically 

reduced significantly if a low constant load is applied instead of the actual dynamic load. This 

presents a possibility for improving the energy efficiency by utilizing a secondary storage device for 

power handling. 

Table 4: Average power results 

 Average 
Power [kW] 

Ratio of peak to 
average power  

Battery round trip efficiency 
with average power [%]  

US06 11.95 5.95 96.2 

LA92 4.62 14.7 98.6 

Artemis Urban 1.94 23.8 99.4 



 

Another result to observe is the powertrain efficiency which is defined as the ratio of the power at 

the wheels to the power output of the battery during motoring and reverse during regenerative 

braking. The powertrain efficiency during motoring is calculated for the cycle by integrating the 

traction power at the wheels during motoring and dividing that by the energy output from the 

battery terminals. Similarly the powertrain efficiency during brake regeneration is calculated by 

taking the energy input at the battery terminals and dividing it by the integral of the brake power 

demand at the wheels during brake regeneration. The results show that in cycles with low average 

speed and low RMS acceleration the positive and negative powertrain efficiencies are lower. Fig. 10 

shows the positive powertrain efficiency for various cycles (bubble size represents RMS acceleration 

[g]).  

 

Figure 10: Powertrain Efficiency 

 

 

In the very low average speed cycles such as JA1015 and Artemis Urban, the efficiency seems to be 

impacted little by average speed and RMS acceleration values. However, in the lower average speed 

region, say up to 30 kph, the powertrain efficiencies seem to be impacted less by RMS acceleration 

and more impacted by average speed e.g. in case of JA1015 and NEDC. In the high average speed 

region, the powertrain efficiencies are affected by RMS acceleration though the impact is smaller 

e.g. in case of US06 and HWFET. The reason for the higher efficiency values is apparent from the EM 

efficiency map, which is the major contributor towards powertrain efficiency, where the higher 



efficiency is observed towards the maximum power region and at lower speeds especially below 

1000 rpm the efficiency is relatively low (around 85%) and independent of torque. 

 

The following figures show the time weighted operating points of a drive cycle plotted over the 

efficiency map of the EM [26] (the bubbles represent the operating points with their size 

representing their residency in the cycle). It can be seen in the fig 11 that for Artemis urban cycle, 

nearly 50% of the time, the EM operates in the below 1000 rpm speed region and in that region the 

efficiency is independent of torque. In the higher speed region, they operate in low torque regions 

and that part of the operation might be benefited by downsized EM.  

Looking at the similar figs. 12 and 13 for LA92 and US06 cycle it is clearly seen that the more points 

are operating in the higher efficiency regions and higher speed regions as compared to Artemis 

urban cycle. The higher speed points would benefit from a downsized machine as that would push 

the high speed and low torque points in the higher efficiency zones. Of course the US06 cycle has 

more points in the high efficiency region than the LA92. Thus utilizing a power handling device, 

which is able to transmit power to the driveline directly, would allow the downsizing the main 

electric machine. One such device is a flywheel with a mechanical continuously variable transmission 

(CVT). 

 

Figure 11: Artemis Urban operating points 
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Figure 12: LA92 operating points 

 

 

Figure 13: US06 operating points 
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Conclusions 

The BEV is an important option to reduce the dependence on fossil fuels though it still has significant 

challenges in terms of cost and range. The Li ion batteries are significant improvement over the 

NiMH and lead acid batteries but they still are not sufficiently advanced to provide a satisfactory 

range. This paper presents the modelling of a BEV which is used to explore the potential in 

improvement of its energy efficiency. The model parameters and elements are described and the 

drive cycle simulation results are shown. The simulation results show that the high energy battery in 

the BEV performs well during homologation drive cycles but shows significantly lower round trip 

efficiency during real world cycles. The theoretical improvement in round trip efficiency is shown 

when the average load is applied to these cycles as compared to the actual dynamic load. The 

powertrain efficiency of the BEV is also explored and results show potential benefit could be 

achieved by downsizing the main prime mover. This presents the possibility of employing a power 

handling device, which could transmit power directly to the driveshaft, to improve the energy 

efficiency of the BEV. This would be explored in future work.  
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