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Abstract
Statistical learning is a mechanism for detecting associations among co-occurring elements in many domains and species. A
key controversy iswhether it leads tomemory for discrete chunks composed of these associated elements, ormerely to pairwise
associations among elements. Critical evidence for the mere-association view comes from the “phantom-word” phenomenon,
where learners recognize statistically coherent but unattested items better than actually presented items with weaker internal
associations, suggesting that they prioritize pairwise associations over memories for discrete units. However, this phenomenon
has only been demonstrated for sequentially presented stimuli, but not for simultaneously presented visual shapes, where
learners might prioritize discrete units over pairwise associations. Here, I ask whether the phantom-word phenomenon can
be observed with simultaneously presented visual shapes. Learners were familiarized with scenes combining two triplets of
visual shapes (hereafter “words”). They were then tested on their recognition of these words vs. part-words (attested items
with weaker internal associations), of phantom-words (unattested items with strong internal associations) vs. part-words, and
of words vs. phantom-words. Learners preferred both words and phantom-words over part-words and showed no preference
for words over phantom-words. This suggests that, as for sequentially input, statistical learning in simultaneously presented
shapes leads primarily to pairwise associations rather than to memories for discrete chunks. However, as, in some analyses,
the preference for words over part-words was slightly higher than for phantom-words over part-words, the results do not rule
out that, for simultaneous presented items, learners might have some limited sensitivity to frequency of occurrence.

Keywords Statistical learning · Declarative memory · Language acquisition · Hebbian learning

Introduction

Statistical learning is a ubiquitous learning mechanism, ena-
bling learners to detect, and possibly utilize, co-occurrence
relations among elements. For example, when exposed to a
continuous stream of syllables, learners might group sylla-
bles that frequently co-occur into units that correspond to
words (Aslin, Saffran, & Newport, 1998; Saffran, Aslin, &
Newport, 1996a). Likewise, in vision, learners might asso-
ciate shapes that often co-occur within scenes, which might
facilitate the recognition of objects composed of those shapes
(e.g., Fiser & Aslin, 2005; Orbán, Fiser, Aslin, & Lengyel,
2008).
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The initial motivation of statistical learning was that it
provided one of the few plausible bottom-upmechanisms for
extracting and memorizing recurring units like words from
continuous sequences (e.g., Erickson, Thiessen, & Estes,
2014; Graf-Estes, Evans, Alibali, & Saffran, 2007; Hay,
Pelucchi, Graf Estes, & Saffran, 2011; Isbilen, McCauley,
Kidd, & Christiansen, 2020; Karaman & Hay, 2018; Per-
ruchet, 2019; Shoaib, Wang, Hay, & Lany, 2018). However,
the question of whether statistical learning truly facilitates
the memorization of these units is controversial. An alterna-
tive view proposes that statistical learning primarily supports
the formation of pairwise associations among co-occurring
elements (e.g., syllables) rather than the memorization of
units (Endress & de Seyssel, under review; Endress, Slone,
& Johnson, 2020).

A key piece of evidence for the mere-associations view is
the phantom-word phenomenon. In this paradigm, learners
can recognize spurious “units” that have not been presented
during a sequence, but that have the same statistical properties
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as units that have been presented (e.g., Endress & Lan-
gus, 2017; Endress & Mehler, 2009, but see Perruchet &
Poulin-Charronnat, 2012). If learners are more familiar with
these spurious phantom-words than with items that actu-
ally occurred in the speech stream (but have weaker internal
associations), such results seem to suggest that learners just
tracked the associations among elements, but did not memo-
rize any units. After all, they preferred unattested items over
attested items if the former had stronger internal associations
– even though unattested items are unlikely to have memory
representations.

However, while this phenomenon has been observed for
sequentially presented items in both vision and audition,
there is evidence that for simultaneously presented visual
shapes, units might actually be memorized. This raises the
question of whether the phantom-word phenomenon can be
replicated with simultaneously presented items. If statistical
learningof simultaneously presented visual shapes leads only
to the recognition of pairwise associations without memoriz-
ing the units as wholes, such results would strongly support
the mere-associations view.

Memory vs. mere associations in sequential learning

In statistical learning tasks, participants are typically exposed
to statistically structured sequences of stimuli, such as syl-
lables, shapes, or other elements. These sequences contain
statistical regularities, such as transitional probabilities (TPs)
between elements, which participants can use to identify
recurring patterns. TPs represent the conditional probabil-
ity of an element σ2 occurring after another element σ1
within a sequence.Mathematically, this can be represented as
TP(σ2|σ1) = Count(σ1σ2)

Count(σ1)
, where Count(σ1σ2) represents the

number of times the sequence σ1σ2 occurs, and Count(σ1)
represents the number of times the element σ1 occurs.

Following exposure to such sequences, the participants’
ability to detect the statistical structures is tested in a recog-
nition test contrasting itemswith stronger TPs and itemswith
weaker TPs. For example, in Saffran and colleagues’ (Aslin
et al., 1998; Saffran, Newport, & Aslin, 1996b; Saffran,
Aslin, & Newport, 1996a) seminal experiments, participants
were presented with a continuous stream of syllables without
explicit word boundaries. Unbeknownst to the participants,
the streamcontained statistically defined “words”with strong
word-internal TPs. After exposure to such streams, partici-
pants were tested on their ability to discriminate between
high- and low-probability syllable sequences (using tech-
niques appropriate for the infant or adult participants). The
participants’ ability to choose high-TP items over low-TP
items demonstrates their sensitivity to the statistical regular-
ities present in the stream.

While a sensitivity to statistical structure has been widely
observed across various modalities, including speech, audi-

tion, vision, and touch, as well as in non-human animals
(e.g., Aslin et al., 1998; Batterink & Paller, 2017; Bulf, John-
son, & Valenza, 2011; Chen & Ten Cate, 2015; Conway &
Christiansen, 2005; Creel, Newport, & Aslin, 2004; Endress,
2010; Endress & Wood, 2011; Fiser & Aslin, 2002, 2005;
Fló, Benjamin, Palu, & Dehaene-Lambertz, 2022; Glick-
sohn & Cohen, 2011; Hauser, Newport, & Aslin, 2001;
Kirkham, Slemmer, & Johnson, 2002; Saffran, Newport, &
Aslin, 1996b; Saffran, Aslin, & Newport, 1996a; Saffran,
Johnson, Aslin, & Newport, 1999; Saffran & Griepentrog,
2001; Sohail & Johnson, 2016; L.K. Slone & Johnson, 2015;
L.K. Slone & Johnson, 2018; Tompson, Kahn, Falk, Vet-
tel, & Bassett, 2019; Toro, Trobalon, & Sebastián-Gallés,
2005; Turk-Browne, Jungé, & Scholl, 2005; Turk-Browne &
Scholl, 2009), the interpretation of such results remains con-
tentious, particularly regarding whether this process leads
to the memorization of entire units or merely the formation
of pairwise associations among elements. Given the focus of
the current paper, I will focus more on this mere-associations
view. For a critical discussion of the evidence supporting the
memory view as well as alternative interpretations thereof,
see Endress and de Seyssel (under review) and Endress et al.
(2020).

Support for the mere-association view comes from sev-
eral key observations, including computational modeling
of behavioral and electrophysiological statistical learning
results with memory-less Hebbian mechanisms (Endress &
Johnson, 2021; Endress, 2024), and an almost complete
inability to consciously recall statistical defined items such as
words even when their statistical structure has been demon-
strably learned (Batterink, 2020; Endress&deSeyssel, under
review).

Most relevant to the current experiment, participants can
recognize unattested items that did not occur during the
familiarization sequences, and can prefer them over items
that did occur during familiarization. Such items include
items played backwards with respect to the familiarization
sequence (e.g., Endress & Wood, 2011; Turk-Browne &
Scholl, 2009; Jones & Pashler, 2007), as well as “phantom-
words” (see below; Endress & Langus, 2017; Endress &
Mehler, 2009). This ability to recognize items that were not
presented during familiarization but have similar statistical
properties as those items that were presented suggests that
a recognition test is not necessarily diagnostic of memory
processes. This, in turn, supports the notion that participants
might just form associations between elements rather than
memorizing entire units. After all, one cannot form mem-
ories of items that have not been encountered (though it is
possible to implant false memories of course, see e.g., Lof-
tus & Pickrell, 1995, and, as I will argue in the discussion,
recognizing unattested items is critical for generalization).

More specifically, in (visual or auditory) phantom-word
experiments, participants were presented with sequences of
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stimuli designed to contain statistically defined “words” as
well as spurious “phantom-words” that had identical statis-
tical properties as the words but were not actually presented
during the sequence (Endress & Langus, 2017; Endress &
Mehler, 2009). Participants preferred such phantom-words
to lower-probability items that did actually occur in the
familiarization sequences (Endress&Langus, 2017; Endress
& Mehler, 2009), and, at least in some experiments, were
unable to discriminate between phantom-words and items
with identical TPs that were presented during the familiariza-
tion sequence (Endress & Langus, 2017; Endress & Mehler,
2009, but see Perruchet & Poulin-Charronnat, 2012). Again,
if participants prefer unattested high-TP items over low-TP
items they have actually encountered, such preferences in a
recognition test cannot be diagnostic of the memorization of
statistically defined units.

Memory vs. mere associations in simultaneous
displays

While the evidence for memory processes in statistical learn-
ing tasks from sequential input remains contentious, there is
more compelling support for the view that statistical learning
might lead to memories of entire units in the case of simul-
taneous visual displays. For example, in statistical learning
tasks, participants often exhibit better recognition of entire
units compared to sub-units. For example, if the elements
ABC form a statistically defined unit, participants sometimes
find it easier to recognize the entire ABC unit compared to
its sub-units AB or BC (e.g., Fiser & Aslin, 2005; Giroux &
Rey, 2009; Orbán et al., 2008; Slone & Johnson, 2018).

However, both Fiser and Aslin (2005) and Slone and
Johnson (2018) found such results only in some of their
experiments, and not others. Further, better recognition of
units than of sub-units can be reproduced by memory-less
Hebbian models (Endress and de Seyssel, under review),
and attentional processes may also contribute to the prefer-
ence for units over sub-units (Endress, in preparation). Such
results suggest that these preferences might be less diagnos-
tic of memory processes than initially thought. Given these
discrepant explanations for the observed effects, it is impor-
tant to provide another critical test of the view that statistical
learning leads to memory for statistically defined items. I
thus ask whether the phantom-word phenomenon can also be
observed in studies involving simultaneous visual displays.

The current experiment

In the current experiment, I seek to replicate the phantom-
word phenomenon with simultaneously presented visual
shapes.

Participants were familiarized with visual scenes combin-
ing two (statistically defined) “words” of three shapes each.

(I refer to shape combinations as words for consistency with
the earlier literature.) The scenes were designed as to allow
for the creation of “phantom-words.“

Following this familiarization, participants were tested on
three types of test-trials. First, they had to choose between
words and “part-words.” Part-words are shape combinations
that appeared during familiarization, but whose shapes came
from different words, and thus had weaker TPs than actual
words. In line with much of the statistical learning litera-
ture, I used this contrast to establish a sensitivity to statistical
structure.

Second, participants had to choose between phantom-
words and part-words. I expected to replicate a preference for
phantom-words over part-words, showing that participants
weigh TPs higher than frequency of occurrence, which in
turn would suggest that they do not encodewords inmemory.

Third, participants had to choose between words and
phantom-words. While participants showed no preference
for words over phantom-words in some earlier experiments
(see above), one would expect a strong preference for actual
words if participants truly memorized them in the case of
simultaneously presented visual items.

I also applied an orthogonal manipulation that turned out
not to affect the results. Specifically, for half of the partici-
pants, the shapes were presented as black figures on a white
background. This is the usual mode of presentation in the
statistical learning literature, and might encourage the per-
ception of the scenes as a collection of separate shapes (see
Fig. 1a). For the other participants, shapes were presented as
white “holes” on a black background (see Fig. 1b). Themoti-
vation was to encourage participants to perceive the shapes
as holes in a single object (i.e., the black background), which,
in turn, might encourage memorization of these wholes, and
thus of entire units. However, this manipulation was unsuc-
cessful, maybe because the polarity inversion did not provide
convincing 3D cues. I thus include the polarity type in the
analyses below, but do not discuss it further.

Materials andmethods

Participants

The main experiment recruited participants from testable
minds (https://minds.testable.org/). A pilot experiment
recruited participants from first-year students at City St
George’s, University of London (UK). In the latter popula-
tion, other experiments where attention checks can be imple-
mented typically need to exclude a substantial proportion of
the sample due to insufficient attention. Unfortunately, the
present experiment does not offer a clear performance-based
criterion to make sure that participants paid attention to the
stimuli, as the task might be genuinely difficult. However,
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Fig. 1 Example configurations presented during familiarizations, with
a black shapes on a white background and b white shapes on a black
background. Presenting black shapes on a white background is the stan-

dard presentation mode in statistical learning tasks. Presenting white
shapes on a black background was intended to make the shapes appear
as part of a whole. However, this manipulation was unsuccessful

given that my main interest lies in the performance on trials
involving phantom-words for participants who succeeded in
the statistical learning task, it is more conservative to exclude
participants who might not have paid attention to the task,
even if this leads to an overestimation of their statistical learn-
ing abilities.

As a result, I rely on the assumption that earlier statistical
learning literature has shown that participants can learn sta-
tistical relations in principle, and exclude those participants
not exceeding an accuracy of 50% on word vs. part-word tri-
als. This criterion led to the removal of 53 and 23 participants
from the testable minds and students samples, respectively. I
present the results from these restricted samples jointly with
the results from the full sample. The pattern of significance
was very similar when all participants were included (see
below). The demographics of the full samples as well as the
restricted samples are given in Table 1. In the student sample,
age and gender were not recorded due to experimenter error.

Results from the student sample are reported in Supplemen-
tary Online Material SM2.

As I had no a priori estimates of the expected effect
sizes (and as the resulting sample size calculations can be
problematic; Pek, Pitt, &Wegener, 2024), sample sizes were
determined by the available funding (for the main sample)
and by the number of available students (for the pilot sam-
ple). However, a sensitivity analysis for the main sample
indicates that the sample sizes – 161 in the full sample and
108 in the restricted sample – are sufficient to detect effect
sizes (Cohen’s d) of 0.20 and 0.25, respectively, with 80%
power. These detectable effect sizes are much smaller than
the critical effect sizes reported below, suggesting that the
sample sizes were sufficient to detect the critical effects.

Apparatus

The experiment was run on testable.org.

Table 1 Demographics of the full sample and the restricted sample, where those participants were excluded whose accuracy on word vs. part-words
trials did not exceed 50%

Population Sample type Color polarity N Females Males Age Age range

Main (testable) Full sample black on white 82 47 35 30.3 19-66

Main (testable) Full sample white on black 79 33 46 30.5 18-57

Pilot (students) Full sample black on white 23

Pilot (students) Full sample white on black 27

Main (testable) Restricted sample black on white 57 32 25 30.7 19-59

Main (testable) Restricted sample white on black 51 22 29 31.9 18-57

Pilot (students) Restricted sample black on white 12

Pilot (students) Restricted sample white on black 15

For the student sample, age and gender have not been recorded due to experimenter error
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Table 2 Design of the actual words and phantom-words

Phantom-word: ABC

ABI GBC AHC

Phantom-word: DEF

DEI GEF DHF

Phantom-word: JKL

JKR PKL JQL

Phantom-word: MNO

MNR PNO MQO

Actual words were generated from phantom-words by replacing one of
their shapes

Materials

The stimuli were the visual shapes used by Fiser and Aslin
(2002). I used a total of 18 shapes to generate 12 units (and
phantom-units). These shapes were randomly chosen from a
total set of 24 shapes (see below). Individual shapes appeared
as bmp images with a size of 74 × 74 pixels. However,
the actual size of the shapes on the participants’ displays
is unknown due to online administration of the experiment.

Locations of shapes within scenes were pre-calculated
offline. Scenes were composed online by testable.

Design and familiarization

Creating words from phantom-words

As shown in Table 2, phantom-words were generated fol-
lowing the design in Endress andMehler (2009) and Endress
and Langus (2017). Specifically, I reserved 12 shapes to gen-
erate two sets of two phantom-words each. Within each set
of phantom-words, I reserved another set of three shapes to
generate the actual words, by replacing one shape at a time.
For example, and as shown in Table 2, if ABC and DEF are
two phantom-words (where each letter represents a shape),
the corresponding actual words would be GBC and GEF
(replacing the first element of the phantom-words), AHC and
DHF (replacing the middle element of the phantom-words),
as well as ABI and DEI (replacing the last element of the
phantom-words). I generated ten different random assign-
ments between shapes and units, corresponding to different
“languages” in statistical learning tasks.

Combining words into scenes

Familiarization scenes were created according to the four
configurations shown in Fig. 2. Each scene comprised two
words. These words came from different sets, where a “set”

Fig. 2 Configurations used in the familiarization scenes. Each box rep-
resents a shape. Shapes belonging to the same word are colored in the
same color. All scenes were composed of one horizontally and one ver-
tically arranged “word.” During the test phase, one type of part-word

was extracted from each configuration. For example, in Configuration
1 (top left), the part-word consisted of the left-most shape of the hor-
izontally arranged word and the two top-most shapes of the vertically
arranged word
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of words refers to those words that can be generated from
the same phantom-word by substitution of a single shape.
As shown in Fig. 2, one word in each scene was presented
vertically, while a second word was presented horizontally
above the first. The scenes differed inwhether thewordswere
stacked on top of each other or placed next to each other, and
in whether the bottom word appeared on the left or right.

As I used all combinations of the sixwords in each set,with
each of the four configurations, andwith eachword appearing
on each of the two (left or right) sides of the configurations
in Fig. 2, one obtains 6 × 6 × 4 × 2 = 288 scenes. As a
result, each word appeared 48 times in total, and 24 times in
each (horizontal or vertical) orientation. Similarly, all shapes
occurred equally often during familiarization.

Before starting the familiarization, participants were
informed that the study aimed to investigate how individuals
remember combinations of objects. They were told that they
would be shown a series of scenes displaying combinations
of objects and instructed to pay attention to these scenes. Fol-
lowing this, each scene was presented once for 2000 ms and
with an ITI of 1000 ms, leading to a familiarization duration
of 14 min 24 s.

Test

As mentioned above, learning was assessed during two-
alternative forced-choice tests. Participants were informed
that they would be presented with pairs of new scenes con-
taining fewer objects. They were told that, in each pair, one
scene was embedded in the scenes they had viewed previ-
ously, while the other was not. They were asked to indicate
which scenes looked more familiar, by clicking on one of
two buttons corresponding to the first or the second scene,
respectively.

Following this, all participants then completed three types
of test trials in a single intermixed block: Choices between
words and part-words, between phantom-words and part-
words, and between words and phantom-words.

Test items were presented at the center of the screen rather
than in their original positions and were shown one after the
other, for a total of 36 trials. I will now describe the different
test types.

Words vs. part-words

As shown in Fig. 2, each configuration allows for exactly
one part-word, by combining adjacent shapes from the two
underlying words. For example, in Configuration 1, the only
part-word without a bend uses the two top-most shapes from
the vertical word and the left-most shapes from the horizontal
word.

I randomly selected 12 combinations ofwords to create the
test trials. One word in each combination came from either
set. (As mentioned above, a “set” of words refers to those
words that can be generated from the same phantom-word by
substitution of a single shape.) Each word appeared equally
often either as the left or as the right item in the configurations
in Fig. 2. I randomly paired these word combinations with
a configuration and generated the corresponding words and
part-words. Each configuration was used equally often. As a
result, each word occurred twice, and each part-word once.

The order was randomly chosen; an equal number of trials
started with words and part-words, respectively. Participants
completed 12 of these test trials in total.

Compared to the horizontal orientation, vertical shape
combinations were rotated by 90 degrees to the left when
the vertical shape combinations appeared on the left (i.e., in
Configurations 1 and 2), and by 90 degrees to the right when
the vertical shape combinations appeared on the right (i.e.,
in Configurations 3 and 4). The shapes were not rotated.

Phantom-words vs. part-words

For the phantom-word vs. part-word test, I reused the same
trials as in the word vs. part-word test, except that words
were replaced with the corresponding phantom-words. As a
result, each phantom-word occurred three times, with each
part-word occurring only once, for a total of 12 trials.

Words vs. phantom-words

In the word vs phantom-word test, I presented all words and
their corresponding phantom-words. As a result, each word
occurred once, and each phantom-word three times. Orien-
tations were chosen randomly. This yields a total of 12 trials.

Analysis

I analyzed the results in two ways. First, I compared the per-
formance in the different trial types to the chance level of
50% using a Wilcoxon test. To compare performance across
trial types, I calculated normalized difference scores, that

is,
accuracytrial type 1−accuracytrial type 2
accuracytrial type 1+accuracytrial type 2

, indicating whether perfor-

mance in one trial type is better than in the other. These
difference scores were then compared to the chance level of
zero, again using Wilcoxon tests. I also asked whether any
of these results were affected by the color polarity type (i.e.,
black on white vs. white on black). Following Rosenthal,
Rosnow, and Rubin (1999), I used these focused analyses to
target the contrasts of interest, ensuring that the visualiza-
tions matched the statistical tests.
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Second, I confirmed these results using a set of generalized
linear mixedmodels with the fixed factor predictors trial type
and color polarity as well as their interaction, and a random
intercept for participants. I fitted separatemodel for each (full
vs. restricted) sample and trial contrast (word vs. part-word
trials vs. word vs. phantom-word trials and word vs. part-
words and phantom-word vs. part-word trials).

Results from the much larger main sample will be pre-
sented in the main text. Results from the student sample will
be presented in Supplementary Online Material SM2.

Results

As shown in Table 3 and Fig. 3a, participants from the main
sample preferred both words and phantom-words to part-
words.1 In contrast, they had no preference for words over
phantom-words. Similar results were obtained for both color
polarity types, with no discernible effect of color polarity
type. These results held in both the full sample and the
restricted sample. (Individual results for the different polarity
types are given in Fig. S1.)

To compare performance in the different trial types, I cal-
culated the difference scores mentioned above. As shown
in Table 3 and Fig. 3b, participants from the main sample
performed much better on word vs. part-word trials than
on word vs. phantom-word trials, irrespective of the color
polarity type. This suggests that participants find discrimina-
tions based on TPs much easier than discriminations based
on frequency of occurrence, which is problematic if statis-
tical learning leads to memory for units. (Individual results
for the different polarity types are given in Fig. S2.)

However, at least in the restricted sample, performance
was also somewhat better for word vs. part-word trials than
for phantom-word vs. part-word trials, suggesting that one
cannot rule out that participants might also have some ability
to track frequencies of occurrence. However, the correspond-
ing difference score was much smaller than that comparing
words vs. part-word and word vs. phantom-word trials, and
was not significant in the full sample.

As shown in Supplementary Online Material SM2, the
results were similar for the student sample, except that the
data was noisier.

I confirmed these results using the generalized linear
mixed models mentioned above. As shown in Table 4, the
models showed that performance on word vs. part-word
trials was significantly better than for word vs. phantom-
word trials. They also showed that performance on word vs.

1 The above chance performance in the restricted sample is meaning-
less, since only those participants were included who exceeded 50% on
the word vs. part-word test.

part-word trials was significantly better than on phantom-
word vs. part-word trials, though this predictor was signifi-
cant only in the restricted sample and was only marginal in
the full sample. Further, the odds ratio associated with the
former contrast was almost twice as large as that from the
latter contrast.

There were no main effects or interactions with polarity
type. The results for the student sample were generally sim-
ilar.

Discussion

Substantial controversy revolves around the nature of the rep-
resentations formed during statistical learning. On the one
hand, learnersmight use statistical information to encode dis-
crete and integrated units into memory. On the other hand,
they might just form associations between contiguous ele-
ments, but without necessarily encoding discrete units in
memory. While the evidence (at least in my view, but see
e.g., Erickson et al., 2014; Graf-Estes et al., 2007; Hay et al.,
2011; Isbilen et al., 2020; Karaman & Hay, 2018; Perruchet,
2019; Shoaib et al., 2018) favors the mere association view
for statistical learning from sequences, there is potentially
strong evidence for the memory view in the case of statis-
tical learning from simultaneously presented visual shapes.
Specifically, some studies demonstrate superior recognition
of units compared to sub-units, suggesting that participants
encoded the entire units.

However, and as mentioned above, the interpretation of
such results is unclear, given that they are found in some
experiments but not others (Fiser & Aslin, 2005; Slone &
Johnson, 2018), that theymight have attentional explanations
(Endress, in preparation), and that a memory-less Hebbian
learning model might provide an alternative interpretation
(Endress & de Seyssel, under review).

To adjudicate between these competing views, I tested the
predictions of the memory view and the mere-association
using a paradigm that has been critical in similar discussions
in the case of statistical learning of sequential regularities.
Specifically, following exposure to statistically structured
“scenes” composed of visual shapes, I tested recognition
of words, part-words, and phantom-words. Phantom-words
have the same (high) TPs as words, but, in contrast to words,
never appeared during familiarization.

Participants preferred both words and phantom-words
over part-words. Further, the preference for words over
part-words was higher than the preference for words over
phantom-words. Such results thus strongly suggest that the
participants’ choices are predominantly driven by TPs rather
than frequency of occurrence, and TPs are more salient
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Table 3 Descriptives of accuracy scores and difference scores for the main sample

Trial type M SE pWilcoxon pHB r

Full sample - color polarities combined (N = 161)

Words vs. Part-Words 60.093 1.281 < 0.001 < 0.001 0.550

Words vs. Phantom-Words 48.292 1.158 0.571 1.000 0.045

Phantom-Words vs. Part-Words 58.333 1.303 < 0.001 < 0.001 0.453
Words vs. Part-Words−Words vs. Phantom-Words
Words vs. Part-Words+Words vs. Phantom-Words 0.111 0.016 < 0.001 < 0.001 0.488
Words vs. Part-Words−Phantom-Words vs. Part-Words
Words vs. Part-Words+Phantom-Words vs. Part-Words 0.016 0.014 0.519 1.000 0.051

Full sample - black on white (N = 82)

Words vs. Part-Words 60.671 1.795 < 0.001 < 0.001 0.550

Words vs. Phantom-Words 47.764 1.633 0.495 1.000 0.075

Phantom-Words vs. Part-Words 56.606 1.738 < 0.001 0.005 0.387
Words vs. Part-Words−Words vs. Phantom-Words
Words vs. Part-Words+Words vs. Phantom-Words 0.120 0.022 < 0.001 < 0.001 0.509
Words vs. Part-Words−Phantom-Words vs. Part-Words
Words vs. Part-Words+Phantom-Words vs. Part-Words 0.034 0.019 0.147 1.000 0.160

Full sample - white on black (N = 79)

Words vs. Part-Words 59.494 1.849 < 0.001 < 0.001 0.548

Words vs. Phantom-Words 48.840 1.660 0.869 1.000 0.019

Phantom-Words vs. Part-Words 60.127 1.951 < 0.001 < 0.001 0.517
Words vs. Part-Words−Words vs. Phantom-Words
Words vs. Part-Words+Words vs. Phantom-Words 0.101 0.023 < 0.001 0.001 0.458
Words vs. Part-Words−Phantom-Words vs. Part-Words
Words vs. Part-Words+Phantom-Words vs. Part-Words -0.003 0.021 0.701 1.000 0.043

Full sample - Effect of color polarity

Words vs. Part-Words 0.607 1.000 0.041

Words vs. Phantom-Words 0.458 1.000 0.058

Phantom-Words vs. Part-Words 0.227 1.000 0.095
Words vs. Part-Words−Words vs. Phantom-Words
Words vs. Part-Words+Words vs. Phantom-Words 0.519 1.000 0.051
Words vs. Part-Words−Phantom-Words vs. Part-Words
Words vs. Part-Words+Phantom-Words vs. Part-Words 0.263 1.000 0.088

Restricted sample - color polarities combined (N = 108)

Words vs. Part-Words 69.136 1.011 NA NA NA

Words vs. Phantom-Words 49.306 1.432 0.903 1.000 0.012

Phantom-Words vs. Part-Words 60.957 1.587 < 0.001 < 0.001 0.556
Words vs. Part-Words−Words vs. Phantom-Words
Words vs. Part-Words+Words vs. Phantom-Words 0.180 0.015 < 0.001 < 0.001 0.776
Words vs. Part-Words−Phantom-Words vs. Part-Words
Words vs. Part-Words+Phantom-Words vs. Part-Words 0.075 0.015 < 0.001 < 0.001 0.419

Restricted sample - black on white (N = 57)

Words vs. Part-Words 69.152 1.395 NA NA NA

Words vs. Phantom-Words 49.269 2.065 0.905 1.000 0.016

Phantom-Words vs. Part-Words 58.626 1.985 < 0.001 0.001 0.531
Words vs. Part-Words−Words vs. Phantom-Words
Words vs. Part-Words+Words vs. Phantom-Words 0.182 0.021 < 0.001 < 0.001 0.760
Words vs. Part-Words−Phantom-Words vs. Part-Words
Words vs. Part-Words+Phantom-Words vs. Part-Words 0.091 0.021 < 0.001 0.001 0.518

Restricted sample - white on black (N = 51)

Words vs. Part-Words 69.118 1.496 NA NA NA

Words vs. Phantom-Words 49.346 2.012 0.985 1.000 0.003

Phantom-Words vs. Part-Words 63.562 2.516 < 0.001 < 0.001 0.584
Words vs. Part-Words−Words vs. Phantom-Words
Words vs. Part-Words+Words vs. Phantom-Words 0.178 0.021 < 0.001 < 0.001 0.797
Words vs. Part-Words−Phantom-Words vs. Part-Words
Words vs. Part-Words+Phantom-Words vs. Part-Words 0.056 0.021 0.026 0.238 0.311
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Table 3 continued

Trial type M SE pWilcoxon pHB r

Restricted sample - Effect of color polarity

Words vs. Part-Words 0.959 1.000 0.005

Words vs. Phantom-Words 0.878 1.000 0.015

Phantom-Words vs. Part-Words 0.125 1.000 0.148
Words vs. Part-Words−Words vs. Phantom-Words
Words vs. Part-Words+Words vs. Phantom-Words 0.784 1.000 0.026
Words vs. Part-Words−Phantom-Words vs. Part-Words
Words vs. Part-Words+Phantom-Words vs. Part-Words 0.331 1.000 0.094

The restricted sample consists of participants whose performance exceeded 50% on word vs. part-word trials. The p value reflects a Wilcoxon test
against the chance levels of 50% and of zero for accuracies and difference scores, respectively. The effect of color polarity represents aWilcoxon test
comparing all of these dependent variables as a function of color polarity. The p value was corrected for repeated testing using the Holm–Bonferroni
method, separately for each (full or restricted) sample (pHB). In the restricted sample, comparisons of the word vs. part-word contrast against chance
are not meaningful as participants were selected based on their performance in this comparison. The effect size r is the rank-biserial correlation
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Fig. 3 a Accuracy in the different trial types (words vs. part-words,
phantom-words vs. part-words, and words vs. phantom-words). b Rel-
ative difference scores for contrasts between different trial types (word
vs. part-word trials vs. phantom-word vs. part-word trials, and word vs.
part-word trials vs. word vs. phantom-word trials). Both panels show
the data for the full main sample (top) or for the restricted sample after
the exclusion of participants whose performance did not exceed 50%

in the word vs. part-word trials (bottom), collapsed across polarity con-
trasts (black shapes on a white background vs. white shapes on a black
background). The dots, error bars, and violin plots represent the sample
averages, 95% bootstrap confidence intervals and the distribution of the
average accuracy for individual participants, respectively.Empty circles
represent individual participants
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Table 4 Results of generalized linear mixed models for trial-by-trial responses, for the main sample

Log-odds Odd ratios
Estimate SE CI Estimate SE CI t p

Full sample - Word//Part-Words vs. Words//Phantom-Words

Trial type: Words vs. Part-Words 0.530 0.092 [0.35, 0.711] 1.700 0.156 [1.42, 2.04] 5.767 < 0.001

Color polarity: white on black 0.044 0.099 [-0.151, 0.238] 1.045 0.104 [0.86, 1.27] 0.440 0.660

Trial type:Words vs. Part-Words×Color
polarity: white on black

-0.093 0.131 [-0.35, 0.163] 0.911 0.119 [0.705, 1.18] -0.713 0.476

Full sample - Word//Part-Words vs. Phantom-Words//Part-Words

Trial type: Words vs. Part-Words 0.172 0.093 [-0.00962, 0.355] 1.188 0.110 [0.99, 1.43] 1.856 0.063

Color polarity: white on black 0.151 0.109 [-0.0625, 0.364] 1.162 0.126 [0.939, 1.44] 1.385 0.166

Trial type:Words vs. Part-Words×Color
polarity: white on black

-0.200 0.133 [-0.46, 0.0609] 0.819 0.109 [0.631, 1.06] -1.502 0.133

Restricted sample - Word//Part-Words vs. Words//Phantom-Words

Trial type: Words vs. Part-Words 0.836 0.113 [0.616, 1.06] 2.308 0.260 [1.85, 2.88] 7.422 < 0.001

Color polarity: white on black 0.003 0.111 [-0.215, 0.221] 1.003 0.112 [0.807, 1.25] 0.028 0.978

Trial type:Words vs. Part-Words×Color
polarity: white on black

-0.005 0.164 [-0.326, 0.317] 0.995 0.163 [0.722, 1.37] -0.029 0.977

Restricted sample - Word//Part-Words vs. Phantom-Words//Part-Words

Trial type: Words vs. Part-Words 0.460 0.114 [0.237, 0.683] 1.584 0.180 [1.27, 1.98] 4.047 < 0.001

Color polarity: white on black 0.209 0.117 [-0.02, 0.437] 1.232 0.144 [0.98, 1.55] 1.788 0.074

Trial type:Words vs. Part-Words×Color
polarity: white on black

-0.210 0.166 [-0.536, 0.116] 0.810 0.135 [0.585, 1.12] -1.263 0.207

Results are reported for the full sample as well as the restricted sample, where participants were excluded if their performance did not exceed 50%
on the word vs. part-word trials

that frequency of occurrence even when items are presented
simultaneously. This poses a challenge for the memory view,
as it suggests that participants prefer unattested items for
which there is no memory representations (i.e., phantom-
words) over attested items (i.e., part-words).

However, I cannot rule out some sensitivity to fre-
quency of occurrence as well, given that the preference
for words over part-words was somewhat higher than that
for phantom-words over part-words. However, the odds
ratio comparing word vs. part-word and word vs. phantom-
word trials was twice as high than that comparing word
vs. part-word and phantom-word vs. part-word trials. Fur-
ther, performance was equivalent on word vs. part-word and
phantom-word vs. part-word trials when all participants were
included. Be that as it might, the current results suggest that
participants’ choices are primarily driven by TPs rather than
by frequency of occurrence.

A potential limitation of these results relates to the design
of these experiments. Statistically defined units could appear
in horizontal or vertical orientation. However, when the units
appeared in a vertical orientation, their constituent shapes
maintained their original orientation, and were not rotated
together with the unit. This, in turn, might have encouraged

participants to process shapes as isolated items, rather than
as part of a unit. However, if learners use TPs to extract
units, and if the non-rotated shapes prevented participants
from recognizing the units across orientation, they should
simply memorize two units for each word, one in a hori-
zontal orientation, and one in a vertical orientation. As each
word occurred no less than 24 times in each orientation,
participants had ample opportunity to actually memorize
these items. This is particularly so since, at least in language
acquisition, experience is sparse. As a result, each word is
exceedingly rare (e.g., Yang, 2013), and statistical learning
thus must operate on sparse input. As a result, even if partic-
ipants did not recognize units across orientations, the current
results still show that they weight TPs higher than frequency
of occurrence.

While a preference for unattested high-probability items
over attested low-probability items suggest that statistical
learningmight not beparticularly helpful for learning specific
items such aswords, such preferences reflect a form of gener-
alization that might fulfill other functions. In fact, the ability
to generalize has long been considered a critical ability in
connectionist networks (e.g., Amit, 1989; Plunkett &March-
man, 1993;Altmann, 2002), andmore recently in deep neural
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networks (e.g., Li, Sorscher, & Sompolinsky, 2024). Such a
generalization abilitymight be useful for reconstructing stim-
uli from incomplete input (e.g., during amodal completion). It
might also facilitate processing through predicting informa-
tion, for example when understanding sentences (e.g., Levy,
2008; Trueswell, Sekerina, Hill, & Logrip, 1999) or more
generally in cognition (Clark, 2013; Friston, 2010; Keller &
Mrsic-Flogel, 2018). In fact, other authors argued that statis-
tical learning might be particularly important for predictive
processing (Sherman & Turk-Browne, 2020; Turk-Browne,
Scholl, Johnson, & Chun, 2010), a function that is presum-
ably facilitated if it is not limited to items which can be easily
recognized.

Be that as itmay, the current findings suggest that learners’
behavior is predominantly influenced by TPs rather than by
frequency of occurrence, which limits the utility of statistical
learning for remembering specific items, but might make it
more useful for other purposes. It is thus urgent to directly
investigate the function of statistical learning, and test its
relationship with memory processing.
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