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Key Points  
 
Question: What are the neurobiological underpinnings of group differences in cortical thickness in various 

psychiatric disorders? 
 

Findings: In this meta-analysis, regions of the cerebral cortex with greater expression of genes specific to 

pyramidal (CA1) cells are also regions with greater case-control group differences in cortical thickness in 

all six studied disorders, namely attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar 

disorder, major depressive disorder, obsessive-compulsive disorder and schizophrenia. There is a 

common profile of the group difference in cortical thickness shared amongst all these disorders (48% of 

the variance explained). A bioinformatics analysis of co-expression of genes associated with this shared 

profile suggests that these genes are involved in neurodevelopmental processes (prenatally), and 
processes underlying synaptic activity & plasticity (postnatally).  

 

Meaning: There are shared neurobiological and cellular mechanisms underlying differences in cortical 

thickness across multiple psychiatric disorders - implicating a common role of prenatal development and 

postnatal functioning of the cerebral cortex.  

 

  



Abstract (350 words maximum)  

 

Importance: Large-scale neuroimaging studies have revealed group differences in cortical thickness 

across many psychiatric disorders. The underlying neurobiology behind these differences is not well 
understood.  

 

Objective: To determine neurobiological correlates of group differences in cortical thickness between 

cases and controls in six disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum 

disorder (ASD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder 

(OCD) and schizophrenia (SCZ). 

 

Design: Meta-analytic profiles of group differences in cortical thickness between cases and controls were 
generated using T1-weighted magnetic resonance images. Similarity between inter-regional profiles of 

cell-specific gene expression and those in the group differences in cortical thickness were investigated in 

each disorder. Next, principal component analysis was used to reveal a shared profile of group difference 

in thickness across the disorders. Gene co-expression, clustering and enrichment for genes associated 

with these disorders were conducted. Data analysis was conducted between June and December 2019.  

 

Setting: A meta-analysis including 145 cohorts across 6 psychiatric disorders drawn from the ENIGMA 

Consortium. 
 

Participants: The number of cases/controls in each of the six disorders were as follows: ADHD: 

1,814/1,602; ASD: 1,748/1,770; BD: 1,547/3,405; MDD: 2,658/3,572; OCD: 2,266/2,007; and SCZ: 

2,688/3,244. 

 

Main outcomes and measures: Inter-regional profiles of group difference in cortical thickness between 

cases and controls. 
 

Results: Inter-regional profiles of group differences in cortical thickness for each of the six psychiatric 

disorders were associated with profiles of gene expression specific to pyramidal (CA1) cells, astrocytes 

(except for BD) and microglia (except for OCD). Principal component analysis revealed a shared profile of 

difference in cortical thickness across the six disorders (48% variance explained); inter-regional profile of 

this principal component 1 was related to that of the pyramidal-cell gene expression. Co-expression 

analyses of these genes revealed two clusters: (1) a prenatal cluster enriched with genes involved in 

neurodevelopmental (axon guidance) processes; and (2) a post-natal cluster enriched with genes 
involved in synaptic activity & plasticity-related processes. These clusters were enriched with genes 

associated with all six psychiatric disorders.  



 

Conclusion: There are shared neurobiological processes underlying differences in cortical thickness 

across multiple psychiatric disorders. These processes implicate a common role of prenatal development 

and postnatal functioning of the cerebral cortex in these disorders.  



Introduction 

The advancement of large-scale magnetic resonance imaging (MRI) studies has enabled systematic 

investigations of cortical morphology, such as cortical thickness and surface area, across a variety of 

psychiatric disorders. In particular, the ENIGMA (Enhanced Neuroimaging Genetics Through Meta-
Analysis) Consortium has conducted some of the largest MRI studies characterizing group differences 

between patients (cases) and controls in the cerebral cortex for a number of disorders, including attention 

deficit-hyperactivity disorder (ADHD),1 autism spectrum disorder (ASD),2 bipolar disorder (BD),3 major 

depressive disorder (MDD),4 obsessive-compulsive disorder (OCD),5 and schizophrenia (SCZ).6 

Nonetheless, the neurobiology underlying these MRI-derived macroscopic features is not well 

understood.  

 

As identified in post-mortem studies, there are subtle differences in the cellular composition of the 
cerebral cortex of patients diagnosed with various psychiatric disorders (vs. controls) such as the density 

of neurons and/or glial cells, and the extent of dendritic arborization.7 Mostly lower neuronal density 

and/or neuronal size have been documented in ASD,8 BD,9 MDD,10,11OCD12 and SCZ.13–15 Similar 

alterations in the density of glial cells (astrocytes, microglia or oligodendrocytes) have been observed in 

ASD,8 BD,9 MDD,10,11 and SCZ.16  

 

Several MRI studies have demonstrated distinct inter-regional profiles of group differences in cortical 

thickness across the 34 regions of the Desikan-Killiany atlas.17 We use the word ‘profile’ to refer to inter-
regional (spatial) variations in a measure, such as cortical thickness, across the cerebral cortex. Lower 

cortical thickness in temporal regions in cases (vs. controls) is a common feature across ADHD, ASD, 

BD, MDD, OCD and SCZ1–6,18; a recent report of the ENIGMA cohorts showed cross-disorder correlations 

among disorders.19 Likewise, large scale genome-wide association studies (GWAS) identify shared 

genetic architecture amongst these psychiatric disorders.20  

 

No studies have investigated systematically the relationship between microscopic ex-vivo histology and 
macroscopic in vivo differences in cortical thickness across psychiatric disorders. This is required in order 

to facilitate our understanding of MRI-derived measures in a neurobiological context, as well as the 

usefulness of MRI for tracking of clinical progression of disorders and their treatment. 

 

Here, we generate meta-analytic profiles of group differences in cortical thickness between cases and 

controls for ADHD, ASD, BD, MDD, OCD, and SCZ using an identical linear-modelling approach 

executed on each participating cohort. Next, we employ a virtual histology approach whereby inter-

regional profiles of cell-specific gene expression are correlated - across the 34 cortical regions17 - with 
inter-regional profiles of group differences in cortical thickness. Through a series of bioinformatic 

approaches, we then identify shared cellular correlates across the six psychiatric disorders. 



 

Methods  
Meta-analytic group differences in cortical thickness  

T1-weighted MRI scans were acquired in 145 cohorts participating in the ENIGMA Consortium with 
varying MRI field-strength and vendors. Details regarding MRI acquisition and sample demographics are 

found in eTable 1 and eTable 2. FreeSurfer cortical reconstruction (several versions) was used to derive 

measures of cortical thickness in 34 regions (per hemisphere), as segmented using the Desikan-Killiany 

atlas.17,21 Quality control was conducted by contributing cohorts, following standardized ENIGMA 

protocols (http://enigma.ini.usc.edu/protocols/imaging-protocols/). Individual ENIGMA groups performed 

multiple linear-regression analyses on their respective cohorts, which modelled cortical thickness of each 

region, separately, as a function of diagnosis (e.g., ADHD), age, age2, sex, and site-specific covariates 

(e.g., MR scanner). Individual cohorts obtained approval from local institutional ethics boards, and 
informed consent was obtained from study participants or their guardians. An inverse variance-weighted 

random-effects model from the “metafor” R package was used to generate meta-analytic profiles of group 

differences across the 34 regions for each disorder.22 This report is a meta-analysis of shared data in the 

ENIGMA consortium rather than existing literature. 

 

MRI-derived similarity and genetic similarity 

This analysis was carried out to evaluate similarity in pair-wise correlations in inter-regional profiles of 

group differences in cortical thickness and corresponding pair-wise correlations in genome-wide genetic 
architecture; described in eMethods. Group differences in cortical thickness were first correlated across 

psychiatric disorders with a biweight midcorrelation using R package WGCNA (rationale in eMethods).23 

Genetic correlations between psychiatric disorders were obtained from the Brainstorm consortium.20 The 

similarity of the group differences in cortical thickness and genetic cross-disorder correlation matrices was 

tested for significance using Mantel’s test from the “vegan” R package.24,25  

 

Virtual histology  
Virtual histology is an approach that correlates – across space - an MRI-derived profile, such as an inter-

regional profile of group differences in cortical thickness, with inter-regional profiles of cell-specific gene 

expression.26,27 As described previously, gene-expression data from the Allen Human Brain Atlas (AHBA; 

6 donors, 24 to 57 years of age) were first mapped to the 34 regions of the Desikan-Killiany atlas.28,29 To 

ensure similarity of inter-regional profiles in gene expression across donors, and across the lifespan, we 

apply a conservative two-stage filtering process. First, a donor-to-median correlation in the AHBA was 

used to retain only genes whose profiles are consistent among the six donors (retaining 8,216 out of 

20,737 genes present in AHBA). Second, the genes passing stage one are filtered based on inter-
regional profile similarity with an independent atlas of gene expression, namely BrainSpan (retaining 

2,511 out of 8,216 genes; see eMethods for additional details). The final set of 2,511 genes was used for 



analyses conducted in this report. Next, single-cell RNA sequencing data from the mouse hippocampus 

and S1 cerebral cortex were used to categorize the 2,511 genes specific to nine cell types identified (CA1 

pyramidal, S1 pyramidal, interneuron, astrocyte, microglia, oligodendrocyte, mural, endothelial and 

ependymal cells).30 Pyramidal cell types (CA1 and S1) are labeled based on their anatomic origin. But the 
molecular characteristics of these pyramidal cells, as indexed by gene expression, are not restricted to 

the brain regions in which these two types of pyramidal cells were found. The use of these panels is 

analogous to a data reduction technique driven by neurobiologically relevant clustering (see eMethods 

for additional details). Inter-regional profiles of cell-specific gene expression were then correlated - across 

the 34 regions - with MRI-derived profiles to generate a distribution of correlation coefficients for each of 

the cell types. This distribution was then tested for significance using a resampling approach from 

100,000 random samples. This analysis was restricted to MRI profiles from the left hemisphere only (due 

to data availability in AHBA).  
 

Co-expression analyses 

Seed genes were defined by biweight midcorrelation between principal component 1 (PC1) profile 

(shared variance in group differences in cortical thickness across the six disorders) and cell-specific 

genes passing false discovery rate (FDR) corrected threshold p<0.05.31 For these analyses, we 

harmonized gene-expression data from human cerebral cortex across five datasets (AHBA,29 

BrainCloud,32 Brain eQTL Almanac [Braineac],33 Genotype Tissue Expression [GTEx],34 and 

BrainSpan)35. The curation of these five gene-expression databases has been described previously and 
presented in eMethods.36,37 In total there were 534 donors (ages 0 - 102 years old) with gene-expression 

data for 16,245 genes across all datasets. Co-expression analyses were generated using linear mixed-

effects models where gene expression of each seed is modelled against other genes’ expression with 

age and sex as fixed effects and donor identifier as a random effect. The top 0.1% of positively co-

expressed genes for each of the seed genes were used to construct our co-expressed network panels.  

 

Gene trajectory clustering 
Co-expressed genes were clustered based on their temporal pattern of gene expression using data from 

the BrainSpan atlas (www.brainspan.org). This dataset was chosen for gene trajectory clustering as it is 

the only one that includes gene expression across prenatal and postnatal developmental periods (42 

donors, age range from 8 post-conception weeks to 40 years of age; 11 cortical regions). Genes were 

clustered using mixed-effects models with nonparametric smoothing spline fitting available in the 

“TMixClust” R package (see eMethods for additional details).38  

 

Gene ontology, KEGG, and psychiatric disorder enrichment analysis 
Gene ontology and KEGG pathway enrichment analysis were conducted using the R package 

“clusterProfiler”.39 GO (biological process ontology only) and KEGG terms with a minimum of 10 and a 



maximum of 500 genes were included in the analysis. Redundancy of GO terms was removed based on 

similarity cut-off of 0.90. Enrichment between co-expressed genes and genes associated with psychiatric 

disorder were conducted using a hypergeometric test. Genetic variants associated with psychiatric 

disorder were derived from the DisGeNet database (www.disgenet.org).40 The background gene-set for 
all of the aforementioned enrichment test included 16,245 genes that were present in our harmonized 

dataset of gene expression for co-expression analyses. P-values were corrected using FDR procedure.41 

 

Results  
Meta-analysis We characterized meta-analytic profiles of group differences in cortical thickness for each 

of the six disorders across the 34 regions of the cerebral cortex (Figure 1, eTable 3-8, eFigure 1, left 

hemisphere only). In total, there were 12,721 cases and more than 15,000 controls contributing to these 

profiles (eTable 2). Across the disorders, inter-regional variation in group differences of cortical thickness 
were positively correlated between SCZ and ADHD, ASD, BD, MDD & OCD (Figure 2A). Overall, there 

was a general trend of positive correlations (rbicor > 0) of group differences across all six psychiatric 

disorders (Figure 2A). Genetic correlations, as quantified by linkage-disequilibrium score regression, also 

showed a number of pair-wise positive correlations among these psychiatric disorders, in particular for 

SCZ (Figure 2B, reproduced using data from the Brainstorm consortium).20 Cross-disorder similarity of 

differences in cortical thickness (derived from MRI, Figure 2A) was correlated positively with cross-

disorder genetic similarity (derived from GWAS, Figure 2B), explaining 27% of variance (Mantel’s p value 

= 0.034,  Pearson p value = 0.045).  
 

Virtual histology of group difference in cortical thickness Inter-regional variation in the expression of 

genes specific to pyramidal (CA1) cells correlated negatively with the inter-regional profile of group 

differences in cortical thickness in each of the six psychiatric disorders (-0.08>r>-0.23, FDR-p-value<0.05, 

Figure 3, eTable 9, eFigure 2). Thus, regions with greater expression of pyramidal (CA1) specific genes 

showed greater differences in cortical thickness between cases and controls. We also observed this 

negative relationship with inter-regional profiles of expression of genes specific to astrocytes and 
microglia in all six disorders except BD (no correlation with astrocytes) and OCD (no correlation with 

microglia). Lastly, we observed a negative relationship between pyramidal (S1) specific expression and 

group differences in thickness in BD only.  

 

Principal component analysis Given the similarity of findings across the six disorders vis-à-vis virtual 

histology, we used principal component analysis to reduce the dimensions of the data (Figure 4A). The 

first principal component (PC1) explained 48% of variation in group differences of thickness profiles 

across the six disorders (eFigure 3). PC1 was positively correlated with each of disorder’s profiles 
(eFigure 3C), and its inter-regional profile was negatively associated with the inter-regional profiles of 

pyramidal- (CA1), astrocyte-, and microglia-specific gene expression (Figure 4B); regions with greater 



expression of cell-specific genes showed greater differences in cortical thickness between cases and 

controls. 

 

Shared neurobiology across disorders To investigate the relationship between PC1 and CA1 pyramidal 
specific genes, we used all CA1 genes associated significantly (FDR p<0.05) with PC1 as seed genes for 

co-expression analyses. Data from the AHBA, BrainEAC, BrainSpan, BrainCloud, and GTEx were 

harmonized to identify robust co-expression associations across the genome (eFigure 4&5). These “PC1-

CA1” co-expressed genes (n = 412 genes) were clustered based on their temporal pattern of expression 

using unsupervised nonparametric mixed modelling. This analysis yielded two clusters: Cluster 1 was 

upregulated during prenatal time periods and down regulated in postnatal life; and Cluster 2 that showed 

the opposite developmental trajectory (Figure 5A). GO enrichment analysis revealed involvement of 

neurodevelopmental processes (axon development; FDR-pvalue=5.15E-05) in the “prenatal” cluster 
(Figure 5B, eFigure 6) and involvement of synaptic signalling/neurotransmission and synaptic plasticity 

related terms (FDR-pvalue=5.11E-09, and 2.31E-03, respectively) in the “postnatal” cluster (Figure 5C, 
eFigure 6). Gene-enrichment analysis showed that the prenatal cluster is enriched in genes associated 

with ASD, BD, MDD and SCZ, while the postnatal cluster is enriched only in genes associated with ADHD 

and SCZ (FDR-pvalue < 0.05, eFigure 7). The entire co-expressed network (i.e., genes from both 

clusters) is enriched for all six disorders, at varying levels of enrichment (eFigure 7). Finally, with the aid 

of laminar gene-expression data from the developing human neocortex, we show that the prenatal cluster 

was upregulated in the cortical subplate zone and cortical plate (AUROC=0.68, FDR-pvalue = 2.35E-15), 
while down-regulated in the ventricular zone (AUROC=0.30, FDDR-pvalue = 1.30E-17; eFigure 8; 
eTable 10). This held true for the post-natal cluster as well (eFigure 8, eTable 11). 

 

The analysis described above was repeated for the astrocyte- and microglial-specific genes. PC1-

Astrocyte co-expressed genes (n = 168 genes) were enriched in metabolic processes such as amino acid 

transport (FDR-p-value=2.09E-03), as well as enriched in genetic variants associated with BD and SCZ 

(FDR-p-value=0.013 & 0.014, respectively, eFigure 9). PC1-Microglia co-expressed genes (n = 118 
genes) were enriched in immune-related processes (FDR-p-value=1.7E-08) and showed no enrichment 

with genetic variants associated with any of the six psychiatric disorders (eFigure 10).  

 

Discussion 
We characterized robust inter-regional differences in cortical thickness between cases and controls 

across the cerebral cortex in six common psychiatric disorders, as done previously by the individual 

Working Groups of the ENIGMA Consortium.1–6,18 The inter-regional profiles presented in this report were 

generated using the same linear model (with the same covariates) in each of the 145 participating cohorts 
and – as such – allow for direct comparisons of these profiles across the six disorders. This also 

facilitated our observation of the similarity between shared differences in MRI-derived thickness and 



genetic architecture across these six disorders, an observation suggesting the presence of genetic 

variants that may be associated with “vulnerable” brain phenotypes in common for the six disorders 

investigated here (Figure 2). 
 
Virtual histology identified common cell-specific associations between ex vivo gene expression and in 

vivo MRI-derived group differences in cortical thickness across the 34 cortical regions. In this analysis, all 

six disorders showed a negative association with expression profiles specific to CA1 pyramidal cells. 

Regions with greater group differences in cortical thickness are the regions with greater expression of 

pyramidal (CA1-like) specific genes within the “normative” human brain – potentially indicating 

vulnerability of these regions. Although the CA1 pyramidal-cell panel is labelled based on the source of 

these cells (CA1 region of the hippocampus), this does not mean that biological processes implicated in 

“CA1” genes are restricted to this region; in fact, similar molecular processes are present throughout the 
human cerebral cortex (see Supplement for additional details). As such, we interpret the functional 

relevance of these genes being related to differences in cortical thickness. It is important to state that the 

gene expression used throughout this report comes from individuals without any diagnoses of 

neurological or psychiatric disorders. Studies linking cell-specific genes with psychiatric GWAS-

associated genes show similar enrichment of CA1 pyramidal cells in ASD, BD, MDD, and SCZ.42 This is 

another line of evidence linking genetically identified enrichment of CA1 pyramidal cells (previous study42) 

with MRI identified enrichment of CA1 pyramidal cells within psychiatric disorders (this report).  

 
Principal component analysis identified a common component of these cortical differences, indicating a 

shared inter-regional profile of case-control differences in cortical thickness among all six disorders. 

Although not the primary focus of this report, we also report other PCs (explaining less variance); these 

appear to capture mostly disease-specific variations in group differences in cortical thickness (see 

eFigure 3 for more details). As expected from the disease-specific analyses, this PC1 profile was 

associated with the same three cell types, namely CA1 pyramidal, astrocyte, and microglia. The CA1 

pyramidal geneset is enriched with biological processes related to dendritic arborization27, and extensive 
dendritic branching is a key morphological phenotype of pyramidal neurons.43 Similarly, our phenotype is 

derived from cortical thickness, a measure that is directly correlated with ex-vivo dendrite length across 

individuals (R2=0.25).44 Dendrites control the flow and integration of information within neurons and are a 

medium of structural plasticity within the cerebral cortex. Remodeling of dendritic trees and dendritic 

spines have been observed as a result of environmental (stress, sensory enrichment/deprivation) and 

genetic influences acting both early and later in life.45,46 Alterations in dendritic morphology, such as 

reduction in size of dendritic arborization, have been described in post mortem samples from the cerebral 

cortex of patients with ASD47,48, BD49, SCZ49, depression50, and anxiety.50  
 



The network of genes co-expressed with the (CA1) pyramidal genes associated with PC1 contained two 

clusters: one upregulated during the prenatal and the other during the postnatal period. Through a series 

of bioinformatic approaches we found evidence for two sets of processes involving cortical development 

and cortical functioning and, based on the temporal profile, the influence of these processes prevails 
during prenatal (prenatal cluster) and postnatal (postnatal cluster) life, respectively. The emergence of 

these two clusters is highly convergent with the two-hit hypothesis regarding the etiology psychiatric 

disorders, particularly with schizophrenia.51 We speculate that the group differences in cortical thickness 

observed across the six psychiatric disorders are a summation of processes occurring throughout life 

(pre- and postnatal) whereby atypical development and/or impaired cortical functioning leave a 

morphological signature in the cerebral cortex.  

 

Prenatal/neurodevelopmental features of psychiatric disorders 
The development of the cerebral cortex during gestation is a complex process with a high susceptibility to 

perturbations. It is hypothesized that the risk for psychiatric disorders increases due to perturbations in 

normal neurodevelopment.52,53 Cross-disorder GWAS studies of ADHD, affective disorder, anorexia, 

ASD, BD, and SCZ have all implicated genes involved in regulating neurodevelopmental processes within 

radial glia and interneurons of the developing neocortex.54  

 

The prenatal (co-expression) cluster was enriched in neurodevelopmental processes such as 

axonogenesis/guidance, dendrite development, and - in general terms - neuron projection guidance. Axon 
guidance was also one of the key GO terms found in the aforementioned cross-disorder GWAS study.54 

Axon guidance is a process that directs growth cones as to establish the correct neuron pathways and 

cortical circuits. The strongest evidence in implicating axon-guidance proteins in psychiatric disorders is 

found in ASD whereby expression and GWAS studies converge on canonical axon guidance proteins 

such as Slits, Robos, and Semaphorins, all of which are present in our PC1-CA1 co-expressed genes 

(eFigure 11).55 See supplemental discussion regarding subplate enrichment. We speculate that early 

changes in neurodevelopmental processes may render certain regions and cell types (pyramidal cells and 
their dendrites) more vulnerable and, as such, more likely to be involved in the etiology of all psychiatric 

disorders. This may explain the shared profile of difference we observe.  

 

Postnatal/functional features of psychiatric disorders 

There is strong genetic, molecular and histological evidence demonstrating synaptic dysfunction and 

pathological changes in spine density and morphology in psychiatric disorders (particularly ASD, SCZ, 

MDD, and BD).56–59 Alterations in these processes are likely to influence structural plasticity and 

subsequent formation of complex and adaptable circuits. Both genetic and experience-dependent factors 
play a role in structural plasticity across life, and a summation of these factors may increase or decrease 

the risk of developing a psychiatric disorder. These structural (dendritic spine) changes are prominent 



during periods of maturation (childhood and youth) – coinciding with the peak age in incidence of 

psychiatric disorders.56,60 The postnatal cluster of co-expressed genes was enriched in synaptic 

transmission, and regulation of synaptic plasticity. We hypothesize that this cluster of genes is indicative 

of plasticity-related morphological changes in the cerebral cortex that may – in part – reflect adverse 
experiences common across all psychiatric disorders. This interpretation is consistent with the fact that 

there are fewer disorder-associated gene variants enriched in the postnatal cluster as compared with the 

prenatal cluster, potentially indicating that the postnatal processes are related to environmental rather 

than genetic components of risk for psychiatric disorders.  

 

Limitations 

There are several limitations to the approach used in this report. First, only 2,511 genes determined as 

having ‘representative’ inter-regional profiles of their expression are used for virtual histology. We chose 
this conservative approach given that inter-regional profiles in case-control differences and those in gene 

expression come from two different sets of brains (see Supplement for additional details). This limitation 

may lower our ability to capture other relevant neurobiological signals. In an attempt to mitigate this 

limitation, downstream analyses use co-expression to broaden the scope of the genes investigated, albeit 

indirectly. Secondly, we are using single-cell data from mice, which have shown general conservation 

with human data. There are, however, some species-specific differences that may not be accounted for in 

this report (see eMethods for details on single-cell vs. single-nucleus dataset).61 Thirdly, our analysis 

uses a relatively coarse parcellation allowing us to capture gross inter-regional patterns of group 
differences in cortical thickness. This might, however, increase the potential for false positives (reduced 

number of comparisons) and for missing subtle (vertex-level) variations. Lastly, when interpreting T1-

weighted MRI, we assume that these estimates reflect true variations in brain phenotype rather 

measurement error, artifacts, or other physiological sources of T1 signal. 

 

Conclusion 

In summary, we characterized shared neurobiology across six psychiatric disorders that implicates 
pyramidal cells (and dendrites) in representing a possible target of perturbations that may increase a 

general vulnerability to mental illness. Our bioinformatics-based analyses point towards involvement of 

neurodevelopmental (prenatal) and plasticity-related (postnatal) aspects underlying pathophysiology of 

psychiatric disorders and their brain correlates. These shared aspects of psychiatric disorders highlight 

the importance of transdiagnostic approaches in psychiatry.  
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Figure legend  
 
Figure 1: Meta-analytic profiles of group differences in cortical thickness (left hemisphere only) between 
cases and controls across the six psychiatric disorders investigated. Group differences are adjusted for 
age, sex and other site-specific variables. Error bars represent 95% confidence intervals. Estimates 
below zero represent thinner cortex in cases as compared with controls.  
 
Figure 2 A. Cross disorder correlation of group differences in cortical thickness (profiles from Figure 1). 
B). Cross disorder genetic correlation (LD score regression) derived from Brainstorm et al. Science 2018. 
C. Plot of genetic correlation against phenotypic (MRI-derived difference in thickness) correlations 
between psychiatric disorders with a linear model fit (blue line, R2=0.27, Mantels p value = 0.034, 
Pearson p value < 0.05). * FDR-pvalue < 0.05, ** < 0.01, *** < 0.001.  
 
Figure 3. Results from virtual histology. Distribution of correlation coefficients between cell-specific gene 
expression profiles and group differences in cortical thickness for the six psychiatric disorders. 
*represents FDR p < 0.05.  
 
Figure 4. Principal components analysis of profiles of group differences across six psychiatric disorders. 
A. First principal component, PC1, plotted across the 34 regions of the left hemisphere. PC1 values are 
scaled down to have a max of zero in order to facilitate interpretation: negative values reflect greater 
differences in cortical thickness between cases and controls. Unscaled values presented in eFigure 3. B. 
Distribution of correlation coefficients between cell specific gene expression and PC1 profile. * indicates 
FDR-p-value < 0.05.  
 
Figure 5. Lifespan trajectory in gene expression of PC1-CA1 co-expressed genes. Each line represents a 
fitted loess model for the expression of a given gene. Genes and their fitted models are coloured based 
on clustering based on temporal trajectories. PC1-CA1 co-expressed genes were generated using co-
expression of seed genes, namely genes that correlate with PC1 profile and the 103 CA1 pyramidal 
specific genes passing FDR < 0.05. Gene ontology (GO) enrichment analysis of the prenatal cluster (B),  
and postnatal cluster (C). 
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