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Background: Telomere length (TL) has been linked to cognitive function, decline
and dementia. This study aimed to explore whether both measured TL and
genetic disposition for TL predict dimensions of cognitive performance in a
longitudinal sample of older UK adults.

Methods: We analysed data from PROTECT study participants aged ≥50 years
without a dementia diagnosis, who had completed longitudinal cognitive testing.
We calculated polygenic scores for telomere length (PGS-TL) for
7,877 participants and measured relative telomere length (RTL) in a subgroup
of 846 participants using DNA extracted from saliva samples collected within
6 months either side of their baseline cognitive testing. Latent growth models
were used to examine whether RTL and PGS-TL predict both baseline and
longitudinal changes in cognitive performance (4 time-points, annually).

Results: In the whole sample, we did not observe significant associations
between either measure of telomere length and initial or longitudinal changes
in cognitive performance. Stratifying by median age, in older adults (≥ ~62 years),
longer baseline RTL showed a nominal association with poorer baseline verbal
reasoning performance (n = 423,Mintercept = 47.58, B = −1.05, p = .011) and PGS-
TL was associated with performance over time (n = 3,939; slope factor, Mslope =
3.23, B = −0.45, p = .001; slope2 factor, Mslope

2 = 0.21, B = 0.13, p = .002).

Conclusion: Our findings suggest either the absence of a significant relationship
between telomere length (RTL and PGS-TL) and cognitive performance (baseline
and change over time), or possibly a weak age-dependent and domain-specific
relationship, in older adults of European ancestry. More research is needed in
representative and ancestrally diverse samples over a longer assessment period.

OPEN ACCESS

EDITED BY

Xihan Guo,
Yunnan Normal University, China

REVIEWED BY

Juan Luis Sánchez González,
University of Salamanca, Spain
Pragalathan Naidoo,
University of KwaZulu-Natal, South Africa

*CORRESPONDENCE

Timothy R. Powell,
timothy.1.powell@kcl.ac.uk

RECEIVED 13 August 2024
ACCEPTED 01 October 2024
PUBLISHED 01 November 2024

CITATION

Packer A, Habiballa L, Tato-Barcia E, Breen G,
Brooker H, Corbett A, Arathimos R, Ballard C,
Hampshire A, Palmer A, Dima D, Aarsland D,
Creese B, Malanchini M and Powell TR (2024)
Telomere length and cognitive changes in
7,877 older UK adults of European ancestry.
Front. Aging 5:1480326.
doi: 10.3389/fragi.2024.1480326

COPYRIGHT

© 2024 Packer, Habiballa, Tato-Barcia, Breen,
Brooker, Corbett, Arathimos, Ballard,
Hampshire, Palmer, Dima, Aarsland, Creese,
Malanchini and Powell. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Aging frontiersin.org01

TYPE Original Research
PUBLISHED 01 November 2024
DOI 10.3389/fragi.2024.1480326

https://www.frontiersin.org/articles/10.3389/fragi.2024.1480326/full
https://www.frontiersin.org/articles/10.3389/fragi.2024.1480326/full
https://www.frontiersin.org/articles/10.3389/fragi.2024.1480326/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fragi.2024.1480326&domain=pdf&date_stamp=2024-11-01
mailto:timothy.1.powell@kcl.ac.uk
mailto:timothy.1.powell@kcl.ac.uk
https://doi.org/10.3389/fragi.2024.1480326
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging
https://www.frontiersin.org/journals/aging#editorial-board
https://www.frontiersin.org/journals/aging#editorial-board
https://doi.org/10.3389/fragi.2024.1480326


Alternative biological ageing indicators may still provide utility in the early detection
of individuals at risk for cognitive decline (e.g., pace-of ageing epigenetic clocks).
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1 Introduction

Telomere length is a key biological hallmark of ageing (López-
Otín et al., 2023). Premature telomere shortening (and cellular
ageing) has been identified as one potential contributor to
differences in cognitive function and decline in older adults (e.g.,
Hägg et al., 2017). Telomeres are DNA–protein complexes that cap
the ends of chromosomes (Blackburn, 1991). The DNA component,
stretches of tandem TTAGGG nucleotide repeats, represents
sacrificial non-coding DNA elements that protect vital coding
DNA from being lost during cell division, as a result of the “end
replication problem” (see, Sfeir and De Lange, 2012). When a
critically short telomere length is reached, it triggers a DNA
damage response mechanism, which instigates the initiation of
cellular senescence, whereby the cell can no longer divide and
replace old or damaged cells (Blackburn et al., 2015). Telomere
shortening therefore limits the proliferative capacity of cells, which
may affect neural stem cells that give rise to glial cells throughout the
brain, or neurons within the dentate gyrus of the hippocampus
(Palmos et al., 2020).

Telomere length is often approximated using leukocyte or
salivary DNA, which is easy to extract and correlated with
telomere length in other tissues (Demanelis et al., 2020). In a
systematic review and meta-analysis using data from
27 observational studies of individuals without dementia,
Gampawar et al. (2022) found that leukocyte telomere length was
associated with marginally better global cognition (β = 0.01; 95%CI:
0.00–0.02, p = .029, N = 19,609), as well as larger total brain volume
(β = 0.43, 95%CI: 0.36%–0.50%, p = .008,N = 1,102). Furthermore, a
longitudinal study in 2,734 older individuals revealed that longer
telomere length at baseline predicted less decline 7 years later on the
Modified Mini-Mental State Exam compared to individuals with
medium or short telomere length (−1.7 points
vs. −2.5 and −2.9 respectively, p = .01; mean points at baseline =
91) (Yaffe et al., 2011).

Most inter-individual differences in telomere length are
present from birth, whereby individuals born with longer
telomeres generally continue to have longer telomeres than
their peers into adulthood (Martens et al., 2021). However,
several potentially modifiable factors have been identified that
may influence telomere length, including physical activity and
educational attainment (Bountziouka et al., 2022; Sánchez-
González et al., 2024). Furthermore, telomere length
(leukocyte) has a strong inherited genetic component in
humans. Meta-analytic estimates of twin studies suggest a
heritability of 70% (range from 34% to 82%) (Broer et al.,
2013). Further, the most powerful genome-wide association
study (GWAS) to date (N = 464,716 participants aged
40–69 years from the UK Biobank; Codd et al., 2021),
identified 197 independent sentinel variants demonstrating
that telomere length is a polygenic trait with a genome-wide

single nucleotide polymorphisms (SNP) heritability estimate of
8.1% (SD = 0.26).

To date, few studies have investigated the relationship
between genetically predicted telomere length, cognitive
function and age-related change. Mendelian randomisation
studies have suggested a possible causal relationship between
telomere length and cognitive function and decline (Chen et al.,
2023; Hägg et al., 2017; Zhan et al., 2015). However, findings are
inconsistent, with other Mendelian randomization studies
reporting no association between telomere length and
cognitive outcomes (Demanelis et al., 2021; Kuo et al., 2019).
Building on previous research, we use polygenic scoring to
estimate individuals’ lifelong genetic propensity for longer/
shorter telomere length, by applying summary statistics from
the largest GWAS of telomere length to date (i.e., Codd et al.,
2021). Polygenic scores summarise the genetic influence on a
target trait (e.g., telomere length) by aggregating the effects of
trait-associated common variants emerging from GWAS into a
single composite index (Dudbridge, 2013). Here, we employ an
expansive PGS, using many SNPs to assess the proportion of
variance in cognitive performance explained by genetic factors
common to telomere length.

Our study aimed to examine associations between telomere
length and longitudinal performance on four cognitive tests
(paired associate learning, digit span, self-ordered search,
verbal reasoning), in a large cohort of individuals
aged ≥50 years without dementia at baseline assessment from
the PROTECT study (https://www.protectstudy.org.uk/).
Specifically, telomere length, genetically predicted (n = 7,877)
and measured (n = 846), was assessed for its association with
initial cognitive level and changes in cognitive performance over
time (4 time-points, annually), using latent growth models. We
hypothesised that longer telomere length (measured and
captured by a PGS-TL) would be related to better performance
on the cognitive tests at baseline and over time.

2 Methods

Figure 1 provides an overview of the study design.

2.1 Participants

All participants were from the online Platform for Research
Online to investigate Genetics and Cognition in Ageing study
(PROTECT; http://www.protectstudy.org.uk/). PROTECT is a
longitudinal UK-based online participant registry that aims to
understand the impact of lifestyle, medical and genetic risk
factors on cognitive health and dementia risk in older adults.
Inclusion criteria for enrolling in PROTECT are 1) ≥50 years old;
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2) no diagnosis of dementia; and 3) access to a computer and the
internet. Volunteers were prospectively recruited from
November 2015 through both local and national publicity.
Data collection was ongoing at the time of this study;
therefore, a data freeze was implemented in October
2019 with data extracted for analyses up to this date. In the
current study (N = 7,877), we used data from a subset of
PROTECT study participants who 1) had complete baseline
data for the cognitive and covariate variables (missing
cognitive data at later time points was permitted), 2) had
provided a saliva sample for genotyping and had genotype
data available, and 3) were identified as individuals of
European ancestry based on genetic principal components
(PCs). These participants were generally comparable to the
overall PROTECT study cohort in terms of participant
characteristics, such as age, sex and education level
(Supplementary Table S1). Participant characteristics of our
full sample (N = 7,877) and the subsample with relative
telomere length (RTL) data (n = 846) are shown in
Supplementary Table S2. Participant characteristics split by
median age for the full sample with polygenic scores for
telomere length (PGS-TL) data and the subsample with RTL

data are summarised in Supplementary Tables S3, S4,
respectively.

Ethical approval was granted through the London Bridge
National Research Ethics Committee (reference: 13/LO/1578)
and informed consent obtained for all participants. The
authors assert that all procedures contributing to this work
comply with the ethical standards of the relevant national and
institutional committees on human experimentation and with
the Declaration of Helsinki 1975, as revised in 2008 (World
Medical Association, 2013).

2.2 Cognitive assessment

Cognitive performance was assessed annually using an online
cognitive test battery. We analysed participants’ data on four
cognitive tests included in the PROTECT battery. A description
of the four tests is provided in Table 1. Briefly, the tests included
the paired associate learning (PAL) task of visual-spatial working
memory and learning; digit span test (DST) of working memory;
self-ordered search (SOS) of executive function and spatial
memory; and verbal reasoning (VERB) task. At each annual

FIGURE 1
Study overview. Participants provided a saliva sample at baseline. The DNA was extracted and used to genotype participants, which enabled us to
calculate polygenic scores for (leukocyte) telomere length (PGS-TL). We also used the DNA samples to quantify (saliva) relative telomere length (RTL).
Participants completed the battery of four cognitive tests annually, optionally repeating the battery up to three times at each time point. We used latent
growth models to analyse the data. Separate models were run with PGS-TL and RTL as predictors for each of the cognitive tests. We used data from
the second test session at baseline (where possible), as the first was considered a practice session. At subsequent time points, data from the first test
session was used. This figure was created with www.biorender.com/.
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testing, participants were instructed to complete the test battery
up to three times over a period of 7 days, leaving at least 24 h
between each cognitive testing session (only the first test session
was mandatory). The tasks have parallel forms to ensure that
repeated stimuli are not given to participants at each test session.
The first cognitive test session at baseline was considered a
practice session. In our analyses, we used data from the
second testing session at baseline, where available, otherwise,
we used data from the first testing session to maximise sample
size and statistical power. For all subsequent time points, data
from the first test session were used (see, Figure 1).

2.3 Covariates

Following enrolment into the study, participants completed a
series of online baseline questionnaires regarding demographic,
lifestyle, and medical information. For the current analysis, the
following demographic data were included as covariates: age, sex,
education level (school until 16, school until 18, vocational
qualification, undergraduate degree, post-graduate degree, and
doctoral degree) and employment status (full-time, part-time,
self-employed, retired, and unemployed) (dummy coded).
Additionally, we included six genetic PCs, defined by the
PROTECT study, as this number was determined to
sufficiently adjust for population structure using scatter plots
of the PCs incrementally plotted against each other until there
was no clear pattern in the data (Patterson et al., 2006; Price et al.,
2006). The selection of covariates was informed by previous
genetic research in the PROTECT sample (i.e., Creese
et al., 2021).

2.4 PROTECT genetic data

Saliva samples were collected by post and DNA was extracted by
the National Institute for Health Research South London and the
Maudsley National Health Service Biomedical Research Centre.
Genotyping was completed using the Illumina Global Screening
Array with custom content.

The total number of participants in the combined genotyped
data for the whole PROTECT study was 9,146. Genotype quality
control (QC) was performed on all 9,146 individuals, as
described in Creese et al. (2021). The QC involved iterative
filtering for call rate at 98% completeness (for individuals
and SNPs) and then removing participants that were either
related, not of European ancestry, of mismatched sex, outliers
in the PC calculation or detected to have excess heterozygosity.
This resulted in the exclusion of 84 samples due to
incompleteness and the removal of a further 794 individuals
following exclusions. Thus, a sample size of
8,268 participants remained.

Genotypes were imputed to 1,000 Genomes European
reference panel using the Michigan imputation server and
genotype phasing using Eagle (Loh et al., 2016). Variants were
restricted to SNPs only, with a MAF > 0.001. An absolute cut-off
of 0.7 was applied to the imputation quality of variants (Rsq as
reported by the Michigan imputation server). The number of
variants remaining after quality control was 9,415,055.

Further genotype QC was performed within the sample of
8,268 individuals of European ancestry, following all exclusions.
The following SNP exclusions were applied, minor allele frequency
(MAF) of <1% and those not in Hardy-Weinberg Equilibrium
(p-value < .00001).

TABLE 1 Summary of the four cognitive tests included in the PROTECT battery.

Test Description Cognitive domain

Paired associates
learning (PAL)

Boxes on screen are “opened” in a randomised order. One or more of the boxes contain a shape. Each
shape is then presented in the middle of the screen and participants must identify which box the shape
had been located in. If the participant makes an error, the boxes are opened in sequence again to remind
the participant of the locations of the shape. The number of shapes per trial increases throughout the task
making it increasingly difficult. Participants are given three attempts to successfully complete each level.
The outcome measure was the average number of correct object-place associations (“paired associates”)
in trials that were successfully completed. This task measures visual-spatial working memory and
learning

Visual-spatial working memory and
learning

Digit span test (DST) A sequence of numbers appears on the screen (one at a time). At the sound of the beep, users click the
numbers in the same order. Each successful trial is followed by a new sequence that is one digit longer
than the last and each unsuccessful trial is followed by a new sequence that is one digit shorter than the
last. This task measures working memory

Working memory

Self-ordered search (SOS) A series of boxes are present on the screen; one of the boxes will contain a token. The participant selects
each box until they locate the token. The token is then placed in another box and again the participant
must locate it. Participants are informed that the diamond will never be in the same box twice. Higher
scores are achieved through efficient location of the diamond. This task measures working memory

Executive function, spatial working
memory

Verbal reasoning (VERB) A statement appears at the top of the screen, and two objects underneath. The patient’s task is to reason
about the relationships among the objects and determine if the statement is true or false. Responding
quickly and accurately is required for high scores. There is no set upper or lower limit as the participants
can attempt as many trials as they can manage within a specific timeframe. The outcome measure was
the total number of trials answered correctly in 90 s, minus the number answered incorrectly. Higher
scores indicate better performance. This task assesses verbal reasoning

Verbal reasoning

Note: Participants are asked to complete the PROTECT cognitive tests up to 3 times over 7 days leaving 24 h between in each at approximately yearly intervals.
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2.5 Polygenic scores for telomere length

We computed polygenic scores for telomere length (PGS-TL),
using genome-wide summary statistics (clumped using 250 kb
windows and r2 > 0.1; MHC region included) from the largest
GWAS of leukocyte telomere length to date (N = 464, 716
participants aged 40–69 years from the United Kingdom
Biobank; Codd et al., 2021). We applied a p-value threshold for
PGS-TL calculation (PT = 3.9 × 10−5) equivalent to an FDR threshold
of <1%, highlighted by Codd et al. (2021) to explain up to 5.64% of
the variance in telomere length. The PGS-TL was calculated with
PRSice-2 version 2.3.3 software (Choi and O’Reilly, 2019).

2.6 Measurement of telomere length

We generated relative telomere length (RTL) data for a subset of
846 participants. Relative telomere length was quantified using DNA
samples and a modified version of the quantitative Polymerase
Chain Reaction protocol described by Cawthon (Cawthon, 2009),
as used by our lab previously (Coutts et al., 2019; Palmos et al., 2018;
Palmos et al., 2020; Powell et al., 2018; Vincent et al., 2017); see
Supplementary Methods S1 for further details.

Initially, we selected 908 participants from the overall study
sample (N = 7,877) who met the following additional criteria: 1)
complete cognitive data across time points (i.e., no missing
cognitive data) 2) DNA was available from a saliva sample
collected within 6 months of their baseline cognitive data
collection. 54 samples (6%) did not survive our quality control
(QC) criteria. Valid RTL measurements were therefore obtained
for 854 participants.

We log-transformed the RTL data, as it was not normally
distributed. We further adjusted for the day of run as this yielded
significant batch effects (see Supplementary Table S5) and
Z-standardised the data. Outliers were defined as residuals +/−
3.29 SDs from the mean, after fitting a linear regression model
with age, sex, education level, employment status (dummy coded)
and six genetic PCs (as described in Covariates). Based on this
criteria, 8 samples were identified as outliers and were removed,
leaving 846 valid telomere measurements for
downstream analyses.

2.7 Statistical analyses

All statistical analyses and data cleaning were performed using
RStudio version 1.3.1093 and R version 4.0.3. The PGS-TL and RTL
data were Z-standardized (M = 0, SD = 1) before analysis. To
examine relationships with RTL, we performed a multiple linear
regression with RTL regressed on PGS-TL, age, sex, education level,
employment status (dummy coded), and the six genetic PCs (see
Covariates).

To examine cognitive performance over time, we used the R
package lavaan (Rosseel, 2012) to construct latent growth models
(informed by Berlin et al., 2014), with a Yuan-Bentler correction
for non-normality (“estimator” = “mlr”), and full information
maximum likelihood in models with missing data (“missing” =
“fiml”), under the assumption that this missingness was at

random (Arbuckle, 1996). As a sensitivity analysis, we
repeated the latent growth modelling with complete cases
(i.e., participants with no missing data across time points) for
models that had included participants with missing data (see
Sensitivity analyses). In the latent growth models, latent factors
for the intercept (initial performance) and slope (change in
performance over time) were estimated. We first fitted
unconditional latent growth models (i.e., models in which the
intercept and slope factors are not predicted by (conditioned on)
predictors or covariates) for each of the four cognitive outcomes
to determine the pattern of growth in the data. We tested no-
growth (intercept-only), linear slope and quadratic slope models,
using model fit statistics to determine which best
described the data.

Next, conditional latent growth models were used to explore
associations between measured (RTL) and genetically predicted
telomere length (PGS-TL) and initial cognitive level (i.e., latent
intercept) and trajectories over time (i.e., latent slope factors).
Separate models were used for measured TL and PGS-TL and each
cognitive outcome. The first six genetic PCs to adjust for
population structure (Patterson et al., 2006; Price et al., 2006),
age, sex, education level (school until 16, school until 18,
vocational qualification, undergraduate degree, post-graduate
degree, and doctoral degree), and employment status at baseline
were included as time-invariant covariates.

For all latent growth models, the goodness-of-fit of the
models was evaluated using several model fit statistics.
Excellent models generally have the following values:
CFI ≥.95, RMSEA < .05, and SRMR < .05 (Hu and Bentler,
1999). The chi-square statistic (χ2) is reported with degrees of
freedom (df) but is not used as a measure of fitness, given its
oversensitivity to large sample sizes.

Bonferroni correction for multiple testing was applied
(i.e., p < .013; α = 0.05/4, to reflect the number of cognitive
outcome variables) when assessing the relationships between
telomere length (PGS-TL and RTL) and intercept and
slope factor(s).

2.8 Sensitivity analyses

Firstly, to assess whether PGS-TL and RTL differentially predict
cognition in middle and older age adults we repeated our analyses,
using a median split based on age. A median split was used so that
the sample size and power of each group were approximately equal.
For more information on these analyses and how they were
performed see Supplementary Methods S2.

Secondly, we repeated the latent growth modelling using
only complete cases—participants with no missing data across
time points—for models with PGS-TL included as a predictor.
This step was taken to assess whether attrition and the
inclusion of participants with missing data in the original
models might have biased the parameter estimates, as these
models were initially computed using full information
maximum likelihood to handle missing data. For models
using RTL as a predictor, which were already conducted
with complete cases only, no additional sensitivity analyses
were performed.
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3 Results

Descriptive statistics for the raw cognitive data for the
full sample with PGS-TL data (N = 7,877) and subsample
with RTL data (n = 846) are shown in Supplementary Table
S6, with each stratified by median age in Supplementary
Tables S7, S8.

There was up to 36.35% missingness on the cognitive
outcomes at the final time point. The amount of missing
data on each cognitive outcome at each time point is
summarised in Supplementary Table S9. Participants with
complete data at all four time points (n = 4,722) performed
significantly better at baseline (without correction for multiple
testing) on three out of the four cognitive tests than participants
with at least some missing data (n = 3,155); these participants
also significantly differed on several covariates (see,
Supplementary Table S10).

3.1 Predictors of relative telomere
length (RTL)

Table 2 summarises the multiple regression results with RTL
regressed on PGS-TL, age, sex, education level, employment status
(dummy coded), and the six genetic PCs. Significant predictors of
RTL included the PGS-TL (β = .07, p = .032), retirement status (β =
.37, p = 001) and two of the genetic PCs (βs = .09 and .07, ps < .046).
Age (p = .051), sex (p = .131) and education (p = .914) did not
significantly predict RTL.

3.2 Prediction of cognitive trajectories:
unconditional models

First, we fitted unconditional models (i.e., without the intercept
and slope factors conditioned on predictors or covariates) for each of
the four cognitive outcomes to determine the pattern of growth in
the data. Across the full sample and all subsamples (i.e., split by
median age and/or those with RTL data), unconditional model fit
statistics suggested that linear models provided an acceptable fit to
the data for the paired associat learning (PAL), digit span test (DST),
and self-ordered search (SOS) tasks, whereas for the verbal
reasoning (VERB) task, a quadratic model provided acceptable fit
(see, Supplementary Tables S11–S22 for the fit indices and
parameter estimates for the unconditional models).

Next, we fitted conditional models to explore whether PGS-TL
or RTL predicted baseline cognitive level (i.e., latent intercept) and/
or change over time (i.e., latent slope factors). Although these
models were adjusted for covariates, we do not report their
corresponding parameter estimates in the main text for
simplicity. Parameter estimates with 95% confidence intervals are
reported in full, including those related to covariates, for each model
within the Supplementary Tables S23–S28.

3.3 Prediction of cognitive trajectories:
whole sample with PGS-TL

PGS-TL did not predict baseline cognitive performance
(captured by the intercept factor; ps ≥ .238) or change over time

TABLE 2 Summary of multiple regression results predicting relative telomere length [95% confidence intervals] (N = 846).

Predictors B SE B β sr2 p

(Intercept) −1.07 [−1.99, −0.16] 0.46 0.25 [0.06, 0.43] - .021

PGS-TL 338.74 [28.83, 648.65] 157.89 0.07 [0.01, 0.14] 0.01 .032

pc1 −2.64 [−8.90, 3.61] 3.19 −0.03 [−0.10, 0.04] <0.01 .408

pc2 −4.11 [−10.16, 1.95] 3.08 −0.05 [−0.11, 0.02] <0.01 .183

pc3 1.31 [−4.46, 7.09] 2.94 0.02 [−0.05, 0.08] <0.01 .655

pc4 0.37 [−5.07, 5.81] 2.77 0.00 [-0.06, 0.07] <0.01 .894

pc5 7.19 [1.47, 12.90] 2.91 0.09 [0.02, 0.15] 0.01 .014

pc6 6.62 [0.11, 13.12] 3.31 0.07 [0.00, 0.14] <0.01 .046

Age 0.01 [−0.00, 0.03] 0.01 0.09 [−0.00, 0.17] <0.01 .051

Sex 0.12 [−0.04, 0.29] 0.08 0.05 [−0.02, 0.12] <0.01 .131

Education 0.00 [−0.05, 0.05] 0.03 0.00 [−0.07, 0.06] <0.01 .914

Employment (fulltime)

Employed (part-time) −0.17 [−0.40, 0.06] 0.12 −0.17 [−0.40, 0.06] <0.01 .159

Self-employed −0.14 [−0.41, 0.13] 0.14 −0.14 [−0.41, 0.13] 0.01 .295

Retired −0.37 [−0.60, −0.14] 0.12 −0.37 [−0.60, −0.14] <0.01 .001

Unemployed −0.29 [−0.72, 0.15] 0.22 −0.29 [−0.72, 0.15] <0.01 .198

Overall model fit F (23, 822) = 12.17, p < .001, R2/R2 adjusted = 0.034/0.017

Note. PGS-TL, polygenic score for telomere length; pc = genetic principal components. Relative telomere length (log-transformed, adjusted for batch) and PGS-TL, were Z-standardised in the

whole sample to a mean of 0 and SD, of 1. Outliers of +/− 3.29 SDs, from the mean (adjusting for covariates) were removed from the relative telomere length variable (see, Methods).

Employment was dummy-coded, with full-time employment as the reference category in brackets.
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(captured by the slope factor(s); ps ≥ .080) on any of the cognitive
tests, after adjusting for covariates. Conditional model fit statistics
for the full sample can be found in Supplementary Table S29 and
parameter estimates with confidence intervals are summarised in
Supplementary Table S23.

3.4 Prediction of cognitive trajectories:
subsample with RTL data

RTL did not predict baseline cognitive performance (ps ≥ .154) or
change over time (ps≥ .276) on any of the cognitive tests, after adjusting
for covariates. Conditional model fit statistics for the RTL subsample
can be found in Supplementary Table S29 and parameter estimates with
confidence intervals can be found in Supplementary Table S24.

3.5 Sensitivity analyses: analyses split by
median age

To assess whether PGS-TL and RTL differentially predict
cognition in middle and older age adults we repeated our

analyses, using a median split based on age. In the full sample
with PGS-TL data (N = 7,877) the median age was 62.24 years, in
the subsample with RTL data (n = 846) it was 62.77 years.

3.5.1 Whole sample with PGS-TL: median age split
In older adults (n = 3,939), PGS-TL was a significant predictor of

change over time (i.e., slope factor,Mslope = 3.23, B = −0.45, p = .001;
slope2 factor, Mslope

2 = 0.21, B = 0.13, p = .002), but not baseline
cognitive performance (p = .438) on the VERB task (Figures 2, 3).
On the remaining cognitive tasks PGS-TL did not significantly
predict older adults’ baseline cognitive performance (ps ≥ .508)
or change over time (ps ≥ .090) (Table 3). In middle-aged adults (n =
3,938), PGS-TL did not significantly predict baseline cognitive
performance (ps ≥ .352) or change over time (ps ≥ .192) on any
of the cognitive tests (Table 3). All models were adjusted for
covariates. Conditional model fit statistics for models split by
median age can be found in Supplementary Table S30.

3.5.2 Subsample with RTL data: median age split
In older adults (n = 423), RTL significantly predicted

the intercept (Mintercept = 47.58, B = −1.05, p = .011) in older
adults on the VERB task, whereby longer telomere length

FIGURE 2
Path diagram for the conditional latent growth model showing genetically predicted telomere length (PGS-TL) predicts change in verbal reasoning (VERB)
performance inolder participants (>~62.24 years; n=3,939). Pathdiagram for the conditional latent growthmodel showinggenetically predicted telomere length
(PGS-TL) predicts the slope factor (i.e., increase inperformanceover time,M=3.23) and thequadratic slope factor (i.e., acceleration in the rateof change,M=0.21)
for the verbal reasoning test in the subsample of older participants (> ~62.24 years; n = 3,939). Rectangles denotemeasured variables. Circles denote latent
factors (i.e., intercept = baseline performance, slope = linear change, slope2 = acceleration or deceleration in the rate of change). Though effect sizes were small,
individuals with higher PGS-TL initially experienced slower improvements on the verbal reasoning task, followed by a more rapid increase in performance over
time. PGS-TL did not significantly predict baseline performance. Note that themodelwas adjusted for several covariates (see,Methods) and additional parameters
were also estimated (e.g., intercept and slopemeans), but these are not shown on the diagram for simplicity. The PGS-TLwas Z-standardised to amean of 0 and
standard deviation of 1. Residual terms were freely estimated (heteroscedastic) and full information maximum likelihood for missing data with robust maximum
likelihood estimation was used (see Methods). *p < .05; **p < .01.

Frontiers in Aging frontiersin.org07

Packer et al. 10.3389/fragi.2024.1480326

https://www.frontiersin.org/journals/aging
https://www.frontiersin.org
https://doi.org/10.3389/fragi.2024.1480326


was associated with worse baseline performance; RTL did
not predict either of the slope factors (ps ≥ .440) (see,
Figures 4, 5). Further, RTL did not significantly predict older
adults’ baseline cognitive performance (ps ≥ .265) or change over
time (ps ≥ .391) on the PAL, DST or SOS tests (Table 4). In
middle-aged adults (n = 423), RTL did not significantly predict
baseline cognitive performance (ps ≥ .366) or change over time
(ps ≥ .139) on any of the cognitive tests (Table 4). All
models were adjusted for covariates. Conditional model fit
statistics for models split by median age can be found in
Supplementary Table S30.

3.6 Sensitivity analyses: complete
case analyses

We repeated the latent growth modelling for models that had
included participants with missing data (i.e., those with PGS-TL
as a predictor), using only complete cases only—participants with
no missing data at any time point. These analyses yielded similar
results to those that included participants with missing data, see
Supplementary Tables S31–S33 for parameter estimates and
Supplementary Table S34 for model fit statistics). The
direction of effect and the significance of PGS-TL as a
predictor remained consistent for all outcomes, both in the
full sample and within each age subgroup divided by median
age. All models using RTL as a predictor were already performed
in complete cases only, and so no sensitivity analyses were
completed for these models.

4 Discussion

To our knowledge, this is the first study to examine the
relationship between telomere length and longitudinal cognitive
performance in normative ageing, using both measured (RTL)
and genetically predicted (PGS-TL) telomere length. Our PGS-TL
captured lifelong genetic predisposition to telomere length, likely
more independently of environmental effects. Whereas our RTL
encapsulated both environmental and genetic effects measured at a
single point in time. Though our measures of telomere length were
derived from different tissue types, we showed that our PGS-TL
(blood) positively predicted RTL (saliva). However, we found that
neither measure of telomere length predicted cognitive performance
(baseline or change over time) in the whole sample overall, or in
participants aged <62 years when stratifying by median age.
Whereas, contrary to expectations, in older adults (≥ ~62 years)
longer RTL was associated with worse performance at baseline on
the verbal reasoning test; though this result did not survive
correction for multiple testing. Furthermore, higher PGS-TL
(indicating a genetic predisposition to longer telomere length)
was associated with smaller increases in performance on the
verbal reasoning test across the first 2 years. However, the
inverse was observed from year two to year three, whereby
higher PGS-TL predicted better performance (i.e., larger
increases). Nonetheless, the PGS-TL effect sizes were small and
unlikely to be clinically meaningful.

Many models showed a positive mean slope factor, indicating
a mean increase in cognitive performance over time. This was the
case both in models accounting for missing data using full-

FIGURE 3
Plot of the conditional latent growth model predicted (model-implied) trajectories for older participants (> ~62.24 years; n = 3,939) on the verbal
reasoning task. The model included polygenic scores for telomere length (PGS-TL) as a predictor and was adjusted for several covariates (see, Methods).
Though effect sizes were small, individuals with higher PGS-TL initially experienced slower improvements on the verbal reasoning task, followed by a
more rapid increase in performance over time. PGS-TL did not significantly predict baseline performance. The PGS-TL was Z-standardised to a
mean of 0 and standard deviation of 1. To show how trajectories differ across different levels of the PGS-TL, we plot the mean trajectory for each PGS-TL
tertile to aid interpretation (though PGS-TL was modelled as a continuous variable).
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TABLE 3 Parameter estimates [95% confidence intervals] for the latent growthmodels conditional on polygenic scores for telomere length for each of the cognitive outcomes in the whole sample split by median age
(~62.24 years) at baseline.

Middle-aged (n = 3,938) Older (n = 3,939)

Parameter Paired associate
learning

Digit span
test

Self-ordered
search

Verbal
reasoning

Paired associate
learning

Digit span test Self-ordered
search

Verbal
reasoning

Means

Intercept 5.45 [4.97, 5.93] 7.89 [7.05, 8.73] 11.61 [10.29, 12.93] 42.40 [36.97, 47.83] 6.32 [5.87, 6.78] 10.06 [9.26, 10.86] 13.35 [12.16, 14.55] 54.72 [49.77, 59.67]

Slope 0.01 [−0.23, 0.24] 0.19 [−0.11, 0.50] 0.32 [−0.29, 0.94] 0.52 [−4.95, 6.00] 0.09 [−0.12, 0.30] 0.11 [−0.20, 0.42] −0.28 [−0.86, 0.29] 3.23 [−1.13, 7.60]

Slope2 - - - 0.04 [−1.70, 1.78] - - - 0.21 [−1.15, 1.58]

Variances

Intercept 0.27 [0.21, 0.34] 1.32 [1.14, 1.51] 2.28 [1.92, 2.65] 64.92 [56.93, 72.92] 0.19 [0.15, 0.24] 1.70 [1.39, 2.01] 1.85 [1.52, 2.18] 55.55 [48.28, 62.81]

Slope 0.02 [0.01, 0.03] 0.00a 0.15 [0.06, 0.24] 11.43 [2.47, 20.39] 0.00 [−0.01, 0.01] 0.06 [0.02, 0.10] 0.08 [−0.01, 0.17] 9.67 [1.22, 18.12]

Slope2 - - - 1.03 [0.40, 1.66] - - - 0.55 [−0.05, 1.14]

Covariances

Intercept-Slope −0.03 [−0.05, −0.00] −0.01 [−0.04, 0.02] −0.05 [−0.20, 0.10] 1.84 [−6.74, 10.42] 0.01 [−0.01, 0.03] −0.12 [−0.20, −0.03] 0.02 [−0.13, 0.16] −0.44 [−8.42, 7.55]

Intercept-Slope2 - - - −0.14 [−2.28, 1.99] - - - 0.25 [−1.74, 2.24]

Slope-Slope2 - - - −3.11 [−5.21, −1.00] - - - −2.17 [−4.17, −0.17]

Residual variances

Baseline 0.59 [0.53, 0.66] 1.26 [1.06, 1.46] 3.40 [2.96, 3.84] 25.21 [17.55, 32.88] 0.70 [0.62, 0.77] 1.38 [1.13, 1.63] 3.96 [3.53, 4.39] 22.79 [15.78, 29.81]

Year 1 0.61 [0.56, 0.65] 0.88 [0.78, 0.97] 5.76 [5.22, 6.31] 22.79 [19.91, 25.66] 0.68 [0.62, 0.73] 1.33 [1.09, 1.56] 5.10 [4.65, 5.56] 20.89 [18.32, 23.46]

Year 2 0.57 [0.52, 0.61] 0.92 [0.80, 1.04] 4.34 [3.86, 4.83] 22.85 [19.88, 25.82] 0.59 [0.55, 0.64] 1.17 [0.98, 1.36] 4.27 [3.82, 4.71] 19.89 [17.19, 22.59]

Year 3 0.55 [0.49, 0.61] 0.87 [0.71, 1.02] 3.33 [2.76, 3.90] 16.69 [7.53, 25.86] 0.56 [0.50, 0.63] 0.86 [0.67, 1.05] 4.19 [3.63, 4.74] 18.45 [10.38, 26.53]

Predictor estimates

Intercept ~
PGS-TL

−0.01 [−0.04, 0.01] −0.02 [−0.07, 0.03] 0.03 [−0.04, 0.10] 0.13 [−0.17, 0.42] 0.01 [−0.02, 0.03] −0.01 [−0.06, 0.04] 0.02 [−0.05, 0.09] 0.11 [−0.17, 0.39]

Slope ~ PGS-TL 0.00 [−0.01, 0.02] 0.01 [−0.01, 0.03] −0.02 [−0.05, 0.02] 0.19 [−0.10, 0.48] −0.00 [−0.02, 0.01] −0.01 [-0.02, 0.01] −0.03 [−0.06, 0.00] −0.45 [−0.72, −0.18]

Slope2 ~ PGS-TL - - - −0.05 [−0.14, 0.04] - - - 0.13 [0.05, 0.22]

Note. PGS-TL, polygenic score for telomere length (leukocyte). PGS-TL, was Z-standardised to a mean of 0 and SD, of 1. The intercept factor captures the baseline level of cognitive performance, the slope factor reflects the rate of change (i.e., increase/decrease), and the

inclusion of a quadratic slope factor indicates the change overtime is non-linear and captures either the acceleration or deceleration in the rate of change in the outcome variable. Covariances measure the degree to which two variables change together (e.g., a negative

intercept-slope covariance indicates that individuals with higher baseline cognitive performance tend to have less steep increases over time, assuming a positive slope factor). Residual variances represent the variability in the observed data that is not explained by the

latent growth model. Finally, parameter estimates reflect the influence of predictor variables on the latent growth factors (i.e., intercept and slopes). All models used full information maximum likelihood for missing data with robust maximum likelihood estimation and

were adjusted for several covariates, not included here for simplicity (see, Supplementary Tables S25, S26 for full results for the middle- and older-age adults, respectively).
aThe slope variance was fixed to 0.0001 (i.e., estimated as a fixed effect; see Supplementary Methods S2), hence no confidence intervals are provided.
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information maximum likelihood and in those using complete
cases. Therefore, outcome-related attrition alone does not
explain these increases. Previous research indicates that
cognitive performance often improves over repeated testing
due to practice effects (Goldberg et al., 2015), even when
different test versions are administered in successive sessions
(Salthouse and Tucker-Drob, 2008). Less robust practice effects
can signal current cognitive status and future decline, and are
associated with neurodegeneration biomarkers (Jutten et al.,
2020). We therefore interpret the results of this study in
light of this.

Our results did not agree with previously published research,
suggesting predictive utility of longer telomere length for better
cognitive performance in middle- and older aged adults (e.g., Hägg
et al., 2017). Though some other studies have reported non-
significant associations between telomere length and cognitive
performance, they have generally consisted of small sample
sizes and are therefore limited by low statistical power (e.g.,
Sánchez-González et al., 2022). In our sample, telomere length
appeared to have only some limited predictive biomarker
properties that were specific to verbal reasoning in older adults.
However, the significant effects of telomere length were generally
in the opposite direction to what was hypothesised. Inverse

associations between other risk factors and cognitive outcomes
in older ages have previously been reported (e.g., PGS and
measured C-reactive protein; Packer et al., 2023; Silverman
et al., 2009). One explanation for this is that the association of
the risk factor with cognition does not change within an individual
with increased age, but rather there is a survivor bias in which the
observed association in the population changes due to differential
mortality and/or study participation (Anderson et al., 2024). This
may be exacerbated in the current sample for which use of a
computer and no dementia diagnosis was a requirement for
enrolment to the study, which would have disproportionately
affected the participation of older individuals. Additionally,
participation bias is frequently observed in large-scale studies,
often resulting in samples that are healthier and of higher
socioeconomic status (e.g., Schoeler et al., 2023). This bias has
been shown to reduce or even reverse effects seen in more
representative samples (e.g., Alten et al., 2022). The current
sample showed evidence of participation bias, such as being
more highly educated than the general population of the same
age (see Limitations).

We also observed that relative to full-time employment, being
retired was associated with shorter RTL (after adjusting for
covariates, such as age and education). Retirement represents

FIGURE 4
Plot of the conditional latent growthmodel predicted (model-implied) trajectories for older participants (> ~62.77 years; n = 423) on the verbal reasoning
task. Path diagram for the conditional latent growth model showing that longer relative telomere length (RTL) predicts worse performance on the verbal
reasoning test (VERB) at baseline (i.e., intercept factor, M = 47.58), but not predict change over time, in the subsample of older participants (>~62.77 years; n =
423). Rectangles denote measured variables. Circles denote latent factors (i.e., intercept = baseline performance, slope = linear change, slope2 =
acceleration or deceleration in the rate of change). Note that the model was adjusted for several covariates (see, Methods) and additional parameters were
also estimated (e.g., intercept and slope means), but these are not shown on the diagram for simplicity. The RTL was Z-standardised to a mean of 0 and
standard deviation of 1 within the sample with RTL data (n = 846). Residual terms were freely estimated (heteroscedastic) and full information maximum
likelihood for missing data with robust maximum likelihood estimation was used (see Methods) *p < .05.
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a major life transition marked by psychological and financial
stress, as well as lifestyle changes in physical activity, sleep
patterns, social engagement, and dietary habits (Wanka, 2020).
Given RTL represents a marker sensitive to the effects of a wide
variety of environmental stress, it seems plausible such factors
could explain this RTL association with retirement. Alternatively,
individuals with accelerated biological aging (indicated by
shorter telomeres) are more likely to experience poorer mental
and physical health. This may increase their likelihood of retiring
early and decrease their chances of remaining employed (Topa
et al., 2018).

Overall, our results draw into question the utility of telomere
length as an ageing biomarker that is capable of predicting
cognitive performance and age-related change, in typically
ageing individuals. Alternative indicators of biological ageing
may better predict cognition in middle-older aged adults, such as
epigenetic clocks (i.e., blood-based DNA methylation measures
of ageing). Notably, the third generation of epigenetic clocks that
capture the rate of ageing, such as the DunedinPACE (Dunedin
Pace of Aging Calculated from the Epigenome; Belsky et al.,
2022), has emerged as a promising tool for identifying individuals
at risk for cognitive decline (Sugden et al., 2022).

4.1 Limitations

This study had several limitations. First, our measures of
telomere length were derived from different tissue sources. Saliva
is easier to collect but is arguably a less valid tissue source than blood,
which has a clearer link to brain ageing (Pluvinage andWyss-Coray,
2020). However, telomere length is generally positively correlated

across different tissue types (Demanelis et al., 2020), and genetic
factors for leukocyte telomere length (i.e., PGS-TL) predicted
salivary telomere length in our study. Second, the PGS-TL may
have been underpowered. While telomere length is highly heritable
(i.e., ~70% according to meta-analytic estimates, Broer et al. (2013);
with SNP heritability estimates of 8.1%; Codd et al., 2021), the PGS-
TL only explains up to ~5.64% of the variance in leukocyte telomere
length (Codd et al., 2021). Therefore, larger sample sizes and more
powerful GWASmay be required to improve the predictive power of
the PGS-TL and to address this “missing heritability”. Third,
although we adjusted our analyses for several covariates, we
cannot exclude the possibility that unmeasured confounding may
have biased our results. For example, factors such as physical
activity, which may influence both telomere length and cognitive
function, could have biased our results. Fourth, limited variability in
scores on the cognitive tests (potentially reflective of our
homogenous sample) and relatively short follow-up period may
have hindered our power to detect significant effects related to age-
related cognitive decline. Additionally, associations between
telomere length and cognitive performance may exist in cognitive
domains not assessed by the four tests included in this study (e.g.,
reaction time). Finally, as in all research, we urge caution in
extrapolating our findings beyond the current sample. For
example, the study consisted of white UK adults only, and
women and individuals of a higher education level were
overrepresented in our study, relative to the general population
(see, Office for National Statistics, http://www.ons.gov.uk). Research
in more representative and diverse samples is greatly needed,
especially given that telomere length may be differentially
associated with cognitive function across sociodemographic
groups (see, Leibel et al., 2019).

FIGURE 5
Plot of the conditional latent growthmodel predicted (model-implied) trajectories for older participants (> ~62.77 years; n = 423) on the verbal reasoning task.
Themodel included relative telomere length (RTL) as a predictor andwas adjusted for several covariates (see,Methods). Longer RTLpredictedworseperformanceon
the verbal reasoning task at baseline but did not significantly predict change over time. The RTL was Z-standardised to a mean of 0 and standard deviation of 1. To
showhow trajectories differ across different levels of theRTL,weplot themean trajectory for eachRTL tertile to aid interpretation (thoughRTLwasmodelled as
a continuous variable).
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TABLE 4 Parameter estimates [95% confidence intervals] for the latent growth models conditional on relative telomere length for each of the cognitive
outcomes split by median age (~62.77 years) at baseline.

Middle-aged (n = 423) Older (n = 423)

Parameter Paired
associate
learning

Digit
span test

Self-
ordered
search

Verbal
reasoning

Paired
associate
learning

Digit
span test

Self-
ordered
search

Verbal
reasoning

Means

Intercept 6.54 [5.26, 7.83] 8.73 [6.55,
10.90]

10.19 [6.53,
13.85]

34.20 [18.86,
49.53]

7.50 [6.22, 8.79] 9.01 [6.45,
11.57]

14.07 [9.90,
18.25]

47.58 [33.02, 62.14]

Slope −0.01 [−0.62,
0.60]

−0.22 [−0.94,
0.49]

1.38 [−0.09,
2.85]

10.01 [−2.15,
22.16]

−0.02 [−0.59,
0.55]

0.41 [−0.49,
1.31]

0.59 [−1.13,
2.31]

6.19 [−7.21, 19.60]

Slope2 - - - −2.62 [−6.47,
1.23]

- - - −0.64 [−4.76, 3.49]

Variances

Intercept 0.12 [0.01, 0.23] 1.22 [0.98,
1.46]

1.11 [0.39,
1.83]

52.09 [31.02,
73.16]

0.24 [0.13, 0.34] 1.18 [0.87,
1.50]

1.93 [1.04,
2.83]

50.72 [32.33, 69.11]

Slope 0.01 [−0.02,
0.03]

0.01 [−0.02,
0.05]

0.04 [−0.16,
0.24]

6.90 [−15.63,
29.43]

0.02 [−0.00,
0.04]

0.04 [−0.01,
0.09]

0.07 [−0.14,
0.28]

12.04 [−9.60, 33.67]

Slope2 - - - 1.60 [0.18, 3.02] - - - 0.77 [−0.66, 2.20]

Covariances

Intercept-Slope 0.01 [−0.04,
0.05]

−0.03 [−0.10,
0.03]

0.18 [−0.12,
0.48]

5.59 [−16.13,
27.30]

−0.03 [−0.07,
0.01]

−0.04 [−0.16,
0.08]

−0.12 [−0.48,
0.25]

−6.15 [−25.60,
13.31]

Intercept-Slope2 - - - −0.60 [−6.09,
4.89]

- - - 1.78 [−3.05, 6.61]

Slope-Slope2 - - - −3.24 [−8.46,
1.98]

- - - −2.99 [−8.05, 2.08]

Residual variances

Baseline 0.61 [0.46, 0.76] 0.73 [0.48,
0.98]

3.00 [1.92,
4.07]

27.75 [8.86,
46.64]

0.55 [0.42, 0.69] 1.44 [0.93,
1.95]

3.65 [2.45,
4.85]

19.87 [2.32, 37.43]

Year 1 0.57 [0.47, 0.67] 0.74 [0.61,
0.87]

5.26 [3.87,
6.66]

17.97 [11.78,
24.15]

0.58 [0.49, 0.66] 0.82 [0.65,
0.99]

4.17 [3.05,
5.29]

21.56 [15.84, 27.28]

Year 2 0.57 [0.48, 0.66] 0.76 [0.60,
0.91]

3.97 [2.83,
5.10]

24.18 [15.51,
32.85]

0.50 [0.43, 0.58] 0.65 [0.52,
0.79]

4.12 [2.96,
5.29]

15.08 [8.79, 21.37]

Year 3 0.52 [0.39, 0.66] 0.83 [0.55,
1.11]

3.28 [2.08,
4.48]

8.86 [−9.93,
27.65]

0.44 [0.34, 0.55] 0.65 [0.43,
0.87]

5.26 [3.75,
6.77]

21.95 [2.13, 41.78]

Predictor estimates

Intercept ~ RTL −0.02 [−0.09,
0.05]

0.06 [−0.07,
0.18]

−0.08 [−0.30,
0.15]

0.22 [−0.59,
1.03]

0.03 [−0.04,
0.11]

−0.08 [−0.22,
0.06]

0.10 [−0.11,
0.30]

−1.05 [−1.85, −0.24]

Slope ~ RTL 0.01 [−0.02,
0.04]

−0.02 [−0.06,
0.02]

0.02 [−0.07,
0.11]

−0.64 [−1.48,
0.21]

−0.01 [−0.04,
0.03]

0.01 [−0.04,
0.07]

−0.04 [−0.12,
0.05]

0.30 [−0.46, 1.06]

Slope2 ~ RTL - - - 0.19 [−0.08,
0.46]

- - - −0.01 [−0.24, 0.22]

Note. RTL, relative telomere length (from saliva, log-transformed, batch adjusted). RTL, was Z-standardised within the full subsample, and outliers were removed (+/− 3.29 SDs, from the mean,

adjusting for covariates). The intercept factor captures the baseline level of cognitive performance, the slope factor reflects the rate of change (i.e., increase/decrease), and the inclusion of a

quadratic slope factor indicates the change overtime is non-linear and captures either the acceleration or deceleration in the rate of change in the outcome variable. Covariances measure the

degree to which two variables change together (e.g., a negative intercept-slope covariance indicates that individuals with higher baseline cognitive performance tend to have less steep increases

over time, assuming a positive slope factor). Residual variances represent the variability in the observed data that is not explained by the latent growth model. Finally, parameter estimates reflect

the influence of predictor variables on the latent growth factors (i.e., intercept and slopes). All models used full information maximum likelihood for missing data with robust maximum

likelihood estimation and were adjusted for several covariates, not included here for simplicity (see, Supplementary Tables S27, S28 for full results for the middle- and older-age adults,

respectively).
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5 Conclusion

In summary, we found little evidence to suggest that telomere
length (RTL and PGS-TL) predicts cognitive performance, in adults
aged ≥50 years of European ancestry. Alternative indicators of
biological ageing, such as the third generation of epigenetic clocks
that capture the pace of ageing (e.g., DunedinPACE), may provide
better utility in predicting individuals at risk for cognitive decline.
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