

City, University of London Institutional Repository

Citation: Chekakta, Z., Zenati, A. & Aouf, N. (2024). Enhancing Cooperative Visual SLAM

with a Self-Supervised Deep Learning Model for Efficient Keypoint-Based Inter-map Loop
Closure Detection. 2024 IEEE 20th International Conference on Automation Science and
Engineering (CASE), pp. 2401-2408. doi: 10.1109/case59546.2024.10711729 ISSN 2161-
8070 doi: 10.1109/case59546.2024.10711729

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/34026/

Link to published version: https://doi.org/10.1109/case59546.2024.10711729

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Enhancing Cooperative Visual SLAM with a Self-Supervised Deep

Learning Model for Efficient Keypoint-Based Inter-map Loop Closure

Detection*

Zakaria Chekakta, Abdelhafid Zenati and Nabil Aouf

Abstract— This paper introduces a self-supervised deep
learning keypoint model SiLK specifically designed for loop
closure detection in Cooperative Visual SLAM (Simultaneous
Localization and Mapping). Firstly, the paper proposes a self-
supervised learning framework that improves the robustness
and accuracy of loop closure detection. Secondly, it presents
the implementation of this deep learning keypoint model which
replaces traditional manual feature descriptors, showcasing
substantial enhancements in detecting loop closures across
diverse and dynamic environments. This advancement ensures
greater adaptability to variations in lighting and scene changes.
Third, the paper illustrates the benefits of leveraging self-
supervised learning within a cooperative visual SLAM context,
where multiple agents share and fuse their local observations.
This collaborative effort leads to refined pose estimations and
more accurate mapping outcomes, enhancing the overall sys-
tem’s performance in complex settings. The effectiveness of the
proposed model was rigorously tested in real-world scenarios,
demonstrating its superiority in robustness and mapping pre-
cision compared to traditional methods in cooperative robotic
systems, including those used for environmental monitoring and
exploration tasks. The results highlight the potential of self-
supervised deep learning models to revolutionize loop closure
detection in visual SLAM, offering a promising avenue for
future research in autonomous systems and cooperative robotics
in challenging operational environments.

I. INTRODUCTION

Positioning, Navigation, and Mapping (PN&M) are cor-

nerstone technologies in modern automated systems and

robotics, where precision and reliability are paramount.

These systems are particularly crucial in environments that

are dynamic and potentially unpredictable, such as urban

navigation, autonomous vehicle routing, and robotic explo-

ration. The demand for sophisticated PNM technologies is

underscored in these contexts, where the ability to navigate

safely and efficiently can be the difference between success

and failure. As environments become increasingly complex,

the role of advanced PNM systems, capable of adapting

to new and unforeseen challenges, becomes indispensable.

Within this landscape, the development of innovative PNM

solutions that can operate in real-time and offline modes, nav-

igating through unstructured and possibly hazardous terrains,

is vital for the advancement of autonomous technologies.

The evolution of PNM technologies has been significantly

influenced by advancements in computer vision, machine

learning, and sensor fusion [1], [2], [3]. These technologies

empower systems to perceive their environment with high

1 School of Science and Technology (SST), City University of London.
Northampton Square, London, EC1V 0HB, United Kingdom.

Fig. 1: Simple Learned Keypoints (SiLK): A Self-Supervised

Deep Learning Approach for Keypoint Detection and De-

scription [5]

fidelity, enabling the precise localization and mapping nec-

essary for autonomous navigation. Unlike traditional PNM

systems that may rely on pre-existing maps or simple sensor

feedback, these advanced systems utilize a combination of

sensors and computational techniques to understand and

interact with their surroundings in real time. This approach

not only enhances the robustness and accuracy of PNM

systems but also extends their applicability to a wider

range of scenarios, including those with little to no prior

environmental data. Despite their potential, these advanced

PNM systems face challenges such as dealing with sensor

noise, dynamic obstacles, and the computational demands of

processing complex environments in real time [4].

With state-of-the-art SLAM (Simultaneous Localization

and Mapping) systems have achieved high levels of accuracy

and robustness, particularly in single-robot applications, and

are now increasingly used in multi-robot scenarios such

as search-and-rescue [6] and Explosive Ordnance Disposal

missions[7]. Multi-robot SLAM enhances system robustness

by sharing information among robots, increases efficiency by

dividing tasks[8], and enables tasks that are impossible for

a single robot. There has been a notable interest in SLAM

systems designed for multiple agents, with early research

focusing on range sensors like lasers and sonars for multi-

agent SLAM [9]. These systems used relative measurements

to estimate the collective state of all participating robots.

With the advancements in monocular visual SLAM, the focus

has shifted to its application in multi-camera setups, improv-

ing mapping and localization by pooling spatial insights and

compensating for individual limitations, leading to richer and

more accurate outcomes.

As we know, Integrating inertial sensors into visual SLAM

systems can mitigate failures due to suboptimal image condi-

tions caused by poor lighting, sparse textures, or fast camera

movements [10], [11], [12], [13], [14]. Techniques like

VINS-Mono [15] achieve precise visual-inertial odometry

by combining IMU data with visual features. Similarly,

collaborative approaches such as MOARSLAM [10] and

CVI-SLAM [13] enhance SLAM accuracy and robustness by

sharing information between agents, while [12] demonstrates

the application in swarm robotics. Ultra-Wide Band (UWB)

technology further supports collaborative SLAM by allowing

robots to use mutual ranging for map fusion, although its

effectiveness can be diminished by obstacles that obstruct

the line of sight [16].

Recent advancements also include the use of convolutional

neural networks (CNNs) for depth estimation, significantly

benefiting monocular SLAM systems in environments famil-

iar to the CNN. Techniques such as CNN-SLAM [17] and

D3VO [18] integrate deep learning-based depth prediction to

improve pose estimation and mapping accuracy. Moreover,

the development of deep learning-based feature descriptors

and keypoints, as seen in DF-SLAM [19] and GCNv2 [20],

showcases the potential to surpass traditional feature-based

methods in terms of stability and efficiency.

This paper explores the application of collaborative

robotics technology for navigation in high-risk environments.

By working together, robots can enhance their capacity to

evaluate, adapt to, and act in complex scenarios, thereby

extending their operational range and increasing precision.

Through collaborative efforts, these robots can exchange in-

formation and insights, fostering enhanced situational aware-

ness and improved decision-making. The paper focuses on

using Collaborative SLAM (CSLAM) to allow robots to

collectively create accurate and coherent maps without re-

lying on Global Navigation Satellite Systems (GNSS), and

to position themselves accurately within these maps. This

approach not only aids in precise map loop detection but

also supports the synchronization of various data sets, facili-

tating the seamless integration of perceptions from individual

robots into a comprehensive environmental model.

II. METHODOLOGY

A. Simple Learned Keypoints (SiLK)

The essence of SiLK is its streamlined yet adaptable

approach. This method revitalizes the conventional practice

of singling out distinct pixels using robust local descrip-

tors by harnessing established contemporary methods to

autonomously localize and characterize keypoints from any

set of unlabeled images. Setting itself apart from traditional

techniques, SiLK benefits from learned descriptors and in-

variances. Moreover, it simplifies the matching process by

employing cosine distances and mutual nearest neighbor

checks, thereby reducing the complexity and the need for ex-

tensive tuning of hyperparameters. The architecture of SiLK,

featuring a straightforward backbone-plus-heads design, is

notably flexible, supporting experimentation with different

backbone models. Its self-supervised learning (SSL) frame-

work allows for training on a wide array of image or video

datasets without the need for annotated data. The simplicity

of SiLK’s training pipeline facilitates the straightforward

training and assessment of various architectural designs,

datasets, and hyperparameters tailored for specific tasks [5].

SiLK excels in identifying keypoints from single grayscale

images, providing crucial information on both the location

and description of keypoints for effective matching. Utilizing

cycle consistency for descriptor learning and employing a

binary classifier for the identification of distinctive keypoints

at the pixel level, SiLK establishes a new benchmark in

keypoint detection. To refine descriptors, SiLK processes

a source image alongside a transformed variant, extracting

descriptors for each point and defining transition probabil-

ities based on descriptor similarity. This method optimizes

descriptor effectiveness by enhancing cycle consistency, thus

maximizing the likelihood of accurately mapping a round trip

from the source to its transformed state and back.

The architecture of SiLK (illustrated in Figure 1) is

inspired by the detect-and-describe strategy, similar to that of

SuperPoint. Initially, an encoder backbone extracts a dense

feature map from the input image, which is then utilized

by two separate heads—one for keypoints and another for

descriptors.

• The keypoint head processes logits to determine the

probabilities of dense keypoints.

• The descriptor head generates a dense map of descrip-

tors, which is crucial for assessing keypoint similarities.

The flexibility of the SiLK model allows for easy substi-

tution of the backbone, accommodating various architectural

preferences.

To further enhance the Loop Closure Detection (LCD)

module’s operational efficiency and user experience, SiLK

has been adapted into the Open Neural Network Exchange

(ONNX) format. This transition streamlines the process of

extracting image descriptors, marking a significant advance-

ment in the practical application of SiLK.

B. System Integration and Transformation Process

Figure 2 illustrates the integration of SiLK-LCD and

CSLAM, where the SiLK module within SiLK-LCD pro-

cesses images from both Small Unmanned Ground Vehicle

(SUGV) and Large Unmanned Ground Vehicle (LUGV). It

uses global feature extraction for loop closure detection.

Upon detecting a loop closure, CSLAM is activated to merge

maps created by the individual xUGVs and continues to

identify and refine intra-map closures, enhancing the pose

accuracy of single agents and their associated MapPoints.

The transformation matrix derived from visual SLAM is

crucial for adjusting the pose of the laser point cloud col-

lected by the xUGVs. This meticulous integration refines the

agents’ poses, coordinates maps, and fine-tunes laser point

CSLAMSiLK-LCD

SUGV

LUGV

SiLK
Loop

closure

detection

Inter-map

merging

Intra-map

loop

closure

detection

Transform

Transformative

Matrix

Corrected

Map Points

Pose graph

Corrected

Laser

Point Clouds

Laser Point Clouds

Fig. 2: The integration of SiLK-LCD and CSLAM

clouds, thereby increasing the system’s overall consistency

and accuracy.

C. Transformation Process for Laser Point Clouds

To adjust the laser point cloud data, it must be transformed

from the laser sensor’s coordinate frame to the camera’s

coordinate frame using the extrinsic matrix TCL, corrected

via the CSLAM loop closure matrix, and then transformed

back to the laser sensor’s frame.

For each point pLiDAR in the point cloud, we transform

it to the camera’s coordinate frame as follows:

pCamera = TCL · pLiDAR (1)

where TCL denotes the fixed transformation relationship

between the camera and the laser sensor. Subsequently, apply

the loop closure correction matrix T :

p′Camera = T · pCamera (2)

where p′Camera represents the corrected point in the camera’s

coordinates and T is the CSLAM loop closure correction

matrix:

T =

[

R t
s

0 1

]T

(3)

To revert the point to the LiDAR’s coordinate frame, use

the inverse of the extrinsic matrix T−1

CL:

p′LiDAR = T−1

CL · p′Camera (4)

In the matrix T , R is a 3× 3 rotation matrix:

RT
= R−1 (5)

RTR = I (6)

where RT is the transpose of R, and I is the identity matrix.

R is defined as:

R =





r11 r12 r13
r21 r22 r23
r31 r32 r33



 (7)

The translation vector t is defined as:

t =
[

tx ty tz
]

(8)

where tx, ty , and tz represent shifts along the respective

axes.

D. Loop Closure Detection Module

As shown in Figure 3, the module aims to automatically

classify a query frame produced by agent Ai into frames

previously seen by agents Aj or Ak whose descriptors

are accumulated and stored into dictionaries built for each

feature space. These dictionaries are built online in parallel

to images. Given a query image from Ai, its computed

descriptors are inserted into a Search Data Structure (SDS)

in the case where sufficient motion has not occurred (no loop

closure is performed over recently seen images, as these will

always look similar to neighbors). The SDS is then used as

an input to LCD for Aj and Ak. As long as no sufficient

motion has occurred, the entry relative to these frames will

be updated with newly computed descriptors. In the case

where sufficient motion is detected, for the descriptor in the

query image, the likelihood of it belonging to each keyframe

already seen by Aj and Ak is estimated. Then, the frame

with the highest likelihood of the query descriptors belonging

to it defines a candidate for loop closure. To find the best

candidate, a fine KNN search and geometry check are used.

Once the LCD finds the loop closure candidate, it pub-

lishes the message to CSLAM as explained in section II-E.

CSLAM continuously checks for loop closures in the map.

Upon detecting a loop, it calculates a similarity transforma-

tion and then corrects the loop if the calculation is successful.

When detecting a loop, CSLAM employs a rigorous consis-

tency verification mechanism, spanning multiple frames, to

validate these candidates. It should be noted that only when

LCD finds the loop closure candidate, then it is possible for

the CSLAM to continue the inter-map merging.

E. Collaborative SLAM Module

The architecture of the CCM-SLAM framework, illus-

trated in Figure 4, is designed to efficiently offload com-

putationally intensive, non-real-time constrained components

to a centralized ground station (referred to as the "server"),

while maintaining essential modules for basic autonomy on

each agent. To achieve this, each agent runs real-time VO

onboard to estimate its pose and create a 3D map of its

surroundings. As onboard computational resources for agents

Query Frame

Description

New

Keyframe

SiLK

Feature Extraction Module

Descriptors: 𝐷𝐷vis
Sufficient

motion

Coarse SDS Module

Insert 𝐷𝐷vis into the

SDS

Create/update the index

vector

For each descriptor 𝐷𝐷,

compute its 𝐾𝐾1 nearest

neighbours

Update the Assignation

Histogram

A
ss

ig
n

at
io

n
 D

is
ta

n
ce

s

Frames 𝜔𝜔𝑖𝑖

The top 𝑃𝑃

 frames with

 the highest

 assignation

Fine SDS Module on the 𝑃𝑃 Frames

Create SDS using all

descriptors in the 𝑃𝑃 frames

Extract 𝐾𝐾2 nearest

neighbours to query image

from fine SDS

Estimate the decision

quality

Decision

quality

Geometry Check

Consistent

geometry

Loop Closure

Accepted

Loop Closure

Rejected

Final Decision

Below the

threshold

No

Yes

Yes

 No

SUVG LUVG

Visual feat ures

Fig. 3: The LCD module

are assumed to be more limited than those on the server, the

local map generated by the onboard VO is confined to the

N nearest keyframes surrounding the agents. The server acts

as a record-keeper for the agents, storing and managing all

experiences from every agent within the server map stack.

When agents revisit a previously mapped area, the server

supplies them with past experiences to enrich their local

maps.

The selection of N is primarily based on the computational

capacity of the agent since a larger local map increases the

onboard modules’ processing time. Additionally, the server

runs place recognition, global optimization (bundle adjust-

ment), and redundancy detection to eliminate highly similar

or duplicate information from multiple visits to the same

location by one or more agents. All maps employ a local

odometry frame, with information exchanged between maps

in relative coordinates from one local odometry frame to

another, thus eliminating the need for a fixed global reference

frame. It is important to note that CCM-SLAM does not re-

quire any prior information or configuration about the initial

positions of the agents. The agents function independently

until the place recognition module identifies an overlap

between two maps, enabling the system to relate the relevant

measurements. Bidirectional communication between the

server and agents is facilitated through a wireless network,

with a communication protocol capable of handling network

disturbances such as delays and message loss. Both the server

and agents operate a communication module responsible for

map information exchange and monitoring potential errors

in this exchange. In this centralized architecture, all agent

Fig. 4: Overview of the CCM-SLAM system architecture:

The robotic agent operates real-time visual odometry (VO),

Positioning, Navigation, and Mapping, maintaining a local

map with a limited size of N, and employs a communication

module for data exchange (keyframes (KF), map points

(MP), and a reference KF (KF_ref) representing its current

position) with the server. The server, which serves as a

ground station, carries out non-time-critical and computation-

ally demanding processes such as map management, place

recognition, map fusion, and global bundle adjustment (BA).

When all agents are identified to have visited the same

location(s), the server’s map stack holds a single, global map

that integrates the experiences of all agents [21]

communication occurs via the server.

In the interaction between the Single Agent Positioning

& Mapping (PN&M) module and the Server module, both

KeyFrames (KFs) and MapPoints (MPs) are collaboratively

shared. Notably, the pose of the agent, represented by a

KeyFrame (KF), is conveyed from the single agent to the

server. Subsequently, this pose undergoes optimization at the

server end post the loop closure, enhancing its precision and

reliability.

In this context, the CSLAM module adopts this refined

pose as its primary source, bypassing the initial pose esti-

mated by its intrinsic tracking module. However, this doesn’t

negate the importance of further refinements; CSLAM still

actively engages in subsequent pose optimization and loop

closure procedures. This means, we assign the frame’s pose

based on the more reliable estimation provided by the single

agent and continue to refine it using the sophisticated pose

optimization mechanisms inherent to the SLAM system.

This approach ensures that, during the loop closure stage,

CSLAM automatically defaults to the trusted pose source as-

sociated with each frame, blending reliability with continual

refinement. This amalgamation of trusted pose sources with

persistent optimization and refinement procedures facilitates

a more reliable and accurate representation of agent poses in

the map, ensuring the integrity and robustness of the entire

SLAM system.

III. SETUP

The Collaborative SLAM system is implemented in the

Robot Operating System (ROS) to exchange messages. The

ROS provides a run-time environment that facilitates client-

server communication. Experiments are conducted to eval-

uate the performance of our SiLK-CSLAM system on the

real datasets collected by our SUGV in two distinct scenes.

During the data collection, we collect the camera images,

the LiDAR Pointclouds, the RTK GPS positions, and the

TF trees between them. It should be noted that the camera

faces down the ground which takes about half of the image.

This camera angle also helps to identify unconventional

(Improvised Explosive Devices) and conventional (buried

mines) explosive devices.

All results were obtained by replaying data in real-time

and simulating the Small UGV and Large UGV. For these

experiments, the following setup is used:

• Local Server: Intel® Core™ i5-7400 CPU @ 3.00GHz

× 4, NVIDIA GeForce GTX 1060 6GB

• System: Ubuntu 20.04.6 LTS, 64-bit

Throughout all experiments, the pre-recorded datasets are

processed on the same PC as the server but simulated by

replaying rosbag in real-time, and communicating with the

server through ROS topics, simulating a wireless network

where communication takes place.

IV. EVALUATION

A. Evaluation of Estimated Trajectories

In this section, we evaluate the performance of our algo-

rithm using data collected from the Marketplace, a closed

environment specifically designed for data acquisition. The

odometry data of the xUGV, derived from its positioning

system, serves as the external reference for the xUGV’s pose.

We apply SiLK-CSLAM to optimize the pose estimation of

the xUGVs and subsequently compare the results with those

obtained using CCM-SLAM, hereafter referred to simply as

CSLAM. For this comparative analysis, we use the Absolute

Pose Error (APE), also known as absolute trajectory error.

APE is used to assess the accuracy of the trajectory estimates

produced by CSLAM and SiLK-CSLAM by comparing these

estimates against the baseline provided by the external odom-

etry data. This involves a direct comparison of corresponding

poses between the estimated trajectory and the reference

trajectory, based on their pose relation. Finally, we compile

statistics for the entire trajectory to provide a comprehensive

evaluation of the system’s performance

Some of the detected loop closures and the corresponding

matched images using the SiLK-LCD algorithm are shown

in Figs. 5,6,7. The matched feature points are illustrated by

the red circle marker and green plus marker in the left and

right images, respectively. The corresponding feature points

are connected by the yellow lines.

Figure 8 showcases trajectories optimized by CSLAM

and SiLK-CSLAM, using the ZED camera’s odometry as

an external pose source in the Marketplace. It is evident

that the estimated trajectories from both CSLAM and SiLK-

CSLAM align closely with the ground truth provided by RTK

GPS. The results reveal that incorporating the Zed camera’s

odometry into either CSLAM or SiLK-CSLAM yields poses

with higher accuracy than using the Zed odometry alone, and

SiLK-CSLAM demonstrates superior performance.

Table I provides a detailed comparison of performance

metrics (RMSE, MEAN, and STD) for various SLAM

RMSE(m) MEAN (m) STD (m)

Dataset External
odometry
only

CALC-
CSLAM
[22]

SiLK-
CSLAM

External
odometry
only

CALC-
CSLAM
[22]

SiLK-
CSLAM

External
odometry
only

CALC-
CSLAM
[22]

SiLK-
CSLAM

Marketplace 3.228 0.081 0.078 2.826 0.075 0.071 1.549 0.032 0.029

TABLE I: Absolute Pose Error (APE) statistics of the estimated trajectory of SiLK-CSLAM compared with CSLAM

Fig. 5: Corresponded images and matched feature points

using the SiLK-LCD algorithm (images: 500 vs 4188)

Fig. 6: Corresponded images and matched feature points

using the SiLK-LCD algorithm (images: 1230 vs 2400)

techniques against an external odometry baseline. The data

demonstrate that both CSLAM and SiLK-CSLAM substan-

tially lower the RMSE (Root Mean Square Error) and MEAN

of the Absolute Pose Error (APE) in comparison to solely

using external odometry, achieving reductions across all

tested scenarios. This substantial improvement underscores

the superior accuracy of both algorithms in trajectory es-

timation compared to the baseline odometry provided by

a single xUGV. Notably, SiLK-CSLAM shows enhanced

performance in simultaneous localization, particularly in

environments with low contrast, where traditional SLAM

algorithms typically face difficulties due to the absence of

distinct features for tracking and mapping. SiLK-CSLAM

achieves better performance than CSLAM in terms of RMSE

and MEAN of APE in all evaluated scenarios, as detailed

in Table I. Specifically, SiLK-CSLAM shows a reduction

in RMSE compared to CSLAM, which marks a significant

enhancement in trajectory estimation accuracy. Additionally,

when considering the STD values, SiLK-CSLAM not only

reduces errors but also demonstrates stable performance

across diverse environments.

Fig. 7: Corresponded images and matched feature points

using the SiLK-LCD algorithm (images: 1642 vs 2909)

Fig. 8: Comparison of estimated trajectories in the Market-

place. ’CSLAM-1’ and ’CSLAM-2’ represent the trajecto-

ries of two distinct xUGVs using CSLAM, while ’SiLK-

CSLAM-1’ and ’SiLK-CSLAM-2’ represent the trajectories

of two xUGVs using SiLK-CSLAM. All trajectories utilize

the same external pose estimation source (ZED Odometry)

and are aligned with the ground truth provided by RTK GPS.

The enhanced performance of SiLK-CSLAM is largely

due to its use of descriptors generated by the SiLK model.

These descriptors capture essential geometric information,

making the system robust against variations in lighting

conditions. SiLK’s training on a varied dataset improves its

ability to handle visual changes, such as fluctuations in light,

shadows, and occlusions. However, it is important to note

that the computational requirements of the SiLK model make

the system slower compared to using traditional ORB feature

extractors. This increase in computational load may limit

its use in scenarios requiring quick processing, such as in

embedded systems.

(a) Original laser point clouds from the Open Field scene.

(b) Corrected laser point clouds from the Open Field scene.

Fig. 9: Laser point clouds correction.

B. LiDAR PointClouds Correction

Figure 9 shows the laser point clouds corrected by trans-

formative matrix obtained from visual SLAM, i.e. SiLK-

CSLAM. The white dots represent the laser points, with the

grid serving as the fixed global frame used for reference.

The central white cloud, with the brightest dots, depicts the

trajectory of the xUGV, representing the foreground grass in

front of the xUGV. The upper half of the clouds represent

the trees in the far distance.

The Time Slot 1 of the Open Field scene is selected as

the source of the laser point clouds, which encompass the

accumulative PointCloud2 messages over the selected time.

The transformation matrix acquired from the SiLK-CSLAM

system is applied to the laser point clouds (see Figure 9a),

yielding the corrected point clouds as depicted in Figure 9b.

In comparison to the original point clouds, the corrected

point clouds are better aligned, as evidenced by the xUGV’s

trajectory and the lines in the top right corner. However,

it is observable that the corrected point clouds still exhibit

some drift, potentially due to the unreliable tf tree transform

between the laser sensor and the global reference frame map.

To effectively evaluate the quality of this correction, we

propose a method grounded in contrasting the alignment of

Point Cloud
numbers

Total Errors
(m)

Avg errors
(m)

Sequence A
(Before cor-
rection)

130 54.9 0.422

Sequence
B (After
correction)

130 34.2 0.276

TABLE II: Point cloud alignment error using Iterative Clos-

est Point (ICP) registration for consecutive clouds.

point cloud sequences before and after the correction. In

the preparation phase, two-point cloud sequences, namely

Sequence A (before correction) and Sequence B (after cor-

rection), are acquired. To evaluate the alignment in each

sequence, the degree of alignment between every two con-

secutive point clouds is computed. Various metrics, such as

the mean squared error from the Iterative Closest Point (ICP)

algorithm, are employed for this purpose.

From Table II, it’s evident that "Sequence B (After

correction)" has both a lower total and average alignment

error compared to "Sequence A (Before correction)", despite

both sequences having the same number of point clouds.

This suggests that the transformational correction applied

by visual SiLK-CSLAM was effective in improving the

alignment of the related laser point clouds.

V. CONCLUSIONS

The exploration and implementation of collaborative

SLAM with a Self-Supervised Deep Learning Keypoint-

Based model for inter-map loop closure detection have

produced significant advancements in the domain of multi-

agent loop closure detection and collaborative mapping. The

devised SiLK-based triggering mechanism for CSLAM has

proven effective in inter-map merging and optimization of

single xUGV pose and map points, paving the way for more

accurate and reliable mapping solutions, especially in GNSS-

denied environments.

Comparative evaluation of estimated trajectories against

CCM-SLAM in both qualitative and quantitative ways pro-

vides concrete data to support the effectiveness of the system.

Furthermore, the correction of LiDAR point clouds using

the transformation matrix from visual SLAM has opened

avenues for more accurate 3D mapping and localization.

The comparative analysis has shown the robustness and

adaptability of the system. In future work, we plan to explore

the use of corrected laser point clouds for enhanced pose

estimation.

REFERENCES

[1] D. Zou, P. Tan, and W. Yu, “Collaborative visual slam for multiple
agents: A brief survey,” Virtual Reality & Intelligent Hardware, vol. 1,
no. 5, pp. 461–482, 2019.

[2] I. Abaspur Kazerouni, L. Fitzgerald, G. Dooly, and D. Toal, “A
survey of state-of-the-art on visual slam,” Expert Systems with

Applications, vol. 205, p. 117734, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417422010156

[3] T. Taketomi, H. Uchiyama, and S. Ikeda, “Visual slam algorithms: A
survey from 2010 to 2016,” IPSJ Transactions on Computer Vision

and Applications, vol. 9, no. 1, pp. 1–11, 2017.

[4] N. Merrill and G. Huang, “Lightweight unsupervised deep loop
closure,” in Proc. of Robotics: Science and Systems (RSS). Pittsburgh,
PA: RSS Foundation, Jun 2018.

[5] P. Gleize, W. Wang, and M. Feiszli, “Silk: Simple learned keypoints,”
in Proceedings of the IEEE/CVF International Conference on Com-

puter Vision, 2023, pp. 22 499–22 508.

[6] H. Wang, C. Zhang, Y. Song, B. Pang, and G. Zhang, “Three-
dimensional reconstruction based on visual slam of mobile robot in
search and rescue disaster scenarios,” Robotica, vol. 38, no. 2, pp.
350–373, 2020.

[7] E. Ghisoni, S. Govindaraj, A. M. C. Faulí, G. De Cubber, F. Polisano,
N. Aouf, D. Rondao, Z. Chekakta, and B. de Waard, “Multi-agent sys-
tem and ai for explosive ordnance disposal,” CEIA HUMANITARIAN

CLEARANCE TEAMWORK, p. 26, 2023.

[8] Z. Chekakta, N. Aouf, S. Govindaraj, F. Polisano, and G. De Cubber,
“Towards learning-based distributed task allocation approach for multi-
robot system,” in 2024 10th International Conference on Automation,

Robotics and Applications (ICARA). IEEE, 2024, pp. 34–39.

[9] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira,
I. Reid, and J. J. Leonard, “Past, present, and future of simultaneous
localization and mapping: Toward the robust-perception age,” IEEE

Transactions on Robotics, vol. 32, no. 6, pp. 1309–1332, 2016.

[10] J. G. Morrison, D. Gálvez-López, and G. Sibley, “Moarslam: Mul-
tiple operator augmented rslam,” in Distributed Autonomous Robotic

Systems: The 12th International Symposium. Springer, 2016, pp.
119–132.

[11] C. Campos, R. Elvira, J. J. G. Rodríguez, J. M. M. Montiel, and
J. D. Tardós, “Orb-slam3: An accurate open-source library for visual,
visual–inertial, and multimap slam,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 1874–1890, 2021.

[12] G. Loianno, Y. Mulgaonkar, C. Brunner, D. Ahuja, A. Ramanandan,
M. Chari, S. Diaz, and V. Kumar, “A swarm of flying smartphones,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS). IEEE, 2016, pp. 1681–1688.

[13] M. Karrer, P. Schmuck, and M. Chli, “Cvi-slam—collaborative visual-
inertial slam,” IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 2762–2769, 2018.

[14] R. Mur-Artal and J. D. Tardós, “Visual-inertial monocular slam with
map reuse,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp.
796–803, 2017.

[15] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[16] Y. Cao and G. Beltrame, “Vir-slam: Visual, inertial, and ranging slam
for single and multi-robot systems,” Autonomous Robots, vol. 45, pp.
905–917, 2021.

[17] K. Tateno, F. Tombari, I. Laina, and N. Navab, “Cnn-slam: Real-time
dense monocular slam with learned depth prediction,” in Proceedings

of the IEEE conference on computer vision and pattern recognition,
2017, pp. 6243–6252.

[18] N. Yang, L. v. Stumberg, R. Wang, and D. Cremers, “D3vo: Deep
depth, deep pose and deep uncertainty for monocular visual odometry,”
in Proceedings of the IEEE/CVF conference on computer vision and

pattern recognition, 2020, pp. 1281–1292.
[19] R. Kang, J. Shi, X. Li, Y. Liu, and X. Liu, “Df-slam: A deep-learning

enhanced visual slam system based on deep local features,” arXiv

preprint arXiv:1901.07223, 2019.
[20] J. Tang, L. Ericson, J. Folkesson, and P. Jensfelt, “Gcnv2: Efficient

correspondence prediction for real-time slam,” IEEE Robotics and

Automation Letters, vol. 4, no. 4, pp. 3505–3512, 2019.
[21] P. Schmuck and M. Chli, “Ccm-slam: Robust and efficient centralized

collaborative monocular simultaneous localization and mapping for
robotic teams,” Journal of Field Robotics, vol. 36, no. 4, pp. 763–781,
2019.

[22] Z. Zhu, Z. Chekakta, and N. Aouf, “Collaborative slam with convo-
lutional neural network-based descriptor for inter-map loop closure
detection,” in 2024 10th International Conference on Automation,

Robotics and Applications (ICARA). IEEE, 2024, pp. 352–357.

