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Abstract
Financial correlation matrices play a vital role in various quanti-
tative finance applications, but generating synthetic correlation
matrices that accurately reflect market structures and stylized facts
remains challenging. We introduce a novel application of denoising
diffusion probabilistic models (DDPMs) for this task, proposing
both unconditional (DM) and conditional (CDM) models. Our ex-
perimental evaluation demonstrates the superior performance of
our models in generating correlation matrices that closely resemble
empirical data while capturing differences across market regimes.
We also present a case study highlighting the utility of our approach
in assessing asset allocation frameworks and enhancing risk mod-
eling by augmenting empirical datasets with synthetic data. Our
findings showcase DDPMs’ potential in mitigating limitations of
scarce financial data, enabling robust quantitative modeling and
analysis.
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1 Introduction
Financial correlation matrices capture the co-movement patterns
among financial assets. They play a crucial role in various quantita-
tive finance applications, such as portfolio construction, risk mod-
eling, complex derivative pricing, and asset allocation. However,
generating realistic synthetic correlation matrices that accurately
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capture underlying market structures and stylized facts remains a
significant challenge [15, 25].

Recent developments in machine learning have led researchers
to explore novel techniques for sampling correlation matrices. No-
table applications include Generative Adversarial Networks (GANs)
and Variational Autoencoders (VAEs), which have shown promise
in producing synthetic correlation matrices that resemble their
empirical counterparts [1, 20, 25, 26]. However, the exploration of
machine learning in generating more realistic correlation matrices
remains an open field.

Denoising diffusion probabilistic models (DDPMs) have recently
emerged as a powerful tool for generating high-quality synthetic
data, showcasing remarkable performance in various computer
vision tasks [4, 14, 29, 30]. Their success in image generation mo-
tivates us to investigate their potential in outperforming existing
machine learning architectures for generating realistic financial
correlation matrices.

This study explores the application of DDPMs to generate syn-
thetic financial correlation matrices. We present both unconditional
and conditional models that replicate diverse market structures
across various regimes. Our approach provides quantitative finance
practitioners with a method to augment limited historical data. By
generating realistic synthetic data, investors and risk managers
can analyze portfolio performance and risk across a wider range of
market conditions, potentially leading to more resilient investment
strategies and improved decision-making processes.

The main contributions of this paper are as follows:
• We introduce a novel application of DDPMs for generating
realistic financial correlation matrices.

• We propose both unconditional and conditional DDPMs, in-
corporatingmarket conditions through continuous volatility-
based conditioning variables.

• We demonstrate the superior performance of our models
compared to existing methods through extensive experi-
ments on diverse datasets.

• We present a case study showcasing the practical value of
our approach in enhancing financial modeling.

2 Related Work
2.1 Sampling Financial Correlation Matrices
Financial correlation matrices exhibit several key stylized facts
[25], including a significantly positive shift in the distribution of
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pairwise correlations, eigenvalues following the Marchenko-Pastur
distribution with a large first eigenvalue (market) and a few other
large eigenvalues (industries), the Perron-Frobenius property, a
hierarchical structure of correlations, and a scale-free property of
the corresponding Minimum Spanning Tree. However, developing
models that effectively generate correlation matrices adhering to
all of these characteristics has proven challenging [15].

Traditional approaches for generating synthetic correlation ma-
trices, such as the onion method [7], vine copulas [21], and matrix
perturbation techniques [11], often struggle to replicate all these
stylized facts and fail to produce samples that accurately mirror
real-world financial correlation structures.

Recent literature has proposed innovative machine learning tech-
niques to sample realistic correlationmatrices. One such approach is
CorrGAN [25], an application of Generative Adversarial Networks
(GANs) [8] based on the DCGAN architecture [28]. [20] proposed a
modified version based on Wasserstein GAN [9], and [26] extended
the model to condition sampled data on market regimes. In paral-
lel, [1] leveraged Variational Autoencoders (VAEs) [19] to sample
correlation matrices effectively.

An alternative approach involves generating correlation matri-
ces by sampling synthetic financial time series. This can be achieved
through traditional methods like block bootstrapping [6, 10, 17]
or machine learning techniques. For instance, [3] employed an
ensemble of GANs based on hierarchical clustering to sample high-
dimensional financial time-series data, demonstrating that the syn-
thetic data approximated the correlations found in the underlying
empirical dataset.

Given their success in computer vision, DDPMs [14, 32] are
promising candidates for sampling realistic correlation matrices.
These models work by iteratively adding noise to input data and
training a neural network to remove the noise and reconstruct
the original data, allowing them to capture the underlying data
distribution. DDPMs have achieved state-of-the-art results in vari-
ous tasks, including image generation and text-to-image synthesis
[4, 14, 29, 30].

2.2 Applications of Synthetic Correlation
Matrices

Synthetic correlation matrices have found applications in various
areas of quantitative finance. In asset allocation, Lopez De Prado
introduced Hierarchical Risk Parity [22] and Nested Clustered Op-
timization [23], demonstrating their superior performance using
synthetic correlation matrices. Following this, numerous studies
[16, 26, 27] have utilized synthetic matrices to assess various asset
allocation methods within simulation-based frameworks. For in-
stance, [27] and [16] employed XGBoost models with SHAP frame-
work [24] to identify key characteristics of correlation matrices
that can influence selecting specific asset allocation methods.

[20] presented an approach to construct investment portfolios
directly using synthetic correlation matrices. By providing a more
diverse dataset while limiting outliers unlikely to occur in the future,
this approach enhanced the robustness of the constructed portfolios
to changing market conditions and demonstrated superior out-of-
sample performance.

In addition to asset allocation, synthetic correlation matrices
have been used for risk analysis. [1] proposed using generated
correlation matrices to perform Monte Carlo simulations and esti-
mate the Value-at-Risk surface over the latent space of a developed
Variational Autoencoder.

Synthetic correlation matrices may also find applications in other
areas, such as stress testing portfolios for unforeseen market condi-
tions and pricing complex multi-asset derivatives [6].

2.3 Generating Supplementary Asset Attributes
For applications requiring information beyond correlation matri-
ces, [20] proposed an Encoder-Decoder network that generates
additional asset attributes (e.g., volatilities, expected returns) from
correlation matrices. This approach recognizes that synthetic cor-
relation matrices can provide insights into market structure and
conditions. The network ensures consistency between input matri-
ces and generated attributes, allowing for advanced modeling that
would be limited if using only correlation data.

3 Methodology
3.1 Denoising Diffusion Probabilistic Models
Denoising diffusion probabilistic models [14, 32] learn to reverse a
gradual corruption process that adds noise to data through multiple
timesteps.

The forward diffusion process defines a Markov chain that in-
crementally adds Gaussian noise to the data 𝑥0:

𝑞(𝑥𝑡 |𝑥𝑡−1) := N(𝑥𝑡 ;
√︁
1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 𝐼 ) (1)

where 𝑡 indexes the timesteps, 𝛽𝑡 ∈ (0, 1) is a predefined noise
schedule that controls the variance of the Gaussian noise added at
each step, and N(𝑥 ; 𝜇, Σ) denotes a normal distribution with mean
𝜇 and covariance matrix Σ. This process gradually transforms the
data distribution, and for a sufficiently large number of steps 𝑇 ,
the final distribution approaches a standard Gaussian distribution
𝑥𝑇 ≈ N(0, 𝐼 ).

The reverse process learns a function 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) that denoises
𝑥𝑡 by estimating the previous timestep’s data distribution:

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) := N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)) (2)

where 𝜇𝜃 and Σ𝜃 are predicted by the model 𝑝𝜃 with parameters
𝜃 trained to denoise 𝑥𝑡 . The training objective is to maximize the
log-likelihood of the data under the generative model.

To generate samples, the model starts from pure noise 𝑥𝑇 ∼
N(0, 𝐼 ) and recursively denoises by sampling from 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) at
each timestep, progressively reconstructing the data distribution of
𝑥0.

For efficient training, following [14], the forward and reverse
processes are reparameterized in terms of 𝛼𝑡 = 1 − 𝛽𝑡 and 𝛼𝑡 =∏𝑡

𝑠=1 𝛼𝑠 :

𝑞(𝑥𝑡 |𝑥0) := N(𝑥𝑡 ;
√︁
𝛼𝑡𝑥0, (1 − 𝛼𝑡 )𝐼 ) (3)

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) := N
(
𝑥𝑡−1;

1
√
𝛼𝑡

(
𝑥𝑡 −

1 − 𝛼𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝑥𝑡 , 𝑡)
)
,

Σ𝜃 (𝑥𝑡 , 𝑡)
)

(4)
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where the model, instead of predicting 𝜇𝜃 , learns the added noise
𝜖𝜃 (𝑥𝑡 , 𝑡) at timestep t. [14] found that Σ𝜃 (𝑥𝑡 , 𝑡) could be set to a
constant 𝜎2𝑡 𝐼 , rather than being learned. Specifically, they proposed
using either 𝛽𝑡 𝐼 or 𝛽𝑡 𝐼 for this constant, where 𝛽𝑡 = 1−𝛼𝑡−1

1−𝛼𝑡
𝛽𝑡 . This

modification reduces the model’s complexity without significantly
affecting its performance and results in a more efficient training
loss for the reparameterized model:

𝐿𝑠𝑖𝑚𝑝𝑙𝑒 = E𝑥𝑡 ,𝑡 [| |𝜖𝑡 − 𝜖𝜃 (𝑥𝑡 , 𝑡) | |22] (5)

where 𝜖𝑡 is the actual noise added at timestep 𝑡 during the forward
diffusion process, and 𝜖𝜃 (𝑥𝑡 , 𝑡) is the model’s prediction of that
noise.

3.2 Conditional Generation
Conditional denoising diffusion probabilistic models incorporate
additional conditioning information 𝑦 into the diffusion process to
learn a conditional distribution 𝑝𝜃 (𝑥0 |𝑦) [4]. While the forward dif-
fusion process mirrors the unconditional model, the reverse process
includes 𝑦:

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 , 𝑦) = N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡, 𝑦), Σ𝜃 (𝑥𝑡 , 𝑡, 𝑦)) (6)

To generate samples conditioned on 𝑦, we start from 𝑥𝑇 ∼
N(0, 𝐼 ) and recursively denoise through 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 , 𝑦), recover-
ing 𝑝𝜃 (𝑥0 |𝑦). The reparameterization and simplified loss from the
unconditional model can be extended to the conditional case [30].

3.3 Implementation
Our implementation of the unconditional denoising diffusion model
adheres to the methodology outlined by [14], originally devised for
image applications. The model is based on U-net network [31] and
Wide ResNet blocks of convolutional layers [35]. We applied group
normalization [34] and attention layers [33] between the ResNet
blocks, and applied a 0.5 dropout rate within the blocks. The model
employs a linear beta schedule that increases from 0.0001 to 0.02,
with a total of 1000 timesteps. Sinusoidal position embeddings [33]
are used to encode the timesteps. We train the model for 2500
epochs using a step-based learning rate decay, starting with an
initial learning rate of 0.001 and decreasing it by 30% every 100
epochs. The Adam optimizer [18] is used with 𝛽1 = 0.9 and 𝛽2 =

0.999.
For conditional generation, two conditioning variables are trans-

formed to sinusoidal position embeddings [33] and added within
each upsample ResNet block.

Our code and further details on the model architectures for each
dataset can be found in our GitHub repository1.

3.4 Datasets
We use three empirical datasets to assess model performance:

(1) Futures: This dataset, based on the assets used in [27], com-
prises time-series data for 17 futures contracts representing
commodity, fixed income, and equity indices. We compute
3-month correlation matrices using daily returns from May
2, 2000, to October 9, 2023, for each day in the dataset. The
training dataset is selected to cover the period up to the end
of 2015.

1https://github.com/szymkubiak/DDPM-for-Correlation-Matrices

(2) Fixed income: Introduced in [20], this dataset consists of
68 assets, including 28 currencies and 40 investable fixed
income indices, spanning from April 2007 to October 2022.
The training data extends until March 2017. We calculate
1-year correlation matrices based on 52 weekly returns for
each day in the dataset.

(3) Stocks: To evaluate performance on larger correlation matri-
ces, we compiled a dataset of 183 MSCI Europe stocks that
were included in the index as of October 18, 2023, and have
been consistently listed for 30 years. We compute 2-year
correlation matrices using daily returns from October 19,
1993, to October 18, 2023, for each day in the dataset. The
training dataset extends until the end of 2013.

These datasets encompass diverse asset types and market struc-
tures, with matrix sizes ranging from 17x17 to 183x183. The training
sections account for 62% to 65% of the entire datasets.

We employ two conditioning variables in the conditional diffu-
sion model:

• Interest rates volatility (volatility of 10-year US treasury
yield’s differences)

• Equity volatility (volatility of S&P500 index’s percentage
returns)

For each dataset, periods for the conditioning volatility variables
are aligned with the return periods of the corresponding correlation
matrices.

All Bloomberg tickers to recreate the datasets are provided in
our GitHub repository1.

3.5 Model Evaluation
The evaluation process assesses the unconditional (DM) and con-
ditional (CDM) denoising diffusion models’ ability to generate re-
alistic correlation matrices. We compare our models against em-
pirical data and synthetic matrices produced by four alternative
approaches:

(1) BB - block bootstrapping [6, 10, 17], a traditional finance
approach. For the futures dataset, we use 3 blocks of 21
business days of returns; for fixed income, 4 blocks of 13
weekly returns; and for stocks, 8 blocks of 65 business days
of returns.

(2) DCGAN - the original CorrGAN model based on [25].
(3) WGAN - a Wasserstein GAN model described in [20].
(4) VAE - a Variational Autoencoder that is inspired by [1].

All models were trained on the same training dataset and evalu-
ated using both the training and testing datasets.

For each model, we generate a sample of 64,000 correlation ma-
trices. To generate a dataset with the CDM model, we need to
provide a distribution of conditioning variables. For each empir-
ical dataset in our analysis, we generate two synthetic datasets
using the model: CDM_Train, which is based on the distributions
of conditioning variables from the empirical training datasets, and
CDM_Test, based on the distributions from the testing datasets. The
CDM_Train datasets can be compared with the empirical training
datasets as well as synthetic datasets from the alternative machine
learning models, whereas the CDM_Test datasets can be used as a
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more stringent evaluation to assess how well the model can repli-
cate an unseen dataset.

The evaluation process unfolds in four stages:

(1) Examination of fundamental characteristics: diagonal ele-
ments forming a vector of ones and matrix symmetry. These
are measured by absolute deviations of diagonal elements
from 1 and absolute differences between upper and lower
triangular parts, respectively.

(2) EvaluatingWasserstein distances between the generated and
empirical datasets. This metric quantifies the dissimilarity
between two probability distributions, with lower values in-
dicating greater similarity. We calculate it by flattening each
matrix into a vector and using the scipy.stats.wasserstein_distance
function to compute the distance between the distributions
of these flattened vectors.

(3) Assessing metrics suggested in [27] that align with key styl-
ized facts observed in empirical correlation matrices:

(a) Average correlation coefficient of matrices
(b) Gini coefficient of matrices’ eigenvalues
(c) Cophenetic correlation between the original correlation

distance matrix and the cophenetic matrix of the hierar-
chical clustering algorithm (using single or ward linkage).
The distance is measured as 𝐷 =

√︁
2(1 −𝐶𝑜𝑟𝑟 )

(d) Sum of negative entries of the first eigenvector (related to
the Perron-Frobenius property)

(e) Power exponent of correlation matrices’ eigenvalue distri-
bution

(4) Additional evaluation of the conditional model: we parti-
tion each empirical training dataset into 10 subsets by split-
ting the distributions of the two conditioning variables into
quintiles (5 equal-sized bins for each variable). Then, for
each partition, we sample correlation matrices conditioned
on the values of the corresponding conditioning variable
within that partition’s range. We assess the quality of the
conditionally generated datasets by calculating Wasserstein
distances between the sampled matrices and the empirical
matrices within the same partition. Furthermore, we com-
pare these partition-level distances to the distances between
the CDM-generated partitions and the entire empirical train-
ing dataset, as well as the distances between the full DM-
generated datasets and the partitions of the empirical train-
ing data.

Characteristics in point 1 are evaluated using the raw correlation
matrices generated by all machine learning models. For subsequent
assessments, we apply two simple transformations to ensure the
matrices possess essential properties of correlation matrices. First,
we enforce symmetry by using either the upper or lower triangular
part of the matrix. Second, we set all diagonal elements to 1.

4 Experimental Results
4.1 Diagonal Elements and Matrix Symmetry
Table 1 presents the initial results of our analysis, focusing on
the examination of diagonal elements and the symmetry of raw
correlation matrices generated by the machine learning models.
The BB method is excluded from this table as it directly samples

Table 1: Evaluation of diagonal elements and symmetry in
raw correlationmatrices generated bymachine learningmod-
els (excluding BB method). "Diagonal Elements Abs Diffs
from 1" measures how close diagonal elements are to 1; lower
values indicate closer adherence to the ideal of unit diagonals.
"Abs Diffs Between TriangularMatrices" quantifies the differ-
ences between upper and lower triangular parts; lower values
indicate higher symmetry. The WGAN model consistently
achieves the lowest absolute deviations from 1 for diagonal
elements across all datasets. The DM model produces the
most symmetric matrices.

Diagonal Elements
Abs Diffs from 1

Abs Diffs Between
Triangular Matrices

Avg Std Avg Std

Futures Dataset

DCGAN 0.0176 0.0107 0.0377 0.0593
WGAN 0.0010 0.0011 0.0441 0.0626
VAE 0.0013 0.0010 0.0054 0.0072
DM 0.0023 0.0018 0.0061 0.0085
CDM_Train 0.0033 0.0026 0.0095 0.0126
CDM_Test 0.0033 0.0027 0.0096 0.0127

Fixed Income Dataset

DCGAN 0.0281 0.0179 0.1316 0.1872
WGAN 0.0008 0.0007 0.0663 0.0930
VAE 0.0021 0.0024 0.0404 0.0530
DM 0.0039 0.0033 0.0158 0.0215
CDM_Train 0.0095 0.0079 0.0295 0.0390
CDM_Test 0.0095 0.0079 0.0295 0.0390

Stocks Dataset

DCGAN 0.0377 0.0239 0.1260 0.1699
WGAN 0.0012 0.0010 0.0644 0.0857
VAE 0.0022 0.0046 0.0212 0.0273
DM 0.0063 0.0051 0.0089 0.0115
CDM_Train 0.0134 0.0107 0.0189 0.0243
CDM_Test 0.0142 0.0111 0.0202 0.0256

from empirical data, ensuring perfect diagonal elements of 1 and
symmetry by construction.

Across all three datasets, theWGANmodel consistently achieves
the lowest average absolute deviation of diagonal elements from 1,
as well as the lowest standard deviation of these deviations. The
VAE model follows closely, while the DM model’s deviations are
larger than WGAN and VAE but smaller than DCGAN. Notably, the
DM model’s diagonal elements can deviate both above and below
one, while other models never exceed this value due to their output
being capped by the Tanh activation function.

When assessing matrix symmetry, DM significantly outperforms
in the fixed income and stocks markets, which feature larger matri-
ces. It provides the lowest absolute differences between values of
upper and lower triangular matrices and also exhibits the lowest
standard deviations of these differences. However, in the futures
dataset, the VAE model moderately outperforms the DM model.
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Table 2: Wasserstein distances between generated and empir-
ical datasets for futures (FUT), fixed income (FI), and stocks
(EQ). The DM model achieves the lowest distances to the em-
pirical training datasets across all markets. For empirical
testing datasets, CDM_Test achieves the lowest distance for
stocks but not for futures and fixed income.

Distance to
Empirical Training

Distance to
Empirical Testing

FUT FI EQ FUT FI EQ

Empirical Training - - - 0.030 0.053 0.078
Empirical Testing 0.030 0.053 0.078 - - -

BB 0.006 0.017 0.035 0.029 0.069 0.082
DCGAN 0.004 0.012 0.007 0.027 0.064 0.084
WGAN 0.005 0.015 0.006 0.027 0.053 0.079
VAE 0.021 0.021 0.024 0.023 0.064 0.080
DM 0.001 0.003 0.002 0.029 0.050 0.080
CDM_Train 0.011 0.005 0.031 0.038 0.058 0.109
CDM_Test 0.011 0.006 0.035 0.027 0.059 0.055

The CDMmodel, according to these two metrics, provides lower-
quality matrices than DM, but it outperforms DCGAN and WGAN
in terms of matrix symmetry.

4.2 Wasserstein Distances
As shown in Table 2, the DM model’s generated datasets exhibit
significantly lower Wasserstein distances to the empirical training
datasets compared to alternative generative models. Although the
CDM_Train model shows a deterioration in performance relative
to DM, it remains competitive for the futures and fixed income
datasets, despite performing worse on the stocks dataset.

Notably, CDM_Test provides the lowest distance to the empirical
testing dataset for stocks. However, for the fixed income market,
CDM_Test exhibits higher distance to their respective empirical
testing dataset compared to the training dataset. This behavior
suggests that either overfitting to the training data distributions
is occurring, or that additional conditioning variables beyond the
two selected ones may be required to more closely replicate the
distributions of the empirical testing datasets across all markets.

4.3 Stylized Facts of Correlation Matrices
Table 3 provides a comprehensive analysis of stylized facts for
the generated correlation matrices across models. Ideally, DM and
CDM_Train would embody the key characteristics present in the
training datasets, whereas CDM_Test would resemble the charac-
teristics of the empirical testing datasets.

The DM model consistently demonstrates superior performance
across all threemarkets, with its advantages particularly pronounced
for larger correlation matrices. It generates matrices with corre-
lation coefficients closely mirroring the training empirical distri-
butions, and excels in producing matrices with the most realistic
eigenvalue and eigenvector distributions. Analysis of the cophe-
netic correlations highlights DM’s ability to capture the hierarchical
correlation structure remarkably similar to the training data. While

the CDM_Train offers competitive matrices, its metrics are moder-
ately worse than DM’s but often better than the other generative
models.

For stocks, CDM_Test provides matrices whose mean metrics
are closer to the testing data than CDM_Train. When a metric’s
average is higher in the empirical testing data versus training, this
is mostly reflected in CDM_Test having a higher value for that
metric compared to CDM_Train. However, for futures and fixed
income, CDM_Test does not exhibit this behavior, with its met-
rics more closely resembling the training data. This also suggests
potential overfitting or that the two conditioning variables alone
may be insufficient to fully capture the distribution shifts of these
correlation matrices over time.

Despite using empirical data directly to construct samples, the
BB method provided worse metrics than most alternative meth-
ods, demonstrating the superior performance of machine learning
models in replicating the stylized facts of empirical datasets.

4.4 Evaluation of the Conditional Generation
Table 4 presents Wasserstein distances evaluating how well the
CDM model captures distributions of correlation matrices across
different volatility regimes. Across all three datasets, CDM_Train
matrices conditioned on specific volatility quintiles exhibit signif-
icantly lower average distances to the corresponding empirical
partitions compared to the full empirical training datasets. The dis-
tances were also much lower than of the entire DM model’s dataset
to the empirical training partitions. This indicates the CDM model
to effectively separate the correlation matrices’ distributions based
on volatility regimes.

However, the model’s performance varies across quintiles. For
the highest volatility quintile (5th), distances between CDM_Train
partitions and empirical partitions are moderately lower than dis-
tances for other quintiles, demonstrating strong ability to capture
correlation dynamics during high volatility periods. Conversely, for
other volatility quintiles (1st-4th), the distance improvements are
sometimes less pronounced, with some cases not outperforming
the unconditional model’s (DM) distances.

4.5 Discussion and Implications of Results
Our empirical analyses demonstrate the superior performance of
DDPMs in generating realistic financial correlation matrices across
diverse markets. The DM model consistently outperformed alter-
native approaches, exhibiting the lowest Wasserstein distances to
empirical training datasets and effectively reproducing key styl-
ized facts of empirical correlation matrices, particularly for larger
matrices, suggesting scalability.

The conditional diffusion model (CDM) showed promising re-
sults in generating correlation matrices reflecting specific market
volatility regimes, with notably strong performance in high volatil-
ity conditions. This suggests particular efficacy in capturing corre-
lation dynamics during market stress periods.

An important observation from our empirical work, not previ-
ously mentioned, is the stability of the training process for both DM
and CDM models. This stands in contrast to our experience with
WGAN and DCGAN models, where we encountered the standard
instability issues commonly associated with GAN training.
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Table 3: Summary statistics of stylized facts for the empirical and generated correlation matrices across the three datasets.
The table presents the mean and standard deviation of six metrics: mean correlation coefficient (mean correl), Gini coefficient
of eigenvalues (eigen gini), cophenetic correlation with single and Ward’s linkage (coph corr single/ward), sum of negative
entries in the first eigenvector (perron frob sum neg), and power law exponent of eigenvalue distribution (power eigen values).
Highlighted values indicate the closest match to the empirical training datasets for each metric. The DM model demonstrates
the best overall performance, producing correlation matrices with stylized facts most similar to the empirical data.

mean correl eigen gini coph corr
single

coph corr
ward

perron frob
sum neg

power eigen
values

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std
Futures Dataset
Empirical Training 0.152 0.046 0.606 0.057 0.899 0.045 0.859 0.054 1.530 0.508 2.142 0.443
Empirical Testing 0.171 0.051 0.591 0.041 0.877 0.053 0.837 0.049 1.577 0.513 2.256 0.441
BB 0.149 0.039 0.607 0.045 0.897 0.038 0.863 0.042 1.539 0.520 2.109 0.412
DCGAN 0.151 0.045 0.606 0.059 0.893 0.047 0.856 0.055 1.609 0.520 2.223 0.395
WGAN 0.158 0.042 0.621 0.065 0.897 0.048 0.858 0.054 1.624 0.503 2.181 0.394
VAE 0.149 0.038 0.561 0.063 0.944 0.019 0.894 0.035 1.237 0.532 2.219 0.289
DM 0.153 0.046 0.606 0.057 0.901 0.045 0.861 0.054 1.524 0.509 2.134 0.431
CDM_Train 0.149 0.048 0.619 0.060 0.898 0.049 0.861 0.056 1.564 0.524 2.131 0.442
CDM_Test 0.152 0.042 0.602 0.065 0.896 0.044 0.857 0.051 1.609 0.517 2.204 0.567
Fixed Income Dataset
Empirical Training 0.231 0.063 0.855 0.011 0.716 0.118 0.751 0.071 2.335 0.389 1.952 0.093
Empirical Testing 0.284 0.079 0.862 0.019 0.717 0.102 0.697 0.079 2.227 0.396 1.965 0.112
BB 0.216 0.051 0.851 0.012 0.704 0.110 0.752 0.056 2.414 0.404 1.955 0.100
DCGAN 0.222 0.038 1.044 0.031 0.670 0.098 0.728 0.077 3.306 0.288 2.154 0.068
WGAN 0.230 0.070 0.976 0.064 0.697 0.115 0.742 0.073 3.225 0.303 2.032 0.081
VAE 0.220 0.049 0.865 0.019 0.730 0.098 0.767 0.059 3.246 0.278 2.065 0.076
DM 0.234 0.064 0.864 0.012 0.716 0.120 0.750 0.070 3.191 0.293 1.952 0.093
CDM_Train 0.226 0.062 0.880 0.014 0.712 0.122 0.751 0.071 3.332 0.296 1.967 0.089
CDM_Test 0.225 0.062 0.880 0.014 0.705 0.125 0.751 0.073 3.322 0.294 1.965 0.090
Stocks Dataset
Empirical Training 0.276 0.116 0.619 0.086 0.833 0.061 0.302 0.136 5.128 0.348 2.995 0.272
Empirical Testing 0.355 0.062 0.716 0.048 0.753 0.030 0.377 0.097 5.094 0.318 2.498 0.163
BB 0.273 0.062 0.631 0.046 0.803 0.045 0.274 0.103 5.201 0.314 2.904 0.163
DCGAN 0.273 0.076 0.850 0.092 0.661 0.103 0.290 0.122 5.336 0.300 3.186 0.203
WGAN 0.278 0.117 0.769 0.151 0.763 0.064 0.268 0.108 5.253 0.308 3.214 0.312
VAE 0.275 0.090 0.600 0.083 0.840 0.036 0.264 0.111 5.132 0.329 3.168 0.223
DM 0.274 0.115 0.617 0.086 0.836 0.062 0.305 0.131 5.152 0.347 3.017 0.265
CDM_Train 0.245 0.112 0.606 0.088 0.822 0.074 0.294 0.137 5.217 0.337 3.144 0.279
CDM_Test 0.299 0.077 0.639 0.056 0.844 0.037 0.315 0.098 5.196 0.308 3.097 0.164

The ability to generate high-quality synthetic correlation ma-
trices has significant implications for risk management and asset
allocation. Our DDPM-based approach offers a method to augment
historical data with realistic synthetic samples, potentially lead-
ing to more robust risk assessments and portfolio strategies. This
may be particularly valuable for stress testing and scenario analy-
sis. The quality of the generated data suggests that DDPMs could
help address the scarcity of financial data, especially for extreme
events, potentially accelerating the development and testing of new
financial models and strategies.

5 Limitations
While our approach demonstrates strong empirical performance,
it faces several challenges. The model’s scalability is constrained
by computational requirements, especially for larger correlation

matrices that require substantial GPU resources. Adding new as-
sets or extending the time series necessitates retraining the entire
model, which can be time-consuming. An additional limitation is
the generation speed of DDPMs, which is generally slower com-
pared to some other machine learning models. This slower speed
may restrict their applicability in scenarios requiring real-time or
high-frequency data generation.

Despite the promising empirical results, the theoretical justifica-
tion for DDPMs’ effectiveness in generating correlation matrices
remains limited. Further research is needed to understand why
these models perform well in this context. Moreover, correlation
matrices inherently reduce complex asset relationships to single val-
ues, potentially oversimplifying non-linear interactions that might
be better captured by more sophisticated models.
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Table 4: Wasserstein distances evaluating the CDMmodel’s ability to capture volatility regime dynamics. Distances are reported
between: 1) CDM_Train and empirical matrices within each volatility quintile partition, 2) full DM-generated datasets and
empirical matrices within volatility quintiles, and 3) CDM_Train matrices partitioned by volatility quintiles and the entire
empirical training dataset. Lower distances, which are highlighted, indicate better alignment of the distributions. The results
show that the CDM_Train partitions have much lower average distances to the corresponding empirical training partitions,
suggesting the CDMmodel effectively captures empirical data characteristics across different market volatility conditions.

Rates Volatility Quintile Equity Volatility Quintile
1 2 3 4 5 Mean 1 2 3 4 5 Mean

Futures Dataset

CDM_Train Partition vs Emp. Tr. Partition 0.013 0.009 0.015 0.011 0.013 0.012 0.006 0.004 0.014 0.020 0.017 0.012
All DM Data vs Emp. Tr. Partition 0.031 0.011 0.005 0.016 0.043 0.021 0.054 0.027 0.010 0.029 0.060 0.036
CDM_Train Partition vs All Emp. Tr. Data 0.029 0.007 0.013 0.023 0.052 0.025 0.055 0.024 0.011 0.042 0.073 0.041

Fixed Income Dataset

CDM_Train Partition vs Emp. Tr. Partition 0.009 0.008 0.003 0.003 0.004 0.006 0.008 0.009 0.002 0.005 0.004 0.006
All DM Data vs Emp. Tr. Partition 0.027 0.040 0.012 0.032 0.051 0.032 0.086 0.015 0.021 0.034 0.050 0.041
CDM_Train Partition vs All Emp. Tr. Data 0.021 0.034 0.012 0.032 0.051 0.030 0.080 0.009 0.020 0.036 0.050 0.039

Stocks Dataset

CDM_Train Partition vs Emp. Tr. Partition 0.038 0.044 0.025 0.036 0.010 0.031 0.019 0.046 0.055 0.024 0.009 0.031
All DM Data vs Emp. Tr. Partition 0.031 0.053 0.093 0.055 0.086 0.064 0.067 0.012 0.056 0.051 0.078 0.053
CDM_Train Partition vs All Emp. Tr. Data 0.032 0.099 0.121 0.017 0.074 0.069 0.089 0.052 0.008 0.077 0.066 0.058

While our models replicate historical correlation structures ef-
fectively, their ability to generalize to future market relationships
remains uncertain. Financial markets are dynamic and prone to
structural changes or unforeseen events, which may limit the mod-
els’ capacity to adapt, especially during significant market shifts.
Furthermore, the conditional diffusion model (CDM) uses only two
conditioning variables — rates and equity volatility — potentially
overlooking other important factors that influence correlation struc-
tures across various market regimes.

Finally, the black-box nature of DDPMs poses challenges to
interpretability compared to traditional financial methods. This
lack of transparency could be problematic in regulated financial
environments where model explainability is crucial.

6 Practical Application
Consider an investor evaluating an asset allocation strategy within
the fixed-income universe. The strategy aims to minimize portfolio
volatility while targeting a minimum expected return of 1% above
the 3-month U.S. Treasury bill rate. The investor seeks to under-
stand the expected volatility level for this strategy and how it might
vary across different market regimes. To address this, the analy-
sis compares the insights gained from using a synthetic dataset
generated by the CDM model against relying solely on historical
empirical data.

Following [20], we extended our fixed income dataset beyond
correlation matrices to include additional attributes. The gathered
empirical dataset covers the same period and assets as the fixed
income training dataset from previous sections but consists of 1-
year correlation matrices, 1-year volatilities, expected returns over
the next 1-year (including annualized 3-month Treasury bill rate),

and 4-week forward realized returns. The corresponding synthetic
dataset is generated as follows:

• Correlation matrices are sampled from the CDM model,
with the conditioning variables (rates and equity volatility)
distributed uniformly across their ranges in the empirical
dataset. In cases where a generated correlation matrix was
not positive definite, we applied the adjustment method out-
lined by [13].

• The remaining components (volatilities, expected returns,
forward returns) are sampled from an Encoder-Decoder
model [20] (described in the "Related Work" section) that
generates these asset attributes conditional on a given corre-
lation matrix.

For each correlation matrix 𝐶 and vector of volatilities 𝑣 , a co-
variance matrix Σ is calculated as Σ = diag(𝑣) ·𝐶 · diag(𝑣). Then,
for each covariance matrix Σ and vector of expected returns 𝜇,
portfolio weights𝑤 are optimized to minimize the portfolio’s vari-
ance (𝑤𝑇 Σ𝑤 ) subject to constraints: portfolio expected return ≥
U.S. 3-month Treasury bill rate + 1%, sum of bond indices weights
= 1, weight of each bond index ≥ 0, and weight of each currency
between -5% and 5%.

Subsequently, the realized returns of the optimized portfolios
are observed over the following 4 weeks and grouped into equity
and volatility buckets for analysis of the strategy’s performance
across different market regimes.

Figure 1 illustrates the observation count and portfolios’ annual-
ized realized volatility across the rates and equity volatility buckets.
The empirical dataset’s heatmaps reveal that most observations cor-
respond to periods when both volatilities were low, resulting in a
sparse representation of the strategy’s performance across different
market conditions. The synthetic dataset offers two main benefits
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Figure 1: Heatmaps illustrating observations count and annualized realized volatility of the investor’s strategy across different
rates and equity volatility regimes in synthetic, empirical training, and empirical testing datasets. The ticks on the x and y
axes correspond to lower boundaries of conditioning variables’ buckets. The synthetic dataset provides a more smooth and
monotonic "surface". Additionally, it provides insights for regimes not covered by the empirical dataset.

Table 5: Performance statistics of XGBoost models in the testing period to predict realized volatility of the strategy. The models
are trained with either the empirical training or the synthetic dataset. MAE stands for mean absolute error, and RMSE for root
mean square error. The 10th, 25th, 50th (median), 75th, and 90th percentile columns show the distribution of absolute errors
for each dataset variant. The Diebold-Mariano (DM) test statistic and its corresponding p-value are reported for comparing
forecast accuracy, with a negative DM statistic indicating superior performance of the Synthetic variant. The DM test uses
mean squared error as the criterion and evaluates predictions made 20 steps ahead, corresponding to a 4-week forecasting
horizon. All error metrics are reported in basis points of annualized volatility.

MAE RMSE 10th Perc.
Abs Error

25th Perc.
Abs Error

Median
Abs Error

75th Perc.
Abs Error

90th Perc.
Abs Error DM Stat p-value

Empirical 63 158 7 16 35 61 111 – –
Synthetic 57 152 7 19 37 57 78 -3.19 0.1%

over the empirical dataset. Firstly, it presents a smoother and more
monotonic "surface" of the strategy’s performance, making it easier
to identify trends and patterns across different market regimes.
Secondly, the synthetic dataset provides insights into the strategy’s
behavior in market conditions that are not well-represented or ab-
sent in the empirical dataset, allowing for a more comprehensive
analysis of the strategy’s performance.

To further assess the value of the synthetic dataset in predicting
the strategy’s realized volatility, an off-the-shelf XGBoost model
[2] is employed. Two separate XGBoost models are trained - one on
the empirical training dataset, and another on the synthetic dataset.
Both models use the two conditioning variables (rates and equity
volatility) as input features to predict the strategy’s annualized
volatility of returns over a 4-week horizon.

Table 5 compares the performance of these XGBoost models on
the testing period data. The model trained on the synthetic dataset
demonstrates lower mean absolute error (57 vs 63 basis points). The
improved performance of the synthetic variant is further evidenced
by a Diebold-Mariano test statistic [5, 12] of -3.19 (p-value: 0.1%)
using mean squared error as the criterion for 20-step ahead pre-
dictions, corresponding to a 4-week volatility forecasting horizon.
These results suggest that the synthetic dataset, by providing a
more comprehensive representation of market conditions, enables
more accurate predictions of the investment strategy’s realized
volatility across different regimes.

The practical application section demonstrates that the synthetic
dataset generated by the CDM model can help mitigate the issue of
limited financial data and provide better estimates of the strategy’s
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performance. By leveraging synthetic data, an investor can gain
a more comprehensive understanding of the strategy’s behavior
across a wider range of market conditions and make more informed
decisions regarding portfolio construction and risk management.

7 Conclusion
This paper explores the application of denoising diffusion proba-
bilistic models (DDPMs) to generate realistic synthetic correlation
matrices for financial modeling, with a focus on futures, fixed in-
come, and equity markets. We propose an unconditional diffusion
model (DM) and a conditional diffusion model (CDM) that incor-
porates market conditions through volatility-based conditioning
variables. Our experimental results demonstrate that the DMmodel
consistently outperforms alternative methods in generating correla-
tion matrices that closely resemble the empirical training datasets,
while the CDM model effectively captures the differences in corre-
lation matrix distributions across various volatility regimes.

A case study focusing on an asset allocation strategy show-
cases the practical utility of our approach. By using synthetic data
generated by the CDM model, we obtain a more comprehensive
representation of the strategy’s performance across a broader range
of market conditions than when using only empirical data.

Our findings highlight DDPMs’ potential to overcome the limi-
tations of scarce financial data. By augmenting empirical datasets
with plausible synthetic data, we can enhance the analysis of fi-
nancial strategies, improve risk assessment, and support more in-
formed decision-making in quantitative finance. Future research
could explore additional conditioning variables and extend DDPM
applications to other financial domains, such as stress testing and
scenario analysis, for further insights and benefits.
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