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Abstract

It is unclear whether quantum phenomena can be observed in brain recordings
because of thermal noise causing decoherence, that is, quantum superpositions and
entanglement quickly collapsing into classical, i.e. nonquantum states. This paper
demonstrates that intrinsic neuronal noise naturally leads to a wave-particle descrip-
tion of neural activity of the sort predicted by a fundamental equation in quantum
mechanics known as the Schrödinger equation. The predicted quantum-like fluctua-
tions in firing rates are consistent with data. This approach could provide new insights
into the underlying mechanisms of brain function, thus challenging existing paradigms
in both quantum physics and neuroscience.

Part I

Basic Theory in 1D

1 Introduction

Quantum mechanics is widely regarded as the most fundamental theory of nature, suggesting
its applicability to even brain functions. However, the prevailing view is that quantum
coherence is lost at the neuronal level due to the large size and complex environment of the
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neurons, a process known as ‘decoherence’ [1, 2]. Each neuron is itself a massive and complex
cell comprising a vast number of molecules, making it unlikely that quantum states could
be maintained or measured across such a large scale. Neurobiological processes operate on
much larger scales than those where quantum phenomena dominate. For example, action
potentials are driven by ion exchanges across cell membranes that are well described by
classical rather than quantum physics. Furthermore, cognitive functions, including memory,
attention and sensory perception, typically involve neuronal populations interacting through
electrochemical signals. While these might exhibit quantum effects, they might not scale
up in a coherent way to affect brain activity at the population level. As a result, both
physicists and neuroscientists have traditionally dismissed the relevance of standard quantum
mechanics to neuronal processes. Still, classical models do consider stochastic processes in
neurons [3, 4, 5, 7] as this is needed to explain brain data that show a large amount of
variability. This can be due to fluctuations in synaptic transmission, stochastic opening and
closing of ion channels or changes in incoming input. Stochastic effects are then modelled as
stochastic terms added to differential equations describing synaptic transmission, ion channel
activity or incoming inputs [8]. Brain recordings include examples of stochastic variations
in neuronal dynamics such as membrane potential fluctuations [9], irregular spike trains
[10], fluctuating synaptic currents [11], trial to trial variability in response to stimuli [12],
fluctuations in spike-triggered average [13], spike amplitude variability [14], variability in
LTP measurements [15] and calcium dynamics [16], etc.

Neuronal models used to study these phenomena are based on stochastic differential
equations, and predict effects that can be studied using classical physics. Such modeling
studies indicate that stochastic noise may affect various neural processes, including informa-
tion processing, spike timing reliability, stochastic resonance, firing irregularity, subthreshold
dynamics, as well as the initiation and propagation of action potentials. This can be due to
ion channel, synaptic, cellular or even mechanical and thermal noise and other factors like
background network activity [5, 6].

Motivated by a mathematical equivalence between stochastic and quantum mechanics
shown by Nelson [17, 18, 19], we suggest that stochastic effects expressed as white noise type
in neural data (Brownian motion) are equivalent to quantum effects. This link is established
by describing stochastic effects in terms of a fundamental equation similar to one of the
most fundamental equations, the Schrödinger equation in quantum mechanics. This can
complement classical stochastic equations describing other types of stochastic effects, and
can be used to come up with hypotheses that can be tested against real data. This is
discussed in Section 7 below.

2 1D Random Walk Model with Drift for the Spike

Activity of a Single Neuron

It would be helpful at this stage to introduce some technical terms which will be used in
what follows. A stochastic process is a sequence of random variables whose values change
over time in an uncertain way so that one knows the distribution of possible values at any
point in time. Here we consider the neuron’s membrane potential as a random variable. A
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Markov stochastic process is a particular type of stochastic process where only the current
value of a variable is relevant for predicting the future movement, not past values. For
neuronal data this is clearly a simplification as synaptic plasticity, refractory periods and
mesoscale patterns of neuronal activity would need to be described by a correlated random
walk. A random walk with and without drift is the stochastic process formed by successive
summation of independent, identically (often normally) distributed random variables (Fig.
1). To describe neuronal dynamics resulting from the cumulative effect of several factors
discussed above, like synaptic inputs, firing threshold, ion channel variability etc, we will
assume a Wiener process. A Wiener process, also called Brownian motion, is a Markov
process which is essentially a series of normally distributed random variables such that for
later times the variances of these normally distributed random variables increase, a process
called ‘diffusion’ (Fig 2).
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Figure 1: Random walk with and without drift. The value x(t) of the random variable X(t) at time t

equals the last period’s value plus a constant (a drift) and a white noise. The drift can be in the direction

of the threshold (forward) or away from it (backward).

T
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Figure 2: Wiener process or gaussian random walk (Brownian motion) showing diffusion, i.e. increase of

variance with time.
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Let us now consider a simple 1D random walk model to describe neuronal dynamics
and spike activity. For instance, the electrical state of polarization in the somatic and den-
dritic membrane can be modelled as a random variable representing the coordinate Q(t) and
executing a random walk, influenced by excitatory and inhibitory post-synaptic potentials
(EPSPs and IPSPs), and moving back and forth along a straight line between a resting
potential and a threshold of neuron firing [3, 7]. Each incoming elemental EPSP (Excitatory
Post Synaptic Potential) moves the random variable Q(t) one unit toward the threshold,
and each incoming elemental IPSP (Inhibitory Post Synaptic Potential) moves the random
variable one unit away from the threshold (Fig.3). If the average rate of incoming elemental
EPSP and elemental IPSP are the same, there is an equal probability at any time that the
random variable moves either a unit toward or a unit away from the threshold, i.e. there
is no “bias toward” either input. Immediately after the random variable has attained the
threshold and caused the production of an action potential, it returns to the resting poten-
tial, only to begin its random walk again. Such a model would be a simple random walk
model.
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-90 mV

post-synaps:

0 mV

-90 mV EPSP

0 mV

-90 mV

IPSP

threshold

pre-synaps:
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-90 mV

Figure 3: The figure illustrates the membrane potential’s forward and backward movements corresponding

to Excitatory (EPSP) and Inhibitory (IPSP) Post-Synaptic Potentials, respectively.

In reality, however, these two rates may sometimes be different, and in realistic physi-
ological models it would be far more reasonable to assume that that there is some excess
of either EPSP or IPSP inputs. In this case, the probability for the random variable Q(t)
to move one unit toward the threshold will be different from the probability for it to move
away from the threshold. Considered as a diffusion process, the difference between these
probabilities can be considered a“drift velocity”, either toward or away from the threshold.
We will show that this ‘drift velocity’ is responsible for quantum-like effects.

Reasonably good agreement between this model with drift and interval histograms as
well as the joint density of successive interspike intervals of spiking data has been observed
[3].
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3 Nelson’s Method Applied to Single Neurons

Our aim is to demonstrate that a part of neuronal noise can exhibit coherence, stability
and structure associated with quantum effects, a surprising example of ‘order from disorder’
[20]. The inherent stochastic nature of neural processes described by the ‘random walk with
drift’ models that we discussed in the previous section, is equivalent to a Schrödinger-like
dynamics of neurons. Such a perspective offers a new framework for understanding brain
function in terms of quantum-like processes.

Following Nelson’s approach and its further developments [17, 18, 19, 21, 22, 23, 24, 25],
we start with some stochastic differential equations from classical physics and then transform
them to a well known equation in quantum mechanics. The mathematical details are given
in Appendix I.

Let the random variable Q(t) representing the membrane potential of a neuron move
back and forth along a straight line, executing Brownian motion without friction. Then Q(t)
follows the stochastic differential equation (SDE)

dQ(t) = bf (Q(t), t)dt+ σdWf (t). (1)

Here, bf represents the forward drift velocity (caused by EPSPs), σ is the square root of
the diffusion coefficient, and dWf(t) is a forward Wiener process. The diffusion coefficient,
σ2, describes the magnitude of the random fluctuation shown in Figure 2 over time, and is
determined by the physiological characteristics of the membrane. Since these processes are
conservative, backward processes (caused by IPSP) also exist. The SDE for such backward
processes is

dQ(t) = bb(Q(t), t)dt+ σdWb(t) (2)

where dWb(t) is the backward Wiener process. One can then define a current velocity as the
sum of the forward and backward drift velocities,

v(q, t) =
1

2
(bf (q, t) + bb(q, t)) =

1

m

∂

∂q
S(q, t) (3)

where S(q, t) is a scalar function which can be identified with the action, and an osmotic
velocity as the difference of these two velocities,

u(q, t) =
1

2
(bf (q, t)− bb(q, t)) =

σ

2

∂

∂q
ln[ρ(q, t)]. (4)

where ρ(q, t) is the probability distribution of the random variable Q(t). The right hand
sides of these equations for v and u follow from the Fokker-Planck equations (see Appendix
I).

Given these two velocities, one can introduce the Lagrangian field

L =
1

2
m(v2 − u2)(q, t)− V (q) (5)

where V (q) is the electrostatic potential. The action S(q, t) can be constructed from it.
It can be shown using a stochastic variational principle [22] that such a system can be
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mathematically mapped to the Schrödinger equation

iℏ̂
∂

∂t
ψ(q, t) =

(
− ℏ̂2

2m
∂2q + V (q)

)
ψ(q, t) (6)

where ψ =
√
ρ exp(iS/ℏ̂) and ℏ̂ = mσ. If ℏ̂ is postulated to be a universal constant for

neuronal membranes, one has a fundamental equation for a single neuron that is exactly the
Schrödinger equation in quantum mechanics with ℏ̂ replacing the reduced Planck constant
ℏ and m standing for a neuron’s self inductance. Then it follows from σ = ℏ̂/m that the
diffusion tends to zero and the system tends to a classical one for large m, exactly as in
standard quantum mechanics.

The wave function ψ describes the Markov process completely:

ρ = |ψ|2, (7)

u = σ∂qℜ lnψ, (8)

v = σ∂qℑ lnψ. (9)

This is the ‘Nelson map’. It maps the probability distribution function and the current
and osmotic velocities in single neurons to a wave function. In other words, it associates a
diffusion process in a neuron to every solution of the Schröodinger-like equation (6).

To sum up, we have seen that classical stochastic differential equations can be mapped
to a fundamental equation similar to the Schrödinger equation in quantum mechanics. The
mathematical steps are sketched in Appendix I. This relies upon a reformulation of a random
walk in terms of a ‘quantum drift’ and a reinterpretation of the reduced Planck constant
ℏ as the product of the coefficient σ associated with neuronal diffusion times the neuron
self-inductance m. We will see below that under certain conditions, ℏ̂ could be determined
using real brain data.

This suggests that equations of neuronal dynamics like the Hodgkin-Huxley (H-H) [26, 27]
and FitzHugh-Nagumo (FN) equations [28, 29] are connected to a Schrödinger-like equation,
to which we turn below.

Part II

Random Walks and the Schrödinger
Equation for Many Variables

4 Introduction

To link the Schrödinger with the FitzHugh-Nagumo (FN) equations, we need to consider
two as opposed to one random variable, which is the number of random variables appearing
in the FN equations. Above, we considered the basic stochastic mechanical theory of a
neuron using a single random variable q. However, as shown by Gerstein and Mandelbrot
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[3], that is not realistic enough to deal with the known geometric complexity of synapses and
of the somatodendritic membrane. Hence, the electrical state of these structures cannot be
adequately described by a single state variable. Several variables are needed, and one must
allow the state to vary over the surface of the neuron. The random walk will then take place
in the same number of dimensions as the number of random variables. We will see examples
below.

There exist models of spiking neurons that use several random (also known as state)
variables, like the 4D Hodgkin-Huxley (H-H) model [26] and its 2D variant, the FitzHugh-
Nagumo model (FN) [28, 29]. Here, we will establish a link between a two-state generalization
of the theory presented above and the FN model. To do that we first need to extend our
formalism to N state variables, which is quite straightforward. Having done that, we will
demonstrate that the 2-state wave function corresponding to the Hamiltonian of the FN
model gives quantum corrections to the spiking rates calculated from the FN model. The
wave function can then be mapped to the underlying 2D stochastic processes (ρ, u, v) using
the Nelson map (eqns (7), (8), (9)) generalized to 2 state variables.

5 Generalization to N state Variables

Just as one can write a N-particle Schrödinger wave function ψ(x1, x2, ...xN , t), one can also
write a N -state neuron wave function ψ(q, t), q = {q1, q2, ...qN} where q is a set of generalized
coordinates representing the state variables:

iℏ̂
∂

∂t
ψ(q, t) =

(
− ℏ̂2

2m
∂2q + V (q)

)
ψ(q, t) (10)

The Einstein summation convention has been used in writing this equation, i.e. ∂2qψ(q, t) =∑i=qN
i=q1

∂2qiψ(q1, q2, ...qN). For notational simplicity, we have used the same m for all the state
variables qi.

By putting ψ = exp(R+ iS/ℏ̂) = √
ρ exp(iS/ℏ̂) into eqn (10) and separating the real and

imaginary parts, the following coupled differential equations for the functions R and S can
be derived [22, 30]:

∂S

∂t
+

1

2m

(
∂S

∂q

)2

+ V (q) + VQ = 0, VQ = − ℏ̂2

2m

[(
∂R

∂q

)2

+
∂2R

∂q2

]
, (11)

∂R

∂t
+

1

2m

(
R
∂2S

∂q2
+ 2

∂R

∂q

∂S

∂q

)
= 0. (12)

The first equation is the Hamilton-Jacobi-Bellman equation for N variables. It is the
Hamilton-Jacobi equation for N variables with an additional stochastic term VQ which takes
the form

VQ = − ℏ̂2

4m

[
∂2qρ

ρ
− (∂qρ)

2

2ρ2

]
(13)

in terms of ρ = e2R. The second equation can also be written in terms of ρ as

∂ρ

∂t
+ ∂q

[
ρ
∂qS

m

]
= 0 (14)
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which is the continuity equation for N variables. These two coupled partial differential
equations determine the underlying stochastic processes with N variables.

Let L(q, q̇) be the Lagrangian of a deterministic classical system with N variables from
which one can construct the action

S(q) =

∫
L(q, q̇)dt (15)

and the Hamiltonian

H(S) =
i=N∑
i=1

1

2mi

∂S

∂qi

∂S

∂qi
+ V (q) :=

1

2m

(
∂S

∂q

)2

+ VQ (16)

in terms of the action. The classical Hamilton-Jacobi equation is of the form

∂S

∂t
+H(S) = 0. (17)

On the other hand, if one uses the form ψ(q) =
√
ρ(q) exp(iS(q)/ℏ̂) in the Schrödinger

equation (10) for ψ(q) and separates the real and imaginary parts, one gets, as we have just
seen, the Hamilton-Jacobi-Bellman equation equation

∂S

∂t
+H(S) + VQ = 0 (18)

with VQ given by eqn (13), i.e. the classical and deterministic Hamilton-Jacobi equation
with an additional stochastic term VQ.

Now consider the momentum p = mv, v being the current velocity 1
m
∂qS. Then

dp

dt
=

d

dt

(
∂S

∂q

)
=

(
∂2S

∂q2

)
q̇ +

∂

∂q

(
∂S

∂t

)
(19)

=
∂

∂q

[
1

2m

(
∂S

∂q

)2

+
∂S

∂t

]
(20)

= −∂q[V + VQ] (21)

on using eqns (16, 18). Thus, VQ gives the quantum corrections to the classical or deter-
ministic equation of motion. This shows that the quantum corrections vanish when VQ is
independent of q. That is the case if ρ is independent of q. Now, notice that the osmotic
velocity u(q, t) (eqn (4)) vanishes if ρ is independent of q. Hence, the system behaves classi-
cally when the osmotic velocity vanishes, i.e. diffusion via Brownian motion vanishes. This
is why the osmotic velocity is also called the ‘quantum drift’.

Deterministic neuron models such as the H-H, FN or the ‘integrate-and-fire’ model typi-
cally generate a regular sequence of spikes. Spike trains of typical neurons in vivo, however,
show a much more irregular behaviour, indicating noise [31]. The stochastic mechanics of
single neurons developed in this paper predicts the existence of such noise, at least in part,
as intrinsic quantum fluctuations. Below, we will study neuronal noise using a key model of
brain dynamics known as the FitzHuh-Nagumo model.

8



6 The FitzHugh-Nagumo Model

The FitzHugh-Nagumo model consists of two coupled differential equations including the
membrane potential and a recovery variable [28, 29]. The model has been widely used to
study neuronal dynamics. Its applicability however, extends into other domains like cell
division and physiology as well as population dynamics. We here use it to consider neuronal
dynamics. The first equation describes the rapid changes in a neuron’s membrane potential
after a spike is generated, while the second equation describes the dynamics of the recovery
variable and the dynamics of slower processes that restore the neuron to its resting state
after excitation, typically modeling ion channel dynamics that inhibit or modulate the firing.
The FitzHugh-Nagumo equations are as follows:

dv

dt
= v − v3

3
− w + I, (22)

dw

dt
= ϵ(v + a− bw), (23)

where v is the membrane potential, w is the recovery variable, I is an external stimulus cur-
rent that leads to excitation, ϵ, a, and b are parameters that control the model’s dynamics.
The nonlinear term in the first equation above describes rapid activation and deactivation.
The parameter ϵ controls the time-scale of recovery (usually much slower than the membrane
potential dynamics), while the parameters a and b determine the model’s behaviour, adjust-
ing the sensitivity and response of the recovery variable to changes in v. They determine
threshold activation, spike duration, and recovery.

By adding some stochastic noise terms, the FN equations describe variability in stimu-
lus current, the opening and closing of sodium channels or slow dynamics associated with
potassium channels. Thus we obtain the equations

dv

dt
= v − v3

3
− w + I + ξv(t), (24)

dw

dt
= ϵ(v + a− bw) + ξw(t) (25)

where ξv(t) and ξw(t) are Gaussian white noise processes [8].
The FN equations are a simplification of the Hodgkin-Huxley equations [26] where the

channel gating variables have been combined into one recovery variable, w, that represents
the cumulative effects of ion channel inactivation and potassium increase that repolarizes
the membrane.

The above equations can be written as a second order equation

v̈ =

(
1− bε− 2v2

3

)
v̇ + vε

(
b− 1− b

v2

3

)
− aε+ bε+ İ . (26)

Consider the Lagrangian

L =
1

2
v̇2 +

ε

2
(b− 1) v2 − εb

12
v4 − εb

2
w2 (27)
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where v and w are generalized coordinates. We also define the Rayleigh dissipation function
[32]

R =

(
1

2
− bε

2
− 2v2

6

)
v̇2 +

1

2
ẇ2 (28)

and the generalized force

Q =
(
−aε+ bε+ İ

)
. (29)

Then the Euler-Lagrange equations with Q on the right hand side

d

dt

(
∂L

∂v̇

)
− ∂L

∂v
− ∂R

∂v̇
= Q, (30)

d

dt

(
∂L

∂ẇ

)
− ∂L

∂w
− ∂R

∂ẇ
= ε (v + a) (31)

yield the FN equations.
Notice that the Lagrangian L (eqn 27) is a function of v̇ but not of ẇ which occurs only

in the Rayleigh dissipation function R. Hence, using the Legendre transformation

H =
∂ L

∂v̇
v̇ +

∂ L

∂ẇ
ẇ − L := pv̇ − L, (32)

we get the Hamiltonian

H =
1

2
p2 − ε

2
(b− 1) v2 +

εb

12
v4 +

εb

2
w2 :=

1

2
p2 + V (v, w; a, ε, b). (33)

Then, in a representation in which v is an independent variable and |ψ(v, t)|2dv is the prob-
ability that the system has coordinate between v and v+ dv, the time evolution of the state
function is governed by the equation of motion

iℏ̂∂t|ψ⟩ = Ĥ|ψ⟩, Ĥ =
1

2
p̂2 + V (v, w; a, ε, b) (34)

where p̂ = −iℏ̂∂v. Time evolution of the state function ψ(v, t) = ⟨v|ψ⟩ where |ψ(v, t)|2 dv
is probability that the system has coordinates between v and v + dv is governed by the
Schrödinger equation

iℏ̂
∂

∂t
ψ(v, t) =

(
− ℏ̂2

2
∂2v + V (v, w; a, ε, b)

)
ψ(v, t). (35)

To sum up, the stochastic version of the FN equations can be rewritten as a Schrödinger
equation. This suggests that predictions about variability in brain dynamics in the form of
stochastic noise offered by these equations may also include noise due to quantum effects
such as shot noise [33] and thermal fluctuations in ion channels [34].
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7 Quantum Effects and the Planck constant ℏ̂
It is not clear at which spatial scale quantum effects might be apparent. Given the connection
between classical equations of neuronal activity like the FN equations and the Schrödinger
equation considered above, to find experimental evidence of quantum effects in brain data
one could turn to subthreshold neural oscillations [35]. Besides the FN equations, there
might be other equations that are linked to the Schrödinger equation in a similar fashion to
the FN equations. These are equations that follow from the solution of the Euler-Lagrange
equations (30) and (31) after defining an appropriate Lagrangian like the function given by
equation (27). An important example of such equations that underlie sensory perception
[35] are subthreshold oscillations [36].

These can be modelled as LC circuits [37, 38]. The total energy of such a circuit is

U =
1

2
(CV 2 + LI2) =

1

2

(
C2V 2

C
+
L2I2

L

)
(36)

where C is the capacitance, L is the inductance, V is the voltage and I the current. This
can be written in the form

H =
1

2

(
L2I2

L
+
C2V 2

C

)
:=

p2

2m
+
ω2Lq2

2
=

p2

2m
+
mω2q2

2
(37)

with U = H (the Hamiltonian), L = m (the mass), q = CV (the coordinate), I = CdV/dt =
dq/dt (the velocity), p = LI (the momentum) and ω = 1/

√
LC (the angular frequency).

The identical formal structure of a mechanical and LC harmonic oscillator prompts us to
postulate that the quantum mechanical description of the LC oscillator is in the form of
a state vector |ψ⟩. Then, in a representation in which q is an independent variable and
|ψ(q, t)|2dq is the probability that the oscillator has coordinate between q and q + dq, the
time evolution of the state function is governed by the equation of motion

iℏ̂∂t|ψ⟩ = Ĥ|ψ⟩, Ĥ =
p̂2

2m
+

1

2
mω2q̂2. (38)

This corresponds exactly to the Schrödinger equation (6) with ψ(q, t) = ⟨q|ψ⟩, p̂ = −iℏ̂∂q,
V = mω2q2/2. We therefore conclude that the Schrödinger equation (6) with V = mω2q2/2
describes the subthreshold oscillations of neurons.

Since we are interested in membrane oscillations, we need time-dependent solutions of (6)
with V = mω2q2/2. Such states are called ‘coherent states’ |α⟩ of the harmonic oscillator.
They were first introduced by Schrödinger in 1926, and their theory was developed further by
Glauber [39] and Sudarshan [40] in connection with laser optics. Their importance lies in the
fact that they are ‘minimum uncertainty’ states and closely approximate classical oscillators.
One defines the ‘displacement operator’ D(α) as D(α) = eαa

†−α∗a where α = |α|eiϕ is a
complex number. A coherent state |α⟩ is then defined as a displaced vacuum state |0⟩,

|α⟩ = D(α)|0⟩, (39)

a|0⟩ = 0. (40)

11



Using α(t) = αe−iωt = |α|e−i(ωt−ϕ), one can verify (see the Appendix II for details) that the
expectation value of x in such a state is

⟨q⟩ =
√
2q0|α| cos(ωt− ϕ) (41)

where q0 =
√

ℏ̂
mω

is the width of the harmonic oscillator ground state which is a gaussian
distribution. The uncertainties in position and momentum in such a state satisfy the relation
(σq)

2
0(σp)

2
0 = ℏ̂2/4, showing they are minimum uncertainty states, i.e. states with minimum

quantum uncertainty and hence closest to classical states.

Figure 4: Coherent state representation of the harmonic oscillator: the expectation value ⟨q⟩ as a function

of time in the ground state of the harmonic oscillator, showing minimum uncertainty scatter points around

a classical cosine wave.

Hence, the unequivocal prediction is that subthreshold neural oscillations should be si-
nusoidal with a scatter of ℏ̂2/4 around the classical values (Fig. 4). A measurement of
the scatter will therefore determine the value of ℏ̂. Future work should therefore investi-
gate quantum-like fluctuations in subthreshold neural oscillations using, for example, high-
resolution electrophysiological recordings, such as patch-clamp techniques [41, 42], capable
of detecting minute fluctuations in membrane potentials.

Another possibility is to search for the discrete stationary energy levels En = (n+ 1
2
)ℏ̂ω of

neurons implied by the harmonic oscillator model (38) (see Appendix II). These are solutions
of the time-independent Schrödinger equation and should be observable during the quiescent
or refractory periods of the neurons. The Helmholtz free energy F and the average energy
⟨E⟩ of a quantum harmonic oscillator are given by (see Appendix II)

F =
ℏ̂ω
2

+
1

β
ln
(
1− e−βℏ̂ω

)
, (42)

⟨E⟩ =
ℏ̂ω
2

+
ℏ̂ωe−ℏ̂ω

1− e−βℏ̂ω
(43)

where β = 1/kT , T being the absolute temperature. These expressions show that both F
and ⟨E⟩ tend to the zero-point energy as the temperature T tends to zero. These results are
experimentally verifiable in principle and can be used to determine the value of ℏ̂.
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Interestingly, ‘entangled states’ also exist in stochastic mechanics, and stochastic mechan-
ics and quantum mechanics agree in predicting all observed correlations at different times.
The reader is referred to the papers by Faris [23] and Petroni and Morato [24] for details.
Looking for entanglement in neural systems is therefore another important area for further
research, not only for its intrinsic value but also because entanglement is a key resource in
quantum information processing, and it is important to find out whether the brain makes
use of it, as conjectured [43]. Hameroff and Penrose have suggested that entanglement might
involve quantum states in microtubules, dendrites and other parts of a neuron [44]. These
would occur at a smaller scale than the one we consider here, the scale of subthreshold
oscillations. We predict that the presence of non-classical correlations in neuronal fluctua-
tions, akin to quantum entanglement, could be detected through cross-correlation analyses
of simultaneous recordings from neighbouring neurons.

8 Discussions

We have considered both a 1D random walk model with drift (Section 2) and the FN model
of spiking neurons (Section 6), and, using Nelson’s method of stochastic mechanics (Section
3), shown that the FN equations imply a Schrödinger-like equation in the space of neuron
state variables q, predicting corrections due to quantum fluctuation to the classical results.
Since the noise processes are often modelled as white noise, the remaining noise, if any,
should be small enough not to cause decoherence.

Given that neural plasticity is often linked to the probabilistic nature of synaptic changes,
our results suggest that quantum-like effects might influence how plasticity occurs in specific
neural circuits.

An alternative to the above hypothesis is that quantum entanglement happens within
microtubules and is central to consciousness, allowing for non-local connections and unique
information processing capabilities in the brain, as suggested by Hameroff and Penrose [46,
47]. They are shielded by Debye layers and actin gel among others [48]. This could protect
mictotubule quantum coherence even at warm temperatures. While experimental evidence
is limited, these ideas have sparked interesting discussions at the intersection of quantum
mechanics, consciousness studies, and theoretical neuroscience.

Spatial patterns of the sort predicted by the FN equations have been observed during
actin polymerization and depolymerization in neuronal axons and dendrites. Thus it might
be that quantum noise at the neuronal level is due to protein function.
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10 Appendix I

The solutions Q(t) of the stochastic differential equations (1), (2) are known to be continuous
at all state points but nowhere differentiable. Hence, Nelson suggested the following average
forward and backward differentials which we adopt:

DfQ(t) = lim
∆t→0

Et

[
Q(t+∆t)−Q(t)

∆t

]
, (44)

DbQ(t) = lim
∆t→0

Et

[
Q(t)−Q(t−∆t)

∆t

]
(45)

where Et denotes the expectation conditional onQ(t) = q. For differentiable curvesDQX(t) =
DbQ(t) = q̇ = v(t), the ‘velocity’ of the random variable. It follows that the drift coefficients
in the forward and backward equations are given by

Df (Q(t)) = bf (Q(t), t), Db(Q(t)) = bb(Q(t), t) (46)

This amounts to a complete description of the motion, as in classical mechanics.
As is well known, the forward and backward SDEs lead to two Fokker-Planck equations

for the probability density ρ(x, t) of the random variable executing Brownian motion:

∂

∂t
ρ(q, t) = − ∂

∂q
[bf (q, t)ρ(q, t)] +

σ2

2

∂2

∂q2
ρ(q, t), (47)

∂

∂t
ρ(q, t) = − ∂

∂q
[bb(q, t)ρ(q, t)]−

σ2

2

∂2

∂q2
ρ(q, t) (48)

Adding these equations results in the continuity equation

∂

∂t
ρ(q, t) +

∂

∂q
[v(q, t)ρ(q, t)] = 0 (49)

with the current velocity defined by v(q, t) = (bf (q, t) + bb(q, t))/2. This displays the role of
the current velocity in maintaining the probability distribution:

The difference of the forward and backward drifts u(q, t) = (bf (q, t)−bb(q, t))/2 is defined
as the osmotic velocity. Subtracting the two Fokker-Planck equations results in

u(q, t) =
σ

2

∂

∂q
ln[ρ(q, t)] =

σ

2

∂qρ

ρ
= σ

∂R

∂q
(50)

where ln ρ(q, t) = 2R(q, t). The coupled forward-backward stochastic differential equations
for the position process can thus be written as

dQ(t) = (v(Q(t), t) + u(Q(t), t)) + σdWf (t), (51)

dQ(t) = (v(Q(t), t)− u(Q(t), t)) + σdWb(t). (52)

It follows from this that the current velocity is curl-free and can be written as

v(q, t) =
1

m

∂

∂q
S(q, t) (53)
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where S(q, t) is a scalar function which can be identified with the action.
Now, following Guerra and Morato [22], let us introduce the Lagrangian field

L =
1

2
m(v2 − u2)(q, t)− V (q) (54)

where V (q) is the electrostatic potential, from which the action S(q, t) can be constructed.
It can then be shown, using the variational principle, that the main features of Nelson’s
stochastic mechanics including eqns (4) and (53) can be derived from such an action.

Using stochastic control theory and the current velocity as the control, Guerra and Morato
showed that the following differential equations for the functions R and S extremize the
action:

∂S

∂t
+

1

2m

(
∂S

∂q

)2

+ V + VQ = 0, VQ = −mσ
2

2

[(
∂R

∂q

)2

+
∂2R

∂q2

]
, (55)

∂R

∂t
+

1

2m

(
R
∂2S

∂q2
+ 2

∂R

∂q

∂S

∂q

)
= 0. (56)

The first equation is the Hamilton-Jacobi-Bellman equation, i.e., the Hamilton-Jacobi equa-
tion with an additional stochastic term VQ which takes the form

VQ = −mσ
2

4

[
∂2qρ

ρ
− (∂qρ)

2

2ρ2

]
(57)

in terms of ρ = e2R. It is the analog of the Bohm quantum potential [30]. The second
equation can also be written in terms of ρ as

∂ρ

∂t
+ ∂q

[
ρ
∂qS

m

]
= 0 (58)

which, using eqn (53) for the current velocity, is a continuity equation. These two cou-
pled partial differential equations determine the stochastic process. These equations can be
derived from the Schrödinger-like equation

imσ
∂

∂t
ψ(q, t) =

(
−mσ

2

2
∂2q + V (q)

)
ψ(q, t) (59)

by putting ψ = exp(R + iS/mσ) =
√
ρ exp(iS/mσ) and separating the real and imaginary

parts [22, 30]. The argument q in the wave function ψ(q, t) representing the value of the
random variable Q(t) of the neuron membrane plays the role of the spatial coordinate x and
the coefficient σ plays the role of the factor ℏ/m in standard quantum mechanics.

Bearing in mind that the stochastic processes which occur in neural membranes are
entirely different from those in configuration space that give rise to standard quantum me-
chanics, it would be useful to introduce a new universal constant ℏ̂ = mσ for neuronal media
and rewrite the above equation in the form

iℏ̂
∂

∂t
ψ(q, t) =

(
− ℏ̂2

2m
∂2q + V (q)

)
ψ(q, t) (60)
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and treat it as the Schrödinger equation for single neurons. Like the Schrödinger equation
in standard quantum mechanics, this equation will also ensure a novel level of stability and
structure in the stochastic world of neurons.

Fig. 5 is a flow chart that summarizes the various mathematical steps used in deriving
the Schrödinger equation in Nelson’s stochastic mechanics.

Forward and backward SDEs

for random variable X(t)

Fokker-Planck equations for

probability density

Current velocity v and

osmotic velocity u

Action principle and

stochastic control theory

Hamilton-Jacobi-Bellmann

equation + continuity equation
Schrödinger equation for = e R+iS

Figure 5: Flow chart depicting the main mathematical steps used in deriving the Schrödinger equation

from stochastic mechanics.

11 Appendix II

When considering harmonic oscillators, it is convenient to introduce the ladder operators

a =
1√

2mωℏ̂
(mωq + ip̂), (61)

a† =
1√

2mωℏ̂
(mωq − ip̂). (62)

Using the commutation rule [p̂, q] = −iℏ̂, one gets the commutation relation [a, a†] = 1, and

a†|n⟩ =
√
n+ 1|n+ 1⟩, (63)

a|n⟩ =
√
n|n− 1⟩, (64)

a†a|n⟩ = n|n⟩ (65)

where n = 0, 1, 2, ... is an integer. The Hamiltonian operator can be written in the form

Ĥ = ℏ̂ω
(
a†a+

1

2

)
= ℏ̂ω

(
N +

1

2

)
(66)

whereN = a†a is the number operator. It then follows from the time-independent Schrödinger
equation Ĥψn = Enψn that the energy eigenvalues are

En = ℏ̂ω
(
n+

1

2

)
. (67)

The factor ℏ̂ω/2 is the ‘zero-point energy’ of neurons. The corresponding energy eigenfunc-
tions are given by

ψn(q) =
1√
n!
(a†)nψ0(q) (68)
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with the ground state

ψ0(q) =

(
mω

π
ˆ̂ℏ

)
e
−mωq2

2
ˆ̂ℏ (69)

which is a Gaussian distribution with width q0 =
√

ℏ̂
mω

.
Now note that the coherent state can be written as

a|α⟩ = α|α⟩, (70)

⟨α|a† = ⟨α|α∗, (71)

⟨α|a†a|α⟩ = |α|2. (72)

Using these results, one can compute the uncertainties in q and p:

(σq)
2 = ⟨q2⟩ − ⟨q⟩2 = q20

(
n+

1

2

)
, (73)

(σp)
2 = ⟨p2⟩ − ⟨p⟩2 = ℏ̂2

q20

(
n+

1

2

)
, (74)

and hence for the ground state (n = 0) (σq)
2
0(σp)

2
0 = ℏ̂2/4. For further details of coherent

states the reader is referred to Ref [49].
The thermodynamic properties of the quantum harmonic oscillator can be calculated

using the standard techniques of statistical mechanics. The partition function

Z = Tre−βĤ =
∞∑
n=0

e−βEn =
∞∑
n=0

e−β(n+ 1
2)ℏ̂ω =

1

2
csch

(
βℏ̂ω
2

)
(75)

where Ĥ is the Hamiltonian operator. Hence

F = − 1

β
lnZ =

ℏ̂ω
2

+
1

β
ln
(
1− e−βℏ̂ω

)
, (76)

⟨E⟩ = −∂ lnZ
∂β

=
ℏ̂ω
2

+
ℏ̂ωe−ℏ̂ω

1− e−βℏ̂ω
. (77)
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