
              

City, University of London Institutional Repository

Citation: Biswas, S., Sharif, K., Latif, Z., Alenazi, M. J. F., Pradhan, A. K. & Bairagi, A. K. 

(2024). Blockchain controlled trustworthy federated learning platform for smart homes. IET 
Communications, doi: 10.1049/cmu2.12870 

This is the published version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/34091/

Link to published version: https://doi.org/10.1049/cmu2.12870

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Received: 20 June 2024 Revised: 27 October 2024 Accepted: 12 November 2024 IET Communications

DOI: 10.1049/cmu2.12870

ORIGINAL RESEARCH

Blockchain controlled trustworthy federated learning platform for

smart homes

Sujit Biswas1 Kashif Sharif2 Zohaib Latif3 Mohammed J. F. Alenazi4

Ashok Kumar Pradhan5 Anupam Kumar Bairagi6

1Department of Computer Science, City St
George’s, University of London, London, UK

2School of Computer Science and Technology,
Beijing Institute of Technology, Haidian District,
Beijing, China

3Department of Computer Science, School of
Engineering and Digital Sciences, Nazarbayev
University, Astana, Kazakhstan

4Department of Computer Engineering, College of
Computer and Information Sciences, King Saud
University, Riyadh, Saudi Arabia

5SRM University-AP, Andhra Pradesh, India

6Computer Science and Engineering Discipline,
Khulna University, Khulna, Bangladesh

Correspondence

Sujit Biswas, Department of Computer Science, City
St George’s, University of London, Northampton
Square, London EC1V 0HB, UK.
Email: sujit.biswas@city.ac.uk

Funding information

Natural Science Foundation of Beijing Municipality,
Grant/Award Number: IS23056; Deanship of
Scientific Research, King Saud University,
Grant/Award Number: RSPD2024R582

Abstract

Smart device manufacturers rely on insights from smart home (SH) data to update their
devices, and similarly, service providers use it for predictive maintenance. In terms of
data security and privacy, combining distributed federated learning (FL) with blockchain
technology is being considered to prevent single point failure and model poising attacks.
However, adding blockchain to a FL environment can worsen blockchain’s scaling issues
and create regular service interruptions at SH. This article presents a scalable Blockchain-
based Privacy-preserving Federated Learning (BPFL) architecture for an SH ecosystem
that integrates blockchain and FL. BPFL can automate SHs’ services and distribute
machine learning (ML) operations to update IoT manufacturer models and scale service
provider services. The architecture uses a local peer as a gateway to connect SHs to the
blockchain network and safeguard user data, transactions, and ML operations. Blockchain
facilitates ecosystem access management and learning. The Stanford Cars and an IoT
dataset have been used as test bed experiments, taking into account the nature of data
(i.e. images and numeric). The experiments show that ledger optimisation can boost scal-
ability by 40–60% in BCN by reducing transaction overhead by 60%. Simultaneously, it
increases learning capacity by 10% compared to baseline FL techniques.

1 INTRODUCTION

Smart devices, such as IoT, sensors, and control systems, equip
smart homes and continuously expand their services through
the development of integral technologies. Statistics show that
market demand for IoT is increasing day by day; for example,
the worldwide SHs are estimated to be 672.57 million, and the
penetration rate will be 86.47% in 2027 [1]. As the number of
houses rises, data generation increases. Figure 1 shows the con-
nectivity of a typical SH, where the gadgets continuously pro-
duce enormous volumes of data with a variety of attributes, such
as user expressions, behaviors, and contentment. Third-party

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

properly cited.
© 2024 The Author(s). IET Communications published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

service providers usually control the devices independently
or collaboratively, and they use a service-specific centralised
server, such as a cloud or edge server [2, 3]. Service providers,
researchers use a variety of centralised technologies, including
ML and statistical analysis, to study SH users’ data in order to
better understand customer service expectations, future market
analyses, and so on. Centralised servers, which aggregate vast
amounts of data and become attractive targets for cybercrimi-
nals, can enhance vulnerability scopes in an interoperable envi-
ronment. It adds additional challenges when these data are used
for predictive analysis using typical centralised AI approaches,
as data need to be shared directly with the researchers [4].
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https://orcid.org/0000-0002-6770-9845
mailto:sujit.biswas@city.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/iet-com
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fcmu2.12870&domain=pdf&date_stamp=2024-11-22


2 BISWAS ET AL.

FIGURE 1 Typical smart home network.

Considering the issues, researchers recommend using
privacy-preserving FL technology to integrate numerous SHs,
establishing an interoperable platform to maximise data utili-
sation. Real-time big data can be used for intelligent analysis,
service need analysis, predictive maintenance, and future fore-
casting by generating an updated AI model [4, 5]. Although FL
allows distributed privacy-preserving ML approaches, its cen-
tralised aggregator creates another centralisation problem [6].
In light of that, researchers suggested blockchain technology
to replace the centralised aggregator to ensure complete secu-
rity of end-users’ data, thereby surpassing the limitations of
centralisation [7]. While the integration of blockchain with FL
can enhance security, it may also lead to service disruptions
and technical problems due to the scalability issues inherent
in blockchain technology [8]. Scalability issues or transac-
tion finalisation delays in blockchain-integrated FL smart-home
ecosystems targeting run-time learning can cause three chal-
lenges: (1) transaction finalisation delays that can interrupt
device-server-device smooth communication; (2) synchronisa-
tion issues that can fail block commit within consensus time;
and (3) a sharp increase in blockchain ledgers that will increase
memory cost.

Researchers focused on integrating FL and blockchain
to address centralisation aggregation challenges [9]. Few
researchers employed differential privacy-boosting security [10].
Many of them concentrated on enhancing model accuracy using
various typical ML approaches in FL environments [11]. Very
few studies have focused on the scalability of integrated systems.
For example, in [12], the authors proposed a new consensus
approach to enhance scalability, but neglected the ecosystem’s
uninterruptible services but AI model creation. In fact, smart
home services rely on a variety of smart devices that are inter-
dependent. Any service interruption can have the potential to
disrupt regular services. For instance, if a smoke detector trans-
mits a message to the server, a communication interruption

or delayed finalisation causes the message to reach the auto-
matic fire extinguisher later. It is critical to include run-time
learning facilities alongside existing SH services that are scal-
able and uninterruptible. Contrary to the fact that blockchain
is known to have scalability challenges, integration of FL and
blockchain can result in longer transaction finalisation times and
potential disruptions in SH services. Moreover, each SH trans-
action executed through blockchain will result in an overload
of the blockchain network. Therefore, it is crucial to implement
intelligent solutions that ensure the uninterrupted and prompt
delivery of SH services, thereby sustaining existing services. The
system will use machine learning methodologies to integrate ser-
vice providers to extract insights from user data without direct
access while ensuring privacy, security, and compatibility within
a smart-home ecosystem.

This article proposes a blockchain-based federated learn-
ing architecture for intelligently securing access to end-user’
data generated from the SH. The framework introduces a
gateway peer to process insights of the data from individual
SH, rather than sharing and gathering all data from various
SHs under a centralised network server for ML-based analy-
sis. As an entity of a blockchain network, the gateway peer
maintains the current services of a SH and concurrently con-
tributes to the creation of an updated model by sharing insights
from local models with other SHs. Blockchain, as a compo-
nent of a permissioned blockchain-controlled global learning
network, provides access control and aggregator services for
the overall ecosystem. The article highlights the following key
contributions:

∙ A blockchain-controlled FL architecture that enables safe
remote access to a typical SH and is useful for customer
behaviour analysis of SH data. FL enables privacy preserv-
ing knowledge extraction from various SH while blockchain
extends the run-time security of model aggregation.
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BISWAS ET AL. 3

∙ An ideal method for managing significant local transactions
produced in a home. Introduced gateway peers handle large
number local transactions itself as a result, it improves the
scalability, optimised the ledger reduces the overburden in
BCN.

∙ Presenting the technological difficulties encountered in the
actual world such as quick expansion of BC ledger.

∙ A testbed analysis using on popular public Stanford Car
datasets and IoT Dataset shows the effectiveness of the
proposal.

The remaining sections of this article provide further
information on the specific steps and processes involved in
implementing the discussed concepts. Section 2 explicitly dis-
cusses recent contributions in the field of SH implementation
terminology. The proposed architecture details are illustrated
in Section 3. Section 4 provides details on the implementation
settings, findings, and security analysis based on two distinct
datasets, one of which is an IoT dataset. Section 5 provides the
final conclusion of the whole contribution.

2 BACKGROUND AND RELATED
WORKS

This section outlines the background technologies for the pro-
posed architecture and related works. Basically, the research
offers a decentralised distributed learning network that uses
Federated Learning instead of a typical machine learning net-
work. It also includes a decentralised aggregator that gets rid of
all the risks of centralisation in the ecosystem as a whole.

2.1 Federated machine learning(FL)

FL allows several users to individually train models using their
own data, without the need to share the data. Within a smart
home network (SHN), either a local home server or a cloud
server leads to developing a local model in FL process by effec-
tively exploiting the vast amount of data generated by IoT.
These individual models are then combined into a global model
via a central aggregator. It is also known as distributed machine
learning [9]. Typically, a distributed machine learning network
consists of a number of nodes, each of which is capable of
processing input on its own and contributing to the outcome.
Multi-node machine learning (i.e. distributed ML) methods and
systems are meant to increase accuracy, scale to bigger input
data quantities, and improve performance, and they can be
geographically dispersed. Let P = P1, P2, … , Pn represent geo-
graphically distributed n participating nodes in an FL task. Pi

is the controlling server of i organisation and is also responsi-
ble for securing, storing data and providing intelligent services
through machine learning. Every organisation holds their own
records generated by it’s integral devices, such as D1,D2, …Dn.
While Pi is going to join the FL network, a central aggregator
initiates a global model (M g

i ) for Pi . Then, Pi trains the M
g

i by
its data Di which is known as a local model (M l

i ) of i. Conse-

quently, the central aggregator collects every local model and
averages them at every round of the training. Details of the local
training process are shown in Section 3.3.2. A centralised aggre-
gator arises the typical challenges of a centralised system, which
is recovered by blockchain-based decentralised aggregator in
this research.

2.2 Blockchain as a decentralised
aggregator

Blockchain is a cryptographically immutable, secure, distributed
ledger technology (DLT) that enables secure data exchange
between many parties. It enables value exchange (i.e. transac-
tions) without the need for confidence or authority from a
central institution. The transactions are recorded in a ledger that
is managed by a network of interconnected computers, known
as peers, rather than being held in a centralised entity such
as a cloud server. The BC system does an autonomous verifi-
cation (i.e. endorsement) prior to authorising the transaction,
which is vital in guaranteeing security and is known as con-
sensus [18]. Furthermore, it enables consortium’s to engage in
smart contract-based inter-organisational transactions, which is
crucial for facilitating communication among service providers.
A blockchain as a service platform has the capability to gov-
ern existing centralised servers, enabling them to transition and
conform to a DLT system [19]. By replacing the centralised
aggregator used in typical FL technology with a blockchain
network, we can overcome the challenges that arise with a
centralised system. However, the challenge is handling the con-
tinuous transactions in a BC network. In addition, typically, a
block can hold a maximum of 1 MB of data, whereas in FL, each
model over 200 MB has to fit into a block, which is very chal-
lenging. Therefore, we have proposed a local peer for handling
the continuous transaction with a customised block structure
for carrying the block with the model’s replica. In this research,
a cloud server generated every local model collected and created
a global model in the blockchain network. The network is also
responsible for access control over cloud servers.

2.3 Related works

This section presents a detailed overview of recently suggested
blockchain-based machine learning-based solutions for the best
use of SH data. We have also narrowed down the related FL
solutions and identified significant differences with this pro-
posal. Till now, enormous solutions have been proposed for SH
security. Indeed, most of them used traditional centralised archi-
tecture that raised single points of failure, strict security, and
privacy issues [20]. Considering the limitations of centralised
systems, stand-alone blockchain technology has been consid-
ered in many recent articles [21, 22] to mitigate typical SH
challenges. Many of them considered data to be deemed wealth
for autonomous learning and blockchain for cyber security [23,
24]. However, in typical machine learning, systems learn from
users’ raw data, which raises other security issues solved by
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4 BISWAS ET AL.

TABLE 1 Recent contributions.

Paper Aim Objectives Security Scalability Intelligent analysis

[13] Intrusion detection and defense
mechanism

improve security ✓ X ✓

[14] ML platform Accuracy improvement X X ✓

[15] Mutual authentication system encryption, group signature ✓ X ✓

[16] Smart home framework Enhanced security ✓ X ✓

[17] Decentralised FL system Automation, improve security ✓ X ✓

This work Scalable secure analysis of

data

Framework, privacy-preserving

analysis of IoT insight

✓ ✓ ✓

Google’s FL technology [25]. FL allows decentralised training
by data owners but shares learning outcomes with a centralised
aggregator. In terms of security, this centralised aggregator is
recognised as one of the downsides [26]. A blockchain-based
decentralised approach to local gradient sharing is proposed as
a solution in [26] where blockchain stores models.

A permissioned blockchain-supported FL platform was pro-
posed in [27] where they suggested encryption for every local
update before recording it to the BC ledger. However, feder-
ated learning and blockchain technology are considered in many
application domains, such as healthcare, vehicular networks,
energy sectors etc. For example, in [28], authors contributed
BC-based FL that supported an adaptive framework for ensur-
ing network trustworthiness and security. It handles individual
users’ trust (e.g. positive experiences, guarantees, clarity, and
responsibility) to predict devices’ trust values. The device fail-
ure problem in IIoT is a well-known issue that is considered in
[29]. The authors proposed a blockchain-based federated learn-
ing platform that enables the verifiable integrity of client data.
The proposal’s significance is that it allows storing client data
records periodically in tree and tree root stores on a blockchain.

The study conducted in [30] summarised the potential for
data leakage from a model created by local members in a
blockchain-based FL network, where they focused on infer-
ence attacks for experimental analysis. The researchers used the
accidental sharing of property information to find a group of
participants with a certain trait in blockchain-supported feder-
ated learning for intelligent edge computing. The authors [31]
developed a blockchain-based system to incentive data own-
ers with high-quality data in federated learning and introduced
a mechanism for allocating rewards. The reputation mecha-
nism that focuses on blockchain technology produces model
aggregation of high quality in a transparent manner. Similar to
other contributions, BC has a function in the calculations of
rewards and credit points. Several publications have addressed
the broad concerns regarding FL, including its limitations in
various applications, and proposed ways to connect FL with
blockchain technology. Nevertheless, the primary objective of
the majority of these publications was to address the centralised
aggregator concerns that emerged in the FL network by lever-
aging blockchain technology. Several papers proposed the use
of noise in the local model as a means of augmenting security.

As depicted in Table 1, the majority of recent contributions

have concentrated on matters pertaining to security and privacy.
Recent contributions primarily emphasise blockchain-based
decentralised solutions as a remedy for centralised aggrega-
tors. Blockchain is widely recognised as a cybersecurity tool and
offers solutions to the concerns commonly discussed. Never-
theless, blockchain encounters challenges in terms of scalability,
particularly when integrating an application such as SH with
these services. None of them took into account the security
implications and the broader SH ecosystem, including how the
blockchain network will handle the significant volume of trans-
actions created by SH devices and the constraints of using
blocks to store a large model. In contrast, this article seeks
to offer a reliable and advanced FL process and scalable solu-
tions to ensure uninterrupted SH services by addressing the
time-consuming finalisation of blockchain transactions. Fur-
thermore, it guarantees access control and enhances ledger
optimisation to assure the utmost technological advantages.

3 PROPOSED ARCHITECTURE

This section presents blockchain-based privacy-preserving fed-
erated learning (BPFL), the proposed architecture of the
ecosystem, which comprises a SHN and a BCN. Figure 2 shows
the overall network architecture, consisting of three process-
ing zones: the primary zone presents ubiquitous IoT-driven
SHs, and the secondary zone represents gateway (GW), which
controls the individual SH. Finally, the blockchain network
interconnects every gateway peer (GWP) and provides access
control over the whole ecosystem.

3.1 Overview

The overall network generates a BPFL ecosystem where
physical devices from SH interact with each other as well
as knowledge generated from their utility data exploits the
service providers to improve their services without sharing
users’ data directly. The ecosystem comprises a network with
n number of SH (i.e. SH1, SH2, SH3, … SHn ∈ SHN ) that are
connected with servers. The servers play a key role as a gateway
to every individual SH that plays a double role, such as control-

ling the SH and learning different features from its local data.
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FIGURE 2 BPFL framework overview.

Interconnecting gateways with each other forms a Peer-to-Peer
(P2P) network (i.e. BCN) instead of centralised processing of
data. BCN access controls gateways as well as aggregates the
local models with the proper consensus approval of the network
members for generating global models. Every gateway contin-
ues the FL process using its local data and generates a local ML
model. Consequently, BCN coordinates with gateways, collects
all local models, and finally generates the global models. Then
the global models are transferred to every gateway for the next
iteration of learning, finally producing an optimal model. The
framework has three key objectives: scalability, secure ledger
optimisation, and smart prediction. Blockchain technology
guarantees the protection of data and provides a safe means
of accessing household appliances remotely. Secondly, ledger
optimisation entails transferring the home server to a local peer
by segregating transactions into local and global categories. The
FL process guarantees secure and intelligent future predictions,
enabling the autonomous evolution of services.

3.2 Smart home network

A wide range of advanced smart appliances, such as smart
refrigerators, air conditioners, and smart fans, as well as wear-
able devices like smart watches, glasses, and shoes, are integral
components of a SH which necessitate novel administration.
Figure 1 illustrates a standard architecture for managing SH
applications. It showcases the integration of smart devices, gate-
ways, and back-end networking components within a SHN.
Efficiently incorporating these components with the network
service provider or server enables global connectivity to a SH.
The gateway’s physical location could be in the cloud or locally
setup in the home, depending entirely on the home owner’s ser-
vice capacity. Within a SHN, users must utilise a home server
to access and manage all devices which functions as a gate-

way. The gateway is accountable for ensuring the compatibility
and seamless integration of domestic services. When the GW
is linked to the BCN it functions as a local Peer. Access to
SH devices from anywhere in the world is only authorised
through BCN. Suppose, the set {a1, a2, a3, … , an} belongs to
the SH Ai , where the ith SH comprises n appliances that are
controlled through the gateway GWi . An API enables the man-
agement of SHN devices for remote access. Similarly, wearable
devices can be managed via a separate app server that is not
affiliated with the device itself. These conventional systems all
have centralised challenges, which are resolved by utilising a
decentralised blockchain network.

3.3 Blockchain network

Blockchain network consist of a combination of core peers and
some local peers, where a traditional home server becomes a
local peer and joins as an extended network member. A local
peer uses blockchain technology and plays a solo peer role. An
overview of our system architecture is shown in Figure 3. BPFL
incorporates the connectivity of SHs with blockchain through
local peers. It also acts as a gateway to segregate global, local,
and remote transactions and ensure remote access through an
API, as illustrated in Figure 3a. In a similar vein, the details of
the network connectivity among the manufacturer, external par-
ties, and the gateway are shown in Figure 3b. Every network
member, including manufacturer authentication, is controlled
through certificate authority (CA).

3.3.1 Network

A device manufacturer or SH service provider who has a trusted
relationship with the device manufacturer generates the BCN,
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6 BISWAS ET AL.

FIGURE 3 Local peer and blockchain connectivity.

on which SH owners and other stakeholders groups can be
registered. Core BCN is formed with a group of peers (more
than three) interconnected to create a distributed network. Local
peers interconnect with the BCN and join the consensus pro-
cesses. Beyond consensus, a local peer plays a solo peer role to
maintain the scalable services of SH transactions. BCN forms
with Peer (P) where P1, P2, P2, … Pn ∈ BCN .

3.3.2 Local peer or gateway peer

Local peers exclusively cater to smart IoT devices used within
SH. In the proposed framework, local peers manage specific
IoT devices of a specific i SH where D1,D2,D3, …Dn ∈ Pl

i .
Similarly, Pl

1 , P
l

2 , P
l

3 … Pl
n ∈ BCN . Local peers ∀Pn

i=1 function
as a solo peer with a replica of the blockchain protocol, and
the integrity of the gateway is maintained using CA-generated
certificates, which generate and maintain the integrity of the net-
work components. Any existing centralised server of a typical
SH can play a gateway role as a solo peer. To extend the security,
solo peers can be linked with multiple peers under a blockchain
network for a specific SH, which means Pl

1 , P
l

2 , … Pl
n ∈ SHi . It

can eliminate the risk of a single point of failure for i SH. Local
peer Pl

i handles all transactions generated from a SH. Algo-
rithm 1 states the transaction execution approaches in detail. It
has been demonstrated that Pl

i checks the origin and destina-
tion of the transaction as it is being executed. Without involving
BCN, it runs locally if the transaction’s source and destina-
tion are itself; otherwise, it sends it on to BCN. Initiating a
smart contract, which is a programme chaincode that is pre-
installed, is the first step in any locally executable transaction.
The criteria and terms between two devices are reflected in the
chaincode. Whenever the outcome of chaincode invocation is
affirmative, the home network’s local ledger is used to perform
and store transactions. If the incoming transaction destination is
not part of Pl

i , the BCN is prepared to execute the transaction
by means of its integrated application. It can reduce transaction
overloading by up to 70% [8].

ALGORITHM 1 Local peer’s transaction executions.

Input : (sk, υi, Txi, pk
υi

sign)
Output: Success/Failure

1 P l{Txi, Txsrc, Txdst} ← ∀Dn
i

2 if Txdst ∈ P l
i then

3 Txi ← H(Txi) \\ Hash of Tx
4 Bi ← append(Txi, (sk, ρi, δ, pk

υi
sign))

5 LP l
i ← Bi

6 return Success Ensure Tx is recorded in DB
7 else
8 Bi → BCN \\ forwarding Tx to BCN
9 Bx ← ∀ni=1Bi \\ Block formation
10 LP l

i ← Bx \\ External Tx recorded to ledger
11 end
12 delete(Poff-chain) \\ for DAsst only
13 return Failure

3.3.3 Certificate authority (CA)

CA is an integral component of the central blockchain net-
work, which processes the issuance of credentials by each peer
in the vicinity. Every local peer ensures access to authorised
smart residences and their devices via in-built CA services. A
distinct CA server is established utilising the Docker container
framework in this experiment. Conversely, a distinct database
is upheld to facilitate the generation of unique credentials for
each household appliance, which are directly controlled by
local peers.

3.3.4 Distributed file storage (DFS)

To facilitate easy file sharing, global and local models are stored
on the Inter Planetary File System (IPFS), which functions as
a DFS. By default, it creates a distinct content ID (CID) upon
uploading. A hash created by the CID and file location pointer
is recorded in the blockchain. Based on epochs, ML models are
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BISWAS ET AL. 7

serialised and saved them in HDF5 file format. IPFS services are
incorporated into our blockchain peers in this study. Models are
obtained from DFS using the CID during consensus. As long as
the model file is hosted on at least one node, the IPFS network
makes sure it is accessible.

3.4 Distributed learning approaches

In order to address data-driven concerns, the device manufac-
turer has made a request to train high-quality learning models.
Because doing so would violate applicable data privacy stan-
dards, manufacturers cannot gather data directly from IoT
devices or utility data from these devices from SHs in order
to train models. Participants, who utilise a variety of SH gad-
gets, are thus crowdsourced by the manufacturer to train the
model using the FL framework. So, a producer can share the
first model, kept in off-chain storage, with the chosen par-
ticipants. To address issues with award fairness and collusion
attacks, BCN employs blockchain’s consensus and incentive
mechanisms. As a result, more and more people are eager to
participate in FL’s model training tasks honestly, and no one
including trusted parties can claim otherwise.

3.4.1 Local model generation

Within our suggested architecture, Local Peer Pl assumes the
dual role of overseeing machine learning operations and man-
aging local device control. The diagram in Figure 3a illustrates
the process of training models inside various network com-
ponents. Let us consider that there are n instances of Pl

which produce n local models M l
n , where ml

1,m
l
2, …ml

n ∈ M l
n

are formed by training their respective previously generated
datasets D1,D2, … ,DN . A representative of the SH user i,
denoted as Pl

i , decides to utilise its local dataset (Di ) and retrieve
the initial global model (M g

i ) downloads from the DFS accord-
ing to the hash address and CID with the approval of BCN.
Upon completion of the training phase, it produces a localised
model, denoted as ml

i . Prior to transmitting to the BCN,
differential privacy parameters (as described in Section 3.5)
are included into a local model to provide enhanced secu-
rity. Similarly, each ∀n

i=1GWPi produces its corresponding local
model {ml

1,m
l
2, … ,m

l
n}, which belongs to the set {Pl

1 , P
l

2 , … , P
l

n }.
Through the utilisation of FL, users transmit their individual
models to BCN in order to create a global model (M g) for the
purpose of sharing knowledge while ensuring that their sensitive
data remains undisclosed. BCN commences a consensus ses-
sion and appoints a leader to distribute tasks evenly. The leader
constructs a worldwide model (M g

i ) using Equation (1) at the
conclusion of the ith training iteration.

To leverage the training process, a typical FL has been devel-
oped for a SH i which is responsible for gathering and analysing
an input matrix Xi . This matrix is composed of individual
input data vectors, represented as xi1, xi2, … xidi

. Each xid rep-
resents an input vector used in the FL algorithm. Let assume
that Yid represents the output of Xid , and the output data

ALGORITHM 2 Model aggregation

Input: Bi (M
l
i
, 𝛿), T acc

i

Output: (Block (Bx ),M g

i
)

1: BCN Peers verify Credentials of Bi generator;

2: Leader Selected based on the best T acc for an epoch session;

3: Leader executes:

4: M
g

i
= 1

D

∑n

i=1 M l
i
;

5: if the validators signs >> 2/3 and agree on blockr : then

6: Bx ← H(M g

i
);

7: M
g

i
→ IPFS (offchain);

8: else

9: Bx is rejected and session canceled;

10: end if

vector for training using the FL algorithm of a local user Pl
i

is denoted as yi = [yi1, yi2, … yidi
]. A vector wi determines the

parameters of the local FL model (M l
i ). For instance, the expres-

sion xT
id

wi denotes the anticipated result in a linear regression
algorithm using Equation (1), where wi represents the weight
vector. SH i attempts to minimise the training loss by find-
ing the best possible parameters for the learning model using
Equation (1).

M l =
n∑

i=1

f (wi , xi,d , yi,d ), (1)

where f (wi , xi,d , yi,d ) is the loss function.

3.4.2 Global model generation

The peers confirm the credentials and make sure the models
came from a reliable source when they get the model upload
transactions from each participant. The consensus leader then
downloads each encrypted local model and applies algorithm
2 and Equation (2) to compute the model aggregate. The Algo-
rand consensus algorithm, in which the leader logs the aggregate
result into a transaction, is what we employed for this experi-
ment [32]. Upon receiving the new block, every peer broadcasts
their vote and confirms that the aggregation results in this new
block are accurate. The new block is approved if the majority
of validators (i.e. more than two-thirds) agree with the leader’s
block. If not, the following priority worker will take the lead
and repeat the voting, aggregation, and fresh block generation.
Algorand thus ensures the accuracy and integrity of the aggre-
gate by guaranteeing that any malicious aggregation result can
be rejected. The global model is updated with the aggregated
version, which is stored in the blockchain as a hash of the
model’s parameters. The leader then disperses the updated ver-
sion to all local peers in preparation for the upcoming training
cycle. Their neighbouring peer in the blockchain network will
lead the subsequent round of global model generation based on
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8 BISWAS ET AL.

who is best accurate in the last-generated global model. Overall
processes maintain the following steps:

∙ Step 1: Peers validate the reliability of transactions (i.e. local
model blocks). Upon submission of the transaction Txi , r to
the blockchain by a participant Pl

i , the peer verifies the digital
signature of the uploaded transaction to ascertain that it orig-
inates from a legitimate participant. Subsequently, the peer
forwards the verified transactions to the blockchain’s leaders
for consensus.

∙ Step 2: The elected leader generates a new block and
executes the aggregation operation. The Algorand consen-
sus algorithm selects a leader who, once all participants
have uploaded their locally trained models, computes the
aggregation value using model parameters obtained from
DFS.

∙ Step 3: Lastly, a consensus mechanism is used to validate
the aggregated model, which then generates a version of the
global model. So, for the following round, it moves on to the
local peers.

M G
i = 1

D

n∑

i=1

M l
i . (2)

3.5 Differential privacy (DP)

Incorporating DP parameter into a local model is intended
to reduce the accuracy and diversity of models by introduc-
ing stochastic variations. Although the installation of DP does
modify the model, its impact on the pattern is anticipated to
be negligible. Maintaining the secrecy of the underlying model
is advantageous, as recent research has shown the possibil-
ity of retrieving original data from the ML model [10]. DP
allows technology businesses to collect and distribute aggre-
gated data about user activities while also protecting the privacy
of individual users. This research employs DP to ensure the
confidentiality of data while engaging numerous stakeholders
in collaborative learning. We integrate a FL system with DP
capabilities to safeguard data from both external and internal
sources, such as analysts, during the training process. Its robust
security features make it highly recommended in both academia
and industry. As an illustration, RaPPOR employed DP in the
Google Chrome browser [33] with a reduced privacy parameter.
A randomised algorithm f provides (𝜖, 𝛿) differential privacy if
their neighbouring datasets D and D́ and f confirm that

Pr [ f (D) ∈ Y ] ≤ e𝜖Pr [ f (D́) ∈ Y ] + 𝛿.

Here, 𝛿 is included to accommodate the likelihood (Pr ) of vio-
lating plain 𝜖-DP [34]. The variable Y traverses all subsets of
the output range of mechanism f . When the value of 𝛿 is equal
to zero, the mechanism f achieves 𝜖–differential privacy. Let’s
say a SH wants to publish the average uses of electricity units
to researchers in a privacy-preserving manner. So, they employ

a deferentially private randomised algorithm that adds noise to
the exact average.

The actual dataset D includes a one-month record and D́

is a neighboring dataset where D́ is only one day data differ-
ence. The value of f (D) = 5 and f (D́) = 5.1 before adding
noise. After adding Laplace noise b = 1∕𝜖 where 𝜖 = 0.5 and
𝛿 = 0 based on equation the value f (D) = 4.7 or close to 5 and
f (D́) = 5.4 or close to 5.1. Hence the equation,

Pr [ f (D) = 5.2] ≤ e𝜖Pr [ f (D́ = 5.2]

will be as below while 𝜖 = 0.5 and

0.3 ≤ 0.4616.

Hence, if we fix 𝛿 = 0.01, it will create vary less impact on
model parameters but will ensure privacy by changing real-value.

4 EVALUATIONS AND ANALYSIS

We evaluated the performance of the proposed BPFL frame-
work on two experimental platforms. Initially, we tested the
identification of ledger optimisation issues in BCN without
the use of machine learning. This typical BCN-related experi-
ment is evaluated on the Hyperledger Fabric (v2.0) platform,
utilising a Docker container platform. It helps to predict a real-
life application’s software-based implementation. As machine
learning application implementation in Hyperledger Fabric is
a complicated task, we simulated it in a Python environment
again to evaluate the whole ecosystem performance (details in
Section 4.3).

4.1 Stand-alone blockchain applications

Every individual peer carries out the ML execution procedures
using the NVIDIA GeForce RTX 2080 GPU. At first, vari-
ous local training settings utilised private servers equipped with
four GPUs. Each GPU operates as a separate learning node
for experimental purposes. Concurrently, the central process-
ing unit (CPU) of a private server functions as a participant
in the blockchain network. The blockchain network comprises
six peers operating on the Docker container platform and
implemented on an Intel Xeon E7 v3/CoreTM i7-5960X CPU
running at a frequency of 3.00 GHz, 8 cores, and 125 GB of
RAM. The blockchain network and consensus procedure are
emulated using Python 3.8.

4.2 Scalability evaluation

The summary of ledger growth and ledger scalability is shown
in Figure 4. It assesses the effects on BC Ledger’s ledger expan-
sion as well as the execution of continuous transactions in the
BC network. Figure 4a shows a typical blockchain experimental
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BISWAS ET AL. 9

FIGURE 4 Scalability impact on local peer implementation.

evaluation. We observed that each transaction frequently con-
sumes up to 10 KB, that blocks generate 500 transactions per
second on average, and that the size of block headers is 4.5
KB. We estimate the growth at a rate of approximately 50–
100 KB/s, which translates to 4–8 GB/day or 1.5–3 TB/year.
This becomes unworkable in a 10,000-house network with 20
gadgets per home, even though it doesn’t appear to be a huge
amount for a single node. Figure 4a shows a summary of the
ledger growth for 1000 SHs on a blockchain network, with
approximately fifteen devices per home. It demonstrates three
possible outcomes that highlight how transaction weight could
differ among sources based on format. For this test, we thought
of three distinct sizes: 5–7 KB, 8–9 KB, and 10–12 KB. The size
of a transaction and its amount determine the size of the ledger.

A simulated application based on node-red distributes trans-
actions from 1000 SHs to gateway peers at random. The
gateway peers categorise the transactions based on their
intended destinations. Which means if a device Di from SHi
sends a transaction to another device of SHi GWi processed
itself otherwise forward to BCN. Figure 4b shows how trans-
actions are transferred and the ledger growth in a generic
blockchain where the gateway is not present. It also shows
ledger growth in comparison to the proposed framework,
specifically in the gateway peer for local transactions and the
BCN ledger. Here gateway peers store multiledgers. As shown
in Figure 4b, the presence of a gateway peer reduces burden
almost 60% in comparison to generic blockchain from 4th block
to subsequent blocks. Hence, it reduces the transaction execu-
tion cycle with the same percentages that scales the ecosystem
execution performance by 60%. The system evaluates the next
10 blocks in both the gateway peer and blockchain networks. In
the absence of a gateway peer, generic BCN must handle every
local transaction generated from SHi which creates overburden
on BCN.

4.3 Prediction analysis

4.3.1 Using image dataset

The overall performance of the ecosystem is evaluated using a
popular public Stanford Cars Dataset [35] that contains 16,185
images, including 8,144 training and 8,041 test images for 196
classes of cars. To prepare a balanced dataset for every user,
we split the overall training and test sets equally based on their
classes. The same customised dataset is used in typical FL with-
out blockchain for baseline understanding. Furthermore, to fix
the baseline, we extend the same experimental setup with a
stand-alone approach using typical ML where parameters are
used in the FL-integrated BPFL system.

We used the SGD optimiser and a 0.01 learning rate to train
the model on a ResNet50 model that had already been trained
to do classic image classification. The local training process was
finished in the gateway peer of each SH. Each local learning
node uses GPU services for local training independently. Simul-
taneously, the CPU of a private server acts as a gateway peer
to evaluate the blockchain execution process. The blockchain
network consists of ten peers running in a Docker container
environment. A well-designed CNN network contains hidden
layers for feature extraction and fully connected layers for clas-
sification [36]. The network employs two hidden layers with
30 and 80 channels, respectively. The dimension is lowered for
output by utilising the Max-pooling layer. Max-pooling layers
enhance the rate of learning in the neural network. Normalisa-
tion is applied to each CNN layer, facilitating the calculation of
sensitivity to identify the appropriate level of noise to introduce.
This process also enhances the learning rate and regularises
gradients, minimising the impact of distractions and outliers.

The suggested BPFL framework’s overall learning outcomes
are shown in Figure 6. It demonstrates the efficacy of federated
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10 BISWAS ET AL.

FIGURE 5 Training outcomes.

FIGURE 6 Validation and test evaluations.

learning-based distributed machine learning within the BPFL
framework as ‘Distributed’, in contrast to conventional machine
learning as ‘Typical’. As shown in Figure 5, the accuracy and
training progress where six federated local learning nodes per-
form the experiment 100 rounds. Each local peer executes a split
dataset, while the FL network creates the global model by aver-
aging the insights generated by various local nodes. As shown
in Figure 5a the loss rapidly decreases, which illustrates training
success. Compared to our suggested approach, loss drops fast in
the baseline (i.e. standard ML). But nearly at the conclusion of
the same cycle (i.e. the 18th epoch), they arrive at a convergence
point. Figure 5b presents the training accuracy, comparing the
object detection model’s learning accuracy to baseline and com-
mon approaches. The outcome of the simulation indicates that
the suggested framework converges with conventional methods
nearly simultaneously.

Figure 6 also presents how the proposed system can classify
the images compared to standard ML approaches. The pro-

posed method is evaluated based on a validation dataset and
testset. Figure 6a illustrates the validation accuracy based on
the validation dataset. It shows that the proposed scheme can
recognise the images 88% cases, which is approx. 30% better
than standard ML. As distributed ML merging all local models
which performing on full dataset while standard ML perform-
ing based on splitted dataset. Moreover, the ultimate goal of this
experiment is to improve FL in terms of users’ data security
and privacy. Some test images have been tested on the pro-
posed framework-generated models, which have been illustrated
in Figure 6b. We have used different global models generated
by averaging the FL models to verify their accuracy in real-
life scenarios. The figure shows 10th global model can classify
almost 56% of images, and the last model (50th) can classify 86%
of test images successfully. Therefore, the overall performance
accuracy of the proposed distributed system is relatively better
than traditional ML approaches. Moreover, BPFL enhances the
scalable services in SH network.
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BISWAS ET AL. 11

4.4 Smart home dataset

For evaluating the impact of the proposed architecture on IoT
devices used in SH, we have developed an experimental plat-
form for a SH network using the Node-Red application, which
contains ten SH applications that forward data from an exist-
ing dataset by choosing randomly to the local peer. Local peer
is developed on the Docker container platform. Other core
blockchain peers were also developed on the Docker container
platform. We have used ten blockchain peers for maximum par-
ticipation in consensus mode. The dataset used from a public
source (e.g. Kaggle) contains 503K and 31 features that con-
tain various home appliances used for energy data. We split the
full dataset equally for every SH, as our ultimate goal is to justify
the effectiveness of the framework. The suggested architecture’s
accuracy in model testing, network performance metrics, and
local peer setup are all confirmed by the simulation platform.

An input layer, an output layer, and eight hidden layers make
up the Deep Neural Network (DNN) model that serves as the
training model for the BPFL and baseline techniques. We set
the batch size to 64 and the learning rate of the model to 0.01.
The model tunes the local training epochs to 10, while setting
the FL and suggested training epochs to 15. Furthermore, the
training epochs are immediately set to 150 by the local training.
This experiment investigates three scenarios within the BPFL
framework: standard ML with a split dataset, typical FL without
the full function of the Gateway peer in the BPFL framework,
and FL with the full function of Gateway peers. Typical FL’s
training accuracy is lower because it doesn’t incorporate all
local transactions from Gateway peers, which ultimately control
the transaction flow. Similarly, typical machine learning (ML)
exhibits lower accuracy due to its performance on split datasets.
The purpose of this control is to enhance the performance of
blockchain scalability, which most consortiums undertake. The
distributed line illustrates the full performance features of the
BPFL framework, which includes a complete dataset before
segregating transactions at the gateway peer. Here, the gateway
peer performs its regular function by extracting insights from
transactions to create a local model, which in turn creates the
global model.

The training accuracy shows that the convergence of BPFL
is fairly steady, as shown in Figure 7. Moreover, it has shown
a notable increase in model accuracy, outperforming the other
two baseline methods by over 5%.

Tables 2 and 3 illustrates the amount of time taken to com-
pute SH data in the BPFL system. We systematically increased
the quantity of local peers in tandem with the fixed blockchain
network peers. As a consensus team is formed with local peers
and blockchain peers, consensus participants are also raised. For
example, while the local peer is 7, the consensus participant is
17. The average execution time for local model building per
epoch is almost consistent, regardless of the similar nature of
local peers, as it averages the computation time. In contrast, the
process of generating a global model for the same round takes
slightly longer, as it is dependent on the number of consensuses.
This process typically takes around 10 seconds for the network
with 10 local and 10 BC peers, which is considered reasonable.

FIGURE 7 Training accuracy benchmarking.

TABLE 2 Symbols with labels.

Symbol Meaning

Tx Transaction from local peer.

Bi Block generated at ith local Peer Pl

LPl
BC ledger at local Peer

Txdst Destination address of Tx

T src Source address of Tx

LTx Consensus leader at BCN

Dn
i

n number of devices in i SH

𝚙𝚔
𝜌i

sign Public key with signature of users

𝜐 User

𝚜𝚔 Secret key of 𝜐 of SH

M l Local model

M g Global model

TABLE 3 Computation time.

Local

peers

BC

peers

Time for local

model (MS)

Time for global

model (s)

3 10 786 3.2

5 10 795 6.36

7 10 865 7.65

10 10 846 9.78

The overall execution time of the global model encompasses the
time required for model aggregation and consensus.

5 CONCLUSION

SH users aim to enjoy the advantages of automation while main-
taining their personal data safety and secrecy. In order to ensure
the safety of the entire ecosystem, it is imperative to own the
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12 BISWAS ET AL.

most up-to-date system. Furthermore, it is imperative to have
stringent regulations in place for standard external services. The
proposed framework includes safety protocols for automated
forecasting and updated maintenance. Blockchain technology is
being employed to address issues related to secure automation,
and gateway peer serves to mitigate certain existing scalabil-
ity challenges in blockchain. FL enhances security measures
by preventing data exchange for machine learning purposes.
The testbed results indicate that the contribution offers solu-
tions to substantial issues that may arise from the integration of
SH with blockchain and an intelligent automation system. The
proposed BPFL significantly enhances scalability. It reduces
ledger overhead by over 60% compared to traditional proce-
dures that ultimately enhance the scalability of the ecosystem.
It formulates a practical and secure approach for managing the
ongoing data generated by SH. Moreover, the outcome shows
the computation time is also reasonable, which is within 10 sec-
onds for a 20-peer network. Overall, BPFL opens up a new
path, leveraging distributed learning approaches and generat-
ing new advanced models with the latest data for manufacturers
without compromising end-user security. This research will be
applied to predictive maintenance by ensuring higher accuracy
and runtime network service monitoring based on end users’
feedback ratings.
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