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Abstract

Research on developing deep learning techniques for autonomous spacecraft relative navigation challenges is continuously growing in
recent years. Adopting those techniques offers enhanced performance. However, such approaches also introduce heightened apprehen-
sions regarding the trustability and security of such deep learning methods through their susceptibility to adversarial attacks. In this
work, we propose a novel approach for adversarial attack detection for deep neural network-based relative pose estimation schemes
based on the explainability concept. We develop for an orbital rendezvous scenario an innovative relative pose estimation technique
adopting our proposed Convolutional Neural Network (CNN), which takes an image from the chaser’s onboard camera and outputs
accurately the target’s relative position and rotation. We perturb seamlessly the input images using adversarial attacks that are generated
by the Fast Gradient Sign Method (FGSM). The adversarial attack detector is then built based on a Long Short Term Memory (LSTM)
network which takes the explainability measure namely SHapley Value from the CNN-based pose estimator and flags the detection of
adversarial attacks when acting. Simulation results show that the proposed adversarial attack detector achieves a detection accuracy of
99.21%. Both the deep relative pose estimator and adversarial attack detector are then tested on real data captured from our laboratory-
designed setup. The experimental results from our laboratory-designed setup demonstrate that the proposed adversarial attack detector
achieves an average detection accuracy of 96.29%.
� 2024 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The growth of deep learning-based techniques has
drawn increasing attention in various domains of applica-
tion, such as image processing, speech recognition, and
many other challenging Artificial Intelligence (AI) based
tasks (Guo et al., 2016). Vision-based autonomous orbital
space rendezvous (Wie et al., 2014), is an application for
which adopting deep learning approaches to spacecraft
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position and attitude estimation is continuously gaining
interest within the research community and the space agen-
cies (Song et al., 2022; Kisantal et al., 2020).

The state-of-the-art achievements in deep learning (DL)
research demonstrate that the Convolutional Neural Net-
works (CNNs) have successfully gained outstanding per-
formance in computer vision applications, such as object
detection and target localisation (Ren et al., 2017;
Redmon and Farhadi, 2018; Cebollada et al., 2022). Deter-
mining the pose of a spacecraft’s relative state by process-
ing input images is typically achieved through the six
Degree-of-Freedom (6 DOF) pose estimation of the
target object frame relative to the camera (onboard the
org/licenses/by/4.0/).
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spacecraft) frame. These vision-based pose estimation
methods are traditionally computed by matching relative
features on images captured by the camera to relative loca-
tions in the target frame. Different from the traditional
approaches, the CNNs can be trained to detect features
from raw image data and estimate the relative pose by
regressing the position and attitude, without the need for
manual feature engineering which is often required in tra-
ditional computer vision methods. The advantages of
CNN-based pose estimation approaches are that they can
potentially lead to better performance in complex orbital
scenarios and more robustness to variations in lighting,
viewpoint, and cluttered background.

Recent achievements in DL-based pose estimation
demonstrate outstanding accuracy performance
(Phisannupawong et al., 2020; Oestreich et al., 2020;
Rondao et al., 2022; Chekakta et al., 2022). However, the
vulnerability of such deep learning scheme can be question-
able (Chawla et al., 2022; Nemcovsky et al., 2022; Tian
et al., 2024).Indeed, minor changes in the spacecraft
onboard camera acquired images that is used by the
CNN-based pose estimator can cause CNNs to make
wrong predictions due to their reliance on low-level affected
features, such as edges and textures, and their high sensitiv-
ity to slight variations in the input space. Those changes in
the input images and thus on features that the CNN-based
pose estimation relies on can be caused by adversarial
attacks (Lin et al., 2020). Adversarial attacks aim to make
small perturbations to the input images that are impercep-
tible to human vision and can significantly affect the
CNN’s prediction (Grabinski et al., 2022). For real-world
applications where CNNs are applied to estimate the rela-
tive pose of spacecraft, applying an adversarial attack to
the input images can potentially make the CNNs output
the wrong position or attitude of the target. This could seri-
ously damage the autonomous rendezvous operation sys-
tem if wrong pose data are involved to generate any
further actions, such as guidance commands for the space-
craft to rendezvous and/or dock to the target satellite.

One of the significant challenges associated with deep
neural networks is that these models usually lack of trans-
parency, which means people cannot understand how the
deep neural networks achieve their decisions. To address
this issue, eXplainable AI (XAI) aims to provide an under-
standable explanation for the AI models’ decision-making
process. By applying XAI methods to CNNs, such as Class
Activation Mapping (CAM) (Pope et al., 2019), Layer-wise
Relevance Propagation (LRP) (Nazari et al., 2022) and
SHapley Additive exPlanation (SHAP) values (Lundberg
and Lee, 2017), users can understand how CNNs work
and why models output their relative pose predictions. This
nice characteristic of XAI methods can potentially be
adopted in detecting adversarial attacks on CNN models.

This work aims to present an innovative demonstration
of the vulnerability of CNN-based spacecraft rendezvous
relative pose estimation scheme to digital adversarial
attacks on camera input images and proposes a novel
561
method for detecting those adversarial attacks when they
may occur. In this paper, a vision based orbital autono-
mous rendezvous dynamic scenario is simulated. A CNN-
based pose estimator is designed and trained to estimate
the relative position and attitude of the target satellite
involving a modified Darknet-19 (Redmon and Farhadi,
2017) as a feature extractor. The Fast Gradient Sign
Method (FGSM) is employed to introduce small perturba-
tion attacks to the input images. Various configurations of
the FGSM attack are developed to demonstrate the impact
of digital adversarial attacks on the CNN-based pose esti-
mator. An LSTM-based detector exploiting the explainable
Shap values of the CNN based estimator is then proposed
to detect the adversarial attacks acting on the input images
and thus the CNN based estimator outputs. To this end,
this paper makes the following contributions:

Firstly, a CNN-based relative pose estimator for close-
range rendezvous is introduced, which is subsequently
formulated as the target DL-based navigation system
against adversarial attacks.
Secondly, the Fast Gradient Sign Method (FGSM)
Goodfellow et al. (2014) is utilised to generate invisible
perturbations in the input images, introducing a range
of FGSM attack configurations to illustrate the effects
of digital adversarial attacks on the CNN relative pose
estimator.
Then, an LSTM-based adversarial attacks detection
mechanism is proposed, leveraging the explainable
(SHAP) value (Lundberg and Lee, 2017) from the
CNN-based navigation system to identify adversarial
attacks affecting the input images.
Subsequently, the CNN-based relative pose estimator
and LSTM-based adversarial attacks detection mecha-
nism have been evaluated in both synthetic data and
real-world data obtained from our laboratory to demon-
strate the performance of proposed frameworks.

The paper is organised as follows: Section 2 provides an
overview of current DL-based spacecraft pose estimation
approaches and discusses existing methods for detecting
adversarial attacks. Section 3 outlines the proposed design
of the CNN-based pose estimator, how to adopt FGSM
attacks to the pose estimator, and the design of the
LSTM-based adversarial attack detector. Section 4 pre-
sents the test experiments that are conducted on both sim-
ulation data and real-world data obtained from our
laboratory. Finally, Section 5 concludes the paper and dis-
cusses future work.
2. Background and related works

2.1. DL-based spacecraft relative pose estimation

Sharma et al. (2018) proposed a relative pose classifica-
tion network which is based on AlexNet (Krizhevsky
et al., 2012) architecture for non-cooperative spacecraft. In
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their design, the convolutional layers in AlexNet are initially
trained on ImageNet dataset (Deng et al., 2009) as feature
extractors. The pre-trained feature extractors are adopted
with two fully-connected layers and one classification layer
with training on ten sets of synthetic images that were cre-
ated from Tango spacecraft flown in the Prisma mission
(Persson et al., 2006). Their work shows that the CNN-
based relative pose classification outperforms the accuracy
of an architecture based on classical feature detection algo-
rithms. However, this network is designed to output a coarse
pose classification and cannot meet the precision require-
ments for fine position and attitude estimation missions.

Yang et al. (2021) have proposed a CNN-based pose
estimation method to estimate the relative position and ori-
entation of non-cooperative spacecraft. In their approach,
the pre-trained ResNet-50 (He et al., 2016) is adopted as
the feature extractor, and two fully-connected layers are
concatenated after the feature extract to output the relative
position and orientation of the target spacecraft, respec-
tively. To adapt the network to estimate the relative pose
of other similar spacecraft, an additional output layer is
concatenated with the output of position and orientation
to predict the category of the target spacecraft. Different
from previous work introduced by Sharma et al. (2018),
this work can output the relative position and orientation
of the target spacecraft, instead of a coarse pose classifica-
tion. Similarly, pre-trained ResNet has also been used as
the backbone by Proença and Gao (2020). In this work,
the estimation of position is achieved by two fully-
connected layers with a simple regression, and the relative
error is minimised based on the loss weight magnitudes.
Then, the continuous attitude estimation is performed via
classification with soft assignment coding (Liu et al., 2011).

Rather than estimating the relative pose of spacecraft by
using a single input frame, consecutive image inputs have
been considered by group previous work, named ChiNet
(Rondao et al., 2022). The ChiNet featured a Recurrent
Convolutional Neural Network (RCNN) architecture,
which involves a modified Darknet-19 (Redmon and
Farhadi, 2017) as an image feature extractor and followed
by LSTM units to deal with the sequences of input images.
The ChiNet takes 4-channels input which not only includes
the RGB image but also a thermal image of the spacecraft
that has been stacked to the fourth channel of input. The
ChiNet also proposed a multistage optimisation approach
to train the deep neural network to improve the perfor-
mance in spacecraft relative pose estimation.

2.2. Explainability in CNNs

While recent approaches to DL-based spacecraft relative
pose estimation demonstrate outstanding performance in
terms of prediction accuracy, understanding how these
models predict relative pose is essential for providing
robust solutions for future space rendezvous missions. As
a new approach solution, eXplainable AI (XAI) techniques
offer the possibility to analyse gradients in DL models to
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indicate the significance of input variables in the estimation
decision-making process.

Lundberg and Lee (2017) proposed the SHAP values to
interpret complex machine learning models. The SHAP
value is based on a concept from game theory called Shap-
ley values. These are used to fairly distribute the payoff
among the players of a cooperative game, where each
player can have different skills and contributions. Similarly,
SHAP values assign each feature an importance value for a
particular prediction and provide insights into the contri-
bution of each feature. By examining the SHAP values of
machine learning models, we will able to understand the
predictions of complex machine learning models.

Contrastive gradient-based (CG) saliency maps
(Simonyan et al., 2013) are visual explanation methods
for deep neural networks. They produce a heat map where
the norm of the model’s gradients indicates the significance
of input variables. The heat map highlights the areas in the
input image that would change the output class if they were
changed. By accessing the heat map, users can identify the
most relevant features for the model’s prediction.

Class Activation Mapping (CAM) (Zhou et al., 2016)
generates visual explanation maps by finding the spatial
locations in the input image that contribute the most to a
specific prediction. The CAM is particularly helpful in
image classification tasks through CNNs. Similarly,
gradient-weighted CAM (Grad-CAM) (Selvaraju et al.,
2017) extends the work of CAM and provides visual expla-
nations for decisions made by a wide range of CNN-based
methods. Grad-CAM utilises the gradients of any target
concept, flowing into the final convolutional layer to pro-
duce a localisation map that highlights the important
regions in the input image for predicting the concept. These
XAI methods interpret the CNNs, making people under-
stand how and why CNNs make certain predictions. How-
ever, since then, there has been no specific analysis on
interpreting the DL-based spacecraft relative pose estima-
tion to improve their explainability.

2.3. Adversarial attacks

Adversarial attacks for CNNs aim to make small pertur-
bations on the original input images where original and
perturbed images look similar in human vision but can sig-
nificantly impact the CNNs’ predictions. However, very
limited research works are investigating how adversarial
attacks can impact DL-based pose estimation systems.
Chawla et al. (2022) demonstrate the effect of different
types of adversarial attacks on the predictions of the DL-
based pose estimation system. Their work shows that
adversarial attacks can significantly impact monocular
pose estimation networks, leading to increased trajectory
drift and altered geometry. Similarly, Nemcovsky et al.
(2022) illustrate that the physical passive path adversarial
attacks can seriously increase the error margin of a visual
odometry model which is used in autonomous navigation
systems leading onto potential collisions.
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The impacts of adversarial attacks have garnered sig-
nificant attention in the DL-based autonomous systems.
Ilahi et al. (2021) provide an extensive overview of recent
methodologies for adversarial attacks on Deep Rein-
forcement Learning models applied to autonomous sys-
tems, as well as the existing techniques for mitigating
these attacks. Wang and Aouf (2024) examine the effects
of perceptual perturbations on vision-based autonomous
driving systems and propose an optimised policy to
counter adversarial attacks on observation perturba-
tions. Tian et al. (2024) explore multi-label adversarial
example attacks targeting multi-label False Data Injec-
tion Attacks for locational detectors, highlighting signif-
icant security vulnerabilities in DL-based smart grid
systems.

To protect the DL-based system from adversarial
attacks, Liu et al. (2020) proposed a detection method
based on the robustness of the classification results. Their
results show that the detector performs well against
gradient-based adversarial attacks. Our group work,
Hickling et al. (2023) proposed a CNN-based adversarial
attack detector and an LSTM-based adversarial attack
detector for Deep Reinforcement Learning (DRL) based
Uncrewed Aerial Vehicle guidance. The simulation results
show that the LSTM-based adversarial attack detector
leads to 90% detection accuracy on the DRL model. It also
suggests that the LSTM-based detector performs much
more accurately and quicker than the CNN-based adver-
sarial attack detector. Indeed, the LSTM-based detector
is demonstrated
to meet the real-time requirement in DRL based guidance.

To the best of our knowledge, as of yet, there is no lit-
erature looking at the impact of adversarial attacks in
spacecraft relative pose estimation and how to detect those
adversarial attacks in DL-based spacecraft relative pose
estimation systems and this work first time proposes this.
Our objective is to ultimately create an adversarial attack
detector for the space navigation system, which employs
SHAP values explainability mechanism to detect and flag
potential adversarial attacks.
3. Methodology

In this section, a CNN-based spacecraft relative pose
estimator is newly designed with the aim of providing a
reliable estimated position and attitude of the target
spacecraft in as rendezvous scenario. Then, the FGSM
attacks are adopted on the spacecraft onboard camera
resulting in an adversarial image to evaluate the impacts
on the proposed deep pose estimator. Next, SHAP values
are introduced to generate XAI signatures for both
adversarial and normal input images. Finally, an
LSTM-based adversarial detector is proposed and
trained, which learns normal and adversarial SHAP val-
ues to detect the adversarial attacks on the spacecraft rel-
ative pose estimator.
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3.1. CNN-based spacecraft relative pose estimator

3.1.1. Overall architecture design

Similar to most DL-based spacecraft relative pose esti-
mation algorithms, CNN is applied to extract features in
the proposed pose estimator. The overall design of the pose
estimator follows the design methodology in ChiNet
(Rondao et al., 2022). The Darknet-19 (Redmon and
Farhadi, 2017) is originally trained in ImageNet (Deng
et al., 2009) dataset which has an input size of

In our design, input images of the pose esti-
mator have a larger size than ImageNet images. Therefore,
the first convolutional layer in Darknet-19 is configured
with a kernel size of Following the approach of
Darknet-53 (Redmon and Farhadi, 2018), the maxpooling
layers in the Darknet-19 are replaced by convolution
operation with a stride of 2. Similarly, as the Darknet-53
approaches, the residual connections are also adopted to
the proposed pose estimator. Batch Normalisation (Ioffe
and Szegedy, 2015) layers are applied after each convolu-
tional layer.

Our deep spacecraft relative pose estimator aims to out-
put the relative position and attitude of the target directly.
Therefore, two separate FC layers are applied. The first FC
layer involves 3 output nodes to output the relative posi-
tion in and the second FC layer adopts a 6-
dimensional (6-D) vector to represent the relative attitude
of the target spacecraft. Finally, two FC layers are concate-
nated together to output the relative 6-DOF pose. In the
second FC layer, 6-D vectors are applied to represent the
relative attitude of the target spacecraft, instead of using
quaternion representation. The reason is that the relative
pose estimator is designed as a regression problem where
the output has to be continuous. However, the normal atti-
tude representation of quaternion is discontinuous, due to
its antipodal ambiguity, i.e. q q Therefore, the pro-
posed pose estimator applies the 6-D vector formulated
by Zhou et al. (2019), which mapped the 3-dimensional
rotations into a 6-D continuous rotation. The overall
design of the spacecraft relative pose estimator is presented
in Fig. 1.

3.1.2. Synthetic data generation

To train and test the spacecraft relative pose estimator,
synthetic datasets are generated in Blender, which is an
open-source 3D modelling software. The spacecraft target
model used in the synthetic dataset generation is the
Jason-1 satellite, which was downloaded from the NASA
3D Resources website (Jason-1, 2023). Dynamic simulation
of the rendezvous is developed to generate the synthetic
dataset in which the camera onboard the chaser spacecraft
starts at 60 metres away in from the target and end
at 10 metres away from the target in i.e. (0,0,10).
Random rotation of the camera and target is considered
in the synthetic data generation. Many trajectory sequences
are generated and each sequence contains 2,500 RGB
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Fig. 1. The overall architecture of the proposed spacecraft relative pose estimator. The blue blocks represent the convolutional layers, which are formatted
as . Each convolutional layer is followed by a batch normalisation layer and LeakyReLu activation. The yellow block
indicates the Global Average Pooling (GAP) layer that downsamples the exacted features to a fixed 1D vector of 1000 units. The green blocks represent FC
layers that will output the estimated relative position and attitude, respectively. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

layersize kernelsize stride )
images. Each image has a size of To prevent
overfitting in the deep relative pose estimator network, ran-
dom rotation of the target spacecraft is applied to the
model, and the camera is initialised at various positions
in the synthetic data generation. Table 1 illustrates the syn-
thetic dataset generated for training and validating the
deep pose estimator.

3.1.3. Loss function

Training the spacecraft relative pose estimator can be
formulated as a regression problem, where the total loss
function combines the loss in position and loss in attitude.
These are computed by Eq. (1) and Eq. (2), respectively,
which were originally proposed by Kendall et al. (2018).
Followed by Rondao et al. (2022), a trainable weight is
attributed to each loss, which corresponds to the task-
specific variance of the Gaussian distribution. The total
loss is then formulated in Eq. (3).

Lp

B

i 0

pipred pigt 1

744 480.
Table 1
Example of synthetic data generated from Blender.

Sequence ID Start Position Target Rotation

0 (0,0,60) 0
1 (-15,-25,60) 0
2 (-15,25,60) 0
3 (15,25,60) 0
4 (15,-25,60) 0
5 (-15,-10,60) 10 deg
6 (-15,10,60) 10 deg
7 (15,10,60) 10 deg
8 (15,-10,60) 10 deg
9 (-15,-10,60) 10 deg
10 (-15,10,60) 10 deg
11 (15,10,60) 10 deg
12 (15,-10,60) 10 deg
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Lr

B

i 0

ripred rigt 2

Ltotal exp 2rp Lp exp 2rr Lr 2 rp rr 3

where the p and r indicate the predicted position and

attitude, and p and r indicate the ground truths position

and attitude, respectively. B is the batch size and
donates the norm. and represent the learnable
weights for position and attitude, respectively.

3.2. Adversarial attacks

In this work, the adversarial examples are generated by
FGSM attacks (Goodfellow et al., 2014). The FGSM
attacks aim to add small perturbations to the input images
which will maximise the network’s loss. The efficacy of
adversarial attacks, including the FGSM attacks used in
this work, can be influenced by the backbone neural net-
work employed in perception systems. Different neural net-
work architectures may exhibit varying levels of robustness
and vulnerability to specific types of adversarial attacks.
Therefore, the effectiveness of these adversarial patches is
inherently related to the specific CNN architectures
employed. The equation in Eq. (4) describes how to gener-
ate an adversarial example for a given input image x by
FGSM attack.

x x sign xL h x y 4

where is a value of the perturbation effect which describes
how strong the attack is. L is the loss of the input x with
ground truth of y. The calculates the loss gradient, L
for input image x with relative ground truth y, and indi-
cates the trained network’s parameters. Depending on the
quality of input images and the attack strength, the result
of the FGSM attack can be modified by changing the
value.

In real implementation, the needs to be small enough
to ensure the perturbations on the input image are seamless

pred pred

gt gt

L2 rp rr

x

h

move_t0005
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and cannot be visible by human vision but still significantly
change the deep model’s predictions. The value should be
in the range of (0,1), where a value of 0 means the adversar-
ial image will be the same as the input image without any
perturbation and a value of 1 means the adversarial image
will be perturbed as significant distorted image to human
vision. Fig. 2 illustrates an example of applying FGSM
attacks to input images of the spacecraft relative deep pose
estimator.

3.3. Explanability and adversarial attacks detector

3.3.1. Explanability via DeepSHAP

The black-box nature of deep neural networks makes
users can only observe the prediction of these models,
but do not know the reasons for getting correct or wrong
predictions. XAI techniques are developed to interpret
the DL models. When the model’s prediction is changed,
the XAI will generate relative explanations to explain
why the model is getting the prediction. In this work, we
proposed a novel approach that adopts XAI techniques
by applying the change in SHAP values of the input images
as a measure to determine whether an adversarial attack
happens on input images.

Originally, SHAP is proposed based on the idea of
Shapley values, which are designed to assign a credit to
every input feature for a given prediction. Generating
SHAP values for DNNs can be computationally expensive,
as the DNNs normally contain a huge amount of features.
Thanks to the work of DeepLIFT (Shrikumar et al., 2017),
Shapley values for DNNs can be estimated by linearising
the non-linear components of a neural network, a method
referred to as DeepSHAP (Lundberg and Lee, 2017). This
is achieved by utilising a reference input distribution, which
can be linearly approximated, to estimate the expected
value for the entire model.

However, directly generating SHAP values for the
spacecraft relative pose estimator still requires a large
amount of computational resources. The pose estimator
is based on CNNs with image inputs that contain thou-
sands of pixels. Using DeepSHAP for image input requires
generating Shapley values for each single pixel for every
output neuron. Therefore, in this work, we consider com-
(a) (b)

Fig. 2. An example of applying FGSM attacks to the input image. (a) the
adversarial image.
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puting the SHAP values for the subsampling layer in the
pose estimator, instead of computing them for the input
image. As demonstrated previously, the spacecraft relative
pose estimator contains a GAP layer that downsamples
feature maps from the prior convolutional layer to 1000
samples. For example, computing SHAP values for a

RGB image needs to compute 1,071,360 pixels,
instead, the GAP layer in the pose estimator only employs
1000 neurons. As a result, SHAP values are generated for
the outputs of the GAP layer that only need to compute
1000 features. This saving in the computation makes the
generation of SHAP values for the deep pose estimator
could potentially meet the implementation time
constraints.

3.3.2. Adversarial attack detector

To detect any incoming adversarial attacks on the space-
craft deep relative pose estimator trhough the onboard
camera, an LSTM-based adversarial attacks detector is
proposed. The detector aims to monitor the SHAP values
generated from the output of the GAP layer and detect
any slight anomaly changes that could result based an
adversarial attack. The LSTM is a type of Recurrent Neu-
ral Networks (RNNs) that is widely used in learning from
time-series data, such as speech recognition (Yu et al.,
2019). The LSTM architecture was originally proposed to
address the long-term dependency issue in conventional
RNNs. It can enable the propagation and representation
of information over a sequence without causing useful
information from distant past time steps to be ignored.

In our approach, the SHAP values are generated based
on the prediction of each output neuron in the proposed
deep pose estimator. Different from applying adversarial
attacks on a classification CNN that only change the out-
put label, when an attack occurs on the deep pose estima-
tor, it could affect all output neurons to estimate for wrong
position and attitude. Therefore, it can be assumed that
there might exist a certain level of dependencies among
those output neurons. From this point of view, building
an LSTM-based adversarial attack detector can potentially
achieve high detection accuracy.

Fig. 3 introduces the architecture of the proposed adver-
sarial attack detector. The detector takes the SHAP values

744 480
(c)

original input image. (b) perturbation patch with (c) resultant0 05.
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Fig. 3. Proposed adversarial attack detector. The yellow block indicates the LSTM layer which has an input shape of (9,1000) and an output space of 100.
ReLu is applied as the activation function for the LSTM layer. The blue blocks are FC layers in the format of The green block indicates
the output layer of the adversarial detector, which is also formed from the FC layer and outputs a Boolean to detect adversarial attacks. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

units activation .
that are computed from the GAP layer of the deep pose
estimator. As there are nine output neurons in the pro-
posed deep pose estimator, the shape of the SHAP values
is To input SHAP values to the detector, the
SHAP values are formatted as a sequence data with a
length of 9. The detector outputs a Boolean,
to indicate the result of detecting adversarial attacks.

4. Experimental results

To validate our adversarial detection approach, two
experiments are performed. The first experiment is built
on the simulation environment with synthetic data as men-
tioned in Section 3. The second experiment is built on our
lab environment to testing our approach with real data.
For both sets of experiments, the spacecraft deep relative
pose estimator and the adversarial attack detector are
tested for their relevant accuracy, and then the two systems
are integrated to test the overall successful detection rate of
adversarial attacks.

4.1. Results on synthetic data

4.1.1. Accuracy of the spacecraft deep relative pose estimator
To train the deep relative pose estimator, image data are

collected from the Blender 3D model. There are 13
sequences of images generated from Blender with the rele-
vant trajectories that are mentioned in Table 1. By follow-
ing the trajectories in Table 1, 2,500 images are generated
for each trajectory, resulting in a dataset with 32,500
images for training and testing in total. Fig. 4 shows two
examples of synthetic data generation in Blender.

The synthetic dataset is split by a train-test ratio of 0.8,
i.e. 80% of images in the dataset are used for training the
deep relative pose estimator, and 20% of images are used
to test the model’s accuracy. Each image is associated with
a ground truth label in the format of

The first three elements in the ground truth label represent

9 1000 .

True False,

x y z w xi yj zk .
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the relative position of the chaser onboard camera to the
target and the rest 4 elements represent the target attitude
in quaternion representations in the chaser camera frame.
The deep relative pose estimator outputs the attitude in a
6-D vector. Therefore, to calculate the loss in attitude,
the quaternion representations are converted to the 6-D
vector representation by following the approach in (Zhou
et al., 2019). A dropout rate of 0.2 is applied to the GAP
layer in the training process. Multiple data augmentation
techniques are considered in training the deep relative pose
estimator, including Gaussian blur, Gaussian noise, image
compression, random brightness and so on. These tech-
niques help to prevent the model from overfitting the train-
ing dataset. The deep relative pose estimator is trained by
stochastic gradient descent with an Adam optimiser. The
triangular2 (Smith, 2017) policy is applied for cycling
learning rate with base learning of 2.5e-5.

After training the deep relative pose estimator for 50
epochs with the training batch size of 32, The model’s aver-
age prediction accuracy for both training and test datasets
is reported in Fig. 5. In this experiment, the position error
is measured by Eq. (5) and the attitude error is measured
by Eq. (6).

perr ppred pgt 5

rerr 2 arccos q 1
pred qgt 6

where p and p represent the prediction of position and

the ground truth of position magnitude. The q and q
indicate the prediction of attitude and the ground truth
of attitude in quaternion representation. The denotes
the quaternion multiplication and denotes the
norm.

The proposed spacecraft relative pose estimator achieves
an accuracy of around 0.49 m in position error and
0.68 deg in attitude error on the test dataset. Table 2
reports a comparison between the proposed deep relative
pose estimator and state-of-the-art performance of other

pred gt

pred gt

L2
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(a) (b)

Fig. 4. Examples of synthetic data generated from Blender. (a) image captured at a camera position of (0, 0, 60 m). (b) image captured at a camera
position of (0, 0, 10 m). Random rotation is applied to the target spacecraft.

Fig. 5. The prediction accuracy of the proposed pose estimator on
training and test dataset after 50 epochs. The blue bar presents the average
error on training data and the orange bar represents the average error on
test data. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
DL-based space relative pose estimation approaches based
on their datasets. The comparison here aims to show that
the proposed spacecraft deep relative pose estimator can
achieve relatively good performance on the synthetic data
and can be applied as a baseline model to implement the
adversarial attack algorithm on and test the adversarial
attack detector. The comparison is not meant to be a quan-
titative benchmark evaluation of our approach relative to
existing performing approaches.

4.1.2. FGSM adversarial attacks

As discussed in Section 3, the perturbation made by
FGSM attacks can be adjusted by changing the value.
Table 2
Comparison with other approaches in DL-based space relative pose estimatio

Model Dataset

Proença and Gao (2020) SPEED (Kelvins, 2023)
Rondao et al. (2022) Synthetic
Yang et al. (2021) Synthetic

Ours Synthetic
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To investigate the impact of adversarial attacks on DL-
based space relative pose estimation, different values are
selected to generate adversarial onboard camera image
input to the proposed deep relative pose estimator. Typi-
cally, the applied in this experiment are 1, 0.5, 0.3, 0.1,
0.05 and 0.01. The larger value of is, the more perturba-
tions are made to images. The FSGM attack is applied to
all synthetic test data, where all images in the test data.
Then, the perturbed images are fed to the deep relative pose
estimator for testing the impact of the FGSM attack. The
average prediction relative pose errors of applying different
values are reported in Fig. 6.
We can see that as the value increases, the deep mod-

el’s prediction error becomes larger. The attitude error is
quite stable on and but has a dramatic
increase if the

To assess well how the adversarial attack can impact the
DL-based navigation system in a space rendezvous scenar-
io, a simple guidance scheme is implemented with the pro-
posed deep relative pose estimator. The guidance scheme
takes the estimated relative pose from the proposed deep
relative pose estimator and then provides relative control
actions to move the camera (spacecraft) to the target posi-
tion. In the guidance scheme, the camera has an initial
position of and a target position of with

tolerance. The guidance scheme updates the camera
position with a maximum velocity of 1 as described
in Eq. (7) and Eq. (7)

pnew
pest 1 if diff P 1

pest diff otherwise
7

diff pest ptar 8

0 1 0 05 0 01,
0 3.

0 0 60 0 0 10
1m

m s,
n.

Position Error (m) Attitude Error (deg)

0.56 8.0
1.73 6.62

[0.052, 0.039, 0.077] [0.213, 0.233, 0.097]
0.49 0.68
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Fig. 6. Comparison of the prediction error of pose estimator under FGSM attack on test data with various values. The blue bar indicates the average
position error and the red bar indicates the average attitude error on test data. The error magnitude for the position is metres and the error magnitude in
rotation is measured by degrees. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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FGSM Attacks
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Add perturbations
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Update camera
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Estimate relative

pose

No
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Fig. 7. Test system for proposed pose estimator on Blender in simulated space rendezvous scenario.
where p p p present the updated position, estimated
position and target position of the camera, respectively.
The test system is implemented as shown in Fig. 7.

In this experiment, the test system is continuously
attacked by FGSM on image data with various acquired

new est tar
Table 3
FGSM attacks on the simulated space rendezvous scenario with = 0.5.

= 0.

Continuously Attacked Frame 5

Attack start point (m) 60 failure
50 failure
40 failure
30 failure
20 failure
10 Success
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camera frames. The success attack is defined as the camera
(spacecraft) missing the target position while the failure

attack means that the camera (spacecraft) can still reach
the target position under continuous FGSM attack. Exper-
imental results are reported in Table 3–7.
5

10 15 20

failure failure Success
failure failure Success
failure Success Success
failure Success Success
Success Success Success
Success Success Success
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Table 4
FGSM attacks on the simulated space rendezvous scenario with = 0.3.

= 0.3

Continuously Attacked Frame 5 10 15 20

Attack start point (m) 60 failure failure failure Success
50 failure failure Success Success
40 failure failure Success Success
30 failure failure Success Success
20 failure Success Success Success
10 failure Success Success Success

Table 5
FGSM attacks on the simulated space rendezvous scenario with = 0.1.

= 0.1

Continuously Attacked Frame 5 10 15 20

Attack start point (m) 60 failure failure failure failure
50 failure failure failure failure
40 failure failure failure Success
30 failure failure failure failure
20 failure failure failure failure
10 failure failure failure Success

Table 6
FGSM attacks on the simulated space rendezvous scenario with = 0.05.

= 0.05

Continuously Attacked Frame 5 10 15 20

Attack start point (m) 60 failure failure failure failure
50 failure failure failure Success
40 failure failure failure Success
30 failure failure Success Success
20 failure Success Success Success
10 failure Success Success Success
From Table 3–7, we can clearly see that the adversarial
attack can result in a significant impact on the guidance
scheme if DNN-based relative navigator is attacked, typi-
cally when the distance between the camera and the target
is less than 30 m. In most cases, continuously attacking the
deep model for more than 15 frames after the camera
approaches less than 30 m to the target, the camera (space-
craft) will fail to reach the target position. In a real space
rendezvous mission where a chaser relies on a DL-based
relative pose estimation system, an adversarial attack has
the potential to cause the chaser to fail in approaching
the target position, resulting in mission failure. Therefore,
Table 7
FGSM attacks on the simulated space rendezvous scenario with = 0.01.

= 0.

Continuously Attacked Frame 5

Attack start point (m) 60 failure
50 failure
40 failure
30 failure
20 failure
10 failure
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detecting adversarial attacks on DL-based pose estimators
becomes critical.

4.1.3. LSTM-based adversarial attack detector

The proposed adversarial attack detector is designed
based on the LSTM architecture. It aims to detect the change
in SHAP values when an adversarial attack occurs on the
input image. As mentioned in Section 3, the SHAP values
are computed at the output of the GAP layer in the proposed
deep relative pose estimator. The GAP layer contains 1000
neurons, therefore, 1000 values are calculated for each output
neuron, resulting 9 1000 output SHAP values.
01

10 15 20

failure failure failure
failure failure failure
failure failure failure
failure failure failure
failure failure failure
failure failure failure
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In our approach, the SHAP values of the GAP layer are
calculated by DeepSHAP (Lundberg and Lee, 2017) algo-
rithm. The DeepSHAP algorithm computes SHAP values
for inputs by integrating over background samples. It then
estimates approximate SHAP values in a manner that sums
up the difference between the expected deep model’s output
on the background samples and the current model’s out-
put. In this work, 1000 images are randomly selected from
the training dataset to compute the downsampled features
at the GAP layer. These samples serve as the background
samples for the DeepSHAP explainer. To train the adver-
sarial attack detector, we generated 15,000 sets of SHAP
values for normal samples and an additional 15,000 sets
of SHAP values for adversarial samples. The normal sam-
ples consist of the entire test dataset, which is used for test-
ing the deep pose estimator, along with a random selection
of images from the training dataset. This random selection
was made to reach a total of 15,000 samples, thereby bridg-
ing the gap between this number and the number of images
in the test dataset by the deep relative pose estimator. The
adversarial instances are crafted by launching attacks on
the DRLs at arbitrary time steps with random values:
0.5, 0.3, 0.1, 0.05, and 0.01. Subsequently, 3,000 perturbed
images are randomly selected from each value for calcu-
lating the corresponding SHAP values.

The SHAP values for both normal and adversarial sam-
ples are split into a training and testing set using a 0.8 train-
test ratio, resulting in 24,000 samples for training and 6,000
samples for testing. The adversarial attack detector is
trained using the Stochastic Gradient Descent (SGD)
method with the Adadetal optimiser for 1,000 epochs.
After training the adversarial attack detector, it achieved
a training accuracy of 99.98% and a test accuracy of
99.90% on the test dataset. In this case, the detection accu-
racy is calculated by Eq. (9)
Synthetic Image Generation

Generate Trajectory

image

FGSM Attacks

Attack 

image

Add perturbations to 

image by FGSM

attack

Output image

Pose Estimator

CNN feature

extractor

GAP layer

Estimated relative

pose

Relative Pose Estimat
Attacks Detection for

Fig. 8. The experimental system includes the integration of an adversarial att
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.

accuracy
successful Detection
Total No of Frames

100 9

where the is defined by that the input
frames with the adversarial attack are detector as True

and frames without adversarial attack are detector as False.
The experimental results show that the proposed detector
can successfully detect adversarial attacks on the DL-
based relative pose estimator with high accuracy. The
adversarial attack detector is integrated with the deep rela-
tive pose estimator and the DeepSHAP explainer to
enhance accuracy in space rendezvous scenarios. The over-
all system is presented in Fig. 8.

The adversarial attack detector is then tested with
three trajectories. In each trajectory, the camera (space-
craft) starts 60 meters away from the target, positioned
at various points in the x and y directions within the
range of The camera is oriented directly
toward the target, with an attitude represented as quater-
nion The end position is . The camera
(spacecraft) moves linearly at a rate of 0.25 meters per
frame along the z-axis. It follows a projectile trajectory
in the x and y directions, resulting in a total of 2,500
frames for each trajectory. The FGSM attack is applied
to test trajectories with an attack probability of 0.2. Once
FGSM is initiated, attacks continue for the subsequent 5
frames. The results of the proposed adversarial attack
detector are presented in Table 8. From the test results,
the proposed adversarial attack detector successfully
detects all incoming FGSM attacks when the = 0.5
As the value goes small, i.e. fewer perturbations are
made to input images, the detection accuracy has slightly
dropped. For these three test trajectories, the proposed
adversarial attack detector achieves a detection accuracy
of 99.21% on average.

successfulDetection

25 15 .
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Table 8
The average accuracy of the adversarial attack detector in test trajectories
with various values.

Trajectory Detection Accuracy

0.5 1 100%
2 100%
3 100%

0.3 1 100%
2 100%
3 99.98%

0.1 1 99.96%
2 99.98%
3 99.96%

0.05 1 100%
2 99.98%
3 99.98%

0.01 1 97.06%
2 96.94%
3 99.02%

Average 99.21%
4.2. Experimental results on real data

In previous experiments, both the proposed deep rela-
tive pose estimator and the adversarial attack detector
exhibited high accuracy on synthetic data. To further eval-
uate the performance of both systems, we tested them with
real-world images obtained from the Autonomous Systems
and Machine Intelligence Laboratory (ASMI Lab) at City,
University of London. These data include sensor noise,
camera calibration noise, ground truth measurement noise,
and different lighting conditions that are not present in the
training synthetic images.

4.2.1. Accuracy of the spacecraft Dee relative pose estimator

At the ASMI Lab, a scaled mock-up model of the Jason-
1 spacecraft is constructed. This mock-up model is 1/9 the
size of the actual Jason-1 spacecraft. The vision sensor
Fig. 9. Am example of images generated from Blender for training the
pose estimator.
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applied for real data acquisition is the ZED 2 camera,
which outputs images with a resolution of 1920 1080.
The deep relative pose estimator is retrained on new syn-
thetic data, referred to as the Synthetic-Lab Dataset, with
an input RGB image size of to match the aspect
ratio of the camera used in the ASMI Lab. As before, the
Synthetic-Lab Dataset is generated using Blender, where
the target was replaced with a 3-D model of the ASMI
Lab mock-up Jason-1. To simulate the space rendezvous
scenario over a distance range from 60 m to 10 m, the 3-
D model is scaled up by a factor of 9 in Blender data gen-
eration. An example of the re-training images is shown in
Fig. 9.

Similar to the previous synthetic data experiment, mul-
tiple trajectories are generated to collect images from the
Blender, resulting in a total of 32,500 images on
Synthetic-Lab Dataset for training and testing. The hyper-
parameter settings for training are the same as the settings
applied in previous synthetic data experiment, including
the learning rate, optimiser, batch size, and data augmenta-
tion methods. The pose estimator was trained for 100
epochs with a train/test split of 0.8.

There are three sets of images captured from the ASMI
Lab, referred to as the ASMI Dataset, with each set con-
taining a total of 750 images. To acquire images for the
ASMI Dataset, the camera movement is controlled by
the Rethink Robotics Sawyer (Sawyer— Rethink
Robotics, 2023) moving along the z-axis, and the ground
truths relative poses of the images in ASMI Dataset are
recorded by the OptiTrack Motion Capture Systems
(OptiTrack, 2023). The OptiTrack Motion Capture System
records the position and attitude of the ASMI Lab mock-
up Jason-1 and the ZED camera at a frame rate of 120
frames per second and assigns a timestamp to each frame.
Images are acquired by the ZED camera at a resolution of
1920 1080 and a frame rate of 30 frames per second, with
relevant timestamps. The ground truth pose for each frame
acquired by the ZED camera are assigned by matching the
corresponding timestamps from the OptiTrack Motion
Capture System. Then, the relative ground truth position
is calculated by the difference between the actual positions
of the ZED camera and the ASMI Lab mock-up Jason-1,
as shown in Eq. (10),

Poslab Poscamera Postarget 10

where donates relative ground truth position in
ASMI Dataset. The and donate the actual
position of the ZED camera and ASMI Lab mock-up
Jason-1 recorded by OptiTrack Motion Capture System,
respectively.

Due to different camera intrinsic matrices applied
between the Synthetic-Lab Dataset and ASMI Dataset,
to represent the relative position in the trained model,
the position ground truths of the ASMI Dataset are col-
laborated with the camera view by the following
processing:

480 270

Poslab
Poscamera Postarget
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where and represent the camera intrinsic matri-
ces for the camera used in Synthetic-Lab Dataset collection
and the ZED camera that is used to acquire images in the
ASMI Lab, respectively. and indicate
the target sizes in the Blender 3-D model and the actual size
in the ASMI Lab. and denote the relative posi-
tion of the target in the pose estimator and the ground
truth position in the ASMI Lab, respectively. Table 9 illus-
trates the range of relative positions in the ASMI Dataset
and representative relative positions in trained pose estima-
tor. Furthermore, all images in the ASMI Dataset are seg-
mented with a black background and resized to
to fit the input image size of the trained pose estimator. An
example of images captured in ASMI Lab is shown in
Fig. 10.

Once the deep relative pose estimation model is trained,
it is initially tested on the test set of Synthetic-Lab Dataset,
followed then by testing its prediction accuracy on real
world data captured from the ASMI Lab, i.e. ASMI Data-
set. The prediction accuracy of the deep relative pose esti-
mator is reported in Fig. 11. Similar to the previous
synthetic testing, position error and attitude error are cal-
culated by Eq. (5) and Eq. (6), respectively. Compared with
the prediction accuracy on the Synthetic-Lab Dataset, the
position error of the ASMI Dataset is slightly higher. This
could be attributed to variations in the illumination condi-
tions compared to the Synthetic-Lab Dataset, as well as
factors such as ground truth measurement noise and cam-
era calibration noise. On the other hand, the predicted atti-
tude error in the ASMI Dataset is much smaller than the
synthetic data. One possible reason could be that the target
remains stable at a fixed position with rotation effects dur-
ing the images capture.

KBlender Kzed

Targetreal Targetlab

Posreal Poslab

480 270
Table 9
Camera moving range on ASMI Dataset and its representative range on
trained pose estimator. The camera is moving along the The
representative range is calculated by Eq. (14).

trajectory ID ASMI Lab Range (z-axis) Representative Range(m)

ASMI-1 3.122–2.569 51.180–42.11
ASMI-2 2.296–1.748 37.64–28.66
ASMI-3 1.564–1.015 25.64–16.64
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z axis.
4.2.2. FGSM attacks on ASMI dataset

To evaluate how the pose estimator can be impacted by
adversarial attacks on real data, the FGMS attack is then
applied to the ASMI Dataset. In this case, the FGSM is
configured as the same as previously applied in synthetic,
including 1, 0.5, 0.3, 0.1, 0.05 and 0.01. In this experiment,
all images are perturbed by the FGSM attack. The model’s
average prediction error under FGSM attacks with various
values on the ASMI Dataset are illustrated in Fig. 12.
As shown in Fig. 12, FGSM has a significant impact on

position estimation but only slight impacts on attitude esti-
mation. In comparison to the previous experiment with
synthetic data, the FGSM attack has a more pronounced
effect when is less than 0.05 on the predicted position in
the ASMI Dataset. However, the attitude error remains
quite stable, typically less than 1 degree, for all tested
values.

4.2.3. LSTM-based adversarial attack detector

To evaluate the adversarial attack detector on the ASMI
Dataset, SHAP values are obtained by processing the pose
estimator on the Synthetic-Lab Dataset. Similar to the pre-
vious synthetic data experiment, the SHAP values are
obtained from the output of the GAP layer in the deep rel-
ative pose estimator by DeepSHAP algorithm. 1,000
images from the training data on Synthetic-Lab Dataset
are randomly selected to generate background data. A total
of 30,000 SHAP value samples, consisting of 15,000 normal
samples and 15,000 adversarial samples, are used to train
the adversarial attack detector. The 15,000 normal samples
consist of all images from the test data on the Synthetic-
Lab Dataset and randomly selected images from the train-
ing data to account for the difference between 15,000 and
the total number of images in the test data. Adversarial
samples are generated by applying FGSM attacks to the
normal sample images with randomly selected values
from [0.5, 0.3, 0.1, 0.05, 0.01].

The SHAP values are shuffled and split by a train-test
ratio of 0.8, i.e. 24,000 samples for training and 6,000 sam-
ples for testing. The adversarial attack detector is trained
by SGD with an Adadelta optimiser for 2000 epochs. Early
termination is implemented to reduce the training time. To
do that, the training data are further split into 80% for
training and 20% for validation. If the validation loss does
not decrease over 20 epochs, the training process will be
terminated. After the early termination condition, the pro-
posed adversarial attack detector achieves a detection accu-
racy of 99.18% on training data and 98.8% on test data.

Subsequently, the pose estimator, FGSM attacks, and
adversarial attack detector are integrated to evaluate the
overall performance on the ASMI Dataset. The integrated
system is identical to the one shown in Fig. 8, with the
exception that the ’Blender Image Generation’ part is
replaced by the ASMI Dataset. In the ASMI Dataset, a
random attack probability of 0.2 is applied to FGSM
attacks. When an attack occurs, input images are continu-
ously perturbed by FGSM for the next 10 frames. The
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(a) (b)

Fig. 10. Examples of images captured in ASMI Dataset. (a) Original image captured in ASMI Lab (b) Segmented image with bakc background.

Fig. 11. The prediction accuracy of the proposed pose estimator on
Synthetic-Lab Dataset and ASMI Dataset after 100 epochs.The blue bar
presents the average error on training data and the orange bar represents
the average error on test data on Synthetic-Lab Dataset. The green bar
indicates the average error on the ASMI Dataset. (For interpretation of
the references to colour in this figure legend, the reader is referred to the
web version of this article.)

Fig. 12. Comparison of the prediction error under FGSM attack on
ASMI Dataset with various values. The blue bar indicates the average
position error in meter and the orange bar represents the average attitude
error in degrees. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Table 10
The average accuracy of the adversarial attack detector in ASMI Dataset
with various values.

Detection Accuracy

0.5 100 %
0.3 100 %
0.1 100 %
0.05 98.44%
0.01 90.44 %

Average 96.29 %
detection accuracy is calculated by Eq. (9). Table 10 pre-
sents the detection accuracy on the ASMI Dataset for var-
ious values.

As shown in Table 10, the proposed adversarial attack
detector achieves an average correct detection rate of
96.29% on the ASMI Dataset. The accuracy slightly drops
when the value becomes smaller, which is caused by fewer
perturbations applied to the input images as decreases.

5. Conclusion

This paper firstly examines the impact of adversarial
attacks on DL-based spacecraft relative pose estimation
in space rendezvous scenarios. To do this, a CNN-based
relative pose estimation algorithm is proposed. FGSM
adversarial attacks are implemented, which have a signifi-
cant impact on the model’s predictions. Subsequently, an
LSTM-based adversarial attack detector is proposed to
identify adversarial attacks on input images. XAI tech-
niques are adopted to analyse the model’s predictions
and generate SHAP values-based explanations for the
model’s predictions. Multiple experiments are carried out
to evaluate the performance of the CNN-based spacecraft
relative pose estimator, how the adversarial attacks can
impact on DL-based pose estimator in space rendezvous
missions, and the performance of the proposed adversarial
attack detector. The proposed methods have been tested on
both synthetic and real image datasets. The results show
that the adversarial attack detector performs robustly in
detecting adversarial attacks, achieving an average of
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99.21% detection rate on synthetic data and 96.29% on real
data collected from the ASMI Lab.

Although the impact of digital adversarial attacks on
DL-based spacecraft relative pose estimation has been
analysed in this work, how to physically implement the
adversarial attacks still needs to be explored. Moreover,
the proposed method demonstrates high accuracy in
detecting adversarial attacks for the DL-based spacecraft
relative pose estimation, how to correct the estimated pose
after detecting adversarial attacks becomes critical to pro-
vide a robust DL-based system for future space missions.
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